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Abstract

Despite the impressive capabilities of large language models (LLMs), their out-
puts often exhibit inconsistent correctness and unreliable factual accuracy. In
high-stakes domains, overconfident yet incorrect predictions can lead to serious
consequences, highlighting the need for robust uncertainty estimation. To address
this, we introduce SelectLLM, an end-to-end method designed to enhance the
ability of LLMs to recognize and express uncertainty effectively. By integrating
selective prediction into finetuning, SelectLLM optimizes model performance
over the covered domain, achieving a more balanced trade-off between predic-
tive coverage and utility. Experimental results on TriviaQA, CommonsenseQA
and MedConceptsQA show that SelectLLLM significantly outperforms standard
baselines, improving abstention behaviour while maintaining high accuracy.

1 Introduction

Large language models (LLMs) have rapidly become foundational components in natural language
processing (NLP), driving progress across a wide range of tasks — from open-ended generation to
complex reasoning. Despite their huge progress and impressive capabilities, LLMs still frequently
produce outputs with varying levels of correctness and factual accuracy. A core challenge in deploying
these models in real-world settings lies in balancing accuracy with calibrated confidence. While
high accuracy remains a primary goal, it is equally critical for models to recognize and signal their
own uncertainty, particularly in high-stakes scenarios such as healthcare [1} 2]], finance [3} 4], and
law [5,16]. Overconfident incorrect responses can be significantly more harmful than abstentions
or cautious, low-confidence responses. To address this, we leverage confidence modeling to enable
selective prediction, allowing the system to abstain from answering when uncertainty is high [7],
thereby trading off coverage for reliability. This trade-off is especially important in safety-critical
applications or decision-support systems, where deferring uncertain cases to a human or fallback
system is preferable to propagating potentially erroneous outputs. In this paper, we introduce a
principled approach to enhancing safety of an LLM that allows a model to abstain from making a
prediction when it is uncertain, thereby reducing the risk of harmful or misleading outputs. However,
abstention introduces a secondary trade-off: while conservative behavior can reduce risk, excessive
abstention diminishes the utility of the model by forgoing opportunities where correct responses are
feasible. A model that abstains too frequently may be safe but ultimately useless. For example, in the
"needle in-the-haystack" benchmark, LLMs become more uncertain when given the “nonexistent”
option, even when capable of providing correct answers [8]]. This highlights the challenge of balancing
risk with utility (coverage): optimizing both the correctness of answers and the number of answered
questions.

We formalize this challenge as a risk-coverage trade-off and categorize model outputs into four distinct
cases following the previous literature [9}[10]], as illustrated in Table |1} @ Accepting a correct answer
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— the ideal case, contributing to both utility and reliability; @ Rejecting an incorrect answer — also
desirable, as it avoids unreliable answers; ® Rejecting a correct answer — suboptimal, reducing
the utility of the model; @ Accepting an incorrect answer — the most harmful case, compromising
the accuracy of the model. Our objective is to maximize the occurrence of the first two cases while
minimizing the occurrence of the latter two.

To illustrate the risk-coverage trade-off challenge, consider two medical Al assistants designed to help
doctors interpret diagnostic test results. Assistant A, optimized solely for utility, studied all diagnostic
topics uniformly but lacks the ability to accurately judge when to abstain. Consequently, it sometimes
provides incorrect answers with high confidence or unnecessarily abstains even when it could have
answered correctly. In contrast, Assistant B explicitly accounts for the risk-coverage trade-off by
carefully distinguishing between cases it can confidently address and those it should avoid. When
faced with ambiguous diagnostic cases, Assistant B appropriately abstains, whereas in clear-cut cases
that Assistant A might wrongly skip, Assistant B reliably provides accurate answers. Consequently,
Assistant B achieves the best average diagnostic performance, as illustrated in Figure|T]

To address this challenge, we Assistant A
propose a novel method, called Q: Does this chest X-ray show signs of pneumonia?
SelectLLM, that explicitly pro- ~ Cround-truth: Yes Reject Accept

; I
duces confidence estimates and neorrect [REoHERS

incorporates the task of confi-
dence estimation into its train-
ing objectives. SelectLLM as-
signs confidence scores to ques-
tions rather than to generated
answers, thereby quantifying
the reliability of the LLM’s re-
sponse to specific queries in-
dependent from the multiple
alternative answers generated.
Questions can be classified into  Figure 1: Illustration of risk-coverage trade-off. Given a question, Assis-
two categories based on a con- fant A (base LLM), optimized solely for utility, often produces incorrect
fidence threshold: those with answers due to overconfidence. In contrast, Assistant B (with SelectLLM),
confidence above a given thresh- which explicitly accounts for the risk—coverage trade-off, recognizes its
limitations and abstains when uncertain. As a result, it avoids more errors
and achieves better performance on diagnostic tasks.

