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ABSTRACT

Recent study by De et al. (2022) reports that large-scale representation learning
via pre-training on a gigantic dataset significantly enhances differentially private
learning in downstream tasks. By training on Google’s proprietary JFT dataset,
they achieved a remarkable 83% Top 1 accuracy on ImageNet with strong pri-
vacy parameters, despite the high dimensionality of the feature space. While the
exact behaviors of NoisySGD on these problems remain intractable to analyze
theoretically, we consider an idealized setting of a layer-peeled model for repre-
sentation learning, which results in interesting phenomena of the learned features
known as neural collapse. In such a setting, we observed several curious behav-
iors of NoisySGD. Specifically, we find that under perfect neural collapse, the
misclassification error is unaffected by the dimension of the private training set
for any learning rate. This finding is consistent even with class imbalance and
remains unaffected by the nature of the loss functions. Nevertheless, a dimension
dependency emerges when introducing minor perturbations in either the feature or
model space. To mitigate this non-robustness under perturbation, we suggest sev-
eral strategies, such as pre-processing features or employing dimension reduction
methods.

1 INTRODUCTION

Recently, privately fine-tuning a publicly pre-trained model with differential privacy has become
the workhorse of private deep learning. For example, De et al. (2022) demonstrates that fine-
tuning the last-layer of an ImageNet pre-trained Wide-ResNet achieves an accuracy of 95.4% on
CIFAR-10 with (ϵ = 2.0, δ = 10−5)-DP, surpassing the 67.0% accuracy from private training from
scratch with a three-layer convolutional neural network (Abadi et al., 2016). Additionally, Li et al.
(2021); Yu et al. (2021) show that pre-trained BERT (Devlin et al., 2018) and GPT-2 (Radford et al.,
2018) models achieve near no-privacy utility trade-off when fine-tuned for sentence classification
and generation tasks.

However, the empirical success of private fine-tuning pre-trained large models appears to defy the
curse of dimensionality in private models — noisy stochastic gradient descent (NoisySGD) requires
adding noise scaled to

√
d to each coordinate of the gradient in a model with d parameters, ren-

dering it infeasible for large models with millions of parameters. This suggests that the benefits of
pre-training may help mitigate the dimension dependency in NoisySGD. A recent work (Li et al.,
2022) makes a first attempt on this problem — they show that if gradient magnitudes projected
onto subspaces decay rapidly, the empirical loss of NoisySGD becomes independent to the model
dimension. However, the exact behaviors of gradients remain intractable to analyze theoretically,
and it remains uncertain whether the “dimension independence” property is robust across different
fine-tuning applications.

In this work, we explore NoisySGD behaviors from an alternative direction — we employ an ideal-
ized representation of pre-trained models using the neural collapse theory (Papyan et al., 2020a; Fang
et al., 2021) and explore the dimension dependence of NoisySGD in a specific private fine-tuning
setup — fine-tuning only the last layer of the pre-trained model. To elaborate, neural collapse is a
phenomenon observed during representation learning with expressive feature maps, such as those
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employed in the pre-training process. From a high-level perspective, this phenomenon suggests that
the features from the last year are sufficiently distinct to separate two different classes. For binary
classification problems, this means that the feature for the class labeled y = 1 is m1 and the feature
for the other class labeled with y = −1 is −m1. Mathematically, it suggests that the last layer
features of individual classes will converge to a K-simplex equiangular tight frame (ETF) where K
is the number of classes (see Figure 1). Therefore, fine-tuning only the last-layer is equivalent to
training a linear model on top of the K-ETF features.

Figure 1: The figure depicts the evolution of the feature layer outputs of a VGG13 neural network
when trained on the CIFAR10 with three randomly selected classes. Each class is represented by a
distinct color in the small blue sphere. As the training evolves, the last-layer feature mean collapse
onto their class. Credit to Papyan et al. (2020b)

Table 1: A summary of NoisySGD behaviors under different private fine-tuning regimes

Behaviors Perfect collapse Fixed perturbations data normalization
Dimension-independent ✓ ✗ ✓
Robust to Class-imbalance ✓ ✗ ✗

Private fine-tuning is vulnerable to fixed perturbations, but our proposed data normalization can
effectively mitigate these perturbations.

We investigates the dimension dependence of private fine-tuning both theoretically and empirically.
Our contributions are four-folds.

• Theoretically, we show that when feature embeddings exhibit perfect neural collapse, the
accuracy of NoisyGD’s output is dimension-independent.

• Outside of a perfect neural collapse, if features experience minor perturbations (either fixed
or stochastic), the accuracy becomes dimension-dependent again. This highlights that DP
fine-tuning lacks robustness against perturbations.

• Empirically, we show that fine-tuning an ImageNet pre-trained vision transformer is not af-
fected by the last-layer dimension on CIFAR-10. However, we observe a degradation in the
utility-dimension trade-off when perturbations are introduced, aligning with our theoretical
results.

• We adopt data normalization and PCA to address the non-robustness issues of DP fine-
tuning. Specifically, for fixed perturbations, our findings suggest that applying data nor-
malization to private data effectively makes it robust to fixed perturbation, eliminating the
dimension-dependence issue. In the case of random perturbations, we theoretically demon-
strate that PCA is effective to mitigate the dimension dependency.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

In the context of machine learning, DP requires the output of the learning algorithm to be indis-
tinguishable upon addition or removal of an individual training data point. Mathematically, let
D = {zi}ni=1 ⊂ Z be a fixed dataset of size n and consider a randomized algorithm A : Zn → S
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Feature Sample Complexity

Perfect Neural Collapse 2
√

log(1/γ)
√
ρ

β-stochastic perturbation (test) max{√pβ,1}
√

log(1/γ)√
2ρ

β-adversarial perturbation (test) max{pβ,1}
√

log(1/γ)√
2ρ

β-offset perturbation (training) max{√pβ,1}
√

log(1/γ)√
2ρ

β-offset NC + α-Class imbalance max{√pβ,1}
√

log(1/γ)

(1−β+2βα)
√
2ρ

Table 2: Summary of the sample complexity upper bounds of achieving a γ-accuracy of private
learning under ρ-zCDP. We consider both the perfect and perturbed neural collapse setting. p repre-
sents the model dimension.

that maps a dataset D to A(D) in some probability space S. We say A satisfies (ϵ, δ)-DP for some
ϵ ≥ 0 and 0 ≤ δ ≤ 1 if

P[A(D0) ∈ S] ≤ eϵP[A(D1) ∈ S] + δ,

for any event S ∈ S and any neighboring datasets D0 and D1.

