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ABSTRACT

Deep neural networks with discrete latent variables are particularly well-suited for
tasks that naturally involve sequences of discrete symbols. The vector-quantized
variational auto-encoder (VQ-VAE) has made significant progress in this area by
leveraging vector quantization. However, while much effort has been put into
maximizing codebook utilization, this does not always result in better perfor-
mance. Additional challenges include quantization errors in the VQ layer and
the lack of direct integration of task loss into the codebook objective. To address
these issues, we propose Meta-Quantized Variational Auto-Encoder (MQ-VAE),
a bi-level optimization-based vector quantization framework inspired by meta-
learning. In MQ-VAE, the codebook and encoder-decoder pair are optimized
at different levels, with the codebook treated as hyperparameters optimized via
hyper-gradient descent. This approach effectively tackles these challenges within
a unified framework. The evaluation of MQ-VAE on two computer vision tasks
demonstrates its superiority over existing methods and ablation baselines. Code is
available at https://anonymous.4open.science/r/MQVAE-B52C.

1 INTRODUCTION

Learning discrete latent variables is often preferable for tasks that are naturally modeled as se-
quences of discrete symbols, such as language and speech (Vinyals et al., 2015). Vector-quantized
networks (VQNs) are a type of network that learns latent variables via vector quantization (VQ,
Gray (1984)), which quantizes features into clusters known as codewords. VQNs were first intro-
duced as the vector-quantized variational auto-encoder (VQ-VAE, Van Den Oord et al. (2017)) in
the context of generative models. Later studies demonstrated that training an autoregressive prior
on discrete representations learned through vector quantization leads to powerful image generation
models (Razavi et al., 2019; Roy et al., 2018; Ramesh et al., 2021; Esser et al., 2021; Chang et al.,
2023). VQNs have also yielded impressive results in speech generation (Dhariwal et al., 2020) and
other areas beyond generation, such as image representation learning (Caron et al., 2020) and speech
representation learning (Chung et al., 2020).

The traditional way of training VQNs, as used in VQ-VAE, is to learn a codebook C, whose ele-
ments, known as codewords, provide a compressed semantic representation of the input data. The
embedding of the encoded data from the encoder Fϕ then goes through the quantization opera-
tion by selecting its nearest neighbor in C. The selected codeword replaces the embedding and is
passed to the decoder Gθ for an output. Due to the non-differentiability of the quantization opera-
tion, a straight-through estimator (STE, Bengio et al. (2013)) is usually used to enable gradient flow
through the VQ layer to the encoder when backpropagating. Since the backpropagating gradient
bypasses the codebook in STE, the codebook is instead optimized using a vector quantization ob-
jective that brings the embedding and selected codewords together. In this way, the entire model is
optimized in an end-to-end manner.

However, several challenges exist in the previous training framework. First, vector quantization
performs poorly when the number of actively used codes is small, a problem known as ’index col-
lapse’ (Kaiser et al., 2018). This is mainly because of the sparsity of the gradient, meaning only
the selected codewords are updated. Existing works such as Lee et al. (2022), Kaiser et al. (2018),
and Yu et al. (2021) have explored explicitly encouraging high code utilization rates. However, the
implicit assumption that a higher code utilization rate necessarily leads to better performance is not
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Figure 2: Gradient paths in MQ-VAE. The lower level is optimized by gradient descent. The
upper level is optimized by hyper-gradient descent with direct hyper-gradient and indirect hyper-
gradient. Here, we use L∗

task, L∗
commit and L∗

codebook to denote the corresponding loss computed
with ϕ∗(C) and θ∗(C).

always valid (Huh et al., 2023; Zheng & Vedaldi, 2023)—a high utilization rate in tasks that have
more codes than necessary results in redundancy, which may even lead to overfitting. Second, the
quantization error at the VQ layer can introduce a gradient estimation gap when using STE, making
the training of the encoder and decoder biased and unstable. Third, the codebook is solely optimized
with the vector quantization objective, which only focuses on aligning the embedding distribution
and codeword distribution. Since the gradient from task loss bypasses the codebook in STE when
backpropagating, the update of the codebook is task-unaware, which potentially compromises its
optimality.

Train codebook
min
𝒞𝒞
ℒ(𝜙𝜙∗ 𝒞𝒞 ,𝜃𝜃∗ 𝒞𝒞 ,𝒞𝒞)
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𝜙𝜙,𝜃𝜃

ℒ(𝜙𝜙,𝜃𝜃,𝒞𝒞)
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𝒞𝒞𝜙𝜙∗ 𝒞𝒞 𝜃𝜃∗ 𝒞𝒞

Codebook: 𝒞𝒞 Encoder: 𝐹𝐹𝜙𝜙
Decoder: 𝐺𝐺𝜃𝜃

Figure 1: Bi-level optimization in MQ-VAE.
MQ-VAE learns the codebook and encoder-
decoder pair using a bi-level optimization frame-
work. At the lower level, the encoder-decoder pair
is trained to converge while keeping the codebook
fixed. At the upper level, the codebook is opti-
mized via hyper-gradient descent using the opti-
mal encoder-decoder pair.

Drawing inspiration from meta-learning (Finn
et al., 2017), we propose a simple and unified
framework called Meta-Quantized Variational
Auto-Encoder (MQ-VAE) to address the chal-
lenges mentioned above. Built directly on the
traditional vector quantization framework with
the same network architecture, we introduce
an asymmetric bi-level optimization problem,
where the codebook acts as hyperparameters
and the encoder-decoder pair as parameters.
As shown in Figure 1, the codebook and the
encoder-decoder pair are optimized at the up-
per and lower levels, respectively. At the upper
level, the codebook anticipates the future per-
formance of the encoder-decoder pair by tenta-
tively training them until convergence (or un-
rolling for several steps as a surrogate) with the
codebook temporarily fixed. Then, the code-
book is optimized to minimize the loss via
hyper-gradient descent for one step using the
optimal encoder and decoder, which are func-
tions of the codebook. At the lower level, the
tentative training steps of the encoder-decoder pair in the first step are undone since a better code-
book has been found by hyper-gradient descent. Instead, the encoder and decoder are optimized
for one step by gradient descent using the updated codebook. The two levels of optimization are
performed iteratively until convergence.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The three challenges above can be effectively addressed within our cohesive framework. MQ-VAE
resembles online K-means, where the codebook acts as the K-means cluster centroids. When the
centroids are adjusted so that the distribution of codewords and embedding perfectly match, zero
quantization error is achieved, and no gradient estimation gap occurs in STE. Intuitively, our method
employs an alternated optimization structure in which the codebook at the upper level reduces quan-
tization error via the vector quantization objective before each update at the lower level, promoting
more stable training of the encoder and decoder. Notably, our approach goes beyond merely con-
sidering quantization error as a determinant of the encoder-decoder pair’s training quality. Hyper-
gradient descent explicitly integrates the subsequent performance of the encoder and decoder into
consideration. In doing so, MQ-VAE learns a superior codebook that improves encoder-decoder
training in the long run without fully relying on heuristic assumptions about codebook usage or
quantization error. Interestingly, hyper-gradient descent introduces another benefit: unlike the tradi-
tional codebook strategy where task loss has no impact on the codebook, the gradient from the task
loss can now reach the codebook through various paths (See Figure 2). This makes the codebook
task-aware and improves overall performance. Furthermore, in our framework, a higher proportion
of codewords are updated each step. This is because different sets of codewords are expected to be
selected during each iteration of the tentative encoder-decoder training, and all selected codewords
are updated at the final step, which potentially mitigates the gradient sparsity issue.