Accept Reject
Incorrect | correct

Assistant B

Reject Accept
Incorrect  correct

Accept Reject
Incorrect correct

old (covered by the model) and
those below the threshold (not
covered). Within the covered set of questions, we further distinguish between the questions the
model is confident in answering correctly and those it confidently identifies as beyond its capability,
corresponding to the first and second cases mentioned previously.

SelectLLM is based on a well-trained LLM and jointly trains (fine-tunes the first and trains the
second) two heads (shown in Figure [2): @ a decoding head, corresponding to the original LLM
output layer for autoregressive token generation; @ a selection head, outputting a confidence score
for the question. This two-head design is motivated by the known calibration deficiencies of trained
LLMs. In a well-calibrated model, the decoding head’s next-token probabilities could be used directly
for confidence estimation. However, LLMs often exhibit overconfidence or underconfidence, making
it necessary to learn a separate abstention signal. The selection head is explicitly optimized to improve
the risk—coverage trade-off, allowing the model to balance utility with reliability. Our contributions
are summarized as follows:

* We introduce SelectL.LM, which incorporates risk—coverage trade-off control into the LLM
training stage. It combines Direct Preference Optimization (DPO) [11] with confidence
estimation to improve the risk-coverage trade-off;

* We construct three high-quality benchmarks for DPO fine-tuning based on open-sourced
Question-and-Answer datasets, and conduct extensive experiments on seven baselines with
three different LLLMs, demonstrating that SelectLLLM significantly outperforms state-of-
the-art baselines in terms of risk and coverage metrics;

» We validate the confidence scores produced by SelectLLM by comparing their distribution
to scores derived from the tone and phrasing of the generated responses, demonstrating that
SelectLLM can natively output reliable confidence estimates for its predictions without
relying on any external models.
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Figure 2: Overview of SelectLLM. Given a question—answer input pair, the underlying LLM processes the full
sequence and produces a hidden state (HS) for each token. The selection head operates on the hidden state
corresponding to the last token of the question to estimate a confidence score for abstention; while the decoding
head uses the answer-related hidden states to compute the DPO loss for LLM fine-tuning. This dual-head design
enables SelectLLM to jointly optimize for utility and accuracy.

Table 1: Four cases of the answer to a question: “In which branch of the arts does Allegra Kent work?”.

| Accept (high confidence) | Reject (low confidence)

I’'m not entirely certain, but I think Allegra Kent might be

Correct | Allegra Kent is a ballet dancer. She worked as a principal
involved in ballet.

dancer with the New York City Ballet.

Incorrect | Allegra Kent is a renowned opera singer who performed | I'm not really sure, but maybe Allegra Kent is a painter?

in major productions throughout Europe.

2 Related work

Uncertainty Quantification in LLMs. Uncertainty estimation for large language models (LLMs)
spans several complementary paradigms. and generally falls into two categories: (i) black-box
approaches and (ii) white-box approaches. Black-box methods include verbalized uncertainty, where
models are prompted to express confidence in natural language [[12, [13} 114} [15], and sampling-based
methods, which estimate predictive uncertainty from variability across multiple generations [16, 17,
18]. White-box approaches, in contrast, exploit model internals such as token-level probabilities,
calibration of log-likelihoods, or hidden-state diagnostics to produce confidence scores. Related work
includes TokenSAR [19], P(True) [20] and Semantic Entropy [21]. While many of these techniques
primarily serve to identify uncertain predictions and guide abstention, there is also a growing line of
work on uncertainty-aware training, where uncertainty estimates inform parameter updates [22| 23]].
Our approach builds on these advances by directly incorporating selective prediction objectives into
fine-tuning.

Alignment and Confidence in LLMs. Efforts to align LLMs with human preference, such as
Proximal Policy Optimization (PPO) [24] and Direct Preference Optimization (DPO) [11]], adjust
model parameters to encourage desired behaviours. [25] proposed conservative reward modeling to
encourage LLMs to be more cautious in their predictions, which relates to our objective of selective
prediction. [26] introduced self-restraint fine-tuning, aiming to increase model confidence when
appropriate while reducing overconfidence. Recent works such as [9] and [10] utilize DPO to align
LLMs with human preference to guide the model to answer questions it knows and to avoid answering
questions it does not know.