Our analysis is based on ρ-zCDP which is defined based on the Rényi divergence between A(D0)
and A(D1). The Rényi divergence of order α̃ > 1 between P and Q is given by

Rα̃(P∥Q) =
1

α̃− 1
log

∫ (
p(x)

q(x)

)α̃

q(x)dx.

For α̃ = 1 or +∞, R1 or R∞ is the limit of Rα̃ as α̃ tends to 1 or +∞. With a little bit abuse of
notations, we define the Rényi divergence between two random variables as the divergence between
their distributions. Then, an algorithm is said to satisfy ρ-zCDP if Rα̃ (A(D0)∥A(D1)) ≤ ρα̃ for
any neighboring datasets D0 and D1 and any 1 < α̃ < ∞.

2.2 NEURAL COLLAPSE AND PRIVATE FINE-TUNING

Private fine-tuning setup. We focus on fine-tuning the last-layer of pre-trained models using the
NoisyGD algorithm, which has consistently achieved state-of-the-art results across both vision and
language classification tasks (Tramer & Boneh, 2020; De et al., 2022). Consider a K-class clas-
sification problem with Z being a probability space. Each data point z ∈ Z can be rewritten as
z = (x, y) with x ∈ Rp being the feature and y = (y1, · · · , yK) ∈ {0, 1}K being generated by the
one-hot encoding, that is y belongs to the k-th class if yk = 1 and yj = 0 for j ̸= k.

Under the regime of finetuning, only the last-layer parameter is trained by NoisyGD, which is linear
in terms of the features. Thus, we consider the model fW (x) = Wx with W ∈ RK×p being the
last-layer parameter to be trained. Let ℓ : RK ×RK → R be a loss function that maps fW (x) ∈ RK

and the label y to ℓ(fW (x), y). For example, for the cross-entropy loss, we have ℓ(fW (x), y) =

−
∑K

i=1 yi log[(fW (x))i].

Neural collapse. Neural collapse demonstrates that the input feature of the last layer converges to
the column of an equiangular tight frame (ETF). Mathematically, an ETF is a matrix

M =

√
K

K − 1
P

(
IK − 1

K
1K1T

K

)
∈ Rp×K ,

where P = [P1, · · · , PK ] ∈ Rp×K is a partial orthogonal matrix such that PTP = IK . Here for a
given dimension d = p or K, we denote Id ∈ Rd the identity matrix and denote 1d = [1, · · · , 1]T ∈
Rd. Denote M = [M1, · · · ,MK ] with Mk being the k-th column of M . We define the classification
problem under perfect neural collapse as follows.

Definition 1 (Classification problem under prefect neural collapse). Let there be K classes. The
distribution P[x = Mk|yk = 1] = 1 for k = 1, ...,K.
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Denote N (0, σ2Id) a Gaussian random variable in Rd with covariance matrix σ2Id. Let θ ∈ Rp be
the vectorization of the parameters. With a little bit abuse of notations, we rewrite ℓi(θ) = ℓ(θ, zi)
the loss function with respect to the data point zi. The noisy gradient descent is defined as follows.

Noisy Stochasitic Gradient Descent (NoisySGD). Let the loss function L(θ) :=
∑n

i=1 ℓ(θ, zi).
The noisy gradient descent algorithm outputs

θt+1 = θt −
ηt
|Bt|

(∑
zi∈Bt

max

{
1,

G

∥∇ℓi(θt)∥2

}
∇ℓi(θt) +N

(
0,

G2

2ρ
Id

))
.

Here Bt is a mini-batch selected uniformly at random in the t-th step and the gradient is clipped by
a constant G > 0 to control the sensitivity of the gradient. The algorithm that runs the above for T
iterations satisfies Tρ-zCDP (Abadi et al., 2016).

When Bt represents the entire training set, the NoisySGD algorithm reduces to a Noisy Gradient
Descent (NoisyGD) algorithm.

Noisy Gradient Descent (NoisyGD). Let the loss function L(θ) :=
∑n

i=1 ℓ(θ, zi). The noisy
gradient descent algorithm outputs

θt+1 = θt − ηt

(
n∑

i=1

max

{
1,

G

∥∇ℓi(θt)∥2

}
∇ℓi(θt) +N

(
0,

G2

2ρ
Id

))
. (1)

Here the gradient is clipped by a constant G > 0 to control the sensitivity of the gradient. The
algorithm that runs the above for T iterations satisfies Tρ-zCDP (Abadi et al., 2016).

3 DP-LEARNING UNDER NEURAL COLLAPSE

In this section, we present the theoretical results for DP-learning under neural collapse. In the
case of perfect neural collapse, we demonstrate that the accuracy is independent of the dimension
p. Subsequently, we delve into the misclassification error analysis for the more realistic imperfect
neural collapse, where the features are perturbed.

3.1 PERFECT NEURAL COLLAPSE

Recall that under perfect neural collapse, we assume P[x = Mk|yk = 1] = 1. Let θ̂ ∈ RKp be
the 1-step output of the noisy GD algorithm equation 1 with 0-initialization and let Ŵ ∈ RK×p be
the matrix derived from θ̂. Denote ŷ = OneHot(Ŵx) ∈ {0, 1}K the predictor after the one-hot
encoding, that is ŷi = 1 if i = argmaxj{(Ŵx)j}, otherwise ŷi = 0.

