
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL GRADUATED ASSIGNMENT FOR MAXIMUM
COMMON EDGE SUBGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Maximum Common Edge Subgraph (MCES) problem is a crucial challenge
with significant implications in domains such as biology and chemistry. Tradi-
tional approaches, which include transformations into max-clique and search-
based algorithms, suffer from scalability issues when dealing with larger instances.
This paper introduces “Neural Graduated Assignment” (NGA), a simple, scalable,
unsupervised-training-based method that addresses these limitations. Central to
NGA is stacking of differentiable assignment optimization with neural components,
enabling high-dimensional parameterization of the matching process through a
learnable temperature mechanism. We further theoretically analyze the learning
dynamics of NGA, showing its design leads to fast convergence, better exploration-
exploitation tradeoff, and ability to escape local optima. Extensive experiments
across MCES computation, graph similarity estimation, and graph retrieval tasks re-
veal that NGA not only significantly improves computation time and scalability on
large instances but also enhances performance compared to existing methodologies.
The introduction of NGA marks a significant advancement in the computation of
MCES and offers insights into other assignment problems. Code is open-sourced
at anonymous.4open.science/r/NGA-10E3.

1 INTRODUCTION

Background. The Maximum Common Edge Subgraph (MCES) problem is a cornerstone task in
combinatorial optimization (Ndiaye & Solnon, 2011), particularly significant within the realms of
biology and chemistry (Ehrlich & Rarey, 2011). As a variant of the broader Maximal Common
Subgraph (MCS) problem (Bunke & Shearer, 1998), MCES stands alongside the Maximal Common
Induced Subgraph (MCIS) in its complexity and utility. Efficiently solving the MCES problem at
scale is of both theoretical and practical significance in this context. For instance, in drug discovery,
identifying maximal common substructures between molecules can reveal shared pharmacological
properties. In cybersecurity, comparing network traffic graphs via MCES enables the detection of
recurring attack patterns (Ehrlich & Rarey, 2011). Established approaches for solving MCES have
been successfully integrated into widely-used cheminformatics libraries such as RDKit (Bento et al.,
2020) and Molassembler (Sobez & Reiher, 2020), which have become indispensable in both industrial
and academic research.

C

C

O

C O

C

O

Figure 1: For two labeled graphs, e.g.
molecules, the maximum common edge
subgraph (MCES) is highlighted in cir-
cle and the node correspondences are
encoded in arrowed lines.

Problem & Existing Challenges. MCES involves iden-
tifying a subgraph that contains the maximum number of
edges common to both input graphs. An example is in
Figure 1. It is inherently NP-complete (Garey & John-
son, 1979), posing significant computational challenges in
terms of scalability and efficiency. Historically, it has been
tackled through transformations into the maximum clique
problem (Bomze et al., 1999) or search-based branch-
and-bound algorithms (Raymond et al., 2002; McCreesh
et al., 2017; 2016). However, these traditional methods
often struggle with large-scale graphs: transformations
can introduce additional computational overhead, while
search-based approaches suffer from exponential scaling, rendering them impractical for complex

1

anonymous.4open.science/r/NGA-10E3


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

instances. This challenging landscape underscores the need for novel techniques that can deliver
efficient and reliable solutions to the MCES problem without compromising accuracy.

Our approach. To address the challenges of MCES, we propose Neural Graduated Assignment
(NGA) – a novel neuralized optimization framework designed to approximate MCES solutions in
polynomial time. Inspired by annealing mechanism in statistical physics (Gold & Rangarajan, 1996),
our approach seeks to find an assignment matrix that identifies node correspondences between the
two graphs, such that the number of preserved edges – i.e., edges that exist between matched node
pairs in both graphs – is maximized. NGA tackles the aforementioned intrinsic challenges in the
MCES problem by: (1) constructing an Association Common Graph (ACG) and formulating MCES
as a Quadratic Assignment Problem (QAP), which ensures the extraction of exact common subgraphs
between input graphs; (2) iteratively updating the learned assignments through a high-dimensional
and learnable temperature parameterization; and (3) optimizing this formulation via unsupervised
training1, thereby eliminating the need for training data. During optimization, the learned assignments
correspond to a current identified common edge subgraph that serves as a lower bound, which is
progressively and monotontically improved toward the optimal MCES. An illustrative example of
such improved lower bound is provided in Figure 9 of the Appendix.

