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Abstract
In this work, we investigate the merits of explic-
itly optimizing for inference time algorithmic per-
formance during model training. We show how
optimizing for inference time performance can im-
prove overall model efficacy. We consider generic
inference time objectives with k samples, with a
focus on pass@k and majority voting as two main
applications. With language model training on
reasoning datasets, we showcase the performance
trade-off enabled by training with such objectives.
When training on code generation tasks, we show
that the approach significantly improves pass@k
objectives compared to the baseline method.

1. Introduction
Traditionally, the performance of machine learning system
can be improved via either training time or inference time
algorithm. At training time, knowledge is distilled into
model weights via gradient descent (Bottou, 2010). At
inference time, a fixed model is queried multiple times to
deliver a better prediction than a single model call.

Though model training and inference time compute im-
proves model performance, their scaling properties differ
significantly. For example, Lerer et al. (2020) has demon-
strated that for the game of Hex, scaling inference time
compute can match performance at increased training bud-
get, while at a fraction of the cost. More generally, inference
compute has proved effective at various machine learning
applications, even if the underlying model has been trained
extensively. Notable examples include board game (Silver
et al., 2014; 2018), competitive pokers (Brown & Sandholm,
2018; 2019), general game (Lerer et al., 2020; Bakhtin et al.,
2022), competitive programming (Li et al., 2022) and lan-
guage modeling (Jaech et al., 2024; Guo et al., 2025).
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Usually, model training does not explicitly account for the
downstream inference time algorithm. It is clear that there
is a trade-off: this helps avoid premature specialization,
but might also risk not benefiting from the inference time
algorithm fully had we known the algorithm in advance.

In this work, we investigate the impact of training explicitly
for the inference time algorithm. We focus on pass@k and
majority voting, two influential yet relatively simple infer-
ence time objectives. The pass@k objective arises when the
task has verifiers and the system can retry it k times. Major-
ity voting is even more broadly applicable: devoting more
inference time compute to have different solutions and se-
lecting the most voted one. We demonstrate how such objec-
tives can be optimized via stochastic gradient descent, and
built as part of an online reinforcement learning algorithm
(Section 3). We carry out extensive ablations that showcase
the trade-off of different objectives, such as an improved
inference time performance when the training algorithm is
aware of the inference time algorithm (Section 5): we show
that when training on mathematical reasoning datasets such
as MATH, as well as challenging code generation datasets
such as CodeContests, new algorithmic variants achieve
significant gains on inference time objectives of interest.

2. Reinforcement learning for language model
A language model can be understood as a policy πθ in the
context of reinforcement learning (RL) (Sutton & Barto,
1998). Given a prompt x, the policy generates a response
y, which then gets assessed by a human user. Usually, the
objective is to optimize πθ such that certain reward function
r(x, y) that captures human preference (HF) is maximized
(Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al.,
2022; Bai et al., 2022). Formally, consider the average
reward optimization problem

max
θ

Ex∼ρ,y∼πθ(·|x) [r(x, y)] ,

where ρ is a distribution over prompt set. Below, when
the context is clear we will omit the dependency on the
prompt x. Given samples y drawn from πθ, we can construct
stochastic gradient estimates to the policy gradient (Sutton
et al., 2000) to iteratively improve the policy. Note that for
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simplicity, we have omitted the regularization prevalent in
the RLHF formulation (Ouyang et al., 2022).

Inference time objectives. At inference time when the
model is deployed, one might adopt a procedure different
from training time to obtain better performance. Depending
on the application, different inference time objectives are
desired. One important class of inference time objective
is pass@k, where the model is given a budget of k gener-
ations at test time. Though quite a lenient metric, pass@k
is especially useful for difficult problems (e.g., (Li et al.,
2022)) that allow for trying multiple times. It also approx-
imates best-of-k assuming access to a good reward model.
Formally,

E(yi)ki=1∼πθ(·|x) [max (r1, . . . , rk))] ,

where ri = r(x, yi) denotes the reward for generation yi.

Another important example of inference time technique is
majority voting. The model is still given a budget of k
generations and outputs a single solution for assessment.
In general, majority voting is applicable if the generation
y = (c, a) can be decomposed into a chain-of-thought c and
a final answer a. The reward scores only the final answer
r(x, y) = r(x, a), i.e., for problems with short and verifi-
able answers. It has proved highly effective at leveraging
inference time compute for improved performance in var-
ious domains (Wang et al., 2022; Lightman et al., 2023).
Concretely, the majority voting objective is

E(ci,ai)ki=1∼πθ(·|x) [r (maj(a1, . . . , ak)))] ,

where the operation maj(·) extracts the majority element
from a set of items. We assume random tie breaks in case
more than one element takes the majority.

We will focus on these two objectives as they are self-
contained given a language model. There are alternative
inference time methods such as best-of-k with access to
auxiliary models (e.g., reward models) (Uesato et al., 2022;
Lightman et al., 2023) which we do not discuss.

3. Optimizing Language Models for Inference
Time Objectives using RL

These inference time objectives share a key feature: they
all use k samples. We propose a general formulation of
k-sample objectives that can be optimized by stochastic
gradient descent.

In general, we consider the k-sample objective

E(yi)ki=1∼πθ(·|x) [f (x, y1...yk))] , (1)

defined through a function f : X × Y × Y... → R. Here
f is an aggregation function that can process an arbitrary
number of generations. It is clear that both pass@k and
majority voting objectives are special cases.