Our work makes the following key contributions:

• We propose MQ-VAE, an innovative vector quantization framework based on bi-level opti-
mization. Unlike the traditional codebook optimization procedure, our approach optimizes
the codebook in a meta-learning fashion via hyper-gradient descent. MQ-VAE can learn
a superior codebook that improves encoder-decoder training in the long run without fully
relying on heuristic assumptions about codebook usage or quantization error.

• A detailed analysis of the hyper-gradient reveals how MQ-VAE can enhance the gradient
guidance during codebook training. Additionally, we show that in our algorithm, the task
loss can directly affect the codebook, which was largely ignored in previous works.

• We demonstrate the superiority of MQ-VAE with two computer vision tasks. MQ-VAE
significantly outperforms several comparison baselines and ablation methods, highlighting
its effectiveness.

2 RELATED WORK

2.1 VECTOR-QUANTIZED NETWORKS

The vector quantization networks (VQNs) were first introduced as a generative model named vector-
quantized variational auto-encoder (VQ-VAE), which maps continuous embedding to discrete code-
words using a learned codebook by vector quantization (VQ). Straight-through estimator (STE)
(Bengio et al., 2013) is applied in the original framework to address the non-differentiability of the
VQ layer. However, this simple approximation causes problems, as discussed in the introduction,
and significant efforts have been made to improve the VQ layer. Łańcucki et al. (2020), Zeghidour
et al. (2021), and Dhariwal et al. (2020) propose resetting codewords that are not selected for certain
iterations to increase codebook utilization. Kaiser et al. (2018), Guo et al. (2024), and Yu et al.
(2021) suggest projecting both embedding and codewords into subspaces and applying vector quan-
tization to each subspace. In this way, the dimensionality of codewords is split into several groups,
and a higher codebook utilization is achieved by conducting quantization in each group separately.
Gumbel-VQ, a variation proposed in a public repository by Karpathy (2021) and used as a compar-
ison method in Huh et al. (2023), provides a continuous approximation of vector quantization. By
doing so, the bottleneck is differentiable, and the codebook can be trained using standard backprop-
agation. Other related works include affine reparameterization (Huh et al., 2023), l2 normalization
(Yu et al., 2021), and probabilistic reformulations (Roy et al., 2018; Takida et al., 2022).

2.2 BI-LEVEL OPTIMIZATION

Bi-level optimization (BLO) has been widely applied in various machine learning tasks, with meta-
learning (Finn et al., 2017; Rajeswaran et al., 2019) being one of the most prominent applications.

3
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Other applications include neural architecture search (NAS, Liu et al. (2018); Zhang et al. (2021))
and hyperparameter optimization (HPO, Lorraine et al. (2020); Franceschi et al. (2017)). Despite
its widespread use, solving BLO problems can be challenging due to the inherently nested nature
of two optimization tasks. Gradient-based BLO (Choe et al., 2023) has received much attention
because it can scale to high-dimensional problems with a large number of trainable parameters.

In this work, we extend the application of gradient-based BLO to develop a novel codebook train-
ing approach for the vector quantization framework. In the spirit of meta-learning, MQ-VAE treats
the codebook as hyperparameters with the objective of improving the training of the encoder and
decoder. The effectiveness of the codebook is validated and updated based on the performance
potentiality of the encoder and decoder, analogous to validating the effectiveness of model initial-
ization in meta-learning. A similar strategy of hyper-gradient descent in our work is also used in the
meta-learning literature.

3 PRELIMINARY

A vector-quantized network (VQN) is a neural network consisting of a vector-quantization (VQ)
layer hC(·):

y = Gθ(hC(Fϕ(x))) = Gθ(hC(ze)) = Gθ(zq) (1)
Here, ze denotes the embedding obtained by applying the encoder Fϕ (parameterized by ϕ) to the
input x. zq denotes the quantized embedding obtained by applying the VQ layer hC to ze. y denotes
the output of the decoder Gθ (parameterized by θ), which takes zq as input. The VQ layer hC(·)
quantizes ze by selecting a vector from the codebook C = {e1, e2, . . . , ek} based on a distance
measure d(·, ·):

zq = ek, where k = argmin
j

d(ze, ej) (2)

Here, a stored vector ei is referred to as the codeword, and the index i as the code. Euclidean
distance is the standard distance measure for d(·, ·) (Van Den Oord et al., 2017). Note that the
quantized embedding zq is a subset of C, and updating zq corresponds to partially updating C.

The task lossLtask(Gθ(hC(Fϕ(x))),y) is not continuously differentiable due to the argmin operator
in hC . To address this, a straight-through estimator (STE, Bengio et al. (2013)) is applied with the
non-differentiable part ∂zq

∂ze
ignored:

∂Ltask

∂ϕ
≈ ∂Ltask

∂y

∂y

∂zq

∂ze
∂ϕ

(3)

To ensure an accurate STE, ze and zq are aligned using two additional losses:
Lcommit(zq, ze) = d (ze, sg [zq]) (4)
Lcodebook(zq, ze) = d (sg [ze] , zq) (5)

Here, sg denotes the stop gradient operator, which treats the entire term as a constant with zero
partial derivatives. The commitment loss Lcommit moves the embedding to the selected codewords,
while the codebook loss Lcodebook, also known as the vector quantization objective, moves the
selected codewords toward the centroids of the embedding. Overall, a differentiable objective is
minimized:

min
ϕ,θ,C

E(x,y)∼D[Ltask (Gθ(hC(Fϕ(x))),y)

+β · Lcommit(hC(Fϕ(x)), Fϕ(x)) + Lcodebook(hC(Fϕ(x)), Fϕ(x))] (6)
where β is a scalar that balances the importance of updating ze and zq . In this training framework,
the decoder optimizes the first loss term, the encoder optimizes the first and the middle loss terms,
and the codebook is optimized only by the last loss term.