Theorem 2. Let ŷ be a predictor trained by NoisyGD under the cross entropy loss with zero initial-
ization. Assume that the training dataset is balanced, that is, the sample size of each class is n/K.
For classification problems under neural collapse with K classes, the mis-classification error is

P[ŷ ̸= y] = (K − 1)Φ

(
− n

Kσ

(
1 +

K − 2

K(K − 1)

))
≤ (K − 1)e−

CKn2

Kσ2

with σ2 = G2

2ρ and CK =
(
1 + K−2

K(K−1)

)2
. As a result, to achieve the γ-accuracy, the sample

complexity is O
(√

log(1/γ)
√
ρ

)
.

The theorem offers several insights, we have

1. The error bound is exponentially close to 0 if ρ ≫ G2/n2 — very strong privacy and very
strong utility at the same time.

2. The result is dimension independent — it doesn’t depend on the dimension p.
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3. The result is robust to class imbalance for K = 2, if we apply a re-parameterization of
private data (see more details below).

4. The result is independent of the shape of the loss functions. Logistic loss works, while
square losses also works.

5. The result does not require careful choice of learning rate. Any learning rate works equally
well.

One may refer to Appendix A for the proof of Theorem 2 and corresponding insights. In Theorem
2, we have a class-balance assumption. However, when K = 2 — where the cross entropy loss
aligns with the logistic loss — this assumption can be removed by re-parameterization. Precisely,
an equivalent neural collapse case gives M = [−e1, e1] with e1 = [1, 0, . . . , 0]T . Furthermore,
we consider the re-parameterization with y ∈ {−1, 1}, θ ∈ Rp and the decision rule being ŷ =

sign(θTx). Then, the logistic loss is log(1 + e−y·θT x).
Theorem 3. For the case K = 2, under perfect neural collapse, using the aforementioned re-
parameterization, the sample complexity of one step NoisyGD to achieve 1 − δ accuracy under

ρ-zCDP is O
(√

log(1/δ)
√
ρ

)
.

Our dimension-independent findings can be extended to the domain adaptation context.

Neural Collapse in Domain Adaptation: In many private fine-tuning scenarios, the model is ini-
tially pre-trained on an extensive dataset with thousands of classes (e.g., ImageNet), denoted as K0

class, and is subsequently fine-tuned for a downstream task with a smaller number of classes, denotes
as K ≤ K0. We formalize it under the neural collapse setting as follows. Let M̃ = [M̃1, · · · , M̃K ]

be a matrix where each M̃i is a column of an ETF M ∈ Rp×K0 . With prefect neural collapse, we
assume P[x = M̃k|yk = 1] = 1. The following theorem shows that the dimension-independent
property still holds when private dataset has a subset classes of the pre-training dataset.
Theorem 4. Let ŷ be a predictor trained by NoisyGD under the cross entropy loss with zero ini-
tialization. Assume that the training dataset is balanced. For multi-class classification problems
under neural collapse with K classes, subset of a gigantic dataset with K0 ≥ K classes, the sample

complexity to achieve (1− γ)-accuracy is O
(√

log(1/γ)
√
ρ

)
.

The proof of Theorem 4 is given in Appendix A.3.

3.2 NON-ROBUSTNESS TO PERTURBATIONS IN TESTING DATA

The properties of NoisyGD are rather surprising especially given how delicate DP learning is in gen-
eral without neural collapse. However, let us now show that if we wiggle even a little bit from exact
neural collapse, we lose the amazingly strong performance. In this section, we investigate the effect
of introducing minor perturbations to testing data and observe that NoisyGD is no longer dimension-
free. For simplicity, we investigate the case with K = 2 and consider the re-parameterization intro-
duced in Section 3.1.

Non-robustness to perturbation in test time. Assume that, in prediction time, the feature embed-
dings are perturbed by a small value in ℓ∞, i.e., each feature embedding has the form xi = yie1+v,
where v = [v1, v2, . . . , vp]

T with ||v||∞ ≤ β is a fixed perturbation. Then the following bound
reveals that the dimension dependence shows up and the results becomes very fragile.

1. Fixed perturbation: If we allow the perturbation v to be adversarially chosen, then there
exists v satisfying ∥v∥∞ ≤ β such that the sample complexity bound to achieve (1 − γ)-

accuracy is O
(

Gmax{pβ,1}
√

log(1/γ)√
2ρ

)
.

2. Stochastic Perturbation: If the perturbation is stochastic and is drawn by ran-
domly sampling from {−β, β} with probability 0.5 for each, then we still require

O

(
max{√pβ,1}

√
log(1/γ)√

2ρ

)
samples to achieve 1− γ accuracy.
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3.3 NON-ROBUSTNESS TO PERTURBATIONS IN TRAINING DATA

In this section, we explore scenarios in which the training feature is not pre-trained to perfection and
experiences a fixed offset perturbation. Furthermore, we note that the presence of class imbalance
makes NoisyGD’s output more susceptible to perturbations. The proofs of sample complexities are
given in Appendix C.

Non-robustness to offset in the class-balanced case. Even if we just shift the training feature
vectors away by a constant offset (while keeping the same margin), it makes DP learning a lot
harder. Note that in the class-balanced case, this makes absolutely no difference to the gradient,
when we start from 0 because

∇L(θ) = n

2
· 0.5 · −(−e1 + v) +

n

2
· 0.5 · (e1 + v) =

n

2
e1.

However, for the private learning problem, the sensitivity becomes much larger. If we want clipping
to remain inactive, G needs to be chosen to be larger than

√
1 + ∥v∥22. Or if we still choose G to be

1, then every data point needs to be shrunk to (e1 + v)/
√

1 + ∥v∥22. In either case, if all we know is
that ∥v∥∞ ≤ β, the sample complexity for achieving 1− γ classification error will be proportional
to ∥v∥ = O(

√
pβ), i.e., DP-SGD is no longer dimension-free as demonstrated in the following

proposition.