3.1. Unbiased stochastic gradient estimate

To optimize for the objective in an unbiased way with
stochastic gradient descent, we can sample k generations
i.i.d. (yi)ki=1 ∼ πθ(·|x) and construct the gradient estimate
akin to REINFORCE (Williams, 1992)

f (x, y1...yk)

k∑
i=1

∇θ log πθ(yi|x).

Importantly, here we sum over the weighted gradient of
log probabilities across k samples. This is in contrast to
a k-sample policy gradient estimate that averages over k
samples. The key difference is that these k samples are
coupled through the aggregation function f . As a result,
such a gradient estimate has high variance on the order of
O(k) (Fallah et al., 2020a; Tang, 2022) that increases with
the number of samples k, as opposed to O(k−1) in k-sample
average policy gradient estimate.

Henceforth for notational simplicity, we let f(y) be a short
hand notation for f(x, y1...yk) and let f(y−i) be a short
hand notation for leaving out generation i: f(y−i) :=
f(x, y1...yi−1, yi+1...yk). We also drop the dependency
on x when the context is clear.

For variance reduction, we propose the leave-one-out con-
trol variate that results in the following gradient estimate

k∑
i=1

(f (y)− f (y−i))∇θ log πθ(yi|x). (2)

The effective advantage function Ai := f (y) − f (y−i)
measures the contribution that yi has on improving from
f (y−i) to f (y).

Lemma 1. (Unbiased leave-one-out gradient estimate)
The gradient estimate with the leave-one-out control variate
in Eqn (2) is unbiased.

Proof. For any i, E [f (y−i)∇θ log πθ(yi|x)] = 0 since all
k samples are independent, hence the proof is concluded.

Let us examine a few special cases to make concrete the
concept of leave-one-out gradient estimate.

Average reward: f(y) = 1
k

∑k
i=1 ri. In this case, the

form of the policy gradient estimate is equivalent to the
leave-one-out control variate proposed in a number of prior
work that tackles k-sample average objectives (Kool et al.,
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2019; Mnih et al., 2016).

k∑
i=1

1

k

k∑
j=1

rj −
1

k − 1

∑
j ̸=i

rj

∇θ log πθ(yi|x)

=
1

k

k∑
i=1

ri − 1

k − 1

∑
j ̸=i

rj

∇θ log πθ(yi|x).

Pass@k: f(y) = max(r1...rk). With pass@k, the advan-
tage function for generation i reduces to Ai = max(r1:k)−
max(r−i). In contrast to the previous example, the advan-
tage Ai here is non-negative. In fact, if we assume the
reward is ordered as r(1) ≤ r(2) ≤ ... ≤ r(k) we can rewrite
the gradient estimate equivalently as(

r(k) − r(k−1)

)
∇θ log πθ(y(k)|x),

i.e., the advantage is non-zero only for the best generation
y(k). The advantage is effectively the difference between the
best and the second best reward. Such a rewrite is sensible
because, if the second best and the best reward are the same,
there is no incentive in updating the policy.

To impart more intuition on the sparsity of the learning
signal, consider a binary reward problem for pass@k: we
expect the learning signal to be more dense when the average
solve rate is at O(k−1). If the solve rate is higher, the
problem is too easy; otherwise the problem is too hard. In
both cases, the learning signal decreases for the gradient
estimate.

Majority voting: f(y) = r (maj(a)). Here, we will
adopt the notation for a := a1:k and a−i for the leave-one-
out variant. With majority voting, the advantage function for
generation i is Ai = r (maj(a))− r (maj(a−i)), measuring
the impact of answer ai on the majority voted answer a.
Assume that all m < k unique answers are sorted in their
count |a(i)| as a(1) ≤ ...a(m), then (maj(a−i) ̸= (maj(a)
if and only if ai = a(m) and |a(m)| = |a(m−1)| + 1, since
this is the only case where the leave-one-out voted answer
changes. In other words, the advantage is all-zero in case
a particular answer |a(m)| dominates the count such that
|a(m)| > |a(m−1)|+ 1 since there is no incentive in updat-
ing the policy.

3.2. Trading-off further variance reduction with bias

In general, with the leave-one-out control variate, the advan-
tage estimate becomes more sparse. Indeed, the effective
advantage Ai measures the impact of a individual sample
on the global objective. For example, for the pass@k, Ai
is only non-zero for the reward maximizing generation; for
the majority voting, Ai is non-zero only when it is possible
to alter the majority voted answers.

Intuitively, these observations imply that the update has high
variance. However in a sense, the leave-one-out control
variate (Eqn (2)) marks a near optimal trade-off between
simplicity and variance reduction for an unbiased gradient
estimate. To reduce variance further, we can introduce bias:
by subtracting the mean of all advantages, this produces a
general gradient estimate

k∑
i=1

(
f (y)− f (y−i)− Ā

)︸ ︷︷ ︸
A′

i

∇θ log πθ(yi|x). (3)

where the additional baseline is Ā := 1
k

∑k
i=1Ai =

1
k

∑k
i=1 f (y)− f (y−i). By construction, the new advan-

tage A′
i = Ai − Ā is zero-mean and arguably the new esti-

mate has even lower variance. However, such an estimate
introduces a bias to the objective it optimizes.
Lemma 2. (Objective of the biased gradient estimate)
The gradient estimate with zero-mean advantage function
in Eqn (3) optimizes for an alternative objective

E(yi)ki=1∼πθ(·|x)

[
1

k

k∑
i=1

f (y−i)

]
. (4)

Proof. The gradient bias comes from the baseline term
which evaluates to E

[∑k
i=1 −Ā∇θπθ(yi|x)

]
. A simple

algebraic manipulation shows that the aggregate gradient
expectation is

E

 k∑
i=1

1

k

k∑
j=1

f(y−j)∇θ log πθ(yi|x)


which is the unbiased gradient estimate to the objective
E
[∑k

i=1
1
k

∑k
j=1 f(y−j)

]
.