4 METHODOLOGY

4.1 OVERVIEW OF MQ-VAE

We propose to optimize the codebook and encoder-decoder pair by solving a bi-level optimization
problem. Recall that hC denotes the VQ layer with the codebook C as learnable parameters and

4
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Algorithm 1: MQ-VAE
Input: Dataset D

1 Initialize ϕ, θ and C for Fϕ, Gθ and hC
2 while not converged do
3 Update C by descending ∇CL(ϕ− ξ∇ϕL(ϕ, θ, C), θ − ξ∇θL(ϕ, θ, C), C)
4 (ξ = 0 if using alternated optimization)
5 Update ϕ and θ by descending∇ϕL(ϕ, θ, C) and ∇θL(ϕ, θ, C)

Output: ϕ∗, θ∗ and C∗

Fϕ and Gθ denote the encoder and decoder with learnable parameters ϕ and θ, respectively. In both
levels, we consider a loss L defined on datasetD in form of Eq. 6, i.e., the sum of three terms: Ltask,
Lcommit, and Lcodebook. At the lower level, Fϕ and Gθ are trained by minimizing L(ϕ, θ, C). Since
the codebook C is temporarily fixed, the optimal encoder ϕ∗(C) and decoder θ∗(C) are functions of
C. At the upper level, we determine the optimal codebook C∗ with ϕ∗(C) and θ∗(C) by minimizing
L(ϕ∗(C), θ∗(C), C). This bi-level optimization problem is solved using an efficient gradient-based
algorithm, where the two levels are optimized iteratively until convergence. Related convergence
analyses of this type of gradient-based bi-level optimization algorithms can be found in Pedregosa
(2016), Rajeswaran et al. (2019), and references therein.

In contrast to bi-level optimization literature, where the two levels are usually optimized on distinct
datasets, we use a single dataset D for both levels. In fact, it remains unclear whether the dataset
split can provide better performance in general cases (Bai et al., 2021). In this work, we do not do a
dataset split for better data utilization.

4.2 A BI-LEVEL OPTIMIZATION FRAMEWORK

Lower Level At the lower level, we train the encoder Fϕ and decoder Gθ by minimizing
L(ϕ, θ, C). Specifically, we aim to find the optimal values of ϕ and θ with C temporarily fixed,
resulting in the following optimization problem:

ϕ∗(C), θ∗(C) = argmin
ϕ,θ
L(ϕ, θ, C) (7)

Here, ϕ∗(C) and θ∗(C) denote the optimal solutions for ϕ and θ, which are functions of C since the
argmin operation does not take C as an argument.

Upper Level At the upper level, the codebook C is trained by minimizing the loss of the same
functional form but using ϕ∗(C) and θ∗(C) that were optimally learned at the lower level as argu-
ments. The loss then only depends on C, and the upper-level optimization problem is formulated
as:

min
C
L(ϕ∗(C), θ∗(C), C) (8)

A Bi-level Optimization Framework By integrating the two levels of optimization problems, we
present the overall bi-level optimization problem as:

min
C
L(ϕ∗(C), θ∗(C), C)

s.t. ϕ∗(C), θ∗(C) = argmin
ϕ,θ
L(ϕ, θ, C) (9)

Note that these two levels of optimization problems are mutually dependent on each other. The
solution to the optimization problem at the lower level, ϕ∗(C) and θ∗(C) serves as a parameter for
the upper-level problem, while non-optimal variable C at the upper level acts as a parameter for the
lower-level problem. By solving the two interconnected problems jointly, we can learn ϕ∗, θ∗, and
C∗ in an end-to-end manner.

Optimization Algorithm We employ a gradient-based optimization algorithm to solve the bi-
level optimization problem presented in Eq. 9 iteratively. Gradient descent can be applied directly
to the lower-level problem; however, a significant challenge exists at the upper level: precisely
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computing the hyper-gradient, i.e., the gradient of the upper-level objective with respect to C, can
be computationally prohibitive due to the lack of an analytical solution for ϕ∗(C) and θ∗(C). To
address this issue, we use the following one-step approximation, inspired by Finn et al. (2017):

∇CL(ϕ∗(C), θ∗(C), C) ≈ ∇CL(ϕ− ξ∇ϕL(ϕ, θ, C), θ − ξ∇θL(ϕ, θ, C), C) (10)
where ξ is the learning rate for the lower-level problem. One-step unrolled approximated solu-
tions, ϕ′(C) = ϕ − ξ∇ϕL(ϕ, θ, C) and θ′(C) = θ − ξ∇θL(ϕ, θ, C), are used as surrogates for
ϕ∗(C) and θ∗(C). This is equivalent to introducing a surrogate objective L(ϕ− ξ∇ϕL(ϕ, θ, C), θ −
ξ∇θL(ϕ, θ, C), C) that closely resembles the upper-level objective in Eq. 8. In principle, multiple
steps can be unrolled to achieve a more accurate approximation.

A straightforward computation of Eq. 10 requires backpropagating through the optimization pro-
cess at the lower level. Differentiation through gradient descent has been explored in Maclaurin
et al. (2015) and can be achieved using automatic differentiation packages without explicit program-
ming. However, when multiple steps are unrolled, the memory and computational burden increase
significantly. Therefore, we employ a further approximation by noticing Eq. 10 can be computed
using the chain rule followed by a finite difference approximation (Liu et al., 2018) as

∇CL(ϕ− ξ∇ϕL(ϕ, θ, C), θ − ξ∇θL(ϕ, θ, C), C) (11)

=∇CL(ϕ′, θ′, C)− ξ∇2
C,ϕL(ϕ, θ, C)∇ϕ′L(ϕ′, θ′, C)− ξ∇2

C,θL(ϕ, θ, C)∇θ′L(ϕ′, θ′, C) (12)

≈∇CL(ϕ′, θ′, C)− ξ
∇CL(ϕ+, θ, C)−∇CL(ϕ−, θ, C)

2ϵ
− ξ
∇CL(ϕ, θ+, C)−∇CL(ϕ, θ−, C)

2ϵ
(13)

where ϕ± = ϕ ± ϵ∇ϕ′L(ϕ′, θ′, C), θ± = θ ± ϵ∇θ′L(ϕ′, θ′, C), and ϵ is a small scalar. The finite
difference is applied to approximate the matrix-vector multiplication term in Eq. 12 for efficient
computation.

