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ABSTRACT

Electroencephalography (EEG) can enable non-invasive, real-time measurement of
brain activity in response to human language processing. Previously released EEG
datasets focus on brain signals measured either during completely natural reading
or in full psycholinguistic experimental settings. Since reading is commonly
performed when considering certain content as more semantically relevant than
other, we release a novel dataset for semantic text relevance containing 23,270 time-
locked (∼0.7s) word-level EEG recordings acquired from participants who read
both text that was semantically relevant and irrelevant to self-selected topics. Using
these data, we present benchmark experiments with two evaluation protocols: cross-
subject and within-subject on two prediction tasks (word relevance and sentence
relevance). We report the performance of five well known models on these tasks.
Our dataset and code are openly released. Altogether, our dataset paves the way
for advancing research on language relevance and psycholinguistics, brain input
and feedback-based recommendation and retrieval systems, and development of
brain-computer interface (BCI) devices for online detection of language relevance.

1 INTRODUCTION

Human cognition is remarkably adept at attending to information that is specifically relevant to an
individual’s goals (Dwarakanath et al., 2023; Breton-Provencher et al., 2022; Bucher & Schumacher,
2006; Henderson et al., 2009). This ability of attending to salient information is also well known in
research on language, which has repeatedly shown that content is facilitated in language processing
if it matches individual interests, prior knowledge, and current goals (McCrudden & Schraw, 2009;
Peng et al., 2018). Indeed, research in cognitive neuroscience has demonstrated that the human brain
is capable of assessing whether text or even single words are relevant to a current information need
within only a fraction of a second (Kotchoubey & Lang, 2001; Wenzel et al., 2017; Federmeier &
Laszlo, 2009; Kutas & Federmeier, 2011). To this end, relevance of information has been extensively
studied in the scope of information retrieval (Berger & Lafferty, 2017; Zhai et al., 2015), but most
approaches have been based on signals captured from human behaviour and interactions, such as
click-through data and dwell time (Joachims et al., 2005; 2017; Bi et al., 2020; MacAvaney et al.,
2019) rather than directly from human cognition. Therefore, an intriguing alternative for behavioural
signals is to infer relevance directly from the brain when a human is examining information. Previous
seminal work has used brain signals to show that relevance responses reflect the graded importance
of stimuli (Pinkosova et al., 2020). Predictive models using brain recordings have also been built to
improve text word representation models (Hollenstein et al., 2021), and to estimate sentence relevance
in question-answering (Gwizdka et al., 2017; Ye et al., 2022). However, these predictive models, and
the datasets used, do not account for the significance of relevance when a human is reading text that
holds more semantic relevance to them compared to other texts.

The novelty of our work lies in the introduction of an original dataset that was recorded with
the goal of capturing semantic text relevance through time-locked word presentation, which
has not been done previously. We release data from participants who read Wikipedia documents that
were either semantically relevant or irrelevant to self-selected topics. Sentences from the documents
were presented word by word on a screen for a fixed duration, which ascertained EEG recordings
were minimally affected by auxiliary confounding factors, such as those related to participant’s task
engagement and eye movement patterns. Indeed, such confounding effects are well known to occur
during naturalistic reading tasks in which users read whole sentences presented at once (Hollenstein
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et al., 2020); for example, relevant words tend to be focused on for longer duration, thereby altering
the extent to which EEG recordings include oculomotor activity – one of the strongest contributors
to raw EEG recordings (Spapé et al., 2015; Spapé, 2021). Therefore, EEG recordings that are
time-locked to single words with constant duration ensure that the relevance manifested in the brain
responses corresponds to the exact word being read by the participant.

We present benchmark experiments using our dataset on two tasks: word relevance classification
and sentence relevance classification. In the word relevance classification, the task is to estimate the
semantic relevance of each word occurring in a Wikipedia document to the topic of the document.
In the sentence classification, the task is to estimate the semantic relevance of each sentence in a
Wikipedia document to a self-selected topic by a participant. We report the performance of five
models on these tasks to allow researchers to compare and fairly assess the performance of machine
learning models and their generalisation potential to unseen users.

2 NEUROPHYSIOLOGICAL DATASETS OF HUMAN LANGUAGE PROCESSING

In recent years, a variety of neurophysiological data collection procedures have been performed to
record brain signals from participants performing reading tasks. However, only a limited amount
of collected datasets have been released. Table 1 provides an overview of the neurophysiological
datasets of human language processing that are publicly available. All except four of the listed
datasets are based on EEG to acquire participant’s brain recordings. This can be explained by the
portability, costs, and practicality of EEG devices for real-world applications compared to fMRI and
MEG, which have a higher spatial resolution and allow studying the regions of the brain characteristic
for language processing. However, these methods are restricted to laboratory studies and cannot be
realistically used for human-computer interaction, such as brain-computer interfacing. The datasets
also vary in terms of the stimulus modality perceived by the participants: listening (auditory) and
reading (visual). During listening tasks, a participant listens to a recorded utterance while brain
responses are acquired. The collected brain responses require knowing the word boundaries to extract
brain responses for each word (Schoffelen et al., 2019; Broderick et al., 2019). During the recording
of brain responses of humans performing reading tasks, a single word or a sequence of words (i.e.
sentence) is presented at once. Although the presentation of a whole sentence represents a more
natural reading scenario, the correspondence of brain recording to single words is not possible a
priori and requires some auxiliary information. For example, Hollenstein et al. (2018; 2020) used eye
tracking data to time-lock EEG recording with eye fixations on words. However, eye fixations may
limit the data (ERP window captured) as well as increase the chance of eye movement artefacts in
EEG. In some cases, even when a word is defined as a stimulus event, the recording of brain responses
may span several words (Wehbe et al., 2014). Thus, datasets that use time-locked stimulus recording
provide a more reliable and distinguishable signal that is not influenced by external artefacts, e.g.,
eye movements. Although reading tasks that require participants to read words or sentences without
any particular objective are helpful for understanding human language processing, they cannot be
applied to application scenarios that require participants to perform a task with a specific goal in mind.
The dataset closest to ours is collected by Ye et al. (2022), which contains brain responses acquired
in a question-answering task. However, the objective of their neurophysiological data acquisition
procedure is different from ours. We let the participant freely select the topic and keep in mind the
selected topic during a reading task, thus imitating a natural process of reading. In their EEG data
collection procedure, participants read sentences as answers to questions that could be perfectly
relevant, relevant, or irrelevant, thus creating a more artificial scenario.

