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ABSTRACT

High quality annotations are increasingly a bottleneck in the explosively growing
machine learning ecosystem. Scalable evaluation methods that avoid costly anno-
tation have therefore become an important research ambition. Many hope to use
strong existing models in lieu of costly labels to provide cheap model evaluations.
Unfortunately, this method of using models as judges introduces biases, such as
self-preferencing, that can distort model comparisons. An emerging family of de-
biasing tools promises to fix these issues by using a few high quality labels to de-
bias a large number of model judgments. In this paper, we study how far such de-
biasing methods, in principle, can go. Our main result shows that when the judge
is no more accurate than the evaluated model, no debiasing method can decrease
the required amount of ground truth labels by more than half. Our result speaks to
the severe limitations of the LLM-as-a-judge paradigm at the evaluation frontier
where the goal is to assess newly released models that are possibly better than the
judge. Through an empirical evaluation, we demonstrate that the sample size sav-
ings achievable in practice are even more modest than what our theoretical limit
suggests. Along the way, our work provides new observations about debiasing
methods for model evaluation, and points out promising avenues for future work.

1 INTRODUCTION

As large models continue to advance in their capabilities, it is increasingly challenging for human
experts to evaluate newly released models. Expert data annotation is not only slow and costly.
Traditional benchmarking also struggles to keep up with rapidly changing model capabilities across
an expanding range of tasks. Yet, as models become more powerful, there is hope that models
themselves could become powerful tools for scaling up evaluation. An intriguing idea is to use a
strong existing model to provide judgments about other models. Such a “model-as-judge” could
provide labels to classification instances, compare model outputs, and replace human annotators
across a variety of tasks.

Already implemented in practice in numerous instances, the model-as-judge paradigm, however,
runs into some roadblocks. When used as judges, models exhibit a range of biases that can skew
model comparisons and result in misleading model rankings. Recently proposed debiasing methods,
however, promise a compelling way forward. Using a small number of ground truth labels, these
methods can potentially debias a large number of model predictions, thus restoring their utility for
benchmarking purposes.

Scalable evaluation is most needed—and most challenging—at the evaluation frontier: Newly re-
leased models for which we have little intuition as of yet. What makes this case so challenging
is that the new model is likely better than the judge in some ways. In this work, we address the
question whether debiasing methods together with the model-as-judge paradigm can, in principle,
provide an adequate solution to scalable evaluation at the frontier. However, our theory, supported
by empirical evaluation, makes a sobering prediction: Whenever the judge model performs worse
at its task than the evaluated model, the optimal debiasing method is no better than using twice the
ground truth data. This shows that, although there is merit to debiasing, at the evaluation frontier its
economic gains are not greater than a factor-two savings in annotation cost.
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1.1 OUR CONTRIBUTIONS

In our theoretical work we focus on a standard evaluation setup that encompasses classification,
question answering, arena-style comparisons, and safety evaluations. Given an input x, a model
m produces an output m(x) that receives a binary ground-truth score s(x,m(x)). For example, in
classification the accuracy score is s(x,m(x)) is 1 if the model’s output m(x) matches the ground-
truth label y(x) and 0 otherwise. A judge model provides a binary proxy score s̃(x,m(x)). We
imagine that obtaining ground-truth scores is costly and proxy scores are significantly cheaper.

For a fixed model m, our goal is to estimate its true score E s(x,m(x)), where the expectation is
taken over an input drawn from a distribution. However due to judge bias, simply using cheap proxy
scores s̃ can lead to substantially distorted estimates. To motivate the issue, Figure 1 shows how
proxy scores can cause highly misleading rankings of model performance.
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Figure 1: Model ranks on MMLU based on true labels compared to LLM labels in a semi-synthetic
setting (a) and for the top-10 models on HELM by July 2024 (b). Using LLM labels heavily perturbs
the ranking despite high judge accuracy.

Rather than solely relying on proxy scores, we assume that we have a small number n of samples
of ground-truth scores s, in addition to a larger number N of proxy scores s̃. A debiasing method is
any estimator that provides an unbiased estimate of the true score from the sample of available proxy
scores and ground truth scores. In particular, debiasing methods guarantee that ranking models by
their estimated performance produces correct model rankings with high probability.

We focus on sample size savings in terms of the ground-truth scores s that debiasing methods can
achieve by making use of the proxy scores s̃.

• We first show that the best possible savings are determined by the Pearson correlation
between s and s̃ (Theorem 5).

• Our main result (Theorem 6) then shows that this correlation is small whenever the judge
model performs worse than the evaluated model. In that case the best possible outcome
is an effective doubling of the number of samples s, no matter how many samples of the
proxy score s̃ are available (Corollary 7). This result remains true in a slightly weaker
sense, when we allow for the proxy s̃ to be continuous rather than binary (Theorem 10).

• In experiments on MMLU and MT-Bench, we empirically confirm that sample size savings
of more than a factor two are rare: We only observe them when current state-of-the-art
models are used to judge substantially weaker models.

In addition, we show that the commonly reported agreement rate between the judge and the ground
truth neither meaningfully restricts the judge bias, nor the sample size savings for debiasing methods.

2 FORMAL SETUP AND MOTIVATION

In this section, we introduce the formal model we use to analyze the model-as-judge paradigm. We
then provide empirical and theoretical evidence that judge bias can indeed cause model-as-judge to
produce misleading results, even when judge models are quite accurate.
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We focus our analysis on aggregated binary evaluations: Given a prompt x, a model m receives
a binary score s(x,m(x)) depending on its output m(x). As both model outputs and evaluation
protocols can be non-deterministic, we treat s(x,m(x)) as a random variable, even when the prompt
x and model output m(x) are fixed. The model m is then evaluated based on its expected score
E s(X,m(X)). Here, the expectation is taken over the prompt distribution X ∼ D, as well as
additional randomness in the scores s(·,m(·)) introduced by the evaluation protocol.

This setup covers several important benchmarking and evaluation settings:

• Accuracy in classification and Q&A benchmarks: Here, the prompt x is an instance
to be classified or a question to be answered. Letting m(x) denote the model’s output on
input x, the accuracy score s(x,m) equals one whenever m(x) equals the label y(x).

• Arena-style benchmarks: In this setting x is a prompt. We sample the model’s re-
sponse m(x) and the response m′(x) of another randomly selected model m′. The
score s(x,m) indicates whether m(x) was judged to be a better response than m′(x).

• Safety benchmarks: For this, the prompt x is designed to potentially elicit unsafe be-
haviour. The score s(x,m) indicates whether the model’s response m(x) is safe.

In each of these settings, we can use a language model as a judge model to score models more
cheaply than via ground truth evaluation. To do so, we compute a proxy score s̃ with the help of
the judge model. We assume that the proxy score is binary as well. In the classification setting, for
example, the judge models could provide the labels for evaluation. The proxy score would then be
the classification accuracy with respect to the judge model’s labels. In arena comparisons, the LLM
could replace human raters. And in safety benchmarks, an LLM could evaluate the safety of model
outputs. Although our motivation focuses on language models as the source of proxy scores, our
formal work applies to any proxy score, e.g., scores provided by crowdworkers rather than experts.

Precisely modeling the specific relationship between x, s(x,m) and s̃(x,m) is generally infeasible:
Even in the simplest case of classification, this would require a precise formal model of not just
the judge’s prediction m̃(x), but also the relationship between x and the correct labels y(x). We
therefore treat the scoring functions s and s̃ as black boxes, as is standard, and focus on the joint
distribution of the two induced random variables s(m) := s(X,m) and s̃(m) := s̃(X,m).

As both scores s(m) and s̃(m) are binary, we only require three parameters to specify their joint
distribution:

b(m) = P{s(m) = 1}
p(m) = P{s̃(m) = s(m) | s(m) = 1}
q(m) = P{s̃(m) = s(m) | s(m) = 0}

Here, the parameter b(m) represents the model’s expected real score E s(m), while p(m) represents
the probability that the evaluations s(m) and s̃(m) match, conditional on the score s being equal
to one (i.e., the true positive rate). Similarly, q(m) represents the probability of s(m) = s̃(m)
conditional on s(m) = 0 (i.e., the true negative rate).

2.1 JUDGE BIAS CAN STRONGLY PERTURB MODEL RANKINGS

We argue that estimating the expected proxy score E s̃(m) instead of the real expected score E s(m)
is problematic for benchmarking. In the spirit of Salaudeen & Hardt (2024), a benchmark has two
purposes: quantifying model performance and ranking models. In turn, a useful LLM judge should
accurately estimate each model’s performance, and induce the same ranking of evaluated models as
the ground truth. For the first goal, the main quantity of interest is the judge bias, defined as

JB(m) := E(s̃(m)− s(m)) = (1− q(m)) (1− b(m))− (1− p(m)) b(m) .

Whenever JB(m) has large magnitude, the proxy score s̃ misrepresents the performance b(m) of
model m, even with large sample sizes.