4.3 GRADIENT ANALYSIS

MQ-VAE enhances the gradient guidance for C by introducing the objective L(ϕ∗(C), θ∗(C), C).
While it shares the same functional form as the previous framework (Eq. 6), the arguments ϕ and
θ are replaced by the corresponding optimal values ϕ∗(C) and θ∗(C). How the objective makes
improvement can be demonstrated by conducting a gradient analysis on the one-step-unrolled surro-
gate loss with the chain rule. Define L′(ϕ, θ, C) = L(ϕ′(C), θ′(C), C) = L(ϕ− ξ∇ϕL(ϕ, θ, C), θ −
ξ∇θL(ϕ, θ, C), C), we then have

dL′

dC
=

∂L′

∂C
+

∂ϕ′

∂C
× ∂L′

∂ϕ′ +
∂θ′

∂C
× ∂L′

∂θ′
(14)

The last two terms on the right-hand side, especially ∂ϕ′

∂C and ∂θ′

∂C , referred to as the best-response
Jacobian in the literature (Choe et al., 2023), capture how the encoder-decoder pair reacts to changes
of the codebook. Therefore, the update of C must consider not only the direct gradient from the
loss (∂L

′

∂C ) for minimizing quantization error but also additional information of indirect gradients
about how the encoder and decoder would respond to changes of the codebook (∂ϕ

′

∂C and ∂θ′

∂C ), and
their performance potential (∂L

′

∂ϕ′ and ∂L′

∂θ′ ). The encoder and decoder choose their best response
by conducting gradient descent, which the codebook takes into account. This facilitates finding a
globally optimal codebook, thereby enhancing its stability and robustness. See also Figure 2 for the
gradient path and hyper-gradient path used in lower level and upper level, respectively. Additionally,
we find that in doing so, C can now receive a gradient from Ltask. For example, the first terms of L′,
L′
task, depends on ϕ′, which in turn depends on C. The joint effort makes the Ltask have an influence

on C during backpropagation. In contrast, the original framework updates the C solely based on the
vector quantization objective, which ignores the task loss. We provide a complete derivation of the
last two terms in the context of VQ-VAE in Appendix C.

4.4 CONNECTION TO EXISTING WORKS

Our method is closely related to two methods proposed in Huh et al. (2023). We show how both
methods can be viewed as special cases of MQ-VAE and highlight their insufficiency in achieving
the same effects as ours.
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Alternated Optimization MQ-VAE can be reduced to an alternated optimization approach by
replacing the hyper-gradient at the upper level with a standard gradient. This can be implemented
by setting ξ = 0 in Algorithm 1, which decouples the two levels in the sense that they are no longer
interconnected. By setting β = 0 (Huh et al., 2023), we obtain the alternated optimization rule:

min
C

E(x,y)∼D[Lcodebook(hC(Fϕ(x)), Fϕ(x))] (15)

min
ϕ,θ

E(x,y)∼D[Ltask(Gθ(hC(Fϕ(x))),y)] (16)

This method alternatively updates the codebook and encoder-decoder pair using coordinate descent.
Notably, the update steps for both components are standard gradient descent steps with respect to
fixed values of each other rather than the hyper-gradient descent described in Algorithm 1. There-
fore, C can not be aware of the subsequent performance of ϕ and θ when updating. Besides, Ltask

cannot have a direct impact on C, being the same as VQ-VAE. In contrast, the interconnected nature
of bi-level optimization allows side information of the subsequent training of ϕ and θ and makes it
possible for Ltask to have a gradient on C.

Synchronous Update Rule Conducting gradient descent on C using Lcodebook has been shown
equivalent to the following exponential moving average (EMA) formula (Van Den Oord et al., 2017):

z(t+1)
q ← (1− ξ) · z(t)q + ξ · z(t)e (17)

where ξ is the learning rate. The synchronous update rule (Huh et al., 2023) modifies the EMA
update rule by using z

(t+1)
e , the feature embedding after the current EMA update step instead:

z(t+1)
q ← (1− ξ) · z(t)q + ξ · z(t+1)

e (18)

which can be explicitly expressed as

z(t+1)
q ← (1− ξ) · z(t)q + ξ · z(t)e + ξ2 · ∂Ltask

∂zq
(19)

The additional term ξ2 · ∂Ltask

∂zq
introduces a gradient from Ltask to zq , a subset of C.

In fact, our direct hyper-gradient term ∂L′

∂C can achieve the same effect as the synchronous update
rule. To see this, a straightforward computation shows

∂L′(ϕ, θ, C)
∂C

=
∂L(ϕ′, θ′, C)

∂C
=

∂Lcodebook(ϕ
′, θ′, C)

∂C
(20)

Here, we are computing the partial derivative with respect to C, and only the codebook lossLcodebook

has a gradient. We can draw the observation that solely applying the direct hyper-gradient is equiv-
alent to updating the codebook with embedding generated by the updated encoder. That is applying
the EMA update rule with z

(t+1)
e , the embedding after one step update, being the same as the syn-

chronous update rule. Importantly, the direct hyper-gradient part is insufficient for the codebook to
be aware of the subsequent performance of the encoder and decoder, as illustrated in Section 4.3.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

We compare MQ-VAE with the traditional vector quantization framework used in VQ-VAE and
other variants, including the least-recently-used (LRU) replacement policy (denoted as ’+replace’,
Łańcucki et al. (2020); Zeghidour et al. (2021); Dhariwal et al. (2020)) and grouped latent variables
(denoted as ’+group’, Kaiser et al. (2018); Guo et al. (2024); Yu et al. (2021)) . For comparison,
we combine the variants MQ-VAE and VQ-VAE, respectively. We also include a differentiable
quantization baseline Gumbel-VQ (Karpathy, 2021) for direct comparison, whose codebook can be
optimized using standard backpropagation. All models were initialized using the K-means cluster-
ing algorithm. Fashion-MNIST (Xiao et al., 2017) and CIFAR100 (Krizhevsky et al., 2009) are used
for evaluation. Appendix B provides additional results on MNIST and SVHN datasets. Our imple-
mentation is mainly based on the VQTorch library (Huh, 2022) for the compared baselines and the
Betty library (Choe et al., 2023) for an efficient bi-level optimization algorithm. A single NVIDIA
3090 GPU is used for all experiments.

7
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Table 1: Generative modeling: Comparison on image reconstruction tasks. FID, IS and LPIPS all
denote the quality of reconstructed image.