3 EEG DATA ACQUISITION

3.1 PARTICIPANTS

Volunteers were recruited via convenience sampling and by advertisement on university mailing lists
targeting student populations. Following initial interest, online measures of handedness (Edinburgh
Handedness Inventory) and English fluency (Cambridge English Adult Learners fluency test) were
taken. The participants demonstrated high fluency, with an average score of 23.53 (SD = 1.23) on
a standardised English proficiency test Cambridge University Press (2024), where the maximum
possible score is 25. This score reflects strong English language skills, supporting the claim of “high
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Table 1: Comparison of publicly available neurophysiological datasets of human language processing.
We consider only the datasets that contain brain responses acquired from participants in response to
visual reading of text or listening to spoken language. s: sentence. w: word. v: visual, a: auditory.
u: utterance. - the value is not provided in the original publication. ⋆ the elapsed amount of time
between consecutive recorded brain volumes. † word boundaries were extracted by the means of eye
fixations. * brain responses acquired in a question-answering task rather than just reading.
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Wehbe et al. (2014) fMRI 9 v w no no ∼5,000 11,250⋆
Schoffelen et al. (2019) MEG 102 a u no no - -
Schoffelen et al. (2019) fMRI 102 v w no no - -
Nastase et al. (2021) fMRI 345 a u no no 27 369,496⋆

Hollenstein et al. (2018) EEG 12 v s no yes 407 8,164†

Hollenstein et al. (2020) EEG 18 v s no yes 390 8,310†

Broderick et al. (2019) EEG 19 a u no no 1 -
Broderick et al. (2019) EEG 19 v w yes no - -
Ye et al. (2022) EEG 21 v w yes yes* - -
Murphy et al. (2022) EEG 1 v w yes no 404,205 404,205

Our dataset EEG 15 v w yes yes 23,270 23,270

English fluency”. We believe that the used test provides a reliable indication of participants’ reading
proficiency. Participants were selected only if they were right-handed, had high English fluency, and
were of good mental health (self-reported). Seventeen participants conformed to these criteria and
participated in the study, which was conducted in line with the principles of the ANONYMOUS.
Conforming to the standards laid out in the ANONYMOUS, participants received full instruction on
the study’s nature and objectives, and were informed on their rights as participants, including the
right to withdraw from the study at any time without fear of any consequences. Two film tickets
were given in compensation for their time (up to two hours, including setup time) and effort. Data
from two participants were discarded due to a technical error, and therefore the present data contains
recordings from fifteen participants (eight female, seven male).

3.2 STIMULI

Stimuli were obtained by searching the English Wikipedia1. A convenience sampling of queries
was carried out, with the selection criteria being that topics should be of common interest and
that the returned result should provide a sufficiently descriptive summary of the topic within
the first six sentences of the article. Only the first six sentences of each article were retained.
All punctuation and non-textual information was scrubbed. After manual inspection of the re-
sults, 30 topics were retained: cat, painting, atom, society, wife, wine, rome, star,
school, brain, savanna, volcano, politics, schizophrenia, plato, communism,
michael jackson, learning, bank, machine learning, bicycle, automobile,
bill clinton, india, money, euro, time, ocean, telephone, football. During
brain data recording, all words were displayed in Lucida Console typefact (18 pt), presented word by
word in the centre of the screen in black colour against a grey (RGB D2, D2, D2) background.

3.3 PROCEDURE AND DESIGN

Following the setup of the electrophysiological apparatus, providing instruction to the participants,
and acquiring the signed informed consent from the participants, the data recording began.

1Wikimedia commons, source dump July 2014
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(2) Participant was instructed to freely 
     select one of the two topics and 

keep in mind this selected topic:

saline

Pool of 30 documents. 
Each document belongs to a 

topic and contains 6 sentences.

Document 
“Society”

(1) Two documents were randomly 
drawn without replacement
(e.g., Society and Ocean):

Document 
“Ocean”

Document 
“Society”
Document 
“Society”
Document 
“Society”
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Document 
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Document 
“Society”
Document 
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Document 
“Society”
Document 
“Society”
Document 
“Society”
Document 
“Society”
Document 

“Cat”

Topic 
“Society”

Topic 
“Ocean”

selected 
topic

(3) Participant read sentences from each document one word at a time                                                             
(the ordering of the starting document is randomized, e.g., Ocean):

1st sentence from the 
document “Ocean”

1st sentence from the 
document “Society”

2nd sentence from the 
document “Ocean”

…

6th sentence from the 
document “Society”

body 

Each word in a sentence  
is shown for 700 ms

of … … 

topic that was 
not selected

Figure 1: Step-by-step acquisition procedure of neurophysiological data during a reading task. (1)
Each reading task contains two documents. Each document belongs to a particular topic. (2) A
participant was asked to select one of the two topics and keep in mind the selected topic during a
reading task. (3) The participant read sentences from two documents in alternated order word by
word, such that a sentence was read from one document, then from the other document. While the
participant read a word presented on a screen, the brain responses for that word were recorded.

This involved participants undertaking a series of eight reading tasks. As illustrated in Figure 1, in
each reading task, two six-sentence documents were randomly drawn without replacement from the
stimulus sample pool, and participants were requested to freely select one topic, to be assigned as the
relevant topic. The participant was then instructed to keep in mind the selected topic that they chose
while reading the documents, with the suggestion that at the end of the reading task, they would be
asked to explain something about the relevant topic. By giving such an instruction to the participant,
we provide an informational, intrinsic goal and ensure that the participant’s focus is directed towards
the words that are semantically relevant to the chosen topic. In other words, we simulate a natural
setting in which participants search (by reading) for the information that is goal-relevant to them.
However, to obtain further measures of topical relevance, participants were also asked at the end
of each reading task to indicate how much they knew about each of the two topics on a scale of 1
(nothing) to 9 (everything), and how interesting they found the topics (1: not interesting, 9: extremely
interesting).

Within each reading task of six sentences from two topics, each trial involved the two sentences
being presented one after the other using a version of the common psychophysiological rapid serial
visual presentation paradigm, aimed at minimising artifactual confounds in the EEG signal related to,
for example, eye-movements, order effects, or visual differences. Each word within a sentence was
sequentially presented at a steady pace of ∼ 700 ms. Stimuli were shown always at the centre of the
screen (to avoid eye-movements), against a visual mask (4 rows of 21 signs: for standardising the
luminance difference between long and short words). Before and after each sentence, a “separator”
consisting of a non-alphabetic character or an integer (from 4 to 9) repeated seven times was shown to
indicate the beginning and ending of the current sentence, followed by the switch to the other topic or
the end of the trial. When that happened, participants were requested to repeat the name of the topic
they had originally indicated as relevant, so as to ascertain their retention of the previous selection.
The topics for reading tasks were randomly drawn from the total stimulus pool of 30 documents,
sentences were presented in sequential order, but with their ordering within pairs randomised, to
control for selectively focusing on the beginning or end of a trial.

3.4 APPARATUS

A Brain Products QuickAmp USB was used to digitise EEG recordings from passive Ag/AgCl
electrodes placed at the 32 relatively equidistant sites of the 10/10 system of Fp1, Fp2, F7, F3, Fz, F4,
F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3,
Pz, P4, P8, O1, Iz, and O2. A ground electrode placed at Fpz was used for the initial reference, but
data were digitised with the common average reference. The stimulus presentation used a standard
desktop LCD screen running in 1680 x 1050 resolution @ 60 Hz. E-Prime 2 (Psychology Software
Tools Inc.) running on a Windows PC was used to ensure the timing accuracy of the synchronisation
between runtime, EEG signals, and stimulus presentation.
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Table 2: Summary statistics of our dataset after the EEG preprocessing. The value inside parentheses
denotes standard deviation.