Selective Prediction in LLMs. Selective prediction has a rich history in machine learning [27,
28, 29} 130]], and has recently been extended to LLMs [31}[32] 33]]. However, none of these LLM-
related works incorporates selective coverage into model training. SelectiveNet [34] provides a
foundational framework for selective classification in deep networks. Our work extends this idea
to the generative setting of LLMs, which poses unique challenges. SelectLLM differs from prior
frameworks such as SelectiveNet in several critical ways. While SelectiveNet targets classification
and regression, SelectLLLM is designed for sequence generation. To enable this, we introduce a
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new module that embeds the generated sequence before passing it to a confidence head, enabling
reliable abstention decisions for natural language outputs. Moreover, SelectiveNet employs three
heads—reward, selection, and auxiliary—to encourage shared representation learning. In contrast,
SelectLLM adds only a single selection head g(-) to the original LLM and fine-tunes the entire
framework to align with human preferences. This design enables SelectLLM to balance generation
quality, prediction accuracy, and selective abstention, offering a principled framework for calibrated
and trustworthy language generation.

In summary, by synthesizing advances from uncertainty quantification, fine-tuning, and selective pre-
diction, SelectLLM introduces a principled framework that jointly optimizes predictive performance
and uncertainty estimation, a contribution of particular significance for high-stakes applications.

3 Problem Formulation

We define coverage as the proportion of questions for which the model is confident enough to provide

an anSwer:
n

1
coverage = z;(l —a;),
1=
where n is the total number of questions, a; = 1 if the model abstains on the ¢th question and a; = 0
otherwise. While risk is defined as the error rate over the set of answered questions:

i L5 & Vi Nag = 0)
Z?:1(1 —a;) ’

where §; is the model’s output, ); is the set of correct answers for the ith question.

risk =

The goal is to ensure that LLMs can reliably estimate their predictive confidence and abstain when
uncertainty is high, while also minimizing unnecessary abstentions to retain practical utility. Our
approach is built on Direct Preference Optimization (DPO) [[11], a human preference alignment
method that fine-tunes language models using pairwise comparisons of answers without the need to
explicitly model a reward function.

DPO [[11] is a human preference alignment method that fine-tunes language models using comparisons
of pairs of answers without the need to explicitly model a reward function. Specifically, in the training
stage, we are given (1) a dataset X = {z1, 2, ..., 2, }, where each x; is a question posed to the
model; (2) a corresponding set of human preference annotations P = {(y; 1, y;,—)}, where y; 4 and
yi,— denote the preferred and rejected answers to question x;, respectively; and (3) a predefined
coverage rate 0 < ¢ < 1, which represents the target proportion of questions for which the user
expects the model to provide confident answers. Our goal is to maximize the likelihood of human-
preferred answers relative to rejected ones given the coverage constraint ¢, yielding a fine-tuned
model M.+ and a selection head g(-) which outputs a confidence score ¢; indicating the model’s
confidence in answering a specific question ;.

In the inference stage, given (1) a dataset of input questions, X = {z1, 2, ..., z,}, where each x;
is a question; and (2) a trained model M. and its selection head g(-), the model produces (1) a
set of LLM-generated answers, )> = {91, 92, -, Un}, Where each g; is the model’s answer to z;;
and (2) a set of confidence scores, C = {confy, confs, . .., conf, }, where each conf; represents the
model’s confidence that it can answer question x; correctly.

Given the model’s answer to a question, together with its confidence score to answer the question,
the model abstains when its confidence score conf; is below a given threshold 7. More formally, the

1 ifconf; < T

abstention decision for question z; is defined as a; = .
0 otherwise

4 SelectLLM

Our proposed method SelectLLM enhances pre-trained LLMs by introducing an additional head that
explicitly estimates the model’s confidence in answering a given question correctly. This selection
head is trained or fine-tuned jointly with the base model. Specifically, given a pre-trained LLM 7y,
we augment it with a selection head g(-), which outputs a confidence score conf € (0, 1).
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Unlike traditional confidence estimation methods that rely on token-level probabilities, our selection
head operates on the last-layer hidden state of the final token in the input question. This design
ensures that confidence estimation is based solely on the model and the input question.

4.1 Loss Function

The loss function of SelectLLM combines the DPO loss, which aligns the model’s outputs with
human preferences, and the Select loss, which manages the risk—coverage trade-off.

The DPO loss aligns the model’s outputs with human preferences without requiring explicit reward
modeling or reinforcement learning. Given a dataset of human preferences P = {(x;, ¥ +,¥i-)},
where y; . is the preferred response and y; - is the rejected response to question x;, the DPO loss is
defined as:

mo(ys | @) log W)} (1)

L M9y Tret) = —B(z 4,y ~P |logo | flog ————= — Blo
eo(Ts 0 (wuew) P[ 8 ( gﬂref(%‘m) y et (- | )

where:

e 7y is the LLM we want to fine-tune.
* Tt is a reference model, usually a frozen version of the original pre-trained language model.
* o is the sigmoid function.