When it comes to ranking models, the relationship between judge bias JB and model rankings is
more subtle: If the judge bias JB(m) was constant across all models, rankings would be unaffected.
However, JB(m) can strongly depend on the evaluated model m. If JB(m) is positive for models
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with low performance, and negative for better performing models, using the score of the judge s̃
can easily perturb model rankings. Our next proposition provides such an example inspired by
empirical work. Specifically, real-world classifiers are not only highly similar to each other (Mania
et al., 2019), Mania & Sra (2020) also observe that when one classifier is better than another on
real data, it tends to be strictly better in a point-wise sense, for the most part. We therefore consider
using a classifier m to evaluate a set M of strictly better classifiers. In that case, using the proxy
evaluations s̃ based on m fully reverses the correct model ranking:
Proposition 1. Consider a binary classifier m̃ and a set of strictly better binary classifiers M such
that m̃(x) = y(x) implies mi(x) = y(x) for all mi ∈ M. Let E s(mi) represent the accuracy
of model mi evaluated on the correct labels, and E s̃(mi) its accuracy evaluated on predictions of
model m̃. Then for mi,mj ∈ M, E s(mi) > E s(mj) implies E s̃(mi) < E s̃(mj).

We prove Proposition 1 in Appendix C.5. An illustration is provided in Figure 1a. We use GPT-4
labels to evaluate Claude Sonnet, as well as a set of (ficticious) models on MMLU (Hendrycks et al.,
2021). The ficticious models are denoted as ”Claude-Sonnet + x” and designed to be strictly better
than Claude. This is done by changing wrong predictions of Claude into correct ones until accuracy
is improved by x%. Figure 1b shows a more realistic setting, with LLama-3 70B judging the top-10
MMLU models according to HELM (Liang et al., 2023). While the ranking is not fully reversed, it
is strongly perturbed. This effect can also be observed in prior work: For MT-Bench, the ranking of
the best models is not consistently preserved when using LLM judges (Zheng et al., 2024).

2.2 HIGH AGREEMENT RATE IS INSUFFICIENT FOR EVALUATION

The results from the previous subsection might appear surprising, considering the strong perfor-
mance of the judge models: Lama-3 70B has 79% accuracy on MMLU, while GPT-4 has 84%, and
the models used in MT-Bench have 85% agreement with expert annotators. Our next proposition ex-
plains how it is possible for model rankings to be strongly perturbed despite accurate judges. Before
stating it, we need to formally define the agreement AG(m) between score s and proxy score s̃ as

AG(m) := P{s(m) = s̃(m)} = b(m)p(m) + (1− b(m)) q(m).

In the classification setting, the judge model’s accuracy lower bounds the agreement AG(m):
Clearly s(x,m) = s̃(x,m) whenever the judge model m̃ is correct. But when there are more than
two classes, we also get s(x,m) = s̃(x,m) = 0 whenever the true label y(x) and the predictions
m(x) and m̃(x) are all different from each other. In particular, this highlights that the agreement
AG(m) can indeed depend on the evaluated model m, rather than just the judge m̃. For binary
classification, however, the agreement rate equals the judge model’s accuracy and is thus constant
across evaluated models. Our next proposition now relates judge bias to agreement:
Proposition 2. Fix any model score b(m). Then for any r with b(m) ≤ r, there are values of q(m)
and p(m), such that AG(m) = r and we obtain positive judge bias JB(m) = 1− r. Similarly, for
any r with 1− b(m) ≤ r, there are values of q(m) and p(m), such that AG(m) = r and we obtain
negative judge bias JB(m) = r − 1.

Proposition 2 shows that for agreement AG(m) = r, there can be a judge bias of 1 − r in either
direction. This means that even if AG(m) = r was constant across models m, we could only
reliably rank models for which the true score E s(m) differs by more than 2(1−r). As it is common
for state-of-the-art models to differ in performance by only low single digit percentages, without
further assumptions an agreement rate above 99% (for each evaluated model!) would be required to
ensure (asymptotically) correct rankings. For a proof, see Appendix C.6.

3 DEBIASING LLM JUDGMENTS

In the previous section, we demonstrated how biased LLM judges can lead to strongly perturbed
model rankings. This motivates the need for debiasing methods. We begin this section by discussing
a simple sufficient condition to guarantee asymptotically correct rankings: Ensure that our estimates
of E s(m) are unbiased for all models m. Statistical bias correction methods can make use of a
large number of proxy scores and a smaller number of gold standard labels to construct an unbiased
estimator. We discuss one such method in detail, and show that it is essentially optimal in terms of
estimator variance. Afterwards we prove our main result, i.e., that LLM judges offer limited benefits
for evaluating state-of-the-art models.
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3.1 UNIFORMLY CONTROLLING JUDGE BIAS ENSURES CORRECT RANKINGS

We begin with a simple and natural sufficient condition for correct rankings. This is that all model
evaluations are approximately unbiased. The next proposition shows that this, in fact, entails correct
rankings in expectation and hence also with a sufficient amount of data.
Proposition 3. Let M be a finite set of models such that for any m,m′ ∈ M

|E(s(m))− E(s(m′))| ≥ ϵ.

Let θ̂ be an estimator for E s(m) such that Var θ̂(m) converges to zero in the dataset size. Then if
|E θ̂(m)− E(s(m))| < ϵ

2 for all models m, using θ̂ to rank models yields the correct ranking with
high probability.

Proof. By construction, E θ̂(m) induces the same model rankings as E s(m). Chebyshev’s inequal-
ity and a union bound imply correct rankings as Var θ̂(m) goes to zero.

Proposition 3 implies that if we could guarantee sufficiently small estimator bias, a large amount of
proxy samples s̃ would yield correct rankings with high probability. However, it is important for
bias to be small for all evaluated models. In light of the worst-case results from Proposition 2, we
cannot rely on this to be true when solely basing our estimates on the proxy scores s̃.

3.2 BACKGROUND ON PREDICTION POWERED INFERENCE

We next discuss how to leverage a small amount of ground truth samples s to debias the proxy scores
s̃. This yields an unbiased estimator θ̂ for E s, and thus asymptotically correct model rankings.

Specifically, we follow the Prediction Powered Inference (PPI) framework (Angelopoulos et al.,
2023a) and an for our case equivalent method by Chaganty et al. (2018): Alongside a large iid
sample of model judgments s̃i(m) = s̃(xi,m) for integer i ∈ [1, N + n], we assume access to the
corresponding ground truth label sj(m) = s(xj ,m) for a small subset of integer j ∈ [1, n]. With
this, we can construct an unbiased estimator θ̂PP for E s(m) by using the small parallel sample to
estimate JB(m), and subtracting it from our estimate of E s̃(m). The PPI estimator thus equals

θ̂PP (x) =
1

N

N+n∑
i=n+1

s̃i(m) +
1

n

n∑
j=1

(sj(m)− s̃j(m)) .

Clearly, the PPI estimator is unbiased

E θ̂PP = E s̃(m) + E s(m)− E s̃(m) = E s(m),

and has variance
Var θ̂PP =

1

N
Var s̃(m) +

1

n
Var(s̃(m)− s(m)).

Whenever N ≫ n, the first term on the right hand side is small. Moreover, when s(m) and s̃(m)

are strongly correlated, the second term is small. Assuming both, we have Var θ̂PP < Var θ̂GT ,
where θ̂GT is the ground-truth sample average estimator θ̂GT = 1

n

∑n
j=1 sj(m).

However if the correlation between s(m) and s̃(m) is small, the inequality is reversed. This issue
can be fixed by interpolating between the PPI estimator and the classical estimator (Chaganty et al.,
2018; Angelopoulos et al., 2023b), setting

θ̂PP
λ = λθ̂PP + (1− λ)θ̂GT .

As a linear combination of unbiased estimators this remains unbiased, but we can
now optimize over λ to minimize estimator variance. We obtain the optimum value
λ∗ = Cov(s(m), s̃(m))/

((
1 + n

N

)
Var s̃ (m)

)
. At this λ, the estimator θ̂PP

λ∗ never increases vari-
ance compared to the classical ground truth estimator:

Var θ̂PP
λ∗ =

1

n
Var s(m)− 1

n+ n2

N

Cov(s(m), s̃(m))2

Var(s̃(m))
≤ 1

n
Var s(m) = Var θ̂GT .

In the following subsection, we discuss to what extent the PPI estimator θ̂PP
λ∗ can reduce variance or

equivalently improve sample efficiency, compared to the ground truth estimator θ̂GT .
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3.3 THE SAMPLE EFFICIENCY FACTOR τ

As the variance of θ̂GT scales as Θ(1/n), using an estimator θ̂ with r = Var θ̂
Var θ̂GT

is equivalent to
increasing the ground-truth sample size by a factor of

τ(θ̂) :=
Var θ̂GT

Var θ̂
=

1

r
.

We call τ(θ̂) the sample efficiency factor of the estimator θ̂. It is our main quantity of interest. In
order to ensure it is well-defined, we assume b(m), p(m), q(m) ∈ (0, 1) for the remainder of the
text. Our next proposition provides an upper bound on the sample efficiency factor τ(θ̂PP

λ∗ ) of PPI,
based on the squared Pearson correlation between s and s̃:
Proposition 4. The sample efficiency factor for the PPI estimator is upper bounded by

τ(θ̂PP
λ∗ ) ≤ 1

1− ρ(s(m), s̃(m))2
,

where

ρ(s(m), s̃(m))2 =
b(m)

(1− b(m))

(p(m)− E s̃(m))2

E s̃(m)(1− E s̃(m))
.