# Sentences
# Unique
stimulus
events

# Total
stimulus
events

Average length
of a sentence

# Documents each
participant read

# Stimulus events
annotated as semantically

relevant to a topic

1,440 1,401 23,270 16.2(6.5) 16 7,155

4 DATA PREPROCESSING, ANNOTATION, AND ANALYSIS

4.1 EEG PREPROCESSING

Standard preprocessing of EEG data included, first, filtering the EEG signal by applying 35 Hz
low-pass and 0.25 Hz high-pass filters. Then, a time window, ranging from −200 ms to 1000 ms, was
used to create equally sliced epochs of the EEG signal. An epoch represents the EEG signal of one
word. The data of each epoch were corrected by subtracting the mean of a baseline period [−200, 0],
where 0 denotes the onset of a stimulus. Finally, the EEG signal was cleaned by standard removal of
signal fluctuations caused by eye movements or extreme noise levels. The processing of EEG data
was carried out using the MNE library (Gramfort et al., 2013). Table 2 provides summary statistics of
our dataset after the EEG preprocessing has been applied. Of the 16 documents that each participant
read, the 8 documents belong to the selected topic, and the other 8 do not belong to the selected topic.

4.2 GROUND TRUTH ANNOTATION FOR WORD-LEVEL SEMANTIC RELEVANCE

A separate relevance assessment was conducted at the word level by three external annotators. Wilm
et al. (2021) have argued that three annotators are sufficient to have consistent performance and
adding more annotators results only in minor performance improvements. As our task is relatively
straightforward, three annotators represent a reasonable choice for our task. Annotators (1 female,
2 male) have an academic degree and are fluent in English. Annotators did not participate in the
collection of EEG data. The task of annotators was to annotate each word as 1 (semantically relevant)
or 0 (semantically irrelevant) with respect to the topic of a Wikipedia document. For example,
saline and water are semantically relevant to the topic Ocean in a given document, while
contains and stated are semantically irrelevant to the topic Ocean in that given document.
Detailed annotation guidelines can be found in Section H of the Appendix.

The inter-annotator agreement was measured using Fleiss’ Kappa = 0.69, indicating a substantial
agreement between the annotators (Fleiss, 1971). A majority voting of the three annotators’ assess-
ments was used to mark the final label of each word. On average, ∼31% of the words per topic are
semantically relevant, with a standard deviation of ∼7%.

4.3 ERP ANALYSIS

To validate the dataset in relation to the psychophysiological literature and more precisely describe
the effect of relevance on the Event-Related Potential (ERP), we extracted the averaged time-locked
activity from 250-350 ms, 350-450 ms, and 500-700 ms. The averaged potential over these bins –
roughly corresponding to P300, N400, and P600, and chosen based on the literature and the course of
the global field power shown in Figure 2 – was extracted for F3, Fz, F4, C3, Cz, C4, and P3, Pz, and
P4 for further analysis.

A four-factor repeated measures ANOVA was then conducted with time (300 vs 400 vs 600), relevance
(relevant vs irrelevant), coronal position (frontal, centre, parietal), and lateral position (left, medial,
right), as factors. To briefly summarise its outcome, we report it here only with regard to the
significant effects of relevance. This was observed as the main effect, F (1, 14) = 72.83, p < .001, with
generally relevant words evoking a more positive potential (0.61 ± 0.11µv) than irrelevant words
(0.12 ± 0.08µv). Relevance also had a two-way interaction with lateral position, F (2, 28) = 3.77,
p = .04, a three-way with coronal position and time, F (2, 28) = 12.75, p < .001, and was part of
the four-way interaction, F (4, 56) = 6.69, p < .001. As this indicates the effect of relevance was
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modulated by time and space (i.e., an interaction between relevance, positioning of electrodes, and
time was observed), we inferred three latent ERP potentials and conducted a three-way repeated
measures analysis for the three bins. Here, an interaction between relevance and time either occurs
if an effect 1) is observed stronger at one time point than another; 2) changes in direction (positive
in one time point, negative in another); 3) is present in one, but not another (e.g., present at 300 ms
but not at 400 ms). The analysis for the 250-350 ms time window showed an interaction between
relevance and both coronal position, F(2, 28) = 6.40, p = .005, and lateral position, F(2, 28) = 5.03,
p = .014. Relevance affected frontal and central sites more than parietal, and left and medial sites
more than right. In contrast, in the 350-450 bin, the effect of relevance was less localised, with only
the coronal position interacting with relevance, F (2, 28) = 4.16, p = .026, the effect of which was
distributed more towards central and parietal sites. Likewise for the final bin between 500 and 700
ms, the effect of relevance was relatively consistent, although more present at the left and central
sites than at the right sites, resulting in a significant effect interaction between relevance and lateral
position, F (2, 28) = 3.61, p = .04. Note that the modest level of significance in interactions is in stark
contrast with a robust main effect of relevance across bins: F (1, 14) = 110.13, 31.75, and 85.07 for
the 300, 400, and 600 ms bins respectively, all ps < .001.

The above ERP results are consistent with previous research showing effects on P3 and P6 (Eugster
et al., 2016; Potts, 2004).

(a) Words annotated as semantically relevant to the
topic of a document.

(b) Words annotated as semantically irrelevant to the
topic of a document.

Figure 2: Evoked brain responses averaged across all words and participants for the words that are
annotated as semantically relevant (a) and semantically irrelevant (b) to the topic of a document. The
y-axis shows brain responses in microvoltages for each electrode (lines of different colours). The
x-axis shows time progression of brain responses. The total number of semantically relevant and
semantically irrelevant words used to calculate average responses are 7,155 and 16,115, respectively.
The area at the bottom of two plots depicts the global field power (GFP) calculated as a spatial
standard deviation over the brain responses. The comparison of ERPs between semantically relevant
and semantically irrelevant words for each electrode are presented in the Figures 5, 6, 7, and 8.

5 BENCHMARK MACHINE LEARNING EXPERIMENTS

We benchmark our dataset in two classification tasks: word relevance prediction (Sec. 5.4) and
sentence relevance prediction (Sec. 5.5). Each classification experiment is repeated 10 times, with a
new random seed set for each run. Before that, we describe the training paradigms (Sec. 5.1), the
classifiers (Sec. 5.2), and how the input EEG data are represented (Sec. 5.3).

6
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5.1 TRAINING PARADIGMS

We adapt training and evaluation strategies similar to Huang et al. (2021); Zhang et al. (2022);
Ding et al. (2022). Specifically, two paradigms are used to train and evaluate classifier models:
cross-subject and within-subject.