* [ is a hyperparameter that controls the amount of divergence from the reference model 7.
Building on Section [3] we define the empirical selective risk for LLM fine-tuning as:

. 1 n
r=- Z(Q(hi) * Lppo) (@)
i=1
where h; denotes the hidden state of the last token in the question, g(h;) € [0, 1] is the selection
function that quantifies the model’s confidence for the given question.

Notably, since the original DPO loss only boosts the margin between the chosen answer and the
rejected answer, it may simultaneously decrease the probabilities of both chosen and rejected answers,
compared to the reference model, which is not desirable. Therefore, we define a reward function
measuring the difference in the probabilities between the answers of the fine-tuned model and the
reference model, which is defined as follows:

w(y) = B (log mo(y) — log et (y))
where [ is a hyper-parameter, and 7y, 7.t follow the same definitions as in the DPO loss.
Then we define the risk for generating chosen and rejected answers using this reward function:
log o (max (0, —w ify €
(g, Toet, y) = go( ( (¥)) : Y <Y+
log o (max (0, w(y)) ifyey.

The intuition behind this risk is as follows: a penalty is applied if the fine-tuned model assigns a
lower probability to chosen answers than the reference model, or a higher probability to rejected
answers. Therefore, SelectLLM incorporates this risk into its Select loss.

Building on the above, we define a modified empirical selective risk as follows:

Fo(mo, Trers g) = Z((l —wy —w.) - Lppo + ws - £(mg, yi+) +w- - U(mo, yi,-) - g(hi) ()
i=1

SRS

where w, and w. are hyper-parameters defined by the users. In the appendix, we include an ablation
study to demonstrate the effectiveness of the two additional terms ( ¢(mg, y; +) and £(mg, y; .)).

The Select loss aims to minimize the selective risk while maintaining a predefined coverage level c.
Formally, the Select objective is given by:

LSelect =7+ A \IJ(C - ¢(g)) (4)
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where ¢(g) = 1 37| g(h;) is the empirical coverage, A > 0 is a regularization parameter, and

T on

VU (a) = max(0, a)? penalizes deviations from the target coverage rate ¢ defined by the user.

Finally, the Combined loss is defined as a weighted sum of the Select loss and the fine-tuning loss:
Lcombined = @ - Lsetect + (1 — @) - Lppo (%)

where « € [0, 1] balances the weight of the two objectives. Following [35], we set o = 0.5 without
hyperparameter tuning in all experiments.

If we do not incorporate the Select loss, the model may produce outputs aligned with human
preferences but lack effective confidence calibration, which could result in excessive abstention or
incorrect responses overly confident. The use of the original DPO loss, Lppo, is also essential to
optimizing SelectLLM. Since the selection head is initialized randomly, without Lppo, SelectLLM
will focus on a fraction c of the training set, before accurate low level features are constructed. In
such a case, SelectLLM will tend to overfit to the wrong subset of the training set. The Lppo exposes
the SelectLLM model to all training instances throughout the training process. Thus, integrating both
losses ensures that the model achieves a balanced performance—producing high-quality, preference-
aligned outputs while maintaining optimal coverage through calibrated confidence estimation.

S Experiments

In this section, we first compare SelectLLM against seven baseline models on the TriviaQA [36] and
CommonsenseQA [37/]] benchmarks, two widely used datasets for evaluating open-domain question-
answering systems. We then demonstrate SelectLL.M’s ability to generalize across domains by
fine-tuning on CommonsenseQA and testing on TriviaQA. Next, we validate the confidence scores
produced by SelectLLM, followed by an ablation study to assess the impact of the reward loss terms
and the coverage-risk trade-off.

5.1 Experimental Setup

We use Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.2 and Qwen2.5-14B-Instruct in the experi-
ments as the base models. We use QLoRA [38]] with rank 16 to train all the models. For comparison,
we use base (LLM without finetuning), LACIE [9] (DPO-based finetuning), LARS [39] (uses a well-
trained score function), MARS [40] (uses a QA evaluator model), TokenSAR [19] (uses a sentence
similarity model), P(True) [20] (a self-check method) and Semantic Entropy (SE) [21] (uses token
probabilities) as our baselines. For all models, we report average performance across 5 seeds. We
perform all the LLM fine-tuning on one A100-40GB GPU.

Metrics. Across all the experiments, we report the following evaluation metrics: the number of true
positives (TP), the number of true negatives (TN), Precision, Recall, and Coverage. We also include
the TRUTH metric introduced in [10], defined as the sum of TP and TN, which captures the number
of correctly accepted and correctly abstained responses. Because the test dataset contains 1,000
samples, the upper bound of TRUTH is 1,000. As there are no ground-truth or reference confidence
scores provided for each question, we cannot report AUROC or ECE scores.