The objective differs from the initial k-sample objective
in Eqn (1) - it measures the leave-one-out k − 1-sample
objective f (y−i) averaged over all k samples. The bias is
hence

E(yi)ki=1∼πθ(·|x)

[
f (y)− 1

k

k∑
i=1

f (y−i)

]
.

Let us characterize the bias in a few special cases. For the
average reward case f(y) = 1

k

∑k
i=1 ri there is no bias.

This is compatible with the fact that the advantages Ai are
already zero-mean. The bias is non-trivial in general.

Pass@k. Recall that the samples are ordered r(1) ≤
r(2) ≤ ...r(k). We can write explicitly the new objective for
the biased gradient estimate in Eqn (4) as

E
[
k − 1

k
r(k) +

1

k
r(k−1)

]
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Figure 1. Comparison of different gradient estimates in a bandit case. We set up a bandit problem with |Y| = 100 possible actions and
each reward r(y) is a deterministic scalar sampled from unit Gaussian. We compare three algorithmic variants: the mean policy gradient,
the pass@k policy gradient and its biased variant. All algorithms apply k = 4 samples per update with learning rate η = 1.0. Overall, we
see that the baseline gradient makes the fastest improvement on the mean performance, when graphed against the learning steps (left plot);
however, it is generally less KL-efficient than other k-sample alternatives (middle plot). When measuring the pass@k performance, the
k-sample gradient estimates lead to significantly faster improvements (right plot).

which is a convex combination of the best and the second
best reward. The bias is hence 1

kE[r(k) − r(k−1)] which
is the gap between the best and the second best reward.
Though such bias vanishes as k increases, it also means that
the overall gradient estimate has sparser signal. It is less
insightful to make explicit the new objective for the majority
voting case, which we detail more in Appendix B.

3.3. Additional discussions

We provide further discussion on the property of the k-
sample gradient estimate.

Interpolating mean and general k-sample objectives.
We see that by subtracting the mean of the k-sample advan-
tage in Eqn (3), we manage to recover a smoother average
of leave-one-out objective (Eqn (4)). In fact, by taking this
approach this approach further and constructing leave-n-out
objectives, we can construct an interpolation between the
original k-sample objective and the mean objective. See
Appendix B for more discussions.

Effect of increasing number of samples k. For the base-
line policy gradient, varying the number of sample k does
not impact the expectation of the gradient estimate. The
corresponding gradient estimates always approximate the
gradient of the mean performance. Increasing the value of k
helps reduce variance of the estimate, but has a diminishing
effect when the batch size is large enough. For the k-sample
objectives, varying the value of k changes the objective it-
self. For the pass@k objective, increasing k means that we
care increasingly about the extreme values (i.e., max values)
of the reward distribution. For the majority voting objective,
as k → ∞, we optimize for the margin likelihood that the
final answer a is matched against a∗. We will ablate the
empirical impact of k in Section 5.

Empirical study on a bandit case. To better illustrate
the property of the k-sample gradient variants, we inves-
tigate the behavior of various policy gradient estimates
in the bandit setting. There are a total of |Y| = 100 ac-
tions and each incurs a deterministic reward r(y) sampled
from a unit Gaussian. We consider softmax parameteri-
zations πθ(y) ∝ exp (θ(y)) and all algorithmic variants
apply k = 4 samples for the update and identical hyper-
parameters and initializations. Figure 1 shows the evaluated
performance of different variants over time.

When measuring the mean performance, the mean policy
gradient algorithm clearly maximizes the performance at a
faster rate. However, when graphed against the KL diver-
gence KL (πθ, πref) against the initial policy πref, we see
that the pass@k gradient estimate (Eqn (2)) and its biased
variant (Eqn (3)) is more KL-efficient (Gao et al., 2023).
This follows from the fact that the k-sample gradient esti-
mates have more conservative updates compared to the mean
gradient. In general, maximizing the mean performance can
also improve pass@k performance as we observed in the
plot. In this case, the other two algorithmic variants are by
design more efficient.

4. Related work
We discuss how our approach relates to prior work.

Other multi-sample objectives. Multi-sample objectives
have been considered extensively in the variational inference
literature (Raiko et al., 2014; Burda et al., 2015; Mnih &
Rezende, 2016). Using terminologies from this work, they
consider k-sample objectives of the following form

E

[
log

(
1

k

k∑
i=1

p(x, yi)

q(x, yi)

)]
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Figure 2. MATH training pass@k 8B model. We compare three baselines: regular mean policy gradient algorithm and two variants of
pass@k policy gradient algorithms (unbiased and biased). We split the performance across MATH difficulty level and report the mean
performance and pass@4 performance over time. We observe that as training progresses, pass@k policy gradient algorithms seem to
display a slight advantage over the baseline algorithm.

where p, q are usually two distributions. Such an objective is
by design a lower bound to the marginal likelihood, which is
often considered the ultimate objective (Burda et al., 2015).
In gradient-based meta-learning, the k-sample objective
takes the following form (Finn et al., 2017; Fallah et al.,
2020a;b; Tang, 2022)

E

[
J

(
θ +

1

k

k∑
i=1

g(x, yi)

)]

where g(x, yi) ∈ Rd is meant to be a gradient update to the
vector θ ∈ Rd and J : Rd → R is a scalar function. In both
cases, the effective aggregate function f is a transformation
of the average function. Intuitively, such objectives are
smoother than pass@k and majority voting. The specific
structure of this objective also produces gradient estimate
that trades-off bias with variance (Fallah et al., 2020b; Tang
et al., 2021), complementary to our development here.