Cross-subject. The cross-subject training paradigm is a k-fold cross-validation, where the dataset
is split into k consecutive folds and each fold contains the data belonging to one participant. During
training, each fold is used then once as a test set and the k − 1 remaining folds are used to create
training and validation sets. The validation set contains data of a single participant from a randomly
selected fold. The training set contains the remaining k − 2 folds. Since each participant performed
eight reading tasks, we split the test set into eight test sub-sets, each containing the two documents
from a single reading task. We evaluate the models on those test sub-sets. Thus, for p participants,
we have p different training sets, p different validation sets, p · 8 different test sub-sets.

Within-subject. Participant-specific models are created by fine-tuning the models trained with a
cross-subject paradigm on a participant’s data belonging to a test set. For this, we perform an 8-fold
cross validation. At each iteration of cross-validation, the training set contains data of six reading
tasks, the validation and test sets contain data of one reading task each. The models trained with a
cross-subject or within-subject strategy use exactly the same test set.

5.2 CLASSIFIERS

Five different classification models are used: a convolutional neural network (EEGNet), a linear
discriminant analysis (LDA), a logistic regression (LR), a unified framework for EEG-based reading
comprehension modelling (UERCM), and a recurrent neural network (LSTM). The EEGNet archi-
tecture (Lawhern et al., 2018) is widely used and consists of temporal and depthwise convolution
operations for learning frequency and spatial filters, respectively. The LDA and LR models are
widely used non-gradient methods to work with brain recordings (Blankertz et al., 2011; Davis et al.,
2020; Banville et al., 2021; Ruotsalo et al., 2023). The UERCM model is an attention-based model
that captures local interactions of EEG recordings within an input sequence (Ye et al., 2022). The
LSTM architecture remains a popular choice for working with time series data such as EEG (Ren &
Xiong, 2021; Freer & Yang, 2020; Zhang et al., 2021). For all gradient-based methods, we employ an
early-stopping strategy while training the models. This means that we stop the training procedure
when the performance on the validation set does not improve after one iteration on the whole training
set. All gradient-based models are trained with a learning rate of 0.001, batch size of 30, binary
cross-entropy loss, an Adam optimiser, and for at most 100 epochs. We use existing implementations
of the models: EEGNet (Zhang et al., 2024), LSTM (Paszke et al., 2019), UERCM (Ye et al., 2022),
LDA and LR (Pedregosa et al., 2011). We use the default parameters for these models if not otherwise
stated.

5.3 EEG DATA REPRESENTATION

One of the major challenges of EEG signals and their application in machine learning is a relatively
low signal-to-noise ratio (Goldenholz et al., 2009; Zhu et al., 2019; Bricker, 2020). Thus, the selection
of discriminative features is important. We use the approach described in Blankertz et al. (2011)
to extract spatio-temporal features. The presentation of a word is limited to 0.7 seconds. However,
in our benchmark machine learning experiments, we consider EEG recordings within the 250-950
ms range relative to the stimulus onset. The selection of this time range is based on neurolinguistic
research showing that ERPs occurring 250 to 700 ms after stimulus perception are likely indicators
of the relevance of language stimuli (Kim & Osterhout, 2005), meaning that recordings prior to 250
ms are insignificant for the present stimuli. We discard the [0, 250] ms range also due to visual cues
that are commonly present before 250 ms after stimuli onset (Knowland et al., 2013; Gutierrez-Sigut
et al., 2022). We specifically did not want the visual potentials to affect the results. For example, we
would expect different responses within the [0, 250] ms range based on word length, as more photons
(light) on the screen would evoke elevated potentials during this temporal segment. However, this is
not a factor that we want to measure, as word length is not a factor we want to account for. Instead,
we wanted to make sure that our ERP effects only account for relevance and semantic processing

7
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of stimuli (independent of how much light on the screen their presentation requires). Therefore, on
purpose, the [0, 250] ms range data were ignored.

Specifically, we extracted the EEG signal within the 250 - 950 ms range from each epoch. Subse-
quently, we introduce two ways to represent EEG data as input to classification models: matrix- and
vector-based. To create a matrix-based representation, we split the extracted EEG signal of one word
i into s sections and calculated an average for each section and for each electrode k: Rk×s

i . The
vector-based representation is created as follows: xi = τ(Rk×s

i ), where τ is a flatten operation that
collapses Rk×s

i into a vector xi so that the data from all electrodes are appended one after another
for each s. We used all available electrodes in all our benchmark experiments (k = 32). The value of
s is 151 for the EEGNet model, which is a default parameter (chunk_size) in the implementation
of the EEGNet model (Zhang et al., 2024). The value of s is 7 for the LDA, LR, LSTM, and UERCM
models, which is selected based on acquiring equally sliced fragments of the EEG signal of 0.1
second each.

5.4 WORD RELEVANCE CLASSIFICATION TASK

Goal and implementation details. The evoked brain responses differ between the words that are
annotated as semantically relevant and semantically irrelevant to the topic of a document, as visualized
in Figure 2 and statistically analysed in Sec. 4.3. Therefore, our first benchmark is a classification
problem, where we train models to predict if a word is semantically relevant or irrelevant to the topic
of a document. Whether a word is semantically relevant or not is defined by the ground truth. For the
EEGNet, LSTM, and UERCM models, we use a matrix-based representation, while for the LDA and
LR models, a vector-based representation of EEG data as input. While for the EEGNet model the
2D input can be processed directly by the model, for the LSTM and UERCM models the s in Rk×s

becomes the sequence length.

Results. Table 3 shows the performance of the five models on the word relevance classification
task. The EEGNet, LSTM, and UERCM models, trained following a within-subject paradigm,
achieve higher classification scores when compared to the corresponding models trained following
a cross-subject paradigm. This is due to the fine-tuning on the data of a specific participant. In the
Appendix (Section E.6) we discuss why the LDA and LR models, which are trained from scratch
(these models do not support fine-tuning in the conventional sense), show lower performance in the
within-subject paradigm compared to the cross-subject paradigm. We achieve state-of-the-art results
(within-subject) when compared to the previously reported results (Eugster et al., 2014; 2016).

5.5 SENTENCE RELEVANCE CLASSIFICATION TASK

Goal and implementation details. We model semantic relevance at the sentence level. We chose
sentences instead of documents due to the design of EEG data acquisition, where the presentation
of sentences from two documents was alternated during each reading trial to avoid ordering effects.
Whether a sentence is defined as semantically relevant or not depends solely on the choice of the
topic selected by a participant. This means that if a sentence belongs to a document, whose topic
was selected by a participant, it is defined as semantically relevant, otherwise not. For the EEGNet
model, we use a matrix-based representation, while for the LSTM, UERCM, LDA, and LR models, a
vector-based representation of EEG data as input. Since the EEGNet, LDA, and LR models cannot
process time-series data a priori, we average EEG representations across all words in a sentence. For
the UERCM and LSTM models, the number of words in a sentence defines the sequence length.