If both the training data and testing data are shifted by an offset term v, the dimension dependency is

more severe. In fact, the sample complexity to achieve 1−γ accuracy is O
(

max{pβ2,1}
√

log(1/γ)
√
ρ

)
.

Non-robustness to class imbalance. Note that in the above case, it is quite a coincidence that v
gets cancelled out in the non-private gradient. Either when the class is not balanced or when the
initialization is not 0, the offset v will be part of the gradient that overwhelms the signal. Consider
the case where we have αn data points with label −1 and (1 − α)n data points with label 1 for
α ̸= 0.5, and we start at 0, then

∇L(θ) = αn · 0.5 · −(−e1 + v) + (1− α)n · 0.5 · (e1 + v) =
n

2
e1 +

(1− 2α)n

2
v.

Suppose that we have αn data points with label −1 and (1−α)n data points with label 1 for α ̸= 0.5.
If we allow the perturbation v to be adversarially chosen, then there exists v satisfying ∥v∥∞ ≤ β
such that the sample complexity bound to achieve 1 − γ robust classification under neural collapse

is O
(

max{√pβ,1}
√

log 1
δ√

(1−β+2βα)2·ρ

)
.

Random perturbation. Denote {vi}ni=1 ⊆ Rp a sequence of i.i.d. copies of a random vector v. Each
component of v takes on the value of ±β with a probability 0.5. Consider the binary classification
problem with training set {(xi, yi)}ni=1. Here xi = e1 + vi if yi = 1 and xi = −e1 + vi if yi = −1.

Then, the sample complexity to achieve (1− γ)-accuracy is O
(√

pβ2 log(1/γ)
ρ

)
.

4 SOLUTIONS FOR NON-ROBUSTNESS ISSUES

In this section, we explore various solutions to address the dimension dependency arising from
perturbed features. For fixed perturbations, we consider releasing the mean of feature embeddings to
cancel out the perturbation. In the case of random perturbations, we suggest to carry out dimension
reduction.

4.1 ADDRESSING FIXED PERTURBATION: NORMALIZATION AND DIFFERENCING

Consider the training set {(xi, yi)}ni=1 and denote Xk = {xi : (xi, yi) is in the k-th class}. Recall
the case where the feature is shifted by a constant offset v, where one has xi = M̃k = Mk + v for
xi ∈ Xk.
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To deal with the offset v, we pre-process the feature as x̃i = xi − 1
n

∑n
j=1 xj . Then, if the class is

balanced, it holds x̃i = M̃k − 1
K

∑K
j=1 M̃j = Mk for xi ∈ Xk. That is, the perturbations canceled

out.

We still need to bound the sensitivity of the gradient when training with {x̃i, yi}ni=1. If we delete
arbitrary (xj , yj) from the dataset, for the case K = 2 with data balance, then the sensitivity G of
the gradient can be bounded as

G =

∥∥∥∥∥∥
n∑

i=1

yi

xi −
1

n

n∑
j=1

xj

−
∑
l ̸=j

yl

xl −
1

n− 1

∑
m̸=j

xm

∥∥∥∥∥∥
=

∥∥∥∥∥∥xjyj −
yj

n− 1

∑
m̸=j

xm

∥∥∥∥∥∥
2

=
n

n− 1
,

where the second equality is because
∑n

i=1 yi = 0 thanks to the data balance. Since G ≤ 2 is upper
bounded by a dimension-independent constant, the sample complexity to achieve (1− γ)-accuracy

is O
(√

log(1/γ)
√
ρ

)
.

Note that this normalization method is not robust to class imbalance. In fact, if we consider the
class imbalanced case with which we have αn data points with label +1 and the rest (1− α)n data
points with label −1 for some α > 0, then we have x̃i = 2(1 − α)e1 for yi = 1 and x̃i = −2αe1
for yi = −1. In this class-imbalance case, one can recover the feature embedding e1 and −e1 by
considering x̃i

∥x̃i∥2
. Howoever, in this case, the sensitivity remains a constant Gα which, although

independent of the dimension p, still relies on α.

4.2 MITIGATING RANDOM PERTURBATION: DIMENSION REDUCTION

In Abadi et al. (2016), dimension reduction methods such as DP-PCA has been adopted to enhance
the model performance. In this section, we investigate the theory to explain the success of dimension
reduction methods under the regime of neural collapse.

Denote {vi}ni=1 ⊆ Rp a sequence of i.i.d. copies of a random vector v. Recall the binary clas-
sification problem (K = 2) with training set {(xi, yi)}ni=1. Here xi = e1 + vi if yi = 1 and
xi = −e1+vi if yi = −1. As discussed in Section 3.3, even in the class balanced case, the accuracy
is dimension-dependent as the sensitivity of the gradient depends on p.

To deal with the dimension-dependency, we consider the dimension reduction methods. Precisely,
we aim to generate a projection matrix P̂ = [P̂1, · · · , P̂K−1] ∈ Rp×(K−1) and training with {(x̃i =

P̂ xi, yi)}ni=1. It is easy to see that the ”best projection” is such that span(P̂ ) is the same as the space
spanned by {Mi}Ki=1.

In practice, one can not obtain {Mi}Ki=1 and P̂ can be generated by some public dataset
{(x̂i, ŷi)}mi=1, such as the public dataset used in the pre-training process. In Section 4.3, we will
discuss generating the projection matrix by averaging the feature or using PCA. In some scenarios
without a public dataset, one can generate P̂ using the training dataset with some DP algorithms,
such as DP-PCA (Abadi et al., 2016; Liu et al., 2022).

For K = 2, generating the projection matrix means we aim to generate a vector P̂ to approximate
e1. Consider a projection vector P̂ = e1+∆ with some perturbation ∆ satisfying ∥∆∥∞ ≤ β0. The
following theorem says that for β0 < 1

p , the mis-classification error is dimension independent.