Leave-one-out control variate. The leave-one-out con-
trol variate has been studied in Mnih & Rezende (2016) for
variational inference, and in Kool et al. (2019); Ahmadian
et al. (2024) for improving the mean objective in a REIN-
FORCE algorithm. As an alternative, Mnih & Rezende
(2016) analyzed the control variate vi := Ey−i [f(y)|yi]
which accounts for the credit assigned to other k − 1 sam-
ples in an expected sense. Such an objective can be espe-
cially useful for the k-sample objectives in our case since
the advantage Ãi = f(y)− vi is by construction zero-mean
and arguably has lower variance. However, estimating such
quantities introduces additional overhead in practice.

Optimizing for inference time objectives. Concurrently,
Balashankar et al. (2024) proposed to optimize for pairwise
win rate based on best of k sampling. Under certain condi-
tions, they showed that the objective is equivalent to the reg-
ularized RL problem with a transformed reward, which can
be approximately optimized. Amini et al. (2024) pursued a
similar approach but noticeably took a log transformation
of the score. Such an objective is not possible to estimate in
an unbiased, instead, a variational approximation is needed.
Chow et al. (2024) proposed to optimize best of k perfor-
mance for applications where a scoring function (or verifier)
is available during training. Both work have shown merits
in accounting for inference time objectives during training.

5. Experiments on mathematical reasoning
Throughout, we focus on the mathematical reasoning dataset
MATH (Hendrycks et al., 2021) where the prompt x con-
sists in asking the model a mathematical question with a
short-form ground truth answer a∗ available. Given the
model generation y = (c, a) which typically consists of a
step-by-step chain-of-thought reasoning c and a proposed
answer a, the reward is computed as a match between a and
a∗. We adopt Sympy (Meurer et al., 2017) to automatically
match the answers and assign a reward of r = 1 if there
is a match and r = −1 otherwise. As such, the objective
E[r] also measures the average accuracy of the policy. We
train on models on the MATH training set with various ob-
jective alternatives introduced above. During experiments,
we provide the model with a system prompt that asks for a
step-by-step solution, followed by a final answer.

Our main experiments are based on the 8B model from the
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Figure 3. Ablation with number of samples k. We vary the number
of samples k for each gradient update for the pass@k objective. We
observe a more efficiency gains for the pass@k gradient estimates
compared to the policy gradient baseline. Importantly, note that as
k varies, the pass@k algorithm changes its objectives.

Llama 3 model family (Dubey et al., 2024) though we also
carry out ablations on models of other sizes. We apply on-
line policy gradient algorithmic variants and investigate their
performance during training. All variants apply identical
hyper-parameters such as that they all apply k = 4 samples
for gradient estimations, which we detail in Appendix A.

5.1. Training performance

Pass@k. Figure 2 shows the training performance of a few
algorithmic variants over time. The MATH dataset contains
5 difficulty levels (the easiest is level 1 and the hardest level
5). We break down performance based on the levels and
report both mean performance and pass@k = 4.

A few observations are in order: when measuring the mean
performance, the mean policy gradient seems to obtain a
slight improvement over algorithms that aim for the pass@k
performance. Meanwhile, the dedicated k-sample gradient
estimates generally perform better in pass@4. The biased
variant (green) seems to generally strike a trade-off between
the pass@k gradient estimate (blue) and the baseline, which
is compatible with the theoretical designs. The breakdown
shows that for pass@k, most performance difference comes
from the more difficulty categories than easy ones. This
might be explained by the fact that since the k-sample gradi-
ent estimates update policy more conservatively, they tend to
have relatively more updates for the more difficult prompts,
compared to the mean policy gradient.

Majority voting. In a similar vein, Figure 15 shows the
training performance of a few algorithmic variants. We
break down performance by difficulty level and measure
both the mean performance and the majority voting at k = 4
performance. Interestingly, under this set of comparison, the
policy gradient algorithm with majority voting at k = 4 al-

gorithm (blue) seems to obtain a better training performance
overall, both in terms of the mean and the majority voting
at k performance. Meanwhile, the biased variant seems to
perform similarly as the policy gradient baseline.

The breakdown also shows that most improvements seem to
come from higher level of difficulty compared to the easier
categories. This might be explained via a similar argument
as the pass@k algorithm: the k-sample gradient estimates
tend to have sparser advantage and hence less update for the
model over a fixed number of training steps. This makes
them slightly more KL-efficient since they focus more on
more challenging problems.

5.2. Ablations

We carry out ablations along a few dimensions of interest.

Number of samples k. We first ablate with the number
of samples k used for constructing the gradient estimates.
Throughout, we still apply the same hyper-parameter includ-
ing batch size as the base experiments. We focus on the
pass@k objective here and discuss more about the majority
voting objective in Appendix A.

Figure 3 shows the training performance as we vary the
number of samples k ∈ {2, 8}. Overall, we observe that as
k increases, there is no discernible difference in the perfor-
mance of the policy gradient estimates. However, increasing
k seems to make the pass@k sample estimates more KL-
efficient, i.e., k = 8 obtains a better performance than k = 2
given a fixed KL budget. The performance improvement
over the policy gradient estimate is also quite significant.
However, though the pass@k algorithm is more KL-efficient
as k increases, they tend to also deviate less from the ref-
erence policy πref with a fixed number of learning steps.
This means that to achieve a target level of pass@k perfor-
mance, the regular policy gradient baseline, despite being
less KL-efficient, can still retain an advantage due to its
faster deviation from the reference policy.