Results. Table 3 shows the performance of the five models on the sentence relevance classification
task. Overall, the LSTM model achieves the best classification accuracy results with respect to
the reported AUC scores across the two training paradigms. As expected, gradient-based models
show higher scores when these models are initially trained on the data of other participants and
then fine-tuned on the data of the specific participant, while the LDA and LR models are trained
only on the data of that specific participant. While previous studies have not used EEG data to
predict sentence-level semantic relevance, related tasks that involve brain recordings for relevance
estimation in Information Retrieval have been explored (Gwizdka et al., 2017; Ye et al., 2022).
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Table 3: Word relevance and sentence relevance binary classification results averaged over all
participants. The best scores are highlighted in bold. The value inside parentheses denotes standard
deviation. ∗ means that the model is trained from scratch in the within-subject paradigm, as fine-tuning
is not supported for this model.

Model
Cross-subject Within-subject

AUC Precision Recall AUC Precision Recall

Word relevance classification task

EEGNet 0.64 (0.04) 0.53 (0.10) 0.08 (0.05) 0.70 (0.03) 0.57 (0.05) 0.24 (0.09)
LDA∗ 0.65 (0.04) 0.53 (0.10) 0.11 (0.06) 0.63 (0.03) 0.43 (0.04) 0.37 (0.05)
LR∗ 0.64 (0.04) 0.51 (0.09) 0.16 (0.05) 0.63 (0.03) 0.42 (0.04) 0.39 (0.04)
LSTM 0.64 (0.03) 0.57 (0.27) 0.03 (0.03) 0.82 (0.03) 0.71 (0.03) 0.48 (0.06)
UERCM 0.61 (0.03) 0.56 (0.20) 0.03 (0.03) 0.70 (0.03) 0.62 (0.04) 0.21 (0.07)

Sentence relevance classification task

EEGNet 0.55 (0.06) 0.55 (0.17) 0.24 (0.17) 0.75 (0.08) 0.68 (0.08) 0.67 (0.14)
LDA∗ 0.72 (0.07) 0.68 (0.07) 0.56 (0.10) 0.54 (0.05) 0.52 (0.04) 0.54 (0.07)
LR∗ 0.71 (0.06) 0.68 (0.05) 0.58 (0.09) 0.54 (0.06) 0.54 (0.05) 0.56 (0.07)
LSTM 0.79 (0.06) 0.83 (0.30) 0.14 (0.18) 0.97 (0.02) 0.94 (0.04) 0.82 (0.09)
UERCM 0.67 (0.08) 0.69 (0.12) 0.38 (0.16) 0.92 (0.04) 0.85 (0.06) 0.82 (0.07)

Compared to these methods, our results in the within-subject sentence relevance classification task
show significantly better performance.

6 DISCUSSION

Limitations and future work. While the application of EEG devices to everyday human-computer
interaction in real-world settings is still under development, our work represents a significant advance-
ment in addressing this challenge. Our EEG data acquisition approach controls for ordering effects
and is designed to minimize confounding factors, ensuring validity and balance for downstream
experimentation. However, due to the enhanced experimental control, our data may not fully reflect
naturalistic, real-world interactive use. For instance, a block design with simultaneous presentation
of all words within a topic would likely increase ecological validity. However, avoiding block design
would result in order effects and signal artefacts severely limiting the applicability of the dataset
– an issue previously noted as problematic for previous data used for EEG experimentation with
real-world stimuli (Li et al., 2021). Therefore, we believe that the present dataset will serve as a
reliable benchmark for future research.

A sample size of 15 participants is consistent with the sample sizes used in comparable EEG studies,
such as those by Ye et al. (2022) (21 participants, 465 sentences, approximately 4,600 words)
and Hollenstein et al. (2018) (12 participants, 407 sentences, 8,164 words). Our dataset contains
23,270 time-locked EEG recordings, providing a substantial amount of data for model training
and testing. Brysbaert (2019) demonstrates that, with well-designed experiments, even a small
pool of participants can provide sufficient generalisability. Given that relevance is often subjective
and may manifest in brain responses differently for different participants, we also think it is more
important to have more samples per participant than data from more participants. Thus, we believe
that our rigorously designed EEG data collection procedure, which is carefully controlled for ordering
effects and confounding factors, ensures that the dataset is robust and generalisable for its intended
tasks. Nevertheless, the participant pool is relatively homogeneous, and the collection of brain
responses from under-represented groups and different cultural backgrounds could facilitate even
better generalisation. We also cannot fully exclude the possibility of human error affecting the quality
of the data, such as participants not fully understanding the tasks or experiencing fatigue during the
collection of EEG data.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Finally, our machine learning experiments focused on providing benchmark results without auxiliary
data or novel model architecture development. For example, the LDA and LR models do not consider
the temporal structure of the data, in contrast to the EEGNet, LSTM, and UERCM models. Here,
EEGNet is explicitly designed to capture spatio-temporal features. For the LSTM model, temporal
dependencies are captured via hidden and cell states and the spatial features are embedded into the
vectors of data that represent the recorded EEG responses for a specific time step. Similarly, the
UERCM model captures temporal and spatial relationships via self-attention. As the temporal aspect
was found to be one of the significant factors in ERP analysis, we anticipate that this dataset will be
valuable in advancing future research on novel machine learning architectures that explicitly account
for the temporal and spatial structure of the data (Zhang et al., 2022; Pan et al., 2024). Therefore, we
encourage the research community to develop novel model architectures to surpass our benchmark
results.

In addition, we encourage using our data to develop new wearable neuroimaging devices and
associated signal decoding architectures. This can accelerate the development of new types of
brain-computer interfaces that account for the relevance of information, thus enabling applications in
assistive technologies, such as adaptive learning systems and personalised content delivery, based
on user engagement and interest. Moreover, our benchmark experiments highlight the potential
of machine learning models to decode semantic relevance from EEG data, offering a foundation
for extending these capabilities to new application domains like brain-state driven entertainment,
neurofeedback training (training memory and attention through brain-relevance feedback), and
cognitive workload monitoring to optimise task assignment and performance.

Ethical considerations. Data were collected in accordance with the principles of the Declaration of
Helsinki of the World Health Organisation. All participants were informed of their right to withdraw
at any time without consequences and provided written consent, which included the agreement for
their anonymised data to be published. We do not anticipate any negative societal impacts from
the use of our proposed benchmarks. However, despite existing regulations on the handling of
personally identifiable and sensitive information, neurophysiological data, such as EEG, presents
unique challenges that remain only partially resolved. EEG data can potentially reveal private
information, including personal opinions, feelings towards others, and emotional states. Caution is
advised when using neuroimaging data for machine learning research and commercial applications,
as these methods could be vulnerable to future misuse.