Theorem 5. For the NoisyGD trained with {x̃i, yi}, the sample complexity to achieve (1 − γ)-
accuracy is

n = O

√G2
β,β0,p

log 2
γ

Mβ,β0,pρ


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with Gβ,β0,p = 1 + β(1 + β0 + pβ0) and Mβ,β0,p = (1 − β0)
2 − pββ0 − (1 + β0)(β + β0p) −

(β + β0p)(1 + β + β0 + ββ0p). Moreover, if we assume that β0 ≤ 1/p, then the sample complexity
is dimension independent, that is, the effect of dimension p is canceled out by β0.

4.3 CONSTRUCTION OF THE PROJECTION MATRIX

The next question is to construct the projection matrix P̂ = [P̂1, · · · , P̂K−1] ∈ Rp×(K−1). Let
{(x̂i, ŷi)}mi=1 be a set of public dataset. Assume that x̂i = Mk+v̂i for ŷi in the k-th class. Here v̂i are
i.i.d. copies of a bounded zero-mean random variable v ∈ Rp with covariance matrix E[vvT ] = σ2

0I .
We consider the following to methods two generate the projection matrix.

Averaging the features. Denote Xk = {x̂i : ŷi belongs to the k-th class}. Let P̂j =
1

mk

∑
x̂i∈Xk

x̂i with mk being the cardinality of Xk for 1 ≤ j ≤ K − 1. Then, we have ∆ =

P̂j − Mj = 1
mk

∑
x̂i∈Xk

x̂i. By the concentration inequality, we have β0 = ∥∆∥∞ ≤ O
(

σ0√
mk

)
with probability pe−m2

k .

Principle component analysis. Let {P̂j}K−1
j=1 be the the eigenvectors corresponding to K − 1

largest eigenvalues of Σ̂ = 1
m

∑m
i=1 x̂ix̂

T
i . Note that under neural collapse Σ̂ converges to Σ =

e1e
T
1 +ϵ2Ip whose eigenvector corresponding to the largest eigen-value is the feature mean e1. Then,

thanks to the theory of matrix perturbation such as the Davis-Kahan Theorem , the space spanned
by {P̂j}K−1

j=1 can be close to the space spanned by {Mi}Ki=1 if the eigen-gap is large enough. As
β0 is the infinity norm of the perturbations, we use a bound on the infinity norm of eigenvectors
(Fan et al., 2017). We state the results for K = 2 and the proof is similar to (Fan et al., 2017) as
the eigengap here is 1. Precisely, let P̂ be the eigenvector of 1

m

∑m
i=1 x̂ix̂

T
i that corresponds to the

largest eigenvalue. Then, it holds

β0 = ∥P̂ − e1∥∞ ≤ O

(
1√
m

)
with probability O

(
pe−m2

)
.

5 EXPERIMENTS

In this section, we conduct experiments to empirically investigate the behavior of NoisyGD (with
fine-tuning the last layer) under different robustness settings.

5.1 FINE-TUNE NOISYGD WITH SYNTHETIC NEURAL COLLAPSE FEATURE

We first generate a synthetic data matrix X ∈ Rn×d with feature dimension d under perfect neural
collapse. The number of classes K is 10 and the sample size is n = 104. In the default setting, we
assume each class draws n/K data from a column of K-ETF, the training starts from a zero weight
θ and the testing data are drawn from the same distribution as X . The Gaussian noise is selected
such that the NoisyGD is (1, 10−4)-DP.

In Figure 2(a), we observe that an imbalanced class alone does not affect the utility. However,
NoisyGD becomes non-robust to class imbalance when combined with a private feature offset with
||ν||∞ = 0.1. Additionally, it is non-robust to perturbed test data with ||ν||∞ = 0.1.

5.2 FINE-TUNE NOISYSGD WITH REAL DATASETS

In this section, we empirically investigate the non-robustness of neural collapse using real datatsets.
Precisely, we fine-tune NoisySGD with the ImageNet pre-trained vision transformer (Dosovitskiy
et al., 2020) on CIFAR-10 for 10 epochs. Test features in the perturb setting are subjected to Gaus-
sian noise with a variance of 0.1. The vision transformer produces a 768-dimensional feature for
each image. To simulate different feature dimensions, we randomly sample a subset of coordinates
or make copies of the entire feature space.

8
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In Figure 2(b), we observe that while perturbing the testing features degrades the utility of both
Linear SGD and NoisySGD, Linear SGD is generally unaffected by the increasing dimension. On
the other hand, the accuracy of NoisySGD deteriorates significantly as the dimension increases.

102 103

 dimension d

50

60

70

80

90

100

Ac
c 

%

Balanced class
Balanced class + perturbed test
Inbalanced class
Inbalanced class + private offset

(a) Synthetic perfect NC feature X ∈ Rn×d

with K = 10, n = 104 and (1.0, 10−4)-DP. In
the default setting, we assume each class draws
|n/K| data from a column of K-ETF, the training
starts from a zero weight w and the testing data are
drawn from the same distribution as X .
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Linear SGD + perturbed test
NoisySGD ( = 2.0, = 10 5)
NoisySGD + perturbed test ( = 2.0, = 10 5)

(b) CIFAR-10: Test features in the perturb set-
ting are subjected to Gaussian noise with a vari-
ance of 0.1. The vision transformer produces a
768-dimensional feature for each image. To sim-
ulate different feature dimensions, we randomly
sample a subset of coordinates or make copies of
the entire feature space.

Figure 2: Empirical behaviors of NoisyGD under various robustness setting.