Model size. We also replicate similar experiments across
a few other model sizes: 3B and 70B, both from the Llama
3 model family. We notice that 3B model tends to dis-
play a similar trend of performance trade-off compared to
the 8B: the specialized k-sample estimates tend to outper-
form baselines on k-sample objective during training, while
slightly under-performing for the mean performance. The
performance improvement also mostly stems from the more
difficult subset of the dataset.

The performance trade-off for the 70B case is less clear.
The policy gradient baseline remains performant even for
the k-sample objectives. We suspect that this is because
the MATH dataset is a relatively simple task for the 70B
model (Yue et al., 2024). Indeed, both the pass@k = 4 and
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Figure 4. HARP training pass@k 70B model. We observe that the regular policy gradient estimate improves over the pass@k variants for
the mean performance metric, while under-performing on the pass@k objective. Such a trade-off is less significant for the MATH dataset,
where we speculate that the 70B model is too powerful and learning signals are too sparse to make a difference.

majority voting at k = 4 are ∼ 90% for the MATH training
set. This implies that the k-sample gradient estimates will
not produce much signal, given a fixed training budget.

Training on HARP. In light of the previous observation,
we examine HARP dataset (Yue et al., 2024), a carefully
curated math dataset consisting of hard problems. Though
HARP was meant for evaluation, we monitor algorithmic
variants’ training performance as a sanity check. Fig-
ure 4 shows the results for the pass@k objectives. For
the pass@k = 4 objective, we observe a significant im-
provement of k-sample gradient estimates compared to the
baseline algorithm. The mean performance of various algo-
rithms is similar, as expected. We also observe improvement
in the majority voting metric, as well as for the 8B model -
though the improvement appears less significant compared
to the 70B case. This might be because the HARP dataset is
too difficult for 8B models. See results in Appendix A.

5.3. Evaluation performance

Throughout evaluation on the MATH test set, we apply a
temperature sampling with τ = 1, top p = 1 to be iden-
tical to the training setup. In Figure 14 we showcase the
evaluation metrics for the pass@k objectives. We show
the majority voting metrics in Appendix A. We noted that
training and evaluation performance are not perfectly cor-
related - we speculate this might be because since regular
policy gradient estimate performs more effective updates
during training, it makes up for more generalization gap
from training to evaluation.

In particular, the policy gradient baseline performs quite
well for the evaluation pass@4, despite being slightly out-
performed by the k-sample pass@k gradient estimates at

training time. We also note that, as training progresses, the
policy gradient estimate tends to regress on pass@k when
k is large (k ∈ {16, 64}), arguably due to impacts from
sample diversity.

6. Experiments on code generation tasks
For code generation, we conduct our experiments on Code-
Contests (Li et al., 2022), a competitive programming bench-
mark containing 13k problems as training set and evaluate
on the valid and test set. Similar to previous work (Xu et al.,
2024; Gehring et al., 2024), we use a r = +1/− 1 reward
indicating whether the Python code solutions pass all the
given tests that come with the dataset. Due to the challeng-
ing nature of CodeContests, we use Llama 3.1 70B Instruct
model and optimize for pass@8 metrics on the CodeCon-
tests training set. To measure generalization, we also re-
port the performance on another competitive programming
benchmark, TACO (Li et al., 2023) on the easy and hard
split, for which we have decontaminated the CodeContests
training set against TACO eval set.

Figure 5 shows a clear trade-off between optimizing for
pass@1 and pass@8 on CodeContests valid and test set.
This trade-off generalizes in-domain to TACO easy and
hard split. Across all evaluation set, mean policy gradient
achieves the best pass@1 performance (or mean perfor-
mance). However, it also clearly degrades on pass@8 as the
training progresses. In clear contrast, pass@k policy gra-
dient achieves the best pass@8 performance. The pass@k
performance improves since the onset and remains so over
the course of training. We do not observe a significant differ-
ence between different pass@k gradient variants, since they
both achieve much better performance than the baseline.
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Figure 5. Code generation task evaluation performance. We observe a clear trade-off between pass@1 and pass@8 on CodeContests and
TACO using Llama 3.1 70B - mean policy gradient achieves the best mean (pass@1) performance, while pass@k gradient variants clearly
achieve much better performance fo the pass@k performance.

Table 1. The pass@k performance of Llama 3.1 70B Instruct on CodeContests valid/test set up to pass@100. Models are trained on
CodeContests training set. The pass@k objectives optimize for k = 8.

Method Variant CodeContests / Valid CodeContests / Test

pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

Policy Gradient
mean 24.6 32.9 38.1 26.2 35.1 39.8
pass@k 21.7 42.2 54.9 20.6 41.7 51.8
biased pass@k 18.0 38.4 54.2 19.3 39.5 51.9

PPO
mean 20.0 27.5 33.5 24.9 34.6 41.1
pass@k 19.2 37.3 52.4 21.2 41.4 51.0
biased pass@k 21.6 41.7 55.8 22.6 45.1 56.3

Integration with PPO. We also investigate how the k-
sample gradient variants can be combined with much more
sophisticated algorithmic stack to illustrate its generic practi-
cal utility. Note that the pass@k objective can be seamlessly
integrated into other policy gradient variants, such as PPO
(Schulman et al., 2017), which adds clipping and an addi-
tional value function that serves as the baseline. Figure 6
shows the performance of using PPO. We can observe that
PPO with pass@1 objective enters in high-KL regime at the
end of the training, due to the fact that its update generally
leverages much more dense signals. The sparse nature of
pass@k objective keeps the policy under low-KL regime
and maintains higher pass@8 performance. For the purpose
of training language models with fixation on the reference
policy (Ziegler et al., 2019; Ouyang et al., 2022), pass@k
objectives achieve a balance for the performance metrics.