Theory. Despite the simplicity, we theoretically justify the superiority of NGA by showing: (1) how
NGA updates around local optima; (2) the implicit exploration-exploitation mechanism impacts the
optimization trajectory; and (3) the accelerating effect on the convergence. By embedding these
operations within a neural context, NGA achieves strong scalability, adaptability, and seamless
integration with machine learning frameworks. This theoretical underpinning lays the groundwork
for a new class of algorithms capable of rethinking assignment problems from a neural perspective.

Results & Contribution. To validate the efficacy of our approach, we conduct a series of challenging
experiments across various settings, including large-scale MCES computation, graph similarity
estimation, and structure-based graph retrieval. The results consistently demonstrate the superior effi-
ciency and performance of our method compared to existing ones. These findings not only highlight
the potential of our approach in advancing MCES computation but also suggest its applicability to
diverse domains. We summarize our contributions as follows:

• A novel and strong approach. We for the first time formulate the MCES problem via the
construction of an ACG, and based on this formulation, we propose NGA – the first neural-
style algorithm to approximate the MCES solution efficiently in polynomial time without
relying on exhaustive exploration of the solution space, delivering superior performance.

• Training-data-free. NGA operates in a fully unsupervised manner, eliminating the need for
supervision signals. In cases where enumeration or search of the exact solution becomes
computationally infeasible, our approach provides efficient approximations.

• Theoretical analysis. We provide the first theoretical analysis on the behavior of dynamic
and parameterized temperature in NGA, shedding light on its behavior at local optima,
convergence properties and adaptive dynamics.

• Interpretability, scalability, and versatility. NGA is inherently interpretable, producing
explicit MCES structures. It also exhibits strong scalability, making it suitable for large-
scale graph data. Furthermore, NGA can be extended to tasks such as graph similarity
computation and graph retrieval, highlighting its broad applicability.

2 RELATED WORK

Efforts on Solving MCS. MCS has been extensively studied in recent research, either by reduction
to the maximum clique problem (McCreesh et al., 2017) or by directly identifying matching pairs
within the original problem formulation. McSplit (McCreesh et al., 2017), which belongs to the
latter category, introduces an efficient branch-and-bound algorithm leveraging node labeling and
partitioning techniques to reduce memory and computational requirements during the search. Building
on this, GLSearch (Bai et al., 2021) employs a GNN-based Deep Q-Network to select matched node
pairs instead of relying on heuristics, significantly improving search efficiency. For the MCES

1Unsupervised training means that no information about the MCES itself—such as what the MCES is or the
MCES size—is required during training, including in the loss function (Schuetz et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

problem, RASCAL (Raymond et al., 2002) proposes a branching-based search method to solve
its maximum clique formulation, incorporating several heuristics to accelerate the search process.
Additionally, MCES has been formulated as an integer programming problem and solved using a
branch-and-cut enumeration algorithm (Bahiense et al., 2012). However, these methods suffer from
high computational costs, making them less scalable for solving challenging MCS problems.

Efforts on Graph Similarity Computation and Graph Retrieval. Recent efforts have explored
the application of MCS in various tasks, particularly in graph similarity computation and graph
retrieval. For assessing graph similarity, one established approach is the use of Graph Edit Distance
(GED) (Zhao et al., 2013; Zheng et al., 2013). Alternatively, MCS provides a robust method for
evaluating the structural similarity of graphs, especially in molecular applications. For example,
SimGNN (Bai et al., 2019) integrates node-level and graph-level embeddings to compute a similarity
score, while GMN (Li et al., 2019) introduces a novel cross-graph attention mechanism for learning
graph similarity. Similarly, INFMCS (Lan et al., 2024) presents an interpretable framework that
implicitly infers MCS to learn graph similarity. In the domain of graph retrieval, where the goal is
to locate the most relevant or similar graphs in a database based on a query graph, various model
architectures have been proposed. For instance, ISONET (Roy et al., 2022b) employs subgraph
matching within an interpretable framework to calculate similarity scores. Furthermore, XMCS (Roy
et al., 2022a) proposes late and early interaction networks to infer MCS as a similarity metric, offering
competitive performance in terms of both accuracy and computational speed.

3 PRELIMINARY

In this section, we briefly review the background of this topic, as well as elaborate on the notations.
Additional background can be found in Appendix A.

Let G = (V, E ,A,H,E) be an undirected and labeled graph with n nodes, where V is the node set,
E is the edge set, A ∈ {0, 1}n×n is the adjacency matrix, H ∈ Rn×· is the node feature matrix, and
E ∈ Rn×n×· is the edge feature matrix. In a labeled graph, nodes and edges features refer to their
labels. For example, in molecular graphs, atom types and bond types are considered as labels.