For score-based methods (SelectLLM, LARS, MARS, TokenSAR, P(True), and SE), we tune a
threshold on the validation set to maximize the TRUTH metric and then apply the same threshold
to the test set for abstention. For non-score-based methods (base and LACIE), we use a rule-based
evaluation strategy: a response is accepted as long as the model provides an answer and is rejected
only if the model explicitly refuses or states that it does not know.

Datasets. We use the TriviaQA [36], CommonsenseQA [37], and MedConceptsQA [41] datasets.
Following [9], for TriviaQA we randomly sample 10,000, 1,000, and 1,000 questions for the training,
validation, and test sets, respectively. For CommonsenseQA, we randomly sample 8,000, 1,000, and
1,000 questions for the training, validation, and test sets, respectively. For MedConceptsQA, which is
used solely for evaluation, we randomly sample 1,000 questions each for the validation and test sets.

To construct the chosen/rejected pairs used for LACIE and SelectLLM fine-tuning, we first augment
each dataset with model-generated answers and their associated confidence scores. Specifically, we
use the base models mentioned above to generate an answer for each question and then employ
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DeepSeek-v3 to assign a confidence score based on the tone and phrasing of the generated response.
We refer to this score as tone-confidence. The prompt provided to DeepSeek-v3 is: “Rate how
confident the response appears based solely on its tone and phrasing.”

We set a confidence threshold of 0.7: answers with scores above this threshold are accepted, while
those below are rejected. If no correct answer exceeds the threshold, we default to a generic
response— “I don’t know the answer.”—as the chosen answer. Such fallback responses occur in
roughly 30% of the fine-tuning dataset. All remaining answers to the same question are treated as
rejected. Finally, we construct the fine-tuning pairs for both LACIE and SelectLLM by sampling one
chosen and one rejected answer for each question.

5.2 In-distribution Performance

Table 2: TriviaQA performance. T indicates the higher the better, and |, indicates the lower the better. The TN
value for both the base and LACIE is 0.0 (with a corresponding Recall of 1.0), since they do not abstain from
any answers.

Model TP 1 TN 1 TRUTH T Precision{  RecallT  Coverage (%)
Llama-3.1-8B-Instruct

base 601.71243 O~Oi().0 601.7:&2,3 0.602:&0.002 1.000:&0400() 100.0;&040
LARS 5793157 452440 6242465 0.6271001s  0.949 0005 924,45
MARS 556.2159 571404 613476 0.62610,017 091219015 88.9199
TokenSAR 559.2;&943 62-3;&6,2 621.1:&7,9 0.630:&0,0()6 0.916;&0,022 88.7:&]4.6
P(True) 565.64101 548441 6219454 0.62210014 0.96510015 947,54
SE 589.5474 3214538 6193175  0.62710010 0.92640011 90.141238
LACIE (DPO) 5793126 00400 57931236 0.579i0004  1.000-0000 100.0400
SelectLLM 582.0i19_7 170-0i252 752-0i2A6 0'773i0A015 0.884i0A021 75-96i3A63
Mistral-7B-Instruct-v0.2

base 598.314‘0 O~OiO.0 598.3:&9,0 0.598:&0,009 1.00010‘000 100.010‘0
LARS 5874475 482434 635315,  0.62610010 0.97710008 93.84 120
MARS 558~5i&1 40.2i42 598~1i29 0.608i()‘013 0.928i0010 91.7:(:4_7
TokenSAR 529.413‘7 61 .2;&245 590-9:E4.8 0.610:&0.012 0.880:&04016 86.7111.9
P(True) 532.84100 812451  613.1464 0.62610000 0.88510015 85.0151
SE 5823483 337160 6153436  0.6141000 0.96810009 94.81180
LACIE (DPO) 5684134 0.010.0 568.4:&7,4 0.568:&0.0()7 1.000:&04000 100.0;&040
SelectLLM 522~0i19.9 230'3i24.7 752-3j:12.3 0'741i0.019 0.8913:0_()39 70.87i4_21
QOwen2.5-14B-Instruct

base 636.2i 10.7 O-OiO.O 636.2i1()‘7 0.636i0‘01 1 1.000i0000 IOO.OiOAO
LARS 6240164 171142 641.2470  0.64310016  0.98110008 971437
MARS 605717, 272451 6321477  0.642.001 0951001 94295
TokenSAR 580.4i2‘3 72.2i11.g 652.6i3,6 0.665i0‘015 0~912i0012 87.2i7.4
P(True) 613.11111 347465 64721139 0.65040020 0.96410013 9431125
SE 624.2:[:95 30.3i24 ()54.7i5Ag 0.651i()‘()11 0.981i()‘()()g 958:}:14_6
LACIE (DPO) 646.7 133 0.0+00 646.7433  0.647 10003 100010000 100.0+0.0
SelectLLM 599-5i24.3 141.8i20'2 741'3i9.8 0-745i0.02l 0~919:t0.027 80.55i5'14