Model size. We also include the experiment result with
Llama 3.1 8B Instruct model in Appendix A.4. Compared to
70B, the performance differences across training objectives
are less pronounced. We posit that the model size and the
benchmark play a crucial role; for 8B model, the average
pass@1 on CodeContests is modest, resulting in sparse
reward signal. Intuitively, pass@k objective will zero out the
advantage for problems solved more than once. Therefore,
we expect the difference to widen as the dataset contains
more problems that the model is able to solve multiple times.

6.1. Generalization to different k for evaluation

We investigate the impact of different training objectives,
when combined with increased inference time budget. Con-
cretely, we study how pass@k performance scales with the
number of samples k at evaluation time.
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Figure 6. PPO code generation evaluation results with Llama 3.1 70B. We combine k-sample gradient estimates with a PPO implementation
stack and compare with the default mean policy gradient baseline. We see that biased pass@k gradient estimate especially achieves a
good performance trade-off. Details of how the k-sample gradient variants are combined with PPO can be found in Appendix A.4.

Table 2. The pass@k performance of Llama 3.1 70B Instruct on TACO easy and hard split up to pass@100. Models are trained on
CodeContests training set. The pass@k objectives optimize for k = 8. When integrated with pass@k and biased pass@k updates, both
policy gradients and PPO have improved pass@k performance, especially for large values of test time k.

Method Variant TACO/easy TACO/hard

pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

Policy Gradient
mean 29.9 34.5 38.2 8.1 9.9 11.8
pass@k 29.6 43.2 48.9 7.8 14.4 18.0
biased pass@k 26.7 42.5 51.5 7.0 14.3 21.9

PPO
mean 27.5 35.3 39.5 7.3 8.8 11.1
pass@k 28.0 41.6 49.5 7.6 14.2 18.7
biased pass@k 27.2 44.8 53.8 7.7 14.6 21.3

We show in Table 1 and Table 2 the pass@k performance
across different k of Llama 3.1 70B Instruct model trained
using different objectives. Models are trained with 6400
gradient update steps. For pass@k objective, models trained
to optimize pass@k (k = 8) can generalize to pass rate with
different k up to k = 100. Amazingly, the performance
improvements scales with k: for both CodeContest and
TACO, the improvements go from 5 − 10% at k = 10 to
10 − 20% at k = 100. In general, improvements on hard
and test splits are a bit less than improvements on easy and
validation splits.

Generalization to k = 100 at test time. We show in
Table 1 and Table 2 (in the Appendix) that Llama 3.1 70B
Instruct model trained to optimize pass@k (k = 8) can gen-

eralize to pass rate with different k up to k = 100, with
over +10% solve rate improvement over the baseline. on
validation and test set.

7. Discussion and limitations
Lots of efforts remain to adapt the training methods to in-
ference time objectives beyond this work. Applying the
methodology here naively would incur large computational
burden (Silver et al., 2016; 2018; Brown & Sandholm, 2018;
2019). Furthermore, many recent inference time algorithms
do not treat each sample equally, such as self-correction,
reflection and more complicated logic (Yao et al., 2022;
Huang et al., 2023; Asai et al., 2023). This requires careful
algorithmic improvements for better credit assignment.
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Impact Statement
This paper presents work whose goal is to advance funda-
mental algorithmic development. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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APPENDICES: Optimizing Language Models for Inference Time Objectives using
Reinforcement Learning

A. Hyper-parameters and experimental details
We experimented with the Llama 3 model of size 3B, 8B and 70B (Dubey et al., 2024). All experiments are conducted with
identical hyper-parameter settings: we always apply a batch size of B = 64 prompts per update, and sample k = 4 distinct
generations per prompt by default. All training and evaluation sampling are conducted at a temperature of τ = 1 and with
top-p = 1.

We train on the MATH training set with 7500 examples and evaluate on the test set with 5000 examples (Hendrycks et al.,
2021). A supervised fine-tuning on the training set is conducted to warm up the RL training. As part of the ablation, we also
train on the HARP dataset, which consists of about 4300 examples of difficult math problems harvested from a few public
sources (Yue et al., 2024).

For both training and evaluation, we provide system instructions that ask the model to generate a response with step-by-step
solution, followed by a final conclusion phrased as the final answer is followed by the answer predicted by the model. This
is consistent with the prompt structure discussed for Llama models (Dubey et al., 2024; Yue et al., 2024).

A.1. Ablation on number of samples k

Pass@k. Figure 7 shows the full results for the ablation results. We see as k increases, the k-sample gradient estimates
produce performance improvements on the pass@k objective. More significant improvements are observed for the more
difficult split of the dataset.

Figure 7. Ablation with number of samples k for majority voting. We vary the number of samples k for each gradient update for the
pass@k objective. We observe a more efficiency gains for the pass@k gradient estimates compared to the policy gradient baseline.
Importantly, note that as k varies, the pass@k algorithm changes its objectives.

Majority voting. Figure 8 shows the ablation results for the majority voting based results and k-sample gradient based
algorithm. We observe a slight improvement of the k-sample based algorithms over policy gradient baseline, though the
impact of the number of samples k is less signficant compared to the pass@k case.