This upper bound is large whenever ρ2 is large. However, the sample efficiency factor τ(θ̂PP
λ∗ ) is

finite unless we have perfect correlation ρ2 = 1. For any correlation bounded away from 1, the proxy
samples can only provide a constant factor improvement. Scaling them up without also scaling the
number of ground truth samples has limited benefits. The proof can be found in Appendix C.7.

3.4 PPI IS NEAR-OPTIMAL FOR BINARY EVALUATIONS

The limited sample efficiency gains of PPI compared to the classical estimator raise the question
whether we can find an unbiased estimator with lower variance. For black-box estimators that do
not model the prompt-conditional distribution P[(s(m), s̃(m))|x], we show that the answer is no:
Theorem 5. Let Θ be the set of all unbiased estimators for E s(m) that observe n joint samples
(s(m), s̃(m)) and N independent proxy samples s̃(m). Then, any θ̂ ∈ Θ fulfills the variance bound

Var θ̂ ≥ Var θ̂PP
λ∗ .

This means that the sample efficiency factor of θ̂ is bounded by

τ(θ̂) ≤ max
θ̂∈Θ

τ(θ̂) = τ(θ̂PP
λ∗ ) ≤ 1

1− ρ(s(m), s̃(m))2
.

Theorem 5 follows from an application of the Cramér-Rao bound, combined with extensive algebraic
manipulation that was assisted by a computer algebra system. Appendix C.1 has the details.

3.5 LIMITED GAINS FOR EVALUATING STATE-OF-THE-ART MODELS

With Theorem 5 at hand, we can analyze the best sample efficiency factor τ an unbiased estimator
can achieve by making use of model judgments s̃. In this subsection, we focus on the evaluation of
frontier models that outperform older models, including the models used to judge them. We use the
evaluated model’s score b(m) and the judge’s agreement rate AG(m) as indicators for the respective
model’s capabilities. We focus on tasks for which performing and judging the task are of similar
difficulty, such that these indicators are comparable. As a prime example, for binary classification,
AG(m) equals the judge’s accuracy, while b(m) equals the evaluated model’s accuracy.

We thus capture the evaluation of frontier models with the assumption that the evaluated model’s
score b(m) is larger than the judge’s agreement rate AG(m). The next theorem shows that the
squared correlation ρ(s(m), s̃(m))2 is at most one half in this setting.
Theorem 6. Assume 0.5 ≤ AG(m) ≤ b(m). Then,

ρ(s(m), s̃(m))2 ≤ 0.5.

6
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We prove Theorem 6 in Appendix C.2. Combining Theorem 6 with Theorem 5 allows us to bound
the sample efficiency gains that any unbiased estimator can achieve for evaluating frontier models:
Corollary 7. Assume 0.5 ≤ AG(m) ≤ b(m). Then,

τmax = max
θ̂∈Θ

τ(θ̂) ≤ 2.

Corollary 7 implies that when evaluating state-of-the-art models, the best we can expect from using
LLM judges is a factor-two improvement in sample efficiency. This is unless the judge’s task is
substantially easier than the evaluated model’s task.

3.6 HIGH AGREEMENT RATE IS INSUFFICIENT FOR SAMPLE EFFICIENCY GAINS

Theorem 6 holds for arbitrarily high levels of agreement. Therefore, the theorem shows that high
agreement rates are not just insufficient for avoiding judge bias—they’re also insufficient for obtain-
ing a meaningful sample efficiency factor τ . Our next proposition goes a step further and shows that
the agreement AG(m) does not provide any lower bound on the sample efficiency factor τ , even
when the judge bias JB(m) is zero.
Proposition 8. For any agreement rate 0.5 ≤ AG(m) < 1, there exist values of
b(m), p(m), q(m) ∈ (0, 1) such that

JB(m) = ρ(s(m), s̃(m))2 = 0 and thus τmax = 1.

We prove the proposition in Appendix C.8. It implies that in some cases despite access to s̃, no
unbiased estimator has less variance than θ̂GT . It might be surprising that there are cases in which
we cannot make productive use of the proxy evaluations s̃ despite zero judge bias. However, without
further assumptions, JB(m) can vary wildly between models, so that we cannot skip estimating it
anew for each model. Now, even if s̃ has zero judge bias, the estimator does not ”know” that, but
rather has to estimate JB(m) from joint observations (s, s̃). In the configuration from the proposi-
tion, estimating the judge bias JB(m) turns out as hard as directly estimating the real score E s(m).

3.7 EXPERIMENTS

So far, we have shown that even optimal debiasing yields limited sample efficiency gains at the
frontier (Section 3). In this section, we have a more detailed look into the sample efficiency gains
on popular benchmarks that can be achieved by using current flagship models as judges.

Our experiments in this section focus on two settings: Multiple-choice question answering on
MMLU (Hendrycks et al., 2021) and chatbot evaluation on MT-Bench (Zheng et al., 2024). Ad-
ditional experiments on TruthfulQA can be found in Appendix B.2. In all cases, we calculate the
empirical correlation ρ(s, s̃) between the score s and the proxy s̃ to obtain and plot an upper bound
for the sample efficiency factor τmax based on Theorem 5.

We first focus on MMLU, a multiple-choice question answering benchmark for the world knowl-
edge of language models. We obtain model predictions from the HELM (Liang et al., 2023)
leaderboard. We then aggregate all subtasks of MMLU into a single test set and set s to equal the
accuracy score s(x,m) = I(m(x) = y(x)). Here I is the indicator function, m(x) is the model’s
answer and y(x) is the correct answer. For model-based evaluations using m̃ as a judge, we replace
the correct answer y(x) by the judge’s prediction m̃(x), setting s̃(x,m) = I(m(x) = m′(x)).

In the second setting, we evaluate model performance on MT-Bench, an arena-style benchmark
designed to evaluate the ability of models to follow instructions. The benchmark comes with results
for six models. For each pair of these models m and m′, both models are queried with the same
prompt x. The test set for each model m then consists of all triples of the form (m,m′, x), for
other models in the benchmark m′ and prompts x. For each triple in the test set, an expert evaluator
decides, whether model m produced a better response than m′. In that case, the score s(x,m) for
model m is one, otherwise it is zero. For the proxy score s̃(x,m) we replace the expert’s answer by
the GPT-4 response provided by Zheng et al. (2024). For more details, consider Appendix B.

Figures 2 and 3 show the optimal sample efficiency factor τmax on MMLU and MT-Bench respec-
tively. The sample efficiency factor τmax consistently stays below the value of two suggested by
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Figure 2: Best possible sample efficiency factor τmax according to Theorem 5, using different judges
(colors) evaluating different models (x-ticks) on MMLU. Error bars show 90% confidence intervals.
Sample efficiency gains stay below two, unless SOTA models are used to evaluate weak models.
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GPT-4

Figure 3: Best possible sample efficiency factor τmax according to Theorem 5, using GPT-4-as-a-
Judge, evaluating different models on MT-Bench. Error bars show 90% confidence intervals. Sample
efficiency get close to two in some cases, but consistently stay below that value.

Corollary 7, except when current flagship models are used to judge the significantly worse LLama2-
7b on MMLU. This exception is not surprising, as in that case AG ≫ b such that the assumptions
for Corollary 7 are heavily violated. Interestingly, τmax stays below two in all other cases, even
when stronger models like GPT-4 are used to evaluate weaker models like LLama3-70B. This sug-
gests that the upper bound on τmax from Corollary 7 is fairly robust. We also note that τmax is often
substantially smaller than two, especially on MMLU. This highlights that Corollary 7 provides a
best-case upper bound rather than a guarantee that τmax will be close to two in practice.

4 GOING BEYOND BINARY EVALUATIONS.

So far we have assumed the proxy score s̃ to be binary. In this section, we relax this assumption.
By not forcing the judge to fully commit to a single answer, we hope to obtain a more useful proxy
s̃. For example, in a Q&A task, we can make use of the uncertainty of a judge model m′ by setting
s̃(x,m) = Pm′(x)(m(x)) equal to the probability the judge m′ assigned to the model answer m(x).

In terms of analysis, the non-parametric joint likelihood of (s, s̃) resulting from non-binary proxies
makes it exceedingly hard to prove an analogon to Theorem 5 for all unbiased estimators. Instead,
we focus on the PPI estimator, θ̂PP

λ∗ . It is a natural choice of estimator, given its proven optimality in
the special case of binary proxies s̃. In order to state a condition similar to AG ≤ b from Theorem
6, we assume the proxy s̃ to be bounded in [0, 1] and define the soft agreement as

SO(s̃) := E ss̃+ (1− s)(1− s̃).