Dataset Method FID ↓ IS ↑ LPIPS (10−1) ↓MSE (10−3) ↓ Perplexity ↑∆gap(10
−5) ↓

Fashion
MNIST

VQ-VAE 17.3 3.95 0.59 7.26 50.8 17.68
Gumbel-VQVAE 77.2 3.47 1.11 13.07 118.4 47.59

MQ-VAE 7.9 4.14 0.33 4.28 80.5 8.63
VQ-VAE + replace 9.8 4.12 0.38 4.25 303.4 9.68
MQ-VAE + replace 6.8 4.18 0.28 2.90 356.8 4.71
VQ-VAE + group 4.1 4.33 0.15 1.93 121.3 5.97
MQ-VAE + group 2.4 4.35 0.06 0.73 88.9 1.30

CIFAR100

VQ-VAE 81.8 4.99 1.88 7.73 54.4 8.71
Gumbel-VQVAE 144.3 3.16 2.41 20.42 121.4 36.60

MQ-VAE 53.5 6.4 1.25 5.03 63.4 5.83
VQ-VAE + replace 49 6.9 1.09 4.19 699.9 4.44
MQ-VAE + replace 41.8 7.43 0.9 3.19 819.5 2.12
VQ-VAE + group 29.1 8.65 0.61 2.86 103.7 4.04
MQ-VAE + group 9.2 11.48 0.14 0.77 222.2 0.48

5.2 GENERATIVE MODELING

In a generative modeling task, we first train the codebook through self-supervised reconstruction,
then freeze the pre-trained codebook and use it for downstream tasks, such as image generation,
following Van Den Oord et al. (2017). For performance metrics, We use the Inception Score (IS,
Salimans et al. (2016)), Fréchet Inception Distance (FID, Heusel et al. (2017)), LPIPS perceptual
loss (Zhang et al., 2018), and mean squared error (MSE, as task loss for reconstruction task). Ad-
ditionally, we report perplexity and gradient estimation gap (Huh et al., 2023). The perplexity is
defined as 2H(p), where H(p) is the entropy of the codebook’s probability distribution. A higher
perplexity implies a more uniform assignment of codes, indicating a higher code utilization rate.
The gradient estimation gap is defined as

∆gap =

∥∥∥∥∂Ltask(Gθ(ze))

∂Fϕ(x)
− ∂Ltask(Gθ(zq))

∂Fϕ(x)

∥∥∥∥ ,
which measures the difference between the gradients of the non-quantized model and the quantized
model. A zero gap implies that the gradient descent using STE is guaranteed to minimize the loss;
thus, the lower the gap, the better.

The results presented in Table 1 demonstrate that MQ-VAE achieves the best performance across
all evaluation metrics. Consistent with Huh et al. (2023) and Zheng & Vedaldi (2023), our results
reveal that higher perplexity does not necessarily imply better performance. Instead of explicitly en-
couraging a high codebook utilization rate, our codebook is meta-learned based on the subsequent
performance of the encoder and decoder. By maintaining a balanced codebook utilization rate that
avoids both under-utilization and redundancy, our method significantly outperforms baseline meth-
ods. The improvement in the gradient estimation gap demonstrates that MQ-VAE has a stronger
ability to enhance the subsequent gradient estimation of the encoder and decoder, resulting in more
stable training. Additionally, the improvement in MSE indicates that introducing gradients from
Ltask to C is crucial for achieving low task loss, which in turn improves performance metrics.

In Figure 3, we perform image generation using PixelCNN (Van Den Oord et al., 2016) as the prior
alongside the pre-trained codebook in the reconstruction task. We plot the curves of FID during
training on both Fashion-MNIST and SVHN datasets. The results indicate that, by achieving lower
task loss and improved performance in the reconstruction task, MQ-VAE learns a significantly more
powerful codebook for downstream tasks. Specifically, the meta-learned codebook yields better
performance than VQ-VAE across both datasets. This suggests that our framework can produce a
more generalizable and versatile codebook as a discrete representation by enabling awareness of the
performance of other model components such the encoder and decoder.
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(a) Fashion-MNIST (b) SVHN

Figure 3: PixelCNN training curves on Fashion-MNIST and SVHN dataset, with FID reported ( The
lower, the better).

Table 2: Classification: The effect of how our methods affect the final performance on classification.
Dataset Method Accuracy ↑ F1 Score ↑CE Loss ↓ Perplexity ↑∆gap ↓

Fashion
MNIST

VQ-VAE 89.1 89 0.95 112.1 1.38
Gumbel-VQVAE 88.7 88.7 0.97 718.7 0.98

MQ-VAE 89.6 89.5 0.84 82.9 1.14

VQ-VAE + replace 89.2 89.2 1.00 421.1 1.51
MQ-VAE + replace 89.9 89.8 0.91 443.9 1.29
VQ-VAE + group 89.2 89.2 0.86 15.8 4.25
MQ-VAE + group 89.4 89.4 0.9 29.5 4.08

CIFAR100

VQ-VAE 24.5 25.9 5.36 203.8 3.76
Gumbel-VQVAE 26.8 26.6 9.50 938.7 2.95

MQ-VAE 28.2 29.2 6.58 97.3 1.93
VQ-VAE + replace 28.1 29.0 5.18 420.9 4.08
MQ-VAE + replace 33.8 33.9 4.69 426.2 1.35
VQ-VAE + group 29.2 29.4 5.58 155.3 5.41
MQ-VAE + group 30.3 30.6 5.46 73.2 4.64

5.3 CLASSIFICATION TASK

We also apply our method to the classification task following Huh et al. (2023), using top-1 accu-
racy and top-1 F1 score as performance metrics. Cross-entropy (CE) loss is used to calculate task
loss. ResNet18 (He et al., 2016) is used as the backbone model and is quantized after the second
macroblock, which is roughly the halfway point in ResNet18. Other settings remain the same as in
previous work.

The results presented in Table 2 show that similar to the previous section, MQ-VAE achieves the best
or comparable performance across all evaluation metrics except perplexity. This means our method
enhances performance without relying solely on high perplexity. MQ-VAE significantly reduces the
gradient estimation gap and benefits the subsequent optimization of the encoder and decoder. Direct
gradient guidance from Ltask to C results in lower CE loss and, in turn, better accuracy and F1 score.
This demonstrates the superiority of MQ-VAE in training quantization codebooks for classification
tasks.

5.4 ABLATION STUDIES

We conduct ablation studies using the two methods mentioned in Section 4.4: alternated optimiza-
tion (+alt) and the synchronous update rule (+sync). We also include their direct combination
(+alt+sync) for reference. Table 3 presents the results of the generative modeling task with the
same experimental setup as in Section 5.2. The results show that MQ-VAE outperforms ablation

9
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Table 3: Ablation studies: Comparison between MQ-VAE and ablation baselines on image recon-
struction task. FID, IS, and LPIPS all denote the quality of the reconstructed image.