A.2. Training on HARP

We train both 8B and 70B on the HARP dataset, with both the pass@k and majority voting based algorithms and objectives.
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Figure 8. Ablation with number of samples k for majority voting. We vary the number of samples k for each gradient update for the
pass@k objective. We observe a modest efficiency gains for the pass@k gradient estimates compared to the policy gradient baseline but
the impact of the number samples k is less significant.

8B model. Figure 9 and Figure 10 show the results for the pass@k and majority voting respectively. Overall, we see
that the regular policy gradient algorithm is modestly outperformed by the k-sample based algorithms, in terms of the
KL-efficiency trade-off against the training performance.

However, one observation that is compatible with prior results, is that the regular policy gradient algorithm tends to allow
the policy to deviate more from the reference policy using a fixed number of updates compared to the k-sample based
algorithms. This presents a practical trade-off - if we want to obtain a good level of performance with a fixed number of
training steps, the policy gradient algorithm might be a better option since it is more compute-efficient.

70B model. Figure 11 shows the HARP training results for the majority voting case. We see that the improvement is
less clear for both the mean and the majority voting performance - the three algorithmic variants seem to obtain similar
performance, with the k-sample policy gradient algorithm obtaining a very slight advantage over others.

A.3. Evaluation

Figure 16 shows the evaluation performance for the majority voting on MATH, using the 8B model. Across the various
baselines we compare, we note that the biased k-sample policy gradient algorithm seems to slightly outperform the policy
gradient algorithm as KL is large, though the policy gradient algorithm itself is clearly a strong baseline.

The unbiased k-sample policy gradient algorithm seems to slightly underperform on evaluation, which contrasts the strong
training performance in Figure 15. We speculate that this suggests an intriguing interaction between the training and testing
performance worthy of further investigation: likely the merits of such k-sample based algorithms depend on the nature and
the size of the dataset, which is better tested out in practical applications.

A.4. Experimental details and additional result on CodeContests and TACO

Experimental details. We experimented with Llama 3.1 8B and 70B Instruct model. For both model we use the same
hyperparameters. We use a learning rate 2e−7, constant learning rate scheduling with 50 warmup steps and weight decay of
0.1. We sample k = 8 generations per prompt. We update the model with a mini batch size 2 with sequence length 8192
and train in total 8k gradient update steps. In training, sampling is conducted at a temperature of τ = 1 and with top-p = 1.
In evaluation, we sample at a temperature of τ = 1 and with top-p = 0.95. Both pass@1 and pass@8 are estimated out
of 20 samples. We evaluate the correctness of generated Python code using the official codebase of Li et al. (2022). Our
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Figure 9. Training reward for pass@k on the HARP dataset for 8B model. We can see observe relative performance efficiency of k-sample
gradient variants compared to the baseline method. The gains are overall less significant compared to the 70B model, whose model
capacity is more suitable for the challenging HARP dataset.

asynchronous online training decouples the training and the inference, for which we include an importance sampling term to
correct the slightly off-policy nature between current policy and the behavior policy. The original CodeContests training
set contains 13328 problems. We follow the decontamination process presented by Zheng et al. (2024) to decontaminate
CodeContests training set against TACO evaluation set. We further remove problem instances with less than 5 test cases.
This results in total 12275 problems which we use to train our model.

Integrating with PPO. We can integrate advantage clipping and an additional value model Vψ to serve as an additional
baseline. Given a problem x, we sample multiple responses {y1, y2, ..., yk} from πθold , the training objective aims to
maximize the following objective:

Jπ(θ) = Êy∼πθold

[
min

(
πθ(y|x)
πθold(y|x)

Â, clip

(
πθ(y|x)
πθold(y|x)

, 1− ϵ, 1 + ϵ

)
Â

)]
=

1

k

k∑
i=1

min

(
πθ(yi|x)
πθold(yi|x)

Âi, clip

(
πθ(yi|x)
πθold(yi|x)

, 1− ϵ, 1 + ϵ

)
Âi

)
,

Âi = Ri − Vψ(x),

where Ri takes the following different forms according to the training objective:

Mean(pass@1) training objective: Ri = ri

Pass@k training objective: Ri = max
j∈{1,...,k}

rj −max
j ̸=i

rj

Biased pass@k training objective: Ri = max
j∈{1,...,k}

rj −max
j ̸=i

rj −
1

k

k∑
k=1

[
max

j∈{1,...,k}
rj −max

j ̸=k
rj

]
with ri being the +1/− 1 binary reward of whether the code yi is correct. We train the value model Vψ to minimize the
following clipped value loss:

LV (ψ) = Ê
[
1

2
max

(
(Vψ(x)−Ri)

2
, (clip (Vψ(x), Vψold(x)− α, Vψold(x) + α)−Ri)

2
)]
.

We set ϵ = α = 0.2 in our experiments.
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Figure 10. Training reward for majority voting on the HARP dataset for 8B model. Overall, the training performance improvement is less
significant compared to the pass@k case.

Llama 3.1 8B Instruct Performance. For Llama 3.1 8B Instruct model, we show in Figure 12 the performance of
using mean policy gradient, pass@k policy gradient and biased pass@k policy gradient. We also show in Figure 13 the
performance when integrating the training objective with PPO.

B. Additional discussion
B.1. Biased objective for majority voting

Following the recipe to derive biased k-sample objective for the k-sample objective, we discuss the case for majority voting.
Assume there are m unique answers and they are ordered by count a(i), i ∈ [m]. It is not difficult to show that, the resulting
objective is a weighted objective of the most common and second most common answer

E
[
P (y) · r

(
a(m)

)
+ (1− P (y)) · r

(
a(m−1)

)]
,

where P (y) is the probability that the leave-one-out majority voted answer is the second most common answer. Intuitively,
the leave-one-out majority voted answer can either be a(m) (when for example |a(m)| ≥ |a(m−1)|+ 2) or the second most
common answer a(m−1).