For binary scores s̃, the soft agreement SO(s̃) simply reduces to the agreement AG(s̃). For non-
binary proxy scores s̃, we interpret them as probability estimates, such that SO equals the estimated
probability of the real score s. To make this interpretation valid, we focus on the recalibrated proxy
R(s̃) = P(s = 1|s̃). The following proposition suggests a way to generalize the condition AG ≤ b:
Proposition 9. For any binary proxy s̃ such that 0.5 ≤ AG ≤ b, we have 0.5 ≤ SO(R(s̃)) ≤ b.

Proposition 9 states that if the agreement AG(s̃) of a binary proxy s̃ is below the evaluated model’s
accuracy b, the same is true for the soft accuracy SO(R(s̃)) of the recalibrated proxy R(s̃). Based
on this, we use SO(R(s̃)) ≤ b to generalize the condition AG(s̃) ≤ b from Theorem 6, and prove:
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Theorem 10. For any proxy score s̃ with SO(R(s̃)) ≤ b, we have ρ2(s, s̃) ≤ 0.5. Correspondingly,
the sample effficiency of PPI is bounded: τ(θ̂PP

λ∗ ) ≤ 2.

We prove more general versions of Proposition 9 and Theorem 10 in Appendix C.3. In these, we
allow for the judge to make ϵ times as many mistakes as the evaluated model for ϵ ≤ 1 rather than
being strictly worse. In that case, we obtain a maximal sample efficiency factor τ(θ̂PP ) of 2

ϵ .

Experiments on MMLU Using the prompt format from HELM, we extract LLama3.1-405B’s
next-token predictions p̃x for all questions x in MMLU. From these, we take the probabilities p̃x(t)
corresponding to the four tokens t ∈ {A,B,C,D} =: T representing the answers to question x. We
then renormalize them to Pm′(x)(t) = (p̃x(t))/(

∑
t′∈T p̃x(t

′)) and define the proxy score s̃(x,m)
as the probability Pm′(x)(m(x)) assigned to the evaluated model’s answer m(x), as described above.

Figure 4 shows the sample efficiency factor τ(θ̂PP
λ∗ ) for PPI in the limit of infinite unlabeled data

N → ∞. As expected, using the non-binary proxy consistently improves sample efficiency. How-
ever, as suggested by Theorem 10, the sample efficiency factor τ(θ̂PP

λ∗ ) remains below two when we
use LLama3.1-405B to evaluate the stronger Claude 3.5. As in the previous experiments, the same
is true for evaluating slightly weaker models such as GPT-4 or Gemini 1.5. This shows that our main
claim of ”no sample efficiency gains of more than a factor two at the frontier” is robust. That said,
unlike in the binary case, the factor two is already (slightly) exceeded for LLaMa3-70B (which is
5% less accurate than LLama3.1-405B), rather than just for the much weaker LLaMa2-7B.

Claude 3.5 Sonnet GPT-4 LLama3.1-405b Gemini 1.5 Pro LLaMa3-70b LLama2-7b
1
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Judge model:
LLama3.1-405b (Binary) LLama3.1-405b (Non-Binary)

Figure 4: Sample efficiency factor τ(θ̂PP
λ∗ ) for PPI in the N → ∞ limit, using LLama3.1-405B-as-

Judge on MMLU, with binary and non-binary scores. Error bars: 90% confidence intervals. Non-
binary scores improve the sample efficiency factor τ(θ̂PP

λ∗ ), but it stays below two at the frontier.

5 RELATED WORK

LLM-as-a-Judge. With the success of large transformer-based language models, the idea of using
model predictions to provide feedback for another model has become very popular. Initially, spe-
cialized fine-tuned models were used to provide training signals for a second model (Ouyang et al.,
2022; Bai et al., 2022; Dorner et al., 2023). The approach was quickly expanded to using general
purpose LLMs like GPT-4 (Achiam et al., 2023), not just for providing training signal but also for
evaluating other models. This new paradigm, dubbed LLM-as-a-Judge, has been applied to evaluate
a variety of model capabilities (Yu et al., 2023; Chiang & Lee, 2023; Fu et al., 2023; Li et al., 2024;
Weyssow et al., 2024; Raju et al., 2024; Vu et al., 2024; Kumar et al., 2024). In some cases, not
just the ratings, but also the prompts given to evaluated models are designed by LLMs (Bai et al.,
2024). LLM-as-a-Judge is often paired with another emerging paradigm for model evaluation: As
generative tasks often do not have a single correct answer, models are evaluated in so-called arena
benchmarks (Chiang et al., 2024), where different models’ responses to the same prompts are ranked
to determine the best model. Beyond evaluating models, LLM judges have also been employed to
evaluate red-teaming (Mazeika et al., 2024) and jailbreaks (Souly et al., 2024). The use of LLM
judges rather than experts or crowd workers is often justified by high agreement rates (Gilardi et al.,
2023; Zheng et al., 2024) between both types of judges. However, Thakur et al. (2024) find that
seemingly high agreement does not necessarily imply accurate judge scores. In this work, we pro-
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vide a theoretical justification for that finding and show that agreement is not necessarily a good
indicator of judge quality, even when judge scores are debiased via PPI.

Bias in LLM judges. LLM judges can be biased in numerous ways, making their evaluations
unreliable: Their outputs often correlate poorly with expert annotations (Bavaresco et al., 2024; Koo
et al., 2023). Models are known to rate their own outputs more favorable than the outputs of other
models (Liu et al., 2023; Panickssery et al., 2024), prefer longer outputs and outputs containing lists,
regardless of quality (Dubois et al., 2024b; Wei et al., 2024). They also exhibit choice-order bias
(Dominguez-Olmedo et al., 2023; Wang et al., 2023; Shi et al., 2024) as well as a variety of other
biases (Koo et al., 2023). While correcting for these known biases (Dubois et al., 2024a; Zheng
et al., 2024) is an important first step, manually enumerating and correcting for all judge biases
appears infeasible. As one potential alternative, Jung et al. (2024) propose to combat judge bias by
having judges abstain based on their confidence. However, if abstention correlates with the evaluated
model’s performance, this approach can introduce its own biases to model evaluations.

Debiasing methods. Usually, the biases listed above are found by identifying patterns in how
LLM judgments deviate from (a smaller set of) ground truth labels. Instead of trying to identify
and fix specific biases, another line of work uses ground truth labels to directly estimate the bias an
LLM judge introduces and correct for it. This approach was already suggested by Chaganty et al.
(2018) for debiasing classic automated NLP metrics like BLEU (Papineni et al., 2002) and ROUGE
(Lin & Och, 2004). The authors find that their method, which is essentially equivalent to PPI, only
improved data efficiency by around 10% using 2018’s automated metrics. In addition, they show
that their method has optimal worst-case variance. In comparison to their worst-case result, our
Theorem 5 shows that θ̂PP

λ∗ is always optimal in our binary evaluation setting.

For modern LLM-based metrics, using PPI has been suggested by Boyeau et al. (2024) and Chatzi
et al. (2024), and applied as part of more complicated evaluation pipelines (Saad-Falcon et al., 2023;
Tyser et al., 2024). Furthermore, Fisch et al. (2024) combine PPI with stratified sampling for model
evaluation. These works consistently show that PPI improves efficiency in terms of ground truth
labels, but gains in effective sample size rarely exceed 50% and are always below 100%. Our upper
bounds on the sample efficiency factor τmax show that gains larger than that are indeed unlikely,
especially when evaluating state-of-the-art models.

6 DISCUSSION

Our results show that for evaluating frontier models, LLM judges might fall short of the promise
of largely replacing expert labelers: While doubling the effective sample size can be useful for
practitioners, the order of magnitude of required ground truth labels remains the same with and
without access to LLM judges. That said, there are ways to circumvent our negative results:

First, our results pertain to uniform sampling rather than more sophisticated sampling strategies.
Approaches like stratified PPI (Fisch et al., 2024) might be able to obtain a somewhat better sample
efficiency factor, for example by breaking the assumptions of Theorem 6 per-stratum. That said,
Theorem 5 still applies per-stratum. Empirical results presented in Appendix B.3 suggest that at the
frontier, stratified PPI rarely improves sample efficiency by more than a factor of two, compared to
standard stratified sampling. Second, Theorem 6 only holds if the proxy s̃ is less capable at predict-
ing s than the evaluated model m is at its task. Thus, for tasks in which evaluation is substantially
easier than the task itself, or tasks for which data to train a specialized evaluator is abundant, gains in
sample efficiency of more than a factor two are possible even when evaluating models at the frontier.
In addition, weaker models might find their way into many applications due to cost saving reasons,
such that efficient evaluations of these models are still valuable.

Finally, we would like to reiterate that our results do not only apply to LLM judges, but any form of
biased evaluators including (poorly instructed) crowdworkers. Whenever the crowdworker majority
does not consistently agree with the desired ground truth labels, bias correction is required for valid
evaluation results. Similarly, if the crowdworker majority vote is less accurate than the evaluated
model, Theorem 6 implies that crowdworker labels are of low value compared to ground truth labels.
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A ADDITIONAL THEORETICAL RESULTS

A.1 SAMPLE EFFICIENCY FACTOR FOR STRICTLY BETTER CLASSIFIERS

In the case of strictly better classifiers discussed in Proposition 1, we can provide an even stronger
upper bound: When using a classifier m̃ with accuracy x > 0.5 to evaluate a strictly better classifier
m with accuracy x+ δ, we get q(m) = 0, b(m) = x+ δ as p(m) = x

x+δ . In that case we can only
reduce variance by a factor of 1

9 , or equivalently improve sample efficiency by a factor of 1.125:

Proposition 11. Fix q(m) = 0 and assume b(m) = x + δ as well as p(m) = x
x+δ for x > 0.5,

δ > 0 and x+ δ ≤ 1. Then

ρ(s(m), s̃(m))2 ≤ 1

9
.