Dataset Method FID ↓ IS ↑ LPIPS (10−1) ↓MSE (10−3) ↓ Perplexity ↑∆gap(10
−5) ↓

Fashion
MNIST

VQ-VAE 17.3 3.95 0.59 7.26 50.8 17.68
VQ-VAE + alt 14.4 3.97 0.53 5.96 56.7 13.28

VQ-VAE + sync 11.4 4.14 0.46 7.00 55 14.5
VQ-VAE + alt + sync 9.8 4.07 0.42 4.73 95.3 1.41

MQ-VAE 7.9 4.14 0.33 4.28 80.5 8.63

CIFAR100

VQ-VAE 81.8 4.99 1.88 7.73 54.4 8.71
VQ-VAE + alt 55.6 5.91 1.32 6.29 271.7 0.42

VQ-VAE + sync 69.1 5.55 1.56 7.68 59.3 10.63
VQ-VAE + alt + sync 55.3 5.84 1.32 6.26 271.8 0.42

MQ-VAE 53.5 6.4 1.25 5.02 63.4 5.83

baselines in terms of all generation quality measures. We find that although alternated optimization
can achieve higher codebook perplexity and lower gradient estimation gap, it does not necessarily
improve generation performance. We conjecture this is because alternated optimization solely con-
centrates on reducing current quantization error without explicitly considering task performance.
On the other hand, the synchronous update rule can improve performance by introducing a gradient
from task loss but does not account for the subsequent training of the encoder and decoder. The
superiority of MQ-VAE over the two baselines and their combination demonstrates the effectiveness
of our bi-level optimization framework. The richer gradient flow significantly enhances codebook
training by balancing the objectives of enhancing task performance and improving encoder and de-
coder training.

5.5 COMPUTATION COSTS

Table 4: Average training time
comparison on the reconstruction
task, with the cost of VQ-VAE nor-
malized to 1 for reference.

Method VQ-VAE MQ-VAE

Cost ×1 ×3.95

MQ-VAE shares the same network architecture as VQ-VAE
but requires additional forward and backward passes at the
lower level for hyper-gradient calculation, as shown in Eq. 13.
This results in higher computational costs compared to VQ-
VAE. Table 4 presents an empirical comparison of the average
training costs between MQ-VAE and VQ-VAE when trained for the same number of iterations. Im-
portantly, we found that MQ-VAE converges significantly faster than the baseline, as indicated by
the green dashed lines in Figure 4. This mitigates the disadvantage associated with speed, allow-
ing MQ-VAE to achieve comparable performance in the same or less wall-clock time. Therefore,
MQ-VAE is practical due to its superior performance and comparable speed.

6 CONCLUSION

Figure 4: MQ-VAE reaches the same FID score
using much less time when compared with VQ-
VAE.

We propose MQ-VAE, a novel bi-level
optimization-based vector-quantization frame-
work inspired by meta-learning. Following
VQ-VAE, our method trains the codebook
and encoder-decoder pair within a cohesive
bi-level optimization problem. Without fully
relying on the heuristic assumption about
codebook utilization rate, our approach ensures
that the codebook’s objective minimizes not
only the quantization error but also enhances
subsequent training of the encoder and decoder.
Additionally, compared to the vanilla vector
quantization objective, MQ-VAE facilitates a gradient flow from the task loss to the codebook,
thereby improving overall performance. Empirical studies across various computer vision tasks
demonstrate that MQ-VAE outperforms existing methods and ablation baselines, underscoring its
effectiveness.
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A MORE RELATED WORK ON VECTOR-QUANTIZED NETWORKS

The vector-quantization layer in deep learning was first introduced in generative models as the
vector-quantized variational auto-encoder (VQ-VAE), which maps continuous embedding to dis-
crete vectors using a learned codebook. Since the quantization operation is not differentiable,
straight-through estimation (Bengio et al., 2013) is applied to allow gradients to flow back through
the VQ layer by ignoring it during the backward pass. The codebook is learned using the vector-
quantization objective, where an l2 error is applied to adjust the selected codebook entries toward
the corresponding embedding. However, several issues arise from this design: 1) index collapse,
where only a small fraction of codes are utilized during training; 2) a gradient estimation gap in-
curred by quantization error at the VQ layer, leading to biased and unstable gradient descent; and 3)
the gradient of the task loss (e.g., reconstruction loss in generative modeling) does not propagate to
the codebook.

Numerous efforts have been made to address these problems. Van Den Oord et al. (2017) and Razavi
et al. (2019) propose an exponential moving averages (EMA) approach for codebook training. Sim-
ilar to K-Means, the EMA gradually moves the selected codewords toward the centroids of encoder
outputs. Łańcucki et al. (2020), Zeghidour et al. (2021), and Dhariwal et al. (2020) introduce a reset
mechanism for codewords that have not been selected for an extended period, updating them with
embedding from the current batch to enhance codebook utilization. Roy et al. (2018) and Takida
et al. (2022) present probabilistic reformulations of VQ-VAE, wherein the quantization step is made
stochastic rather than relying on the nearest neighbor approach, allowing non-neighboring code-
words to be selected and improving utilization. Lee et al. (2022) introduces a residual-quantization
method that reduces quantization error by recursively applying quantization operation on the quan-
tization error to better approximate feature maps. Other approaches, such as Kaiser et al. (2018),
Guo et al. (2024), and Yu et al. (2021), involve breaking up (or projecting) embedding and code-
words into smaller slices, applying the same quantization process, and then recovering the quantized
features by concatenating the slices. Huh et al. (2023) proposes an affine reparameterization of code-
words, allowing gradients to flow through unselected code-vectors via affine parameters, as affined
codewords (a weighted sum of all codewords) are used for nearest neighbor searching. Yu et al.
(2021) applies l2 normalization to both embedding and codebook latent variables, effectively map-
ping all latent variables onto a sphere and replacing Euclidean distance with cosine similarity, thus
unifying the scale of latent variables and enhancing training stability. Sønderby et al. (2017) and
Karpathy (2021) suggest a continuous approximation of vector quantization, making the bottleneck
differentiable and allowing standard backpropagation training. Gumbel-VQ, introduced by Karpa-
thy (2021) and used as a comparison method in Huh et al. (2023), minimizes the ELBO and, unlike
traditional VQ methods, predicts a distribution over the code without explicit distance comparisons.
The Gumbel-softmax (Jang et al., 2016) trick is then employed to sample from this distribution.

B MORE RESULTS ON GENERATIVE MODELING AND ABLATION STUDIES

In addition to the results of the generative modeling task in Section 5.2 and the ablation stud-
ies in Section 5.4, we further apply our method to the SVHN (Netzer et al., 2011) and CIFAR10
(Krizhevsky et al., 2009) datasets. The results presented in Table 5 and Table 6 show consistent per-
formance improvements to previous sections, showing the effectiveness of our method. The reasons
for these enhancements are similar to the explanations provided earlier.
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Table 5: Generative modeling reconstruction: Comparison between various methods on image
reconstruction tasks. FID, IS and LPIPS all denote the quality of reconstructed image.