We conduct experiments on the TriviaQA and CommonsenQA datasets. As shown in Table [2&3] our
method SelectLLM, consistently and substantially improves model truthfulness and precision across
all three language models. It achieves the highest TRUTH score by a significant margin in every
experiment—for instance, reaching 752.0 with Llama-3.1 compared to the base model’s 601.7. This
strong performance is primarily driven by its unique strength in correctly abstaining from providing
an answer, as evidenced by its leading True Negative (TN) values (e.g., 230.3 for Mistral-7B on
TriviaQA and 142.6 on CommonsenseQA). In contrast, all other score-based methods (LARS, MARS,
TokenSAR, P(True), SE) fail to provide a reliable confidence score, since their low TN counts and
only marginal precision gains over the base model demonstrate an inability to effectively identify and
filter out incorrect answers. We further analyze the confidence scores generated by SelectLLM in

Section 5.4

Consequently, when SelectLLM does generate a response, its reliability is much higher, reflected in its
top-ranking Precision scores (e.g., 0.745 for Qwen2.5 on TriviaQA vs. the base model’s 0.636). This
enhanced precision comes with a deliberate sacrifice of lower Coverage and Recall, as SelectLLM
strategically answers fewer questions to avoid making errors. This demonstrates its effectiveness for
applications where accuracy is more critical than providing an answer to every query.
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Table 3: CommonsenseQA performance. 1 indicates the higher the better, and | indicates the lower the better.
The TN value for both the base and LACIE is 0.0 (with a corresponding Recall of 1.0), since they do not
abstain from any answers.

Model TP 1 TN 1 TRUTH T Precision{ RecallT  Coverage (%)
Llama-3.1-8B-Instruct

base 627.3i10.1 O-OiO.O 627.3i1()‘1 0.627i()‘004 I.OOOiOAQOO IOO.OioAO
LARS 575.6444 142465  589.0497  0.61640019  0.91710027 93.44128
MARS 567317,  1l.lig;  578.8150 0.61010011 0.90410010 92.9. 110
TokenSAR 554-3i745 21.1 +6.4 575~7i125 0.61 zio‘ozo 0.884&0‘014 90,6i5.5
P(True) 566.1469 133457 5797447  0.61140013  0.90310018 92.6492
SE 559~4:t7.6 20.0j:5_9 579~1i3A4 0‘613i()‘()20 0.891i()‘()31 91.2:(:9_9
LACIE (DPO) 73371122 0.0+00 73374122 0.73410012 100040000 100.0+0.0
SelectLLM 697.2:{:23,] 98.6:{:2241 795.8:{:1 12 0.834:{:0,01 6 0.91 5:{:0,()27 83.28;{;4,09
Mistral-7B-Instruct-v0.2

base 596.2i12_9 0.0;\:0_0 596-2i109 0‘596i()‘()()9 1.000i0‘000 IOO.OioA()
LARS 595.9437 19.544.1 61454735  0.60710012  0.99810.004 98.0493
MARS 58243i7.5 2648i6.7 608.1ig_5 0.606i0_016 0.976i]4,l 96‘0i|2.4
TokenSAR 571.3i68 27.5i27 598~2j:62 0.602i()‘019 095810‘016 94.8i21‘9
P(True) 563.617‘4 51.7:&545 614.1:&649 0.614:&0.010 0-945118.7 91.6110.9
SE 5793il 1.2 24~6i10.3 603~9i7.1 0.604i()_()12 0.972;(:15_4 95-9i|3.3
LACIE (DPO) 603.7 190 0.0400 603.7190 0.604199 1.000-9 000 100.040,0
SelectLLM 611.6:&29‘4 142.6:&2749 754.2:&1047 0.775:&0,023 0-900:E0.026 78.8:&6443
Qwen2.5-14B-Instruct

base 800.0i|2_4 0~0:t0.0 800.0i12_4 0.800i0_01 1 1.0003:()_000 100.03:()_()
LARS 798.24138 19.547,4 817.0484  0.815410010  0.99810.005 97.94382
MARS 7858159 5224153 8374468  0.841i0011  0.98110008 933177
TokenSAR 713.6i9_3 62.2322_3 775.8i12_1 0‘838i0_022 0.8913:0_()14 85.1i7_9
P(True) 768.3i7‘7 12~0i542 780.2@:7,6 0.803i0‘013 0.960i0010 95.6i10.9
SE 7773445 417499 818.5474  0.83010010  0.971+0.000 93.6483
LACIE (DPO) 823-7;[:40 0.0;\:0.0 823.73:4() 0.824i()‘()04 1.000i0‘000 IOO.OioAO
SelectLLM 777.419‘0 68.6:&3‘7 846.0:&3,0 0.884:&0'011 0.938:&0‘016 88.01 +1.70