Correspondingly, the sample efficiency factor is bounded by τmax ≤ 1.125.

Proof. Fixing q(m) = 0, we get

ρ(s(m), s̃(m))2 =

(
x

x+δ − 1
)
(δ + x− 1)

1− δ
.

Taking the δ derivative yields

d

dδ
ρ(s(m), s̃(m))2 = − x(2δ + x− 1)

(δ − 1)2(δ + x)2
.

This is zero precisely when δ = 1−x
2 , and negative for δ larger than that. Correspondingly, δ = 1−x

2
is the global maximum. Inserting this back, we obtain

ρ(s(m), s̃(m))2 ≤ (x− 1)2

(x+ 1)2

with negative derivative d
dx

(x−1)2

(x+1)2 = 4(x−1)
(x+1)3 . Correspondingly, the upper bound is maximized at the

smallest possible x = 0.5, where it equals 0.52

1.52 = 1
9 .

A.2 BALANCED AGREEMENT RATE AS AN ALTERNATIVE

Intuitively, high agreement fails to constrain the squared correlation ρ2 because predictors without
any signal, such as constant predictors, can achieve high agreement. This is analogous to how
accuracy can be misleading for imbalanced classification problems. In classification, this is solved
by focusing on balanced accuracy instead. By analogy, we introduce the balanced agreement of s̃
with s as

BA(m) :=
q(m) + p(m)

2
.

The next theorem confirms that controlling BA(m) yields meaningful lower bounds on the squared
correlation.

Theorem 12. For any value of BA(m), we have:

4b(m)(1− b(m))(2BA(m)− 1)2 ≤ ρ(s(m), s̃(m))2 ≤ |2BA(m)− 1| .

Theorem 12 is proven in Appendix C.4. It also provides another upper bound on sample efficiency
gains from access to s̃: Whenever BA(m) is close to half, access to s̃ can not improve sample
efficiency by much and the sample efficiency factor τmax = 1

1−ρ2 is close to one. As a corollary, we
show that whenever the proxy has reasonable balanced accuracy, the minimum of the true positive
rate p and true negative rate q upper bounds the squared correlation ρ2:

Corollary 13. Whenever BA(m) ≥ 0.5, we have

ρ(s(m), s̃(m))2 ≤ min{p(m), q(m)}.
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Proof. Given BA(m) ≥ 0.5, |2BA(m) − 1| is maximized at the maximal value of BA(m). But
with min{p(m), q(m)} ≤ r, that is at r+1

2 . Inserting into Theorem 12 yields the result.

Figure 5 shows actual value of the maximal sample efficiency and its lower and upper bounds on
τmax derived from Theorem 12 for a variety of models. In line with our theoretical results, τmax

lies consistently between the lower and upper bounds. Interestingly, the lower bound appear to be
considerably tighter than the upper bound, that is, τmax is much closer to the lower bound than the
upper bound throughout the experiments.

Claude 3.5 Sonnet GPT-4 Gemini 1.5 Pro LLaMa3-70b LLama2-7b
1

2

3

4
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nc
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Judge Model
GPT-4
Claude-Sonnet
LLaMa3-70b

Metric
Upper Bound

max
Lower Bound

Figure 5: Best possible sample efficiency factor τmax and lower/upper bounds based on the balanced
accuracy BA for different judges (color) and evaluated models (x-ticks).

A.3 ESTIMATING THE GAP

If ranking rather than accurately estimating model performance is the main goal, we need to estimate
the difference E(s(m))−E(s(m′)) for model pairs (m,m′). Because of potential cancelations, the
difference of the optimal estimators for both terms θ̂PP

λ∗(m)(m)− θ̂PP
λ∗(m′)(m

′) is not necessarily the
optimal estimator for the difference. Correspondingly, further improvements can be made by jointly
optimizing λ and λ′ to minimize the variance of θ̂PP

λ (m) − θ̂PP
λ′ (m′). Solving the corresponding

optimization problem yields:

λ∗(m) =
Cov(s(m′), s̃(m′)) Cov(s̃(m), s̃(m′))− Cov(s(m), s̃(m′)) Cov(s̃(m), s̃(m′))

(1 + n
N )(Var(s̃(m′))Var(s̃(m))− Cov(s̃(m), s̃(m′)))

+
Cov(s(m), s̃(m))Var(s̃(m′))− Cov(s(m′), s̃(m))Var(s̃(m′))

(1 + n
N )(Var(s̃(m′))Var(s̃(m))− Cov(s̃(m), s̃(m′)))

λ∗(m′) =
Cov(s(m), s̃(m)) Cov(s̃(m), s̃(m′))− Cov(s(m′), s̃(m)) Cov(s̃(m), s̃(m′))

(1 + n
N )(Var(s̃(m′))Var(s̃(m))− Cov(s̃(m), s̃(m′)))

+
Cov(s(m′), s̃(m′))Var(s̃(m))− Cov(s(m), s̃(m′))Var(s̃(m))

(1 + n
N )(Var(s̃(m′))Var(s̃(m))− Cov(s̃(m), s̃(m′)))

However, using different values of λ for different comparisons means that there are multiple different
score estimates for model m such that the resulting comparisons might not yield a valid transitive
ranking.

B ADDITIONAL DETAILS ON EXPERIMENTS

For MMLU, we obtain most model predictions from the HELM (Liang et al., 2023) leaderboard
and focus on the top 10 models1. As HELM does not document model uncertainty, and results for

1Cutoff date: 23.07.2024
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LLama3.1-405B were initially not available, we evaluated LLama3.1-405B in bf16 using 8 A100
GPUs and the accelerate library for offloading, ourselves. We use the prompting format from HELM
and extract the predicted probabilities p̃(y) corresponding to the four tokens y ∈ Y that represent the
answer options. For our uncertainty experiment, we renormalize them, setting p(y) = p̃(y)∑

y′∈Y p̃(y′) .

For MT-bench, we use the results for six models released by the benchmark’s authors Zheng et al.
(2024). For each triple consisting of two different models m, m′ and a prompt x there is a varying
amount of human expert judgments, as well as a judgment by GPT-4. We aggregate the expert judg-
ments using a majority vote, and discard all triples for which the expert’s tied, or GPT-4’s judgment
amounts to a tie. We then calculate the win-rate for model m by averaging over all remaining triples
that include m. Note, that this is slightly different from the evaluation in the MT-Bench paper, where
win-rates are calculated per model pair, and then averaged over models. MT-Bench also includes
a follow-up prompt, with separate judgments for the first and second response. For simplicity, we
focus on the first answer.

B.1 HIGH AGREEMENT IS NOT NECESSARY FOR RANKING.

Proposition 2 indicates that a high agreement rate AG(m) is not sufficient for the proxy score s̃ to
yield similar model rankings as the real score s. However, it turns out that high agreement is also
not necessary for stable rankings: For binary classification with judge errors that are independent
of the performance of different models, a sufficiently large sample size guarantees correct rankings
as long as the error rate is below 50% (Dorner & Hardt, 2024). We demonstrate this phenomenon
in Figure 6. In that experiment, the judge reproduces the correct label 60% of the time, but picks a
random wrong label otherwise. Despite this judge’s low agreement with the correct labels, model
rankings are preserved near-perfectly.

True 60% accurate labels
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True Labels True Labels

Claude-Sonnet + 10 Claude-Sonnet + 10

Claude-Sonnet + 5 Claude-Sonnet + 5
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True 60% accurate labels

1
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7
8
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Claude 3.5 Sonnet Claude 3.5 Sonnet

Claude 3 Opus Claude 3 Opus

GPT-4o GPT-4o

GPT-4 GPT-4

Gemini 1.5 Pro

Gemini 1.5 ProQwen2 Instruct (72B)

Qwen2 Instruct (72B)

GPT-4 Turbo (preview) GPT-4 Turbo (preview)

GPT-4 Turbo GPT-4 Turbo 

Gemini 1.5 Pro (preview) Gemini 1.5 Pro (preview)

LLaMa3-70b LLaMa3-70b

Figure 6: Model rankings on MMLU using a 60% accurate judge with random errors. Ranks are
preserved despite agreement substantially below LLM judges.

B.2 ADDITIONAL RESULTS ON TRUTHFULQA

Figure 7 shows additional results on TruthfulQA. As on MMLU, we extract model answers to the
Q&A prompts from HELM2 (Liang et al., 2023) and define the proxy score s̃ using the judge’s
answers m(x) as described in Section 2. We use the top three models in the leaderboard as judges,
and consider evaluations of these as well as some worse-performing models. As predicted by our
theory, the sample efficiency factor τmax is consistently below two when weaker models are used to
evaluate stronger ones. Beyond that, the sample efficiency factor τmax even stays below two when
we use the strongest model we considered (Palmyra-x) to judge the weakest (LLaMa2 7B).