Dataset Method FID ↓ IS ↑ LPIPS (10−1) ↓MSE (10−3) ↓ Perplexity ↑∆gap(10
−5) ↓

SVHN

VQ-VAE 100.2 2.19 0.97 3.24 38.3 7.19
Gumbel-VQVAE 71.8 2.49 1.08 4.36 237.6 12.90

MQ-VAE 53.1 2.5 0.51 1.49 67.2 2.37
VQ-VAE + replace 54 2.54 0.42 1.03 430.5 2.08
MQ-VAE + replace 44.7 2.7 0.32 0.71 522.6 0.88
VQ-VAE + group 45.3 2.6 0.4 1.15 71.3 3.79
MQ-VAE + group 12 2.99 0.14 0.34 79.2 1.20

CIFAR10

VQ-VAE 72 5.04 1.77 7.58 56.2 9.20
Gumbel-VQVAE 203.6 2.71 3.44 21.89 115.8 33.78

MQ-VAE 58.9 5.43 1.44 5.82 63.4 7.01
VQ-VAE + replace 45.9 6.41 1.01 3.94 800.4 4.82
MQ-VAE + replace 42.9 6.37 0.98 3.75 846.6 4.66
VQ-VAE + group 26.9 7.43 0.57 2.74 110.8 4.13
MQ-VAE + group 8.1 9.41 0.13 0.65 252.3 0.44

Table 6: Ablation studies: Comparison between MQ-VAE and ablation baselines on image recon-
struction task. FID, IS, and LPIPS all denote the quality of the reconstructed image.

Dataset Method FID ↓ IS ↑ LPIPS (10−1) ↓MSE (10−3) ↓ Perplexity ↑∆gap(10
−5) ↓

SVHN

VQ-VAE 100.2 2.19 0.97 3.24 38.3 7.19
VQ-VAE + alt 90.7 2.28 0.75 2.38 59.1 4.49

VQ-VAE + sync 44.6 2.43 0.74 2.66 50.7 4.42
VQ-VAE + alt + sync 85.3 2.82 0.58 1.67 63.2 0.77

MQ-VAE 53.1 2.5 0.51 1.48 67.2 2.37

CIFAR10

VQ-VAE 72 5.04 1.77 7.57 56.2 9.20
VQ-VAE + alt 69.9 5.06 1.44 6.23 60.4 4.56

VQ-VAE + sync 65.9 5.33 1.6 7.70 57.2 10.6
VQ-VAE + alt + sync 65.5 5.38 1.40 6.18 62.5 7.62

MQ-VAE 58.9 5.43 1.44 5.81 63.4 7.01
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C DERIVATION OF GRADIENT FOR CODEBOOK UPDATING

We provide a complete derivation of the gradient updating rule in Eq. 14 as follows. Apply the
backpropagation chain of VQ-VAE, we get

∂Ltask

∂ϕ
=

∂Ltask

∂y
· ∂y
∂zq
· ∂ze
∂ϕ

(21)

∂Ltask

∂θ
=

∂Ltask

∂y
· ∂y
∂θ

(22)

∂Lcommit

∂ϕ
=

∂Lcommit

∂ze
· ∂ze
∂ϕ

(23)

Recall L = Ltask + Lcodebook + Lcommit, we get

∂L
∂ϕ

=

(
∂Ltask

∂y
· ∂y
∂zq

+
∂Lcommit

∂ze

)
· ∂ze
∂ϕ

(24)

∂L
∂θ

=
∂Ltask

∂y
· ∂y
∂θ

(25)

∂L′
∂ϕ′ =

(
∂L′

task

∂y′ ·
∂y′

∂z′q
+

∂L′
commit

∂z′e

)
· ∂z

′
e

∂ϕ′ (26)

∂L′

∂θ′
=

∂L′
task

∂y′ ·
∂y′

∂θ′
(27)

Plugin in ϕ′ = ϕ− ξ∇ϕL(ϕ, θ, C) and θ′ = θ − ξ∇θL(ϕ, θ, C),

∂ϕ′

∂C
= −ξ ∂2L

∂C∂ϕ
= −ξ ∂ze

∂ϕ
·
∂
(

∂Ltask

∂y · ∂y
∂zq

+ ∂Lcommit

∂ze

)
∂C

(28)

∂θ′

∂C
= −ξ ∂2L

∂C∂ϕ
= −ξ

∂
(

∂Ltask

∂y · ∂y∂θ
)

∂C
(29)

D A GAME THEORY PERSPECTIVE OF MQ-VAE

Our method can also be interpreted within the framework of Stackelberg games (Von Stackelberg,
2010; Rajeswaran et al., 2020). Stackelberg games are asymmetric games that impose a specific
order of play and generalize min-max games. Consider two players, A and B, with parameters θA
and θB . Each player aims to minimize their losses LA(θA,θB) and LB(θA,θB). With player A as
the leader, the Stackelberg game corresponds to the following nested optimization:

min
θA

LA(θA,θ
∗
B(θA))

s.t. θ∗
B(θA) = argmin

θB

LB(θA,θB) (30)

Our problem structure aligns with Eq. 30 by viewing the codebook as the leader and the encoder-
decoder pair as the follower. The follower’s parameters depend implicitly on the leader’s parameters,
which the leader can exploit when updating its parameters. In this way, the leader will not only
minimize its loss but also the influence on the later updating of the follower. A detailed illustration
of this point in our context has been explained in Section 4.3.

E BI-LEVEL OPTIMIZATION DESIGN CHOICES

Several design choices exist for applying a hyper-gradient in training VQ-VAE, including applying
it only to the codebook (MQ-VAE, the method presented in the main paper), only to the encoder-
decoder pair, or to both sides. Our design choice is motivated by several factors. First, in existing
literature, the upper layer typically contains far fewer parameters than the lower layer. Relevant
examples include neural architecture search (Liu et al., 2018; Zhang et al., 2021) and hyperparameter
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Table 7: We compare three design choices for applying hyper-gradients. MQ-VAE† applies hyper-
gradients only to the encoder-decoder pair, while MQ-VAE‡ applies hyper-gradients to both the
encoder-decoder pair and the codebook. The best results are indicated in bold, and the second-best
results are shown in italic.