7 CONCLUSION

We introduced the novel EEG dataset specifically designed to capture semantic text relevance
through time-locked word presentation, which is not addressed by any currently available
datasets. We provide a detailed overview of other datasets of human language processing and how
they compare to our dataset. Our benchmark experiments showed that semantic relevance can be
successfully decoded on a word- and sentence-level. Our dataset enables studying novel downstream
tasks and applications for (a) information retrieval (e.g., retrieving the documents that a user finds
semantically relevant), (b) recommender systems (e.g., recommending information to a user that
satisfies their information need), and (c) user engagement (i.e., understanding and predicting user
interactions with the displayed language content).

CODE AND DATA AVAILABILITY

The code allowing to reproduce data processing and experimentation will be publicly available at
ANONYMOUS upon acceptance of the paper. Data are available at ANONYMOUS.
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A DATASET DOCUMENTATION

A.1 LINKS TO DATASET, CODE, AND DOCUMENTATION

Dataset repository. The “raw” acquired EEG data, the preprocessed (“cleaned”) EEG data for
machine learning pipelines, as well as the ground truth annotation for word-level semantic relevance,
can be accessed at the following URL: ANONYMOUS.

Code. Our code to reproduce the benchmark results can be accessed at the following URL: ANONY-
MOUS.

Datasheet. To ensure responsible use of our dataset, we provide a “Datasheet” that describes the
intended use of our dataset, its contents, etc. We use the template suggested by Gebru et al. (2018).
The datasheet can be accessed at the following URL: ANONYMOUS.

Croissant metadata. We make our dataset available at ANONYMOUS, which contains the meta-
data and the preprocessed (“cleaned”) EEG data for the direct experimentation with our dataset.

Dataset website. Upon acceptance, we will create a separate website for the dataset, accessible at
ANONYMOUS.

The links provided above will be stable and accessible.
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A.2 LICENCE AND RESPONSIBILITY STATEMENT

The dataset is released under a Apache Licence 2.0 licence. We state that we bear all responsibility
for the content of the dataset in case of violation of rights and confirm the dataset licence. We confirm
that the data released have been fully anonymised and have the explicit permission of the participants
whose EEG data are released to be shared openly.

A.3 MAINTENANCE AND CONTACTS

The authors of the paper that introduced the dataset are responsible for supporting, hosting, and
maintaining the dataset.

Questions about the code: ANONYMOUS.

Questions about the EEG data collection procedure: ANONYMOUS.

Other inquiries: ANONYMOUS.

B RAPID SERIAL VISUAL PRESENTATION (RSVP)

In our dataset, where each word is presented for approximately 0.7 seconds, we use principles
similar to those underlying Rapid Serial Visual Presentation (RSVP) to ensure precise time-locked
EEG recordings. RSVP is an effective method for collecting data in studies that require precise
temporal alignment between stimuli and acquired data (Potter, 1984). A search for “rapid serial
visual presentation” and “EEG” in Google Scholar for 2023 yielded 508 results, demonstrating its
broad application in the field.

C DETAILS ON EEG DATA ACQUISITION

C.1 PLACEMENT OF ELECTRODES

The EEG recordings are acquired from electrodes placed at the 32 relatively equidistant sites of the
10/10 system: Fp1, Fp2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8,
TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, O1, Iz, and O2. Figure 3 shows the placement
of the electrodes on the head of a participant during the EEG recording setup.

Figure 3: Placement of electrodes according to the 10-20 system (a) and EEG recording setup (b).

C.2 STEP-BY-STEP ILLUSTRATION OF THE NEUROPHYSIOLOGICAL EXPERIMENT.

Each participant performed eight reading tasks in total. During each reading task, the participant
read two documents, each belonging to a specific topic. Before each reading task, the participant
had to select a topic from the two randomly drawn topics without replacement from the pool of 30
unique topics. Each reading task consisted of six reading trials. Each reading trial contained two
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distinct sentences from two documents: one document belonging to a topic that was selected by
the participant and another document belonging to a topic that was not selected by the participant.
In each trial, a distinct sentence was shown from each document (the order of the sentences was
preserved). Figure 4 illustrates the step-by-step neurophysiological experiment. for the acquisition of
EEG data during a reading trial.

C.3 DISCUSSION: BALANCING OF THE TOPICS

As each participant was presented with a unique pair of topics during each reading task and chose
their preferred topic from pairs of topics randomly selected, exposure to specific topics varies among
participants. However, complete balancing of the topics among the participants was not feasible
due to the experimental design, which required the participants to choose one of the two topics
they wanted to learn more about. This approach ensures that the participant’s intrinsic interest or
preference is prioritised rather than being influenced by enforced balancing. Figure 16 illustrates
the frequency of topic selections among participants. Importantly, the unbalanced distribution of
selected topics does not introduce inconsistencies in the dataset. For each reading task, one topic was
selected and the other was not, establishing semantic relevance in an absolute manner. By “absolute”,
we mean that relevance is determined solely by the relationship between the selected topic and the
unselected one, independent of other topics. Additionally, Figure 17 provides a breakdown of the
number of words per topic. While some topics may have more words than others, we do not anticipate
that this unbalanced distribution introduces inconsistencies in the dataset.

C.4 ADDITIONAL ERP ANALYSIS

Additionally, to the ERP analysis presented in our paper, Figures 5, 6, 7,and 8 show the ERPs for the
words that were annotated as semantically relevant and semantically irrelevant for each electrode.

To more clearly demonstrate the differences in ERPs between semantically relevant and semantically
irrelevant words, we present in Figure 9 a topographic scalp plot showing the difference between
ERPs for semantically relevant words and those for semantically irrelevant words. The topographic
patterns of these differences align with the positivity patterns for the components P300, N400, and
P600 reported by Eugster et al. (2016). Figure 10 illustrates the differences in ERP responses using
the Fz, C3, C4, P3, Pz, and P4 electrodes. These differences are statistically significant (p < 0.001),
as determined using a non-parametric bootstrapping method with 10,000 permutations.

C.5 METADATA

Our dataset contains word-level brain recordings of participants reading Wikipedia documents. In the
following, we refer to the metadata that are related to the preprocessed (“cleaned”) EEG data and
not the “raw” data, since the preprocessed data are the data that are intended to be used for machine
learning tasks. However, other researchers are more than welcome to use the “raw” data for their
needs. The “cleaned” data as well as the “raw” data are available at ANONYMOUS. Table 4 shows
an example of metadata for one single instance (word-level EEG recording). A “cleaned” word-level
EEG data contains 2001 EEG recordings for each electrode. These 2001 EEG recordings are voltage
values and correspond to 1 second of a recording that starts from the stimulus onset (a word has
appeared on a screen).

D SELF-REPORTED RATINGS OF INTERESTINGNESS AND PRE-KNOWLEDGE

Figure 11 shows self-reported ratings of interestingness and pre-knowledge of the topics for each
participant.

E DETAILS ON CLASSIFICATION MODELS AND EVALUATION STRATEGY

We trained all our models without performing a hyperparameter optimisation and using in most cases
the default parameters. This was intended as we wanted to provide the baseline benchmark results. If
the default parameter was not used, we justify our selection of the value for that parameter.
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Choose from the following which topic you 
would like to learn more about:

Please keep in mind: society. Sentences will be 
shown. After that, you will be asked to write the 

topic you were to keep in miny: society.