B.3 ADDITIONAL RESULTS ON STRATIFICATION

We consider a debaising method for more sophisticated sampling strategies, namely stratified PPI
(Fisch et al., 2024). Note that efficiency improvements from stratification occur independently from

2We accessed the data on 14.11.2024, but it appears as if the leaderboard has not been updated to include
recent models such as GPT-4.
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Palmyra-x GPT-3 (Davinci) GPT-3.5

Figure 7: Best possible sample efficiency factor τmax using different judges (colors) evaluating
different models (x-ticks) on TruthfulQA. Error bars show 90% confidence intervals.

the model-as-judge regime. In order to disentangle gains from stratification from the gains of (strat-
ified) PPI (Fisch et al., 2024), we therefore focus on the per-stratum sample efficiency factor τmax.
Theorem 6 still holds per-stratum when applying stratified PPI, as long as the assumptions are valid
for every stratum. It might however happen that the assumptions do not hold for every stratum, even
if they are true globally: A judge model that is weaker than the evaluated model on average could
still be stronger on certain strata, thus achieving a sample efficiency factor larger than two (on these
strata).

Figure 8 suggests that this might be rare in practice: It shows the per-stratum sample efficiency
factors τmax on MMLU, using subtasks as strata. Using GPT-4 to judge the stronger Claude (Figure
8a) and LLaMa3.1 405B (Figure 8b), the sample efficiency factors τmax varies significantly across
strata. They are larger for most strata than the total (non-stratified) sample efficiency factor. However
they consistently stay below two. Even when using the stronger LLaMa3.1 405B (Figure 8d) and
Claude (Figure 8c) to judge GPT-4, sample efficiency gains above two remain rare: When only
observe them in 6 out of 57 (Claude) and 1 out of 57 (LLaMa) cases.
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MMLU Subtasks1

2

3

4

5

Sa
m

pl
e 

ef
fic

ie
nc

y 
m

ax

Total
Subtasks

(d) LLaMa3.1 405B judging GPT-4

Figure 8: Per-stratum sample efficiency factor τmax on MMLU. The strata are the 57 MMLU sub-
tasks, in alphabetical order.

C PROOFS

C.1 THEOREM 5

We use a multivariate version of the Cramér-Rao bound, as presented in Lehmann & Casella (2006):
Theorem 14 (Lehmann & Casella (2006) Theorem 6.6). Consider an experiment with parameter
θ ∈ Ω for a product of open sets Ω ∈ Rn. Assume the likelihood l(Z, θ) has the same support for

all θ and finite derivatives dl(Z,θ)
dθ . Assume the Fisher information I(θ) = EZ∼l(Z,θ)

[
δ2 log l(Z;θ)

δθ2

]
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is positive definite. Then for any statistic δ, we have Varθ(δ) ≥ dEθ δ
dθ

t
I(θ)−1 dEθ δ

dθ . In particular, if
Eθ δ equals the i-th component of θ, we have

Var
θ
(δ) ≥ (I(θ)−1)(i,i).

We again drop the dependence on m in order to declutter notation. We then use that the likelihoods
of independent observations factor and the linearity of derivatives to obtain

I(b, q, p) = nIn(b, q, p) +NIN (b, q, p),

where I(b, q, p) is the Fisher information for our experiment and In(b, q, p) and IN (b, q, p) are the
Fisher informations for a single (s(m), s̃(m)) or a single s̃(m) sample, respectively. Denoting the
corresponding likelihoods ln and lN respectively, we have:

ln(s = 0, s̃ = 0) = (1− b)q

ln(s = 0, s̃ = 1) = (1− b)(1− q)

ln(s = 1, s̃ = 0) = b(1− p)

ln(s = 1, s̃ = 1) = bp

lN (s̃ = 0) = (1− p)(1− q) + bp

lN (s̃ = 1) = b(1− p) + (1− b)q.

Computing the Fisher information3 yields

(I(θ))(b,b) =− Nb (b− 1) (p+ q − 1)
2
(bp− b (p− 1)− q (b− 1) + (b− 1) (q − 1))

b (b− 1) (bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))

− n (bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))

b (b− 1) (bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))

(I(θ))(q,q) =N

(
(b− 1)

2

−b (p− 1)− q (b− 1)
+

(b− 1)
2

bp+ (b− 1) (q − 1)

)
+ n

(
b− 1

q − 1
− b− 1

q

)
(I(θ))(p,p) =−N

(
b2

b (p− 1) + q (b− 1)
− b2

bp+ (b− 1) (q − 1)

)
− n

(
b

p− 1
− b

p

)
(I(θ))(b,q) =

N (−bp− bq + b+ p+ q − 1)

b2p2 + 2b2pq − 2b2p+ b2q2 − 2b2q + b2 − 2bpq + bp− 2bq2 + 3bq − b+ q2 − q

(I(θ))(b,p) =
Nb (−p− q + 1)

b2p2 + 2b2pq − 2b2p+ b2q2 − 2b2q + b2 − 2bpq + bp− 2bq2 + 3bq − b+ q2 − q

(I(θ))(q,p) =
Nb (b− 1) (−bp+ b (p− 1) + q (b− 1)− (b− 1) (q − 1))

(bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))
.

3We used Sympy for automatic symbolic differentiation and simplification for the remainder of the proof.
The code can be found in Proofs.ipynb in the supplementary material.
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With this, we can calculate

(I(θ))−1
(b,b)

=
b
(
Nb (bp− p+ (1− b) (1− q))

2
)

n (N + n) (bp+ (b− 1) (q − 1)) (bp+ (1− b) (1− q)− 1)

− b ((N + n) (b− 1) (bp+ (b− 1) (q − 1)) (bp+ (1− b) (1− q)− 1))

n (N + n) (bp+ (b− 1) (q − 1)) (bp+ (1− b) (1− q)− 1)

=
b
(
−Nb (E s̃− p))

2
+ (1− b) (N + n)E s̃(1− E s̃)

)
n (N + n)E s̃(1− E s̃)

=
b(1− b)

n
−

b
(
Nb (E s̃− p))

2
)

n (N + n)E s̃(1− E s̃)

=
Var s

n
− N

n (N + n)

(bE s̃− bp))
2

E s̃(1− E s̃)

=
Var s

n
− 1

n+ n2

N

Cov(s, s̃)2

Var s̃
= Var θ̂PP

λ∗ .

C.2 THEOREM 6

Proof. To proof the theorem, we reparameterize to simplify the constraints, namely setting x =
AG(m) ≥ 0.5 and δ = b(m) − AG(m) > 0. For notational convenience, we also set q = q(m).
We then optimize the squared correlation ρ2 over the parameters in succession: At first, we take the
derivative with respect to q, finding two roots. Thus, the maximum of ρ2 with respect to q is either at
one of these roots or the boundary values for q. We consider each candidate separately, and optimize
over x and δ in a similar manner. This way, we enumerate all points q, x, δ that are candidates for
the global maximum, i.e. all such points that are feasible, and either hit the boundary of a constraint
or have zero derivative respectively, in all of the three variables.

We now delve into the details of the proof: Note that the agreement rate is given by AG(m) =

(1− b)q+ bq. We therefore replace p(m) = (b−1)q+AG(m)
b = (δ+x−1)q+x

b and obtain a formula for
ρ2 based on q, x and δ :

ρ(s(m), s̃(m))2 =
(δ + x− 1) (2δq − δ + 2qx− q)

2

(δ + x) (2δq − δ + 2qx− 2q) (2δq − δ + 2qx− 2q + 1)
.

Maximizing in q ∈ [0, 1] We then take the derivative with respect to q to obtain

d

dq
ρ(s(m), s̃(m))2 =

2 (δ + x− 1) (2δq − δ + 2qx− q)
(
2δqx− δq − δx+ 2qx2 − 3qx+ q

)
(δ + x) (2δq − δ + 2qx− 2q)

2
(2δq − δ + 2qx− 2q + 1)

2 .

The numerator is quadratic in q, so it has at most two zeros. These turn out to be at z1 = δ
2δ+2x−1

and z2 = δx
(2x−1)(δ+x−1) . We note, that there are singularities at q = δ

2(δ+x−1) and q = δ−1
2(δ+x−1) .

However, as δ + x < 1, the first singularity occurs at a value of q ≤ 0. Similarly, the second
singularity can be seen to occur at q ≥ 1, as δ− 1 ≤ 2δ+2x− 2 is equivalent to 1 ≤ δ+2x, which
is true as x ≥ 0.5 and δ ≥ 0. Correspondingly, the singularities do not introduce any discontinuities
in q for q ∈ (0, 1). This means that for fixed x and δ, ρ2 is either maximized at z1 or z2, or at the
extreme values q = 0 or q = 1.

Case 1: Inserting q = z1 turns the numerator of ρ2 to zero, such that ρ2 = 0.