Dataset Method FID ↓ IS ↑ LPIPS (10−1) ↓MSE (10−3) ↓

CIFAR100

VQ-VAE 81.8 4.99 1.88 7.73
MQ-VAE 53.5 6.40 1.25 5.02
MQ-VAE† 56.1 5.93 1.44 5.48
MQ-VAE‡ 52.8 6.40 1.23 4.58

optimization (HPO) (Lorraine et al., 2020; Franceschi et al., 2017). Additionally, during VQ-VAE
training, the encoder-decoder pair can often be optimized more smoothly, due to the sparse gradient
characteristics of codebook training. By enabling the codebook to ”see into the future,” we provide
it with additional information, facilitating a more balanced interaction between the two components
and allowing the codebook to also account for the task loss. Besides, when hyper-gradient is applied
to the codebook, it shows a strong connection to existing work after a close inspection, which further
justifies this design choice. We did not find an obvious connection when the hyper-gradient is applied
to the other side.

In principle, hyper-gradient descent could be applied to both the encoder-decoder pair and the code-
book by using a surrogate loss function for each. This approach resembles policy prediction (Zhang
& Lesser, 2010) in multi-agent learning, which is known to achieve convergence in games where
gradient descent (ascent) fails. Applying a similar idea to our problem allows both the autoencoder
and the codebook to predict each other’s future states, potentially enabling more robust training.
However, this comes with significantly higher computational costs, and we did not use this strategy
in the main paper for simplicity.

We conduct an empirical comparison between the three choices and present the results in Table 7.
We evaluate the reconstruction performance on the CIFAR100 dataset. We can draw the observa-
tion that using hyper-gradient descent for the codebook does not result in performance improve-
ments comparable to MQ-VAE. Besides, while using hyper-gradient descent for both sides achieves
slightly improved performance, it is less computationally efficient, which is roughly twice as expen-
sive as the original MQ-VAE in principle.

F IMPORTANCE OF RETAINING COMPUTATION GRAPH OF LOWER LEVEL
TRAINING

The concept of differentiating through the lower-level training process is crucial in MQ-VAE. If the
computation graph of lower-level training is disconnected such that ϕ∗ and θ∗ are no longer functions
of C, the desired effect cannot be achieved. Specifically, our method cannot be realized through a k-
step look-ahead procedure, which involves training the encoder-decoder for k steps before updating
the codebook without retaining the computation graph. After updating the codebook, the k updates
to the encoder-decoder are undone, and we perform one new update step instead. However, the
key difference lies in backpropagating the learning signal through the unrolling in Eq. 10. This
backpropagation can be controlled by introducing stop gradient calls into the computation graph
between unrolling steps. When a stop gradient is applied, ϕ∗ and θ∗ are treated independently of C,
resulting in an update signal that corresponds only to the first term in Eq. 14, which is insufficient
for optimizing the codebook effectively.

G SCALING UP TO LARGER EXPERIMENTAL SETTINGS

We evaluate the scalability of our method using the modern architecture VQ-GAN (Esser et al.,
2021). In this context, our meta-learning-based VQ-GAN is referred to as MQ-GAN. The network
architecture directly follows the original VQ-GAN paper and their GitHub repository1. We also

1https://github.com/CompVis/taming-transformers
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Table 8: Generative modeling reconstruction: Comparison between various methods on image
reconstruction tasks.

Dataset Method FID ↓ IS ↑ LPIPS (10−1) ↓ Perceptual loss ↓ Perplexity ↑

CelebA-HQ VQ-GAN 25.1 2.90 1.34 0.242 79.5
MQ-GAN 23.2 2.97 1.28 0.218 79.7

Imagenet VQ-GAN 34.5 1.83 1.26 0.163 77.4
MQ-GAN 30.7 1.92 1.15 0.149 80.8

use larger datasets, including CelebA-HQ (Karras, 2017) and ImageNet (Deng et al., 2009), both
with a resolution of 256 × 256. Multiple GPU devices (4 NVIDIA-A10 GPUs for the CelebA-HQ
dataset and 2 NVIDIA-A10 GPUs for the ImageNet dataset) are employed for distributed training,
which better aligns with practical scenarios. Due to limited computational resources, we train both
methods for only 10k and 5k iterations, respectively. Although the numerical results may not reach
those reported in the original VQ-GAN paper, the comparisons remain fair.

The results in Table 8 demonstrate that our method achieves superior performance in larger-scale
experimental settings. Additionally, we provide samples reconstructed by VQ-GAN and MQ-GAN
in Figure 5. The results qualitatively reveal that our method can reconstruct images with higher
quality.

(a) Original images

(b) VQ-GAN reconstruction

(c) MQ-GAN reconstruction

Figure 5: Reconstruction samples on Imagenet dataset

H EMPIRICAL GRADIENT ANALYSIS

We explore the importance of hyper-gradients by comparing the dynamics of indirect and direct
hyper-gradients. Figure 6 shows the norms for both parts and their cosine similarity. From the
results, we observe that in terms of the L2 norm, the magnitudes of direct and indirect gradients are
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(a) Norm (b) Cosine Similarity

Figure 6: The gradient dynamics when MQ-VAE evaluate on the CIFAR100 dataset. A similar
pattern can be observed for other datasets.

comparable. Specifically, the norm of direct gradients is only around four times larger than that of
the indirect gradients, meaning the effects of indirect gradients should not be ignored. Moreover,
the cosine similarity of the two gradients reveals that their effects are not fully correlated. Thus,
the gradient guidance of the codebook can be significantly enriched by the indirect hyper-gradient.
Additionally, we can observe that in the middle stage, the indirect gradients tend to have a contrary
effect, which may act as implicit regularization and make the training more robust. In conclusion,
both parts of the hyper-gradients make a significant contribution to codebook training.

I IMPLEMENTATION DETAILS

We use 1024 codewords for all our experiments, following the typical range of 1024 ∼ 4096 code-
words in prior works (Yan et al., 2021; Huh et al., 2023). Each codeword has 512 dimensions. The
trade-off parameter β was set to 0.1 for calculating the VQ loss. The data preprocessing procedures
are simple and straightforward: we convert the image into a tensor with a value range of [0, 1]. For
the ImageNet dataset, where the images are not square, we crop the central 256 × 256 pixels. All
image quality metrics are computed using the torch-metrics library2. For the reconstruction task, the
backbone architecture directly follows the original VQ-VAE paper (Van Den Oord et al., 2017). For
the classification task, we use the standard ResNet18 architecture from the PyTorch library, with the
quantization layer inserted after the second macroblock.

For training, we used the AdamW optimizer (Loshchilov, 2017) with a linear warmup with cosine
annealing learning rate scheduler and a warmup ratio of 0.1 for all experiments. A batch size of
512 was used consistently across all experiments. The training configurations for other baselines
were kept the same as those for our method. The learning rate for the lower layer (i.e., the encoder-
decoder pair) was set to 3× 10−4, and the learning rate for the upper layer (i.e., the codebook) was
set to 6× 10−2. A weight decay of 1× 10−4 was applied to both layers.

2https://lightning.ai/docs/torchmetrics/stable/
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