Press space to begin

Before a reading task: 

During a reading trial: 

After a reading trial: 

Which topic were you to remember?

society_

Figure 4: Step-by-step illustration of the neurophysiological experiment for the acquisition of EEG
data.
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Figure 5: ERPs for the words that were annotated as semantically relevant and semantically irrelevant
for the electrodes Fp1, Fp2, F7, F3, Fz, F4, F8, and FC5.
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Figure 6: ERPs for the words that were annotated as semantically relevant and semantically irrelevant
for the electrodes FC1, FC2, FC6, T7, C3, Cz, C4, and T8.
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Figure 7: ERPs for the words that were annotated as semantically relevant and semantically irrelevant
for the electrodes TP9, CP5, CP1, CP2, CP6, TP10, P7, and P3.
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Figure 8: ERPs for the words that were annotated as semantically relevant and semantically irrelevant
for the electrodes Pz, P4, P8, FT9, O1, Oz, O2, and FT10.
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Figure 9: A topographic scalp plot showing the
difference between the ERPs for semantically
relevant words and those for semantically irrele-
vant words.
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Figure 10: Population mean of ERPs obtained
from the Pz, Fz, C3, C4, P3, and P4 elec-
trodes. The differences are statistically signif-
icant (p < 0.001) using a non-parametric boot-
strapping with 10000 permutations. Global field
power (GFP) represents the standard deviation
of the EEG signal across electrodes (visualized
as shaded areas).

Table 4: An example of metadata pertained to each preprocessed (“cleaned”) word-level brain
recording instance. Event corresponds to a specific point in time during EEG data collection and
represents the onset of an event (presentation of a word). Word is a word read by the participant.
Topic is the topic of the document to which the word belongs to. Selected topic indicates
the topic the participant has selected. Semantic relevance indicates whether the word is
semantically relevant (expressed as 1) or semantically irrelevant (expressed as 0) to the topic selected
by the participant. Interestingness indicates the participant’s interest in the topic of a document.
Pre-knowledge indicates the participant’s previous knowledge about the topic of the document.
Sentence number represents the sentence number to which the word belongs. Participant
is the participant’s ID.
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E.1 LOGISTIC REGRESSION

We have used the implementation of logistic regression provided by the scikit-learn library, version
1.4.2. The default parameters were used to train the model and were not changed in all benchmark
experiments.

E.2 LINEAR DISCRIMINANT ANALYSIS

We have used the implementation of linear discriminant analysis provided by the scikit-learn library,
version 1.4.2). The default parameters were used to train the model and were not changed in all
benchmark experiments.

23

https://scikit-learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/1.4/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

TR
PB

10
7

TR
PB

10
1

TR
PB

11
4

TR
PB

11
7

TR
PB

10
2

TR
PB

11
2

TR
PB

11
3

TR
PB

11
5

TR
PB

10
9

TR
PB

10
5

TR
PB

11
0

TR
PB

11
1

TR
PB

10
6

TR
PB

11
6

TR
PB

10
3

Participant

atom
automobile

bank
bicycle

bill clinton
cat

communism
euro

football
learning

machine learning
michael jackson

money
ocean

painting
plato

politics
rome

savanna
schizophrenia

school
society

star
telephone

time
volcano

wife
wine
brain
india

To
pi

c

 4  -  9  -  -  -  9  -  4  7  5  8  9  -  - 
 4  2  6  2  -  7  -  -  -  -  5  7  8  -  5 
 4  5  -  -  8  7  6  5  -  6  4  -  -  -  - 
 3  8  8  4  -  3  7  -  7  -  -  -  -  -  - 
 -  3  -  6  -  -  5  5  -  4  5  7  -  -  - 
 -  5  9  -  5  2  7  5  -  8  9  -  5  4  6 
 3  -  8  6  -  -  -  7  -  -  -  -  8  5  5 
 -  6  -  -  3  8  -  -  -  -  -  -  -  6  6 
 -  2  1  -  7  7  9  5  -  -  2  2  -  4  - 
 1  6  4  -  6  -  8  7  -  3  -  8  -  4  - 
 9  -  -  -  8  6  9  -  -  -  4  8  -  5  7 
 -  -  2  3  -  -  8  -  6  5  6  -  6  -  6 
 6  -  -  3  7  -  7  2  -  5  4  -  8  7  - 
 -  5  5  8  7  3  -  -  7  9  -  -  5  9  6 
 -  2  -  7  3  2  -  6  6  -  5  4  5  5  5 
 -  5  -  -  8  6  -  7  -  7  5  -  -  -  - 
 6  6  -  -  4  -  7  6  7  5  5  9  9  -  6 
 6  -  -  -  7  -  -  5  6  6  -  6  7  -  7 
 -  -  -  5  -  2  -  5  8  -  -  6  4  -  6 
 -  -  -  8  -  6  8  -  7  -  5  7  7  4  5 
 5  -  6  3  -  -  7  -  -  2  6  -  5  -  6 
 5  7  5  8  6  6  -  9  7  4  -  9  -  6  - 
 6  -  7  5  -  6  9  -  3  8  -  -  -  5  6 
 -  -  5  -  -  5  7  -  8  -  -  -  -  4  - 
 9  -  -  8  -  6  -  -  7  4  -  -  9  6  7 
 6  -  7  -  4  -  -  6  5  -  -  6  -  -  6 
 6  2  5  -  -  -  7  2  -  -  6  8  -  -  - 
 -  6  3  5  3  -  -  -  3  -  -  2  -  5  - 
 -  -  -  -  2  -  -  -  -  5  2  -  9  3  - 
 -  6  -  8  -  -  -  8  6  -  -  6  6  -  - 

(a) Pre-knowledge.
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(b) Interestingness.

Figure 11: Self-reported ratings of each participant’s pre-knowledge (a) and interestingness (b) about
each of the two topics presented during a reading task on a scale of 1 (nothing) to 9 (everything). -
means that the topic was not presented to the participant for the selection as each participant read 16
documents. X-axis: participant ID. Y -axis: topic name.

E.3 EEGNET

We have used the implementation of the EEGNet model provided by the torcheeg library, version
1.1.0). For all parameters, except num_electrodes and num_classes, the default values were
used in all benchmark experiments. The parameter num_electrodes was set to 32 and represents
all the electrodes available in our data. The parameter num_classes was set to 1, since we used
binary cross-entropy loss.

E.4 LSTM

We have used the implementation of the LSTM model provided by the PyTorch library, version 2.3.0.
For all parameters, except input_dim, hid_channels, and num_classes, the default values
were used in all benchmark experiments.