6 DISCUSSIONS AND FUTURE WORK

Most existing theory of DP-learning focuses on suboptimality in surrogate loss of testing data. Our
paper studies 0-1 loss directly and observed very different behaviors under perfect and near-perfect
neural collapse. In particular, we have log(1/error) sample complexity rather than 1/error sample
complexity. Though neural collapse is a strong assumption, it suggests that privacy theorists should
look into structures in data and how one can adapt to them. Additionally, our result suggests a
number of practical mitigations to make DP-learning more robust in nearly neural collapse settings.
It will be useful to investigate whether the same tricks are useful for private learning in general even
without neural collapse. Moreover, our results suggest that under neural collapse, choice of loss
functions (square loss vs CE loss) do not matter very much for private learning. Square loss has the
advantage of having a fixed Hessian independent to the parameter, thus making it easier to adapt to
strong convexity parameters like in AdaSSP (Wang, 2018). This is worth exploring.

Noisy-GD and NoisySGD theory suggests that one needs Ω(n2) time complexity to achieve optimal
privacy-utility-trade off in DP-ERM (faster algorithms exist but more complex and they handle only
some of the settings). Our results on the other hand, suggest that when there are structures in the
data, e.g., near-perfect neural collapse, the choice of number of iterations is no longer important,
thus making computation easier.
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A PROOFS OF SECTION 3.1

A.1 PROOF OF THEOREM 2 AND CORRESPONDING RESULTS

Recall an ETF defined by

M =

√
K

K − 1
P

(
IK − 1

K
1K1T

K

)
=

√
K

K − 1

(
P − 1

K

K∑
k=1

Pk1
T
K

)
,

where P = [P1, · · · , PK ] ∈ Rp×K is a partial orthogonal matrix with PTP = IK . Rewrite
M = [M1, · · · ,MK ] . Let the label y = (y1, · · · , yK)T ∈ {0, 1}K be represented by the one-hot
encoding, that is, yk = 1 and yj = 0 for j ̸= k if y belongs to the k-th class.
Definition 6 (Classification problem under Neural Collapse). Let there be K classes. The distribu-
tion P[x = Mk|yk = 1] = 1 for k = 1, ...,K.

Proof of Theorem 2. Let W = [W1, · · · ,WK ]T ∈ RK×p. Consider the output function fW (x) =
Wx ∈ RK . Suppost that yk = 1. Then, the cross-entropy loss is defined by

ℓ(fW (x), y) = − log

(
eW

T
k x∑K

k′=1 e
WT

k′x

)
.

The corresponding empirical risk is

Rn(M,W ) =

K∑
k=1

−nk log

(
eW

T
k Mk∑K

k′=1 e
WT

k′Mk

)
.

Note that

∇W ℓ(fW (x), y) = (SoftMax(fW (x))− y)xT ,

where SoftMax : RK → RK is the SoftMax function defined by

SoftMax(z)i =
ezi∑K
j=1 e

zj
, for all z ∈ RK .

We obtain

∇WRn(M,W ) =

K∑
k=1

nk

(
SoftMax(fW (Mk))− yk

)
MT

k ,

where yk is the label of the k-th class. For zero initialization, we have

SoftMax(f0(Mk)) =
1

K
1K

and

∇W (Rn(M,W ))
∣∣∣
W=0

=

K∑
k=1

nk

(
1

K
1K − yk

)
MT

k . (2)

Now we consider one step NoisyGD from 0 with learning rate η = 1:

Ŵ = −
K∑

k=1

nk

(
1

K
1K − yk

)
MT

k + Ξ,

where Ξ ∈ RK×p with Ξij drawn independently from a normal distribution N (0, σ2).

Consider x = Mk. It holds

f
Ŵ
(x) = ŴMk = −

K∑
k′=1

nk′

(
1

K
1K − yk

′
)
MT

k′Mk + ΞMk.
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Since

ΞMk ∼ N
(
0, σ2∥Mk∥22IK

)
and ∥Mk∥22 = 1

we have

ŴMk ∼ N
(
µn,K , σ2IK

)
,

where µn,K = −
∑K

k′=1 nk′

(
1
K1K − yk

′
)
MT

k′Mk. Note that

MT
k′Mk =

K

K − 1

(
δk,k′ − 1

K

)
.

We obtain

(µn,K)j =

{
n/K, j = k,

− n(K−2)
K2(K−1) , j ̸= k,

for nk′ = n/K (balanced data). By the union bound, the mis-classification error is

(K − 1)P
[
N (n/K, σ2) < N (− n(K − 2)

K2(K − 1)
, σ2)

]
= (K − 1)Φ

(
− n

Kσ

(
1 +

K − 2

K(K − 1)

))

Proof sketches of the insights. Note that in Equation equation 2, the gradient is a linear function of
the feature map thanks to the zero-initialization while for least-squares loss, one can derive a similar
gradient as Equation equation 2. Thus, the proof can be extended to the least squares loss directly.
Moreover, by replacing nk with nkη in equation 2, one can extend the results to any η.

A.2 PROOF OF THEOREM 3

Recall the re-parameterization for K = 2. Precisely, an equivalent neural collapse case gives M =
[−e1, e1] with e1 = [1, 0, . . . , 0]T . Furthermore, we consider the re-parameterization with y ∈
{−1, 1}, θ ∈ Rp and the decision rule being ŷ = sign(θTx). Then, the logistic loss is log(1 +

e−y·θT x).

Proof of Theorem 3. According to the re-parameterization, for the class imbalanced case, we have

θ̂ = −η

n

2
· 0.5 · (−


−1
0
...
0

) + n

2
· 0.5 ·


1
0
...
0

+N (0,
G2

2ρ
Ip)

 = −η



n/2
0
...
0

+N (0,
G2

2ρ
Ip)

 .

The rest of the proof is similar to that of Theorem 2.

For the class-imbalanced case, assume that we have αn data points have with label +1 while the
rest (1− α)n points have label −1. Then, the gradient is

θ̂ = −η

nα

2
· ·(−


−1
0
...
0

) + n(1− α)

2
· ·


1
0
...
0

+N (0,
G2

2ρ
Ip)

 = −η



n/2
0
...
0

+N (0,
G2

2ρ
Ip)

 .