Maximum Common Edge Subgraph. Two graphs, G1 and G2, are isomorphic if there exists a
bijective mapping between their nodes such that any two nodes in G1 are connected by an edge if and
only if their corresponding images in G2 are also connected. A common subgraph of two graphs G1

and G2 is a graph G12 that is isomorphic to a subgraph of G1 and a subgraph of G2. Although there
are possibly many common subgraphs between two graphs, our focus will be on the MCES (Bahiense
et al., 2012), which is a subgraph with the maximal number of edges common to both G1 and G2.

Quadratic Assignment Problem. Given two graphs G1 and G2, the goal is to find a hard assign-
ment matrix P ∈ {0, 1}n1×n2 that maximizes a compatibility function while adhering to row and
column constraints. The optimization problem is formalized as:

maxP vec(P)⊤Avec(P)
s.t. P ∈ {0, 1}n1×n2 ,P1n2

= 1n1
,P⊤1n1

≤ 1n2
,

(1)

where A is the affinity matrix derived from the structural information of G1 and G2 and 1n is a
column vector of length n whose elements are all equal to 1. A common practice is to relax P into
a soft assignment matrix S ∈ [0, 1]n1×n2 , allowing continuous values, and optimizes the following
relaxed objective:

max
S

vec(S)⊤Avec(S) (2)

4 METHODOLOGY

4.1 OVERVIEW

The MCES problem is intricately connected to graph matching, as both involve finding correspon-
dences between the structures of two graphs. Specifically, the MCES problem aims to find the largest
subgraph that is isomorphic to subgraphs in both input graphs. This can be viewed as a special case of

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Parameterize:

Sinkhorn

C

C

O

C

C O O

C

C

O

OCC

1

2

3

1a 1b 1c

2a 2b 2c

3a 3b 3c

O

a b c d

1d

2d

3d

a b c d

1

2

3

1

2

3

a

b

c

d

…

0
GNN :





ACG:



(1) (1)
1 2l

 =W W

Parameterize:

( ) ( )
1 2
m m

l
 =W W

m components

Association Common Graph Construction

(Sec. 4.2.1)

Initial Assignment (Sec. 4.2.1)

Update Assignment with NGA (Sec. 4.2.2)

Sinkhorn

Figure 2: An overview of Neural Graduated Assignment.

partial graph matching, where the matched pairs of nodes and edges constitute common subgraphs.
Typically, graph matching seeks to find an assignment matrix P as follows (Grohe et al., 2018):

argminP
∥∥A1 −PA2P

⊤∥∥2
F
. (3)

However, a prominent challenge for the MCES of labeled graphs is ensuring that the corresponding
nodes and edges in the common subgraphs have compatible labels, which are not considered in typical
graph matching problems. One possible solution would be to add a penalty term for incompatible
labels. However, directly optimizing Eq. (3) with penalty term is intractable, as it cannot guarantee
that the obtained subgraph is a valid common subgraph. To this end, we present a novel approach
centered around the construction of an ACG, which enables the extraction of exact common subgraphs.
Building on this framework, we propose a new formulation for the MCES problem. This formulation
leverages the ACG and facilitates optimization by learning an assignment between the nodes of the
two input graphs, resulting in an efficient and scalable solution for MCES computation. An overview
of our method is shown in Fig. 2. In the following, Section 4.2.1 presents the construction of the ACG
and formulates the MCES problem as a QAP, Section 4.2.2 describes the proposed NGA method, and
Section 4.2.3 introduces the Gumbel sampling strategy used during inference.

4.2 UNSUPERVISED TRAINING OF MCES

4.2.1 ACG FOR LEARNING THE CORRESPONDENCES

To efficiently explore solutions of MCES, we proposed to construct an ACG, where compatible nodes
and edges can be identified. We define the ACG of G1 and G2 as G1♢G2. It is constructed on the
node set V(G1♢G2) = V(G1) × V(G2) where the respective node labels are compatible and two
nodes (ui, vi) and (uj , vj) being adjacent whenever the three conditions are met together

(ui, uj) ∈ E(G1), (vi, vj) ∈ E(G2), ω(ui, uj) = ω(vi, vj), (4)

where ω(ui, uj) = ω(vi, vj) indicates that the labels of nodes and edges are compatible. The design
of ACG leads to a well-behaved property as follow.
Proposition 1. Denote the node set of G1♢G2 as V♢ = {(u, v)|u ∈ V(G1), v ∈ V(G2)}. Consider
a set of subgraphs of G1♢G2 where each node of G1 and G2 is selected at most once, i.e. any two
nodes (ui, vi) and (uj , vj) in this set satisfy ui ̸= uj and vi ̸= vj . Any subgraph in this set is a
valid common subgraph of G1 and G2, and finding the MCES of two graphs is reduced to finding the
largest subgraph in this set.