Case 2: We next analyze z2 = δx
(2x−1)(δ+x−1) : While δx and 2x − 1 are positive by assumption,

δ + x− 1 is negative. Correspondingly, q = z2 is not a valid value for q and the maximizer must be
one of the other three values.
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Case 3: Next, inserting q = 0 yields

ρ(s(m), s̃(m))2 =
δ (δ + x− 1)

(δ − 1) (δ + x)
.

Maximizing in x ∈ [0.5, 1) We take the derivative with respect to x to obtain
d

dx
ρ(s(m), s̃(m))2 =

δ

(δ − 1) (δ + x)
2 .

This is negative because δ is positive while δ − 1 is negative. Correspondingly, it is maximized at
the smallest possible value of x = 0.5. Inserting x = 0.5 yields

ρ(s(m), s̃(m))2 =
δ (δ − 0.5)

δ2 − 0.5δ − 0.5
.

Maximizing in δ ∈ (0, 1− x) We take the derivative with respect to δ, obtaining
d

dδ
ρ(s(m), s̃(m))2 = − (δ − 0.25)

(δ − 1)
2
(δ + 0.5)

2 .

This is zero at δ = 0.25 and negative for larger δ, indicating a local maximum. We thus insert
δ = 0.25, obtaining

ρ(s(m), s̃(m))2 =
0.25 (0.25− 0.5)

0.0625− 0.125− 0.5
=

1

9
.

Case 4: This leaves us with q = 1. We again insert, obtaining

ρ(s(m), s̃(m))2 =
(δ + x− 1) (δ + 2x− 1)

(δ + x) (δ + 2x− 2)
.

Maximizing in δ ∈ (0, 1− x) Taking the derivative with respect to delta yields
d

dδ
ρ(s(m), s̃(m))2 =

(x− 1) (2δ + 3x− 2)

(δ + x)
2
(δ + 2x− 2)

2 .

Note that this only has singularities at δ + x = 1 and δ + 2x = 2, both of which are ruled out by
the constraint δ+ x < 1. The derivative is zero at δ = 1− 3x

2 and negative for larger δ, indicating a
local maximum. When x > 2

3 , this value violates the constraint of δ > 0, such that the maximum
has to be at δ = 0 or δ = 1− x instead.

Local maximizing in x ∈ (0, 2
3 ) We insert the local maximizer δ = 1− 3x

2 ,

ρ(s(m), s̃(m))2 =
x2

(x− 2)
2

with positive derivative
d

dx
ρ(s(m), s̃(m))2 = − 4x

(x− 2)
3 .

This means that the maximum value is at x = 2
3 , where

ρ(s(m), s̃(m))2 =
1

4
.

Boundary maximizing in x ∈ (0, 1) We check the boundaries for δ, i.e., 0 < δ < 1 − x. First, we
notice that for δ → 1− x, ρ2 → 0. We thus focus on δ → 0. Inserting yields

ρ(s(m), s̃(m))2 =
2x− 1

2x
with positive derivative

d

dx
ρ(s(m), s̃(m))2 =

1

2x2
.

Correspondingly, it is maximized for x → 1, where it clearly goes to 0.5. With this, the maximum
attainable value for ρ2 equals 0.5.
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C.3 THEOREM 10

Instead of Theorem 10, we prove a stronger version that allows for the judge to be better than the
evaluated model. Concretely, the soft error rate of the judge (1−SO(R(s̃))) is allowed to be smaller
than the soft error rate of the evaluated model 1− b by a factor ϵ < 1. In that case, our upper bound
on τ becomes 2

ϵ .

Theorem 15. For any proxy score s̃ with ϵ(1 − b) ≤ (1 − SO(R(s̃))), we have ρ2(s, s̃) ≤ 1 − ϵ
2 .

Correspondingly, the sample effficiency of PPI is bounded: τ(θ̂PP
λ∗ ) ≤ 2

ϵ .

Proof. First, we note that the because the Mean squared error/Brier score is a proper scoring rule
(Gneiting & Raftery, 2007), the Bayes-optimal predictor R(s̃) minimizes the mean squared error
MSE(g(s̃), s) for all post-processing functions g. At the same time, we have that the squared cor-
relation ρ2(s, s̃) = R2(s, f(s̃)) = 1 − MSE(s,f(s̃))

Var(s) falls monotonously in MSE(s, f(s̃)), where f

is the affine transformation with the smallest value of MSE(s, f(s̃)) (Larsen & Marx, 2005). This
means that the bayes-optimal predictor R(s̃) fulfills ρ2(s,R(s̃)) ≥ ρ2(s, s̃). As the Bayes-optimal
predictor is calibrated, it is sufficient to prove our upper bound for calibrated scores s̃ (i.e. scores s̃
such that P(s|s̃ = γ) = γ for all γ ∈ [0, 1].

In the following, we assume s̃ to be calibrated. This means that

MSE(s, s̃) = E(s− s̃)2 =

∫ 1

0

((1− s̃)2s̃+ s̃2(1− s̃))p(s̃)ds̃ =

∫ 1

0

(1− s̃)s̃p(s̃)ds̃,

where we use that because of calibration, conditional on a prediction s̃, s is one and the squared
error is (1− s̃)2 with probability s̃. Similarly, the squared error is s̃2 with probability (1− s̃).

At the same time, the soft accuracy of s̃ equals

SO =

∫ 1

0

(s̃2 + (1− s̃)2)p(s̃)ds̃ =

∫ 1

0

(2s̃(s̃− 1) + 1)p(s̃)ds̃

for calibrated scores s̃, as s = 1 yields a score of s̃ and happens with probability s̃, and s = 0
happens with probability (1− s̃) and gets a score of 1− s̃.

By the linearity of the integral, this implies that

SO = 1− 2MSE

or
MSE =

1− SO

2
.

As s̃ is bayes-optimal with respect to itself, the optimal affine transformation in terms of MSE is
just the identity. Thus, we have that

ρ2(s, s̃) = R2(s̃, s) = 1− MSE

Var(s)
= 1−

1−SO
2

b(1− b)
= 1− 1− SO

2b(1− b)
.

This is decreasing in 1−SO and thus maximized at the minial value of 1−SO, which equals ϵ(1−b)
by assumption. Inserting yields

ρ2(s̃, s) ≤ 1− ϵ(1− b)

2b(1− b)
= 1− ϵ

2b
.

This is increasing in b and thus maximized at b = 1, where we have

ρ2(s̃, s) ≤ 1− ϵ(1− b)

2b(1− b)
= 1− ϵ

2
.

Together with a generalized version of Proposition 9, Theorem 15 allows us to generalize theorem
6 from the paper:
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Theorem 16. Assume that b ≥ 0.5. Then for any 0 < ϵ ≤ 1, and any binary proxy s̃ such that
AG ≥ 0.5 and ϵ(1− b) ≤ (1− AG), we have ρ2 ≤ 1− ϵ

2 . Correspondingly, the sample efficiency
factor τmax is at most 2

ϵ .

Proof. We first state the generalized version of Proposition 9.

Proposition 17. Assume that b ≥ 0.5. Then for any 0 < ϵ ≤ 1, take any binary proxy s̃ such that
AG ≥ 0.5 and ϵ(1−b) ≤ (1−AG). Then, the recalibrated proxy R(s̃) fulfills ϵ(1−b) ≤ (1−SO).

We now simply apply Theorem 15. By Proposition 9, the recalibrated version R(s̃) fulfills ϵ(1−b) ≤
(1− SO), yielding the desired bound. In the following, we prove Proposition 17:

Proof. We first characterize the recalibrated proxy R(s̃) and its relationship with the real score s:
R(s̃) equals P(s = 1|s̃ = 1) whenever s̃ = 1 and P(s = 1|s̃ = 0) whenever s̃ = 0. This means that

R(s̃) =

{
bp

bp+(1−b)(1−q) =: x1 w.p. bp+ (1− b)(1− q)
b(1−p)

b(1−p)+(1−b)q =: x0 w.p. b(1− p) + (1− b)q.

Plugging this into the definition of soft accuracy yields

SO(R(s̃)) = (bp+ (1− b)(1− q))((x1)
2 + (1− x1)

2)

+ (b(1− p) + (1− b)q)((x0)
2 + (1− x0)

2)

We want to show that (1− SO)− ϵ(1− b) ≥ 0. We begin by inserting the values, obtaining

(1− SO)− ϵ(1− b) =
(ϵ (b− 1) + 1) (bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))

(bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))

+
(bp+ (b− 1) (q − 1))

(
b2 (p− 1)

2
+ q2 (b− 1)

2
)

(bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))

−
(b (p− 1) + q (b− 1))

(
b2p2 + (b− 1)

2
(q − 1)

2
)

(bp+ (b− 1) (q − 1)) (b (p− 1) + q (b− 1))
.

It is easy to see that the denominator is negative, so it is sufficient to show that the numerator NU is
negative. We obtain

NU = (b− 1)
(
ϵb2p2 + 2ϵb2pq − 2ϵb2p+ ϵb2q2 − 2ϵb2q + ϵb2 − 2ϵbpq + ϵbp− 2ϵbq2

)
+ (b− 1)

(
3ϵbq − ϵb+ ϵq2 − ϵq − 2b2p2 + 2b2p+ 2b2q2 − 2b2q − 2bq2 + 2bq

)
.