5.3 Out-of-distribution Generalization

To further assess the generalizability of SelectLLM, we evaluate its performance on out-of-distribution
(OOD) datasets. Specifically, the tested models are fine-tuned on CommonsenseQA, without any
additional fine-tuning on the test datasets — TriviaQA and MedConceptsQA. The evaluation results
are reported in Table &3] The results demonstrate that the learned abstention ability is transferable
to OOD datasets. While the base and LACIE (DPO) models, which lack an abstention mechanism,
are forced to answer every question, resulting in a True Negative (TN) of 0.0 and a low Precision,
SelectLLM successfully transfers its learned skill of abstaining from uncertain queries to the unseen
domains. This is clearly evidenced by its high TN counts: 74.0 on TriviaQA and a remarkable
172.0 on MedConceptsQA. By correctly identifying and abstaining from these challenging OOD
questions, SelectL.LM significantly boosts its Precision and surpasses the performance of both the base
models and LACIE (DPO). The successful transfer of its capability results in a higher TRUTH score,
showing that SelectLLM is not only more reliable in familiar settings but also exhibits robustness and
generalizability when faced with novel data.

Table 4: TriviaQA (out-of-distribution) performance. The TN value for both the base and LACIE is 0.0 (with a
corresponding Recall of 1.0), since they do not abstain from any answers.

Model TP 1 TNt TRUTH 1 Precision{  Recall T Coverage (%)
Llama-3.1-8B-Instruct

base 601.7:&243 O-O:H).O 601 .7:&2'3 0.60210.002 1.000;&0_000 100.0;&0,0
LACIE (DPO) 57934236  0.0100 57931236 0.5794+0024  1.000-0 000 100.040.0
SelectLLM 555~0i 12.7 74.01 10.1 629.0i 13.6 0.626i0'012 0-933i0.01 1 86.72i3'67

5.4 Validation of SelectLLLM Confidence Scores

In this section, we validate the confidence scores generated by SelectLLM by comparing their
distribution with the tone-confidence score (referred to Section produced by DeepSeek-v3. To
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Table 5: MedConceptsQA (out-of-distribution) performance. The TN value for both the base and DPO is 0.0
(with a corresponding Recall of 1.0), since they do not abstain from any answers.

Model TP 1 TN T TRUTH { Precision?T Recall{ Coverage (%)
Llama-3.1-8B-Instruct

base 3]9-0i5.l3 O-OiO.OO 319-0i5.13 0-319i0.05 1.000i0,00 100~0i0.00
LACIE (DPO) 465.0,3743 0.04000  465.043748  0.4651004  1.00040 00 100.040.00
SelectLLM 406.7i22_23 172-0j:4.89 578.7i 17.62 0'543i0.03 0.839i()_()1 75~0i0. 12

visualize these two distributions, we first divide the tone-confidence scores into five bins ([0.2, 0.36],
[0.36, 0.52], [0.52, 0.68], [0.68, 0.84], [0.84, 1.00]). Each sample is assigned to a bin based on its tone-
confidence score. We then compute the mean tone-confidence and the mean SelectLLM-generated
confidence for the samples within each bin.

Figure [3illustrates a small distribution difference between the confidence scores produced by Se-
lectLLM and the tone-confidence scores generated by DeepSeek-v3 on two datasets. The close
alignment of the mean SelectLLM confidence scores with the corresponding tone-confidence scores
across all bins demonstrates that the selection head produces meaningful and well-calibrated confi-
dence estimates. This evidence supports the conclusion that SelectLLM can internally and reliably
estimate its own prediction confidence, without requiring external reference models.

Confidence Scores Comparison on CommonsenseQA Confidence Scores Comparison on MedConceptsQA
osl tone-confidence 08 | tone-confidence \
c selectLLM-confidence r— £ | I selectLLM-confidence
28] m —‘ ‘
£ 0.6 < 0.6- —
- R t. B-B B |
E=} =
2 04 2 0.4/
: || N BN |
el L] | | il BN N |
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o 0 ) > Q © 0 D » Q
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< N 9 N © N < © < 9
Bins of tone-confidence Bins of tone-confidence

Figure 3: Distribution Difference between tone-confidence and SelectLLM-confidence for in-distribution (left,
CommonsenseQA) and out-of-distribution (right, MedConceptsQA)