Thus, the same conclusion holds.

12



Under review as a conference paper at ICLR 2024

A.3 PROOF OF THEOREM 4

In this section, we consider a broad pre-training on a gigantic dataset with K0 classes. The down-
stream task is a K-class classification problem with K ≤ K0. Let P = [P1, · · · , PK0

] ∈ Rp×K0 be
a partial orthogonal matrix with PTP = IK0

. Let

M0 =

√
K0

K0 − 1
P

(
IK0

− 1

K0
1K0

1T
K0

)
=

√
K0

K0 − 1

(
P − 1

K0

K0∑
k=1

Pk1
T
K0

)
.

Denote M = [M1, · · · ,MK ] with each Mk being a column of M0. Note that

MT
k′Mk =

K0

K0 − 1

(
δk,k′ − 1

K0

)
.

We have

µn,K : = −
K∑

k′=1

nk′

(
1

K
1K − yk

′
)
MT

k′Mk.

For j ̸= k, we have

(µn,K)j = − n

K

[
1

K
+

K − 1

K(K0 − 1)
− K − 2

K(K0 − 1)

]
= − n(K0 − 2)

K2(K0 − 1)
.

For j = k, it holds

(µn,K)j = − n

K

[
1

K
− 1− K − 1

K(K0 − 1)

]
=

n(K − 1)K0

K2(K0 − 1)
.

By the union bound, the mis-classification error is

(K − 1)P
[
N ((µn,K)k, σ

2) < N ((µn,K)1, σ
2)
]
= (K − 1)Φ

(
nCK,K0

σ

)
with CK,K0

= 1
K

[
K·K0−2

K2(K0−1)

]
.

B RESULTS FOR PURTURBING THE TESTING DATA

B.1 FIXED PERTURBATION

Recall that the output of DP-GD has the form θ̂ = N (−ηn
2 , σ2). One has

θ̂T (e+ v) =
n

2
+N (0,

G2(pϵ2 + 1)

2ρ
).

The sample complexity can be derived similarly as previous sections, which is dimension dependent.

B.2 RANDOM PERTURBATION

Let’s say in prediction time, the input data point can be perturbed by a small value in ℓ∞. If we
allow the perturbation to be adversarial chosen, then there exits v satisfying ∥v∥∞ ≤ β such that

θ̂T (x+ v) =
n

2
+

G√
2ρ

Z1 −
p∑

i=1

|Zi|
Gβ√
2ρ

where Z1, ..., Zn ∼ N (0, 1) i.i.d. Note that the additional term scales as O(pGβ√
ρ ), which can alter

the prediction if p ≍ n even if ρ is a constant (weak privacy).

The number of data points needed to achieve 1 − δ robust classification under neural collapse is

O

(
Gmax{pϵ,1}

√
log(1/δ)√

2ρ

)
.
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C RESULTS FOR PERTURBING THE TRAINING DATA

C.1 FIXED PERTURBATION

Without loss of generality, we assume 0 < α < 1/2 Consider the class imbalanced case with
n−1 = αn and n+1 = (1− α)n. The gradient for θ0 = 0 is

∇L(θ0) = αn · 0.5 · −(−e1 + v) + (1− α)n · 0.5 · (e1 + v) =
n

2
e1 +

(1− 2α)n

2
v.

Thus, the output is

θ̂ = −η

(
n

2
e1 +

(1− 2α)n

2
v +N (0, σ2)

)
The sensitivity is G =

√
1 + ∥v∥2 and σ2 is taken to be G2/2ρ to achieve ρ-zCDP. Moreover, we

have

θ̂T e1 = −n

2
− (1− 2α)n

2
v1 +N (0, σ2).

Thus, the mis-classification error is

P[θ̂e1 > 0] = Φ

(
n [1− (1− 2α) v1]

2σ

)
≤ e−

n2(1−β+2αβ)2ρ

4G2 .

As a result, the sample complexity to achieve 1− γ accuracy is

n = O

√ 4G2 log 1
δ

(1− β + 2βα)2 · ρ


The sensitivity G =

√
1 + ϵ2p here is dimension-dependent.

C.2 RANDOM PERTURBATION

Now we consider the random perturbation. Denote {vi}ni=1 ⊆ Rp a sequence of i.i.d. copies of a
random vector v. Consider the binary classification problem with training set {(xi, yi)}ni=1. Here
xi = e1 + vi if yi = 1 and xi = −e1 + vi if yi = −1. Then, the loss function is L(θ) =
1
n

∑n
i=1 log

(
1 + e−yiθ

T xi

)
. The one-step iterate of DP-GD from 0 outputs

θ̂ = −η

n∑
i=1

(−yixi) +N (0, σ2Ip)

with σ2 = G2/2ρ and G = supvi
√
1 + ∥vi∥2 Assume that vi is symmetric, that is yivi has the

same distribution as −yivi. Then, it holds

n∑
i=1

yixi = ne1 +

n∑
i=1

vi =: µn.

The mis-classification error is now given by

P[θ̂T e1 < 0] = P[N (µT
ne1, σ

2) < 0].

Assume that ∥vi∥∞ = ϵ < 1. Then, we have µT
ne1 ≥ n − ϵn and the sample complexity is

O
(√

4G2 log(1/δ)
(1−ϵ)2ρ

)
. with G =

√
1 + ϵ2p.
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D REMEDY TO NON-ROBUSTNESS

D.1 DETAILS OF THE NORMALIZATION

Consider the case where the feature is shifted by a constant offset v. The feature of the k-th class is

x̃i = xi −
1

n

n∑
i=1

xi = M̃k = Mk + v

with Mk being the k-th column of the ETF M .