As b− 1 is negative, it is sufficient to show that NU
b−1 is positive. We take the derivative with respect

to ϵ:
d

dϵ
(
NU

b− 1
) = (bp+ bq − b− q) (bp+ bq − b− q + 1) .

But the first term equals b(p − 1) + (b − 1)q = −P(s̃ = 0) and is thus between minus one and
zero. Correspondingly, the second term is positive, such that the derivative is negative overall. This
means that ( NU

b−1 ) is minimized at ϵ = 1. We insert that value and take two derivatives with respect
to q:

d

dq

d

dq
(
NU

b− 1
) = 6b2 − 8b+ 2.

This has two zeros at b = 1
3 and b = 1 and is negative between them. Correspondingly, under our

assumption of b ≥ 0.5, NU
b−1 is concave in q and thus minimized at either of the two extrema q = 0

or q = 1. At q = 0, we have

NU

b− 1
= −b (p− 1) (bp+ b− 1) .
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This is positive whenever
bp+ b− 1 ≥ 0.

But at q = 0, we have AG = bp such that the condition becomes

AG+b− 1 ≥ 0,

which is true because we assumed both AG and b to be at least 0.5.

Meanwhile, At q = 1, we have

NU

b− 1
= −bp (bp− 2b+ 1) .

Here it is sufficient to show that
bp− 2b+ 1 ≤ 0.

This time, AG = bp− b+ 1, such that the condition becomes

AG−b ≤ 0,

which follows from ϵ(1− b) ≤ 1−AG, as ϵ was fixed to one.

C.4 THEOREM 12

Proof. We again drop the dependence on m for notational convenience.

ρ(s(m), s̃(m))2

= b
(p− ((1− q)(1− b) + pb))2

((1− q)(1− b) + pb)(1− ((1− q)(1− b) + pb))(1− b)

= b
((1− b)(p+ q − 1))2

(1− q − b+ qb+ pb)(1− (1− q − b+ qb+ pb))(1− b)

= b(1− b)
(2BA−1)2

(1− q − b+ 2bBA)(q + b− 2bBA)
.

Clearly, this equals zero when BA = 0.5. Fixing BA ̸= 0.5 and taking the derivative with respect
to q yields

d

dq
ρ(s(m), s̃(m))2 = −b(1− b)(2BA−1)2(4bBA−2b− 2q + 1)

(1− q − b+ 2bBA)2(q + b− 2bBA)2
.

Assuming 0 < b < 1 and BA ̸= 0.5, this is zero if and only if −(4bBA−2b − 2q + 1) is zero
and clearly positive for larger q. Correspondingly, as long as the singularities in ρ2 lie outside of the
q−domain, q = 2bBA−b+ 1

2 is a unique minimum, while ρ(s(m), s̃(m))2 is maximized either at
the minimal or the maximal possible value of q.

We first insert the minimum, noting that for a lower bound we do not need to worry about whether
this value q is indeed attainable. This yields

ρ(s(m), s̃(m))2 = 4b(1− b)(2BA−1)2,

as both denominator terms reduce to 1
2 .

Next, we assume BA > 1
2 . As both p and q are in (0, 1), we get that q = 2BA−p ≥ 2BA−1.

Now, the singularities occur at q = b(2BA−1) and q = 2BA b− b+1, the first of which is smaller
than 2BA−1, while the second is larger than 1. Correspondingly, we can ignore them and insert
the minimal q = 2BA−1. We obtain

ρ(s(m), s̃(m))2 =
b(2BA−1)

2bBA−2BA−b+ 2
,
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and inserting q = 1, we obtain

ρ(s(m), s̃(m))2 =
(b− 1)(2BA−1)

2bBA−b− 1
.

These two terms are symmetric in the sense that replacing b in the first term with 1 − b yields the
second term and vice versa. Thus, it is sufficient to maximize the second term with respect to b. We
obtain

d

db
ρ(s(m), s̃(m))2 =

(2BA−2)(2BA−1)

(2bBA−b− 1)2
,

which is negative such that ρ(s(m), s̃(m))2 is maximized at b = 0, where it equals 2BA−1.

Similarly, for BA < 1
2 , q can range from 0 to 2BA. Again, the singularities are at q = b(2BA−1)

and q = 2BA b− b+1. This time, the first one is negative, while the second one can easily be seen
to be larger than 2BA. This again allows us to ignore the singularities. Inserting the extreme values
yields (2BA−1)(b−1)

2bBA−b+1 and b(2BA−1)
2bBA−2BA−b , which again are the same after replacing b with 1 − b.

Taking the derivative of the first term with respect to b yields
d

db
ρ(s(m), s̃(m))2 =

(2BA)(2BA−1)

(2bBA−b+ 1)2
,

which is negative as BA < 1
2 . Correspondingly, b = 0 now maximizes ρ(s(m), s̃(m))2, at which

point it equals 1− 2BA. Joining both cases, we thus obtain
ρ(s(m), s̃(m))2 ≤ |2BA−1|.

C.5 PROPOSITION 1

Proof.
E s̃(x,mi) = P(m̃(x) = mi(x))

= P(m̃(x) = y(x))P(m̃(x) = mi(x)|m̃(x) = y(x)) + P(m(x) = mi(x), m̃(x) ̸= y(x))

= E s(m̃) · 1 + P(mi(x) ̸= y(x), m̃(x) ̸= y(x))

= E s(m̃) + P(mi(x) ̸= y(x))

= E s(m̃) + 1− E s(mj),

which is monotonously falling in E s(mj).

C.6 PROPOSITION 2

Proof. We again drop the dependence on m. In the first case, we need that
bp+ (1− b)q = AG = r = 1− JB = 1− (1− q)(1− b) + (1− p)b.

This is equivalent to
bp+ q − bq = q + b− qb+ b− bp

or
bp = b+ b− bp,

i.e. p = 1. With this, the constraint of AG = r turns into b+ q(1− b) = r. The left side is clearly
continuous and monotonous in q and inserting the extreme values of zero and one, we obtain r = b
and r = 1, such that we can find a solution for all intermediate values of r.

In the second case, we want
bp+ (1− b)q = AG = r = JB+1 = (1− q)(1− b)− (1− p)b+ 1.

We simplify to get
bp+ q − bq = 1− q − b+ qb− b+ pb+ 1

or equivalently
q − bq = −q − b+ qb− b+ 2

or
2q − 2bq + 2b = 2,

which is achieved at q = 1. In that case, the constraint of AG = r turns into bp+ (1− b) = r with
extreme values again lying at 1− b = r and 1 = r.
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C.7 PROPOSITION 4

Proof. We first note that Var s(m) = b(m)(1 − b(m)) and Var s̃(m) = E s̃(m)(1 − E s̃(m)), as
both s and s̃ are binary. Furthermore, E[s(m)s̃(m)] = b(m)p(m), such that Cov(s(m), s̃(m)) =
b(m)(p(m)−E s̃(m)). With this, it is easy to see that the formula for ρ2 in the proposition statement
is indeed correct.

We then note, that for fixed values of n and N , the relative variance reduction of θ̂PP
λ∗ compared to

θ̂GT is determined by the squared Pearson correlation coefficient ρ between the ground truth labels
s and model judgements s̃:

Var θ̂PP
λ∗

Var θ̂GT
= 1− 1

1 + n
N

ρ(s(m), s̃(m))2.

Using the definition of τ , this yields

τ(θ̂PP
λ∗ ) =

1

1− 1
1+ n

N
ρ(s(m), s̃(m))2

.

Finally, we take the limit of N → ∞ for an upper bound.

C.8 PROPOSITION 8

Proof. We drop the parameters’ dependence on m and set q = 1 − b and p = b. Then JB =
b(1 − b) − (1 − b)b = 0. At the same time, as there is no judge bias, E s̃(m) = b = p, such that
ρ(s(m), s̃(m))2 = 0. Lastly AG = b2+(1−b)2, which can attain any value between 0.5 and 1.

25


	Introduction
	Our contributions

	Formal setup and motivation
	Judge bias can strongly perturb HighlightBluemodel rankings
	High agreement rate is insufficient for evaluation

	Debiasing LLM Judgments
	Uniformly controlling judge bias ensures correct rankings 
	Background on Prediction Powered Inference
	The sample efficiency factor 
	PPI is near-optimal for binary evaluations
	Limited gains for evaluating state-of-the-art models
	High agreement rate is insufficient for sample efficiency gains
	Experiments

	Going beyond binary evaluations.
	Related work
	Discussion
	Additional theoretical results
	Sample efficiency factor for strictly better classifiers
	Balanced agreement rate as an alternative
	Estimating the gap

	Additional details on experiments
	High agreement is not necessary for ranking.
	Additional results on TruthfulQA
	Additional results on stratification

	Proofs
	Theorem 5
	Theorem 6
	Theorem 10
	Theorem 12
	Proposition 1
	Proposition 2
	Proposition 4
	Proposition 8