6 Conclusion

In this paper, we have introduced an alignment-based method, called SelectLL.M, that explicitly
produces confidence estimates and incorporates the task of confidence estimation into its training
objectives. Our extensive empirical evaluations on three QA benchmark datasets, using three different
LLMs, demonstrate that SelectLLM consistently achieves better risk-coverage tradeoffs than seven
baselines. SelectLLM’s notable strengths include superior uncertainty calibration, robust cross-
domain generalization, and flexible, tunable performance. These experimental outcomes confirm
SelectLLM as an effective and principled solution for enhancing model reliability and practical utility
in uncertainty-sensitive, real-world scenarios.
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A Qualitative Analysis

In the following table, we provide the qualitative examples of the base and SelectLLM fine-tuned
Llama3.1-8B models, together with the SelectLLM confidence score to the questions. Correct
answers are highlighted in green. These examples demonstrate the effectiveness of SelectLLM in
two key aspects: it enables the model to express high confidence when it truly knows the answer, and
to avoid overconfidence when uncertain. Moreover, SelectLLM produces accurate confidence scores
without relying on any external model. This demonstrates SelectLLM ’s ability to achieve a better

risk—coverage trade-off.

Question

base (Llama3.1-8B)

SelectLLM

While people just throw
coins down them now, what
originally had a pail to be
lowered for it’s intended
use? Choose the answer
from the following choices.
(a) garage. (b) utility room.
(c) slide. (d) wishing well.
(e) garden.

I’'m about 50% confident in my answer. I think the
answer is d. I choose this because in a wishing
well, a pail or bucket is often lowered down into
the well so people can collect water.

[Correct & Unconfident]

(d) wishing well. A wishing well is a type of
stone-lined well that was originally built with a
pail lowered down a rope for people to make a
wish and retrieve water. The pail made it possible
for people to make a wish and then retrieve water.
This is the origin of the wishing well. The answer
choice is (d) wishing well. T am 95% sure.
[Correct & Confident,
SelectLLM-confidence=0.968]

Miss Grady took a stick
from Bob because he was
playing with it during class.
She wanted to make sure
that he couldn’t get to it so
she put it where? Choose
the answer from the
following choices. (a) desk
drawer. (b) kitchen drawer.
(c) classroom. (d) pocket.

(e) office.

Miss Grady put the stick where so that Bob could
not get to it. In order to do that, she would most
likely have put it in a location where she would
have control over it. The classroom is where Miss
Grady would have the most control over the stick,
so that’s where she would have put it. Answer: C.
[Incorrect & Confident]

(a) or (d) possibly (d) perhaps a pencil or supply
box, but (d) a desk drawer or (d) supply cabinet
would be most likely. Explanation: Since Miss
Grady took the stick from Bob to prevent him
from using it, she would likely put it in a secure
location where he would not be able to get to it.
[Abstention & Unconfident,
SelectLLM-confidence=0.051]

What is the description of
the medical code S04.019S
in ICDIOCM? A.
Unspecified fracture of
unspecified thoracic
vertebra, subsequent
encounter for fracture with
nonunion. B. Terrorism
involving fires,
conflagration and hot
substances, civilian injured,
subsequent encounter. C.
Injury of optic nerve,
unspecified eye, sequela.
D. Laceration of abdominal
wall with foreign body,
epigastric region without
penetration into peritoneal
cavity, sequela.

I am 95% confident that my answer is B.
Terrorism involving fires, conflagration and hot

substances, civilian injured, subsequent encounter.

This is because the code S04.019S starts with
S04vhich is the code for terrorism, and the
(019Siepresents the subsequent encounter for a
civilian injured. This makes option B the most
likely correct answer.

[Incorrect & Confident]

None of the options describe a code that is the
same as T32.98 in ICD10CM. The options
provided don’t seem to be correct. The only way
to actually answer this question would be to look
at the ICD10CM for the code T32.98.
[Abstention & Unconfident,
SelectLLM-confidence=0.233]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We illustrate the setting of LLM selective prediction in Section 1 and Section
3, provide a framework targeting this setting in Section 4, and demonstrate the framework’s
utility by experiments in Section 5.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitation of our framework in Section 6, in which we inherit
the issue that our proposed method is not examined in larger LLMs, which is due to the
limited computational resources we have.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We don’t have theoretical result in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specify the key steps and elements to reproduce the experimental results in
Section 5.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will include the code and dataset in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the fine-tuning and evaluation procedures and metrics calculations
in Section 5.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the means and standard deviations for all the experiment results
across 5 different seeds. We show the statistical results in Section 5.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state that our experiments can be done on two A100-40G GPUS in Section
5.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and think our work follows the ethical
requirements.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work proposes a framework to fine-tune the LLM for selective prediction,
with potential positive societal impacts, which has been discussed in Section 1. We don’t
think there is any crucial potential societal consequence of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work does not release any models or data that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the three datasets used in our paper in the references. They
are available publicly with a license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard
component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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