B.2. Interpolation between k-sample objectives and mean objective

We have hinted at the observation that the biased k-sample objective is a smoother objective than the original k-sample
objective. The biased objective also approaches the mean objective 1

k

∑k
i=1 ri which is arguably the most smooth objective

one can construct.

Leave-p-out objectives. Extending the idea of leave-one-out further, we discuss leave-p-out, which depicts a spectrum
of objectives interpolating the original k-sample objective and the mean objective. We focus on the pass@k objective as
follows

1(
k
p

)E
∑
s∈Sp

max
i/∈s

ri

 , (5)

where Sp is the set of all subsets of p indices from {1, . . . , k}, with
(
k
p

)
being its cardinality. Notice that for p = 0 we

recover the initial problem of the pass@k objective. For p = 1 we get the de-meaned objective introduced in the previous
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Figure 11. Training reward for majority voting on the HARP dataset for 70B model.

section. For p = k − 1 we get the problem of maximizing the expected rewards. For p = 2 we get the objective

2

k(k − 1)
E

∑
i ̸=j

max
l ̸={i,j}

rl

 ,
A practical implementation of a gradient estimate of the objective (5) can be written as the de-meaned gradient using the
advantages maxi ri −maxi/∈s ri for s ∈ Sp. Indeed:

∇E

 1(
k
p

) ∑
s∈Sp

max
i/∈s

ri


= E

 ∑
i∈{1,...,k}

∇ log π(yi)

 1(
k
p

) ∑
s′∈Sp

max
i/∈s′

ri


= E

 1(
k−1
p−1

) ∑
s∈Sp

(∑
i∈s

∇ log π(yi)

) 1(
k
p

) ∑
s′∈Sp

max
i/∈s′

ri


=

1(
k−1
p−1

)E
∑
s∈Sp

(∑
i∈s

∇ log π(yi)

) 1(
k
p

) ∑
s′∈Sp

max
i/∈s′

ri −max
i/∈s

ri



=
1(
k−1
p−1

)Eπ
∑
s∈Sp

(∑
i∈s

∇ log π(yi)

)max
i
ri −max

i/∈s
ri︸ ︷︷ ︸

=:As

− 1(
k
p

) ∑
s′∈Sp

As′


 .

For example, the corresponding gradient for p = 2 is

1

k − 1
Eπ

∑
i ̸=j

(∇ log π(yi) +∇ log π(yj))

max
l
rl − max

l/∈{i,j}
rl︸ ︷︷ ︸

=:Ai,j

− 2

k(k − 1)

∑
i′ ̸=j′

Ai′,j′


 .
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Figure 12. Llama 3.1 8B Instruct performance on CodeContests and TACO. We compare 3 methods: the mean policy gradient with
leave-one-out control variate that optimizes for pass@1, the pass@k policy gradient and the biased pass@k policy gradient with mean
advantage serving as the baseline.

Algorithm 1 Online policy optimization
1: INPUT policy πθ
2: while t = 0, 1, 2... do
3: (i) Sample prompt x ∼ ρ
4: (ii) Collect k trajectories per prompt (yi)ki=1 from πθ(·|x) for all i ∈ {1, 2...k}.
5: (iii) Update policy parameter θ based on one of the gradient variants above (Eqn (2) or Eqn (3)).
6: end while

Softmax objectives. An alternative approach to interpolate between k-sample objective and the mean is to through
softmax. For example, consider the objective

E

[
k∑
i=1

piri

]

where pi ∝ exp(βri) is the softmax distribution scaled by parameter β ≥ 0. The above objective approaches mean when
β = 0 and pass@k when β → ∞. We find that the softmax objective tends to produce much more learning signal than
pass@k, since its advantage estimates are generally more dense.

In general, we might also make use of leave-one-out softmax objectives as baselines for variance reduction as opposed
to leave-one-out pass@k. This makes sure that the optimization objective is intact while introducing generally smoother
signals.
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Figure 13. Llama 3.1 8B Instruct performance on CodeContests and TACO. We incorporate the PPO training objective and compare 3
variants: the vanilla PPO objective that optimizes the pass@1 performance, the pass@k objective and the biased pass@k objective with
mean advantage serving as the baseline.

Figure 14. MATH test 8B model. We carry out evaluation on the MATH test set, using the same sampling hyper-parameter as the training
time. We observe that the regular policy gradient baseline obtains a strong performance for pass@k with k ∈ {1, 4}. However, as k
increases, it tends to be outperformed by the k-sample gradient variants largely due to a more significant drop in the sample diversity.

19



Optimizing Language Models for Inference Time Objectives using Reinforcement Learning

Figure 15. MATH training majority voting 8B model. We compare three baselines: regular mean policy gradient algorithm and two
variants of majority voting policy gradient algorithms (unbiased and biased). We observe the unbiased majority voting policy gradient
algorithm improves slightly over the other two alternatives.

Figure 16. MATH test 8B model for majority voting. We carry out evaluation on the MATH test set, using the same sampling hyper-
parameter as the training time. We observe that the regular policy gradient baseline obtains a strong performance overall, though slightly
outperformed by the biased k-sample gradient algorithm. The original unbiased k-sample gradient algorith, despite performing better at
training reward, is slightly underperforming for evaluation.
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