The offset v can be canceled out by considering the differences between the features. That is, we
train with the feature M̃k − 1

K

∑K
j=1 M̃j for the k-th class. In fact, let Pk be the k-th column of P

and we have

M̃k − 1

K

K∑
j=1

M̃j = Mk − 1

K

K∑
j=1

Mj

=

√
K

K − 1

(Pk − 1

K

K∑
i=1

Pi

)
− 1

K

K∑
j=1

(
Pj −

1

K

K∑
i=1

Pi

)
=

√
K

K − 1

Pk − 1

K

K∑
j=1

Pj

 = Mk.

D.2 PROOF OF THEOREM 5

Proof of Theorem 5. Consider the case with K = 2 and a projection vector P̂ = (e1+∆) with some
perturbation ∆ = (∆1, · · · ,∆p) such that ∥∆∥∞ ≤ β0 for some 0 < β0 ≪ p. P̂ can be generated
by the pre-training dataset or the testing dataset. Consider training with features x̃i = P̂ xi. Then,
the sensitivity of the NoisyGD is G = supv |P̂T (e1 + v)| = 1 + β + β|∆1| + β(

∑p
j=1 |∆j |) ≤

1 + β(1 + β0 + pβ0). The output of Noisy-GD is then given by

θ̂ = −P̂ ·

(
n∑

i=1

yix̃i

)
+N (0, σ2).

Moreover, for any testing data point e1 + v, define

µ̂n = −

(
n∑

i=1

yix̃i

)
P̂T (e1 + v) = (e1 + V )

T
P̂ P̂T (e1 + v)

with V = 1
n

∑n
i=1 vi =: (V1, · · · , Vp).

We now divide µ̂n into four terms and bound each term separately.

For the first term eT1 P̂ P̂T e1, it holds

eT1 P̂ P̂T e1 = (1 + eT1 ∆1)
2 ≤ (1− β0)

2.

For the second term V T P̂ P̂T e1, we have

V T P̂ P̂T e1 = V1 + V T∆

Note that V1 is the average of n i.i.d. random variables bounded by β. By Hoeffding’s inequality,
we obtain

|V1| ≤
β log 2

γ√
n

, with probability at least 1− γ.
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Similarly, with confidence 1− γ, it holds

|V T∆| ≤
pββ0 log

2
γ√

n
.

The third term eT1 P̂ P̂T v can be bounded as

|eT1 P̂ P̂T v| = (1 +∆1)

 p∑
j=1

vi (1 + ∆i)

 ≤ (1 + β0)

(
β + β0

√
p log

2

γ

)
,

where the last inequality is a result of the Hoeffding’s inequality by assuming that each coordinate
of v are independent of each others. Moreover, without further assumptions on the independence of
each coordinate of v, we have

|eT1 P̂ P̂T v| = (1 +∆1)

 p∑
j=1

vi (1 + ∆i)

 ≤ (1 + β0) (β + β0p) .

Using the Hoeffding’s inequality again, for the last term V T P̂ P̂T (e1 + v), it holds

|V T P̂ P̂T (e1 + v)| ≤
(β + β0

√
p)(1 + β + β0 + ββ0

√
p) log 4

γ√
n

with confidence 1− γ if we assume that all coordinates of v are independent of each other. Without
further assumptions on the independence of each coordinate of v, we have

|V T P̂ P̂T (e1 + v)| ≤
(β + β0p)(1 + β + β0 + ββ0p) log

2
γ√

n
.

E SOME CALCULATIONS ON RANDOM INITIALIZATION

E.1 GAUSSIAN INITIALIZATION WITHOUT OFFSET

For Gaussian initialization ξ = (ξ1, · · · , ξp) ∼ N (0, Ip), we have

θ̂ = ξ − η

n

2
· −e−ξ1

1 + e−ξ1
· (−


−1
0
...
0

) + n

2
· −e−ξ1

1 + e−ξ1
·


1
0
...
0

+N (0,
G2

2ρ
Ip)



= ξ + η

 e−ξ1

1 + e−ξ1
·


n
0
...
0

+N (0,
G2

2ρ
Ip)


The sensitivity is e−ξ1

1+e−ξ1
< 1. Consider x = (−1, 0, · · · , 0)T . We have

θ̂Tx = −ξ1 + η

(
− ne−ξ1

1 + e−ξ1

)
+N (0,

G2

2ρ
) =: µξ1,n +N (0,

G2

2ρ
).

The mis-classification error is

P[θ̂Tx > 0] = Eξ1∼N (0,1)P
[
N
(
µξ1,n,

G2

2ρ

)
> 0

∣∣∣∣ ξ1]
= Eξ1∼N (0,1)

[
Φ

(√
2ρµξ1,n

G

)]
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E.2 GAUSSIAN INITIALIZATION WITH OFF-SET

Denote x1 = −e1 + v and x2 = e1 + v with ∥v∥∞ ≤ β. For the logistic loss ℓ(y, θTx) =

log(1 + e−yθT x), we have

g(θ, y · x) := ∇θℓ(y, θ
Tx) =

e−yθT x

1 + e−yθT x
(−yx).

Denote

g1(θ) = g(θ,−1 · x1) =
eθ

T x1

1 + eθT x1
x1

and

g2(θ) = g(θ, 1 · x2) =
e−θT x2

1 + e−θT x2
(−x2).

If we shift the feature by some vector v, then the loss function is

Rn =
n

2
log(1 + eθ

T x1) +
n

2
log(1 + e−θT x2).

And the gradient is

∇θRn(θ) =
n

2
(g1(θ) + g2(θ)) .

Thus, the output of one-step NoiseGD is given by

θ̂ = θ0 −
ηn

2

[
g1(θ0) + g2(θ0) +N (0, σ2)

]
.

Let µξ = ξ − ηn
2 [g1(ξ) + g2(ξ)] . Then, we have

µT
ξ e1 = ξ1 −

ηneξ
T x1

2 + 2eξT x1
(−1 + v1) +

ηneξ
T x2

2 + 2eξT x2
(1 + v1).

And the mis-classification error is

Eξ

(
Φ

(
−
√
2ρµT

ξ e1

G

))
.
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