The parameter input_dim represents the dimensionality of the input EEG data. This parameter
can be set to 224 or 32:

• The value of 224 is used when performing the sentence relevance classification task. The
value of 224 corresponds to the vector representation of each word-level EEG data in a
sentence, where the word-level EEG data are represented as a matrix with 32 rows and 7
columns. We have 32 rows, as we have 32 electrodes. Each row represents an electrode, and
each column represents the averaged EEG signal within the 0.1s range over a time span of
0.25 to 0.95 s.

• The value of 32 is used when performing the word relevance classification task. The value
of 32 corresponds to the number of electrodes.
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The parameter hid_channels represents the number of features in the hidden state and was set to
32. We select 32 following simple reasoning: a single feature for each electrode.

The parameter num_classes was set to 1, since we used binary cross-entropy loss.

E.5 UERCM

We have used the implementation of the UERCM model accessible at the following URL:
https://github.com/YeZiyi1998/UERCM/blob/master/UERCM/model.py). For
all parameters, except feat_dim, max_len, d_model, num_layer, and num_classes, the
default values were used in all benchmark experiments.

The parameter feat_dim represents the dimensionality of the input EEG data. This parameter can
be set to 224 or 32. The reason for selecting these values is the same as for the LSTM model.

The parameter max_len represents the input sequence length and can be set to 39 or 7:

• The value of 39 was used only during the sentence relevance classification task and
corresponds to the longest sentence in all documents (i.e., the sentence that has the highest
number of words). We select the value 39 to ensure that each sentence has the same length
and can be put into a single batch containing many sentences. The sentences that have
less than 39 words are padded with zeros. We ensure that padded data are not considered
when training the model.

• The value of 7 was used only during the word relevance classification task and corre-
sponds to 7 values produced by averaging EEG recordings for a single word over a time
span of 0.25 to 0.95 seconds. Here, the first value represents the averaged EEG signal within
the range of 0.25-0.35 s, the second value represents the averaged EEG signal within the
range of 0.35-0.45 s, etc.

The parameter d_model represents the number of expected features in the encoder input and was
set to 32. The reason for selecting 32 is the same as for the LSTM model setting the parameter
hid_channels to 32.

The parameter num_layer was set to 2, as used by Pappagari et al. (2019) for document classifica-
tion using a small Transformer architecture.

The parameter num_classes was set to 1, since we used binary cross-entropy loss.

E.6 WHAT CAUSES THE LDA AND LR MODELS TO EXHIBIT INFERIOR PERFORMANCE IN THE
WITHIN-SUBJECT PARADIGM WHEN COMPARED TO THE CROSS-SUBJECT PARADIGM?

In the within-subject paradigm, the LDA and LR models are trained from scratch, as these models
do not support fine-tuning in the conventional sense. Consequently, they lack sufficient data in
this paradigm to learn robust and generalisable features, resulting in lower performance compared
to the within-subject paradigm, where a larger and more diverse dataset is available for training.
This limitation is consistent with findings in the literature. For example, (Huang et al., 2021) also
reported cases in which models trained on limited participant-specific data failed to outperform
generic classifiers. Thus, the observed results are likely due to the restricted data availability in the
within-subject paradigm.
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F CLASSIFICATION RESULTS PER PARTICIPANT

Figure 12 and Figure 13 show binary classification results per participant for word and sentence
classification tasks, respectively.
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(a) within-subject strategy.
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Figure 12: Word relevance binary classification results per participant. A value inside each cell
represents an averaged AUC score. X-axis: participant ID. Y -axis: model. Darker colour means
higher AUC score.
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Figure 13: Sentence relevance binary classification results per participant. A value inside each cell
represents an averaged AUC score. X-axis: participant ID. Y -axis: model. Darker colour means
higher AUC score.

G OVERLAP OF SEMANTICALLY RELEVANT WORDS ACROSS TOPICS

We analyse the overlap of semantically relevant words across topics. Since Wikipedia articles contain
text on specific or specialised topics, we expect minimal overlap in semantically relevant words.
Figure 14 shows that the overlap between all semantically relevant words across topics in our dataset
is up to 25%.

H ANNOTATION GUIDELINES FOR SEMANTIC RELEVANCE

The goal of this annotation task is to determine whether each word in a document is semantically
relevant or semantically irrelevant to the topic of the document. Only the intrinsic semantic relevance
of each word alone to the topic must be assessed.

H.1 KEY DEFINITIONS

• Semantic Relevance: A word is semantically relevant if it contributes meaningfully to the
topic of the document by either directly describing or being closely associated with it.
Example: For the topic “Ocean”, words like water, saline, wave, and marine are relevant.

• Semantic Irrelevance: A word is semantically irrelevant if it does not provide meaningful
information about the topic.
Example: For the topic “Ocean”, words like a, influences, primary, and divided are irrelevant.
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Figure 14: The overlap of all semantically relevant words across topics. X-axis: topic names. Y -axis:
topic names. A number in each cell represents the percentage of semantically relevant words that are
present in both topics.
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Figure 15: The distribution of
word lengths in the dataset.
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Figure 16: The number of times
a topic was selected.
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Figure 17: The number of words
per topic in the dataset, as aver-
aged across all participants.

H.2 GENERAL GUIDELINES

1. Focus on Word-Level Relevance: You will receive a file containing two columns. The first
column contains the words. The second column contains the names of the topics each word
belongs to. No word is repeated within the same topic. The order of words within each topic
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is randomised. Since the words are shuffled, evaluate each word in isolation. Context or its
position within the original document does not influence the annotation. Only consider the
word’s relationship to the document’s topic.

2. Topic Familiarity: Before annotating, understand the main topic of the document. Consider
typical terms, concepts, and ideas associated with that topic.

3. Function Words: Words like articles (a, the), conjunctions (and, or), and auxiliary verbs
(is, are) are generally irrelevant, unless they are related to the topic of a document (e.g., the
topic “Function words”).

4. Domain-Specific Terms: Technical terms or jargon specific to the topic should always be
marked as relevant.
Example: For the topic “Ocean”, terms like salinity, currents, and plankton are relevant.

5. Ambiguity: If unsure about a word’s relevance, use the online Cambridge English-English
dictionary available at https://dictionary.cambridge.org/dictionary/
english/ to comprehend a word’s meaning.

H.3 ANNOTATION PROCEDURE

1. Please mark each word as 1 (semantically relevant) or 0 (semantically irrelevant) with
respect to the topic.

2. Ensure consistent annotations throughout the task by referring to this guideline for ambigu-
ous cases.

H.4 EXAMPLES

Topic: Ocean
Word Annotation Reason
ocean 1 Core term describing the topic.
saline 1 Describes a key property of the ocean.
and 0 Function word and unrelated to the topic.
beautiful 0 Unrelated to the topic.
currents 1 Key concept associated with the ocean.
divided 0 Unrelated to the topic.

H.5 QUALITY ASSURANCE

• Double-check annotations for consistency.

• Follow up with the task coordinator if further clarification is needed.

I DATASHEET

The datasheet can be accessed at the following URL: ANONYMOUS.
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