Since only the common edges are included in the ACG, Proposition 1 shows that we can always extract
common subgraphs from the constructed ACG. Besides, the use of ACG allows any assignment to be
mapped to a common subgraph, thereby enhancing interpretability. Formal proof of Proposition 1
can be found in Appendix B. Considering the adjacency matrix A♢ of G1♢G2 as the affinity matrix,
we can then give the QAP formulation of objective J for MCES as:

J(S) = vec(S)⊤A♢vec(S). (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We model the initial node-to-node correspondence in close analogy to related approahches (Bai et al.,
2019; Fey et al., 2019) by computing the node similarities of input graphs G1 and G2. Specifically,
given latent node embeddings H1 = Ψθ0(A1,X1,E1) and H2 = Ψθ0(A2,X2,E2) computed by a
shared neural network Ψθ0 , the initial soft correspondences are obtained as

Ŝ(0) = H1H
⊤
2 ∈ Rn1×n2 , S(0) = Sinkhorn(Ŝ0) ∈ [0, 1]n1×n2 , (6)

where Sinkhorn(·) is a normalization operator to obtain double-stochastic assignment matri-
ces (Sinkhorn & Knopp, 1967). In our implementation, Ψθ0 is a GNN to obtain permutation
equivariant node representations (Hamilton et al., 2017).

4.2.2 NEURAL GRADUATED ASSIGNMENT

Since many nodes have the same labels in molecular graphs, the initial assignment is a soft probability
distribution where many entries have moderate probabilities, which leaves significant ambiguity
in the assignments. Traditional assignment-based optimization methods often rely on a predefined
temperature parameter β to iteratively refine solutions by controlling the scale of probabilities or
soft assignments. However, using a fixed or manually scheduled temperature introduces two key
limitations: (1) Manual Tuning Overhead: Selecting an optimal schedule or fixed value for β often
requires exhaustive tuning, depending on the specific task or dataset. (2) Limited Adaptability: A
fixed or scheduled β is static and cannot dynamically adapt to the complexity of individual problems
or local structures within data.

To address these limitations, we propose NGA, an end-to-end trainable framework in which we use
learnable parameters as the temperature schedule. The NGA architecture is summarized in Alg. 1,
and the overall training and inference framework are summarized in Alg. 2. NGA maintains the
iterative refinement process. The key innovation lies in replacing the scalar temperature parameter
with a parameterized form: βl = W

(l)⊤
1 W

(l)
2 at the lth iteration layer, where W

(l)
1 ,W

(l)
2 ∈ Rd×1

are learnable weights. By allowing the model to optimize temperature directly as part of the learning
process, our method adapts dynamically to the structure of the problem and the stage of optimization,
eliminating the dependence on manual tuning while achieving superior performance.

Algorithm 1 NGA Architecture

1: Input: The adjacency matrix of ACG A♢,
inital assignment matrix S(0), number of iter-
ations m, learnable parameters W(l)

1 , W(l)
2

for l ∈ {1, ...,m}
2: Output: refined assignment matrix S
3: for l = 1 to m do
4: vec(S(l))← A♢vec(S

(l−1))

5: S(l) ← exp((W
(l)⊤
1 W

(l)
2 )S(l))

6: S(l) = Sinkhorn(S(l))
7: end for
8: Output S = S(m)

Algorithm 2 Model Training and Inference

1: Input: Molecular graphs G1 and G2

2: Output: MCES of G1 and G2

3: Build ACG G1♢G2

4: // Training Stage
5: for epoch = 1, 2, 3, ... do
6: Init assignment S(0) with Eq. (6)
7: Refine S(0) to S with Alg. 1
8: Backpropagation w.r.t. loss in Eq. (5)
9: end for

10: // Inference Stage
11: Decode P with P = Hungarian(S)
12: Get MCES w.r.t. P via Eq. (7)

4.2.3 GUMBEL SAMPLING FOR OPTIMIZATION

Since S is a relaxed from P, the Hungarian algorithm (Burkard et al., 2012) is commonly employed
as a deterministic post-processing step to bridge the gap between them, i.e. P = Hungarian(S). The
adjacency matrix of predicted common subgraph Apred is obtained by:

Apred =
(
vec(P)vec(P)⊤

)
⊙A♢, (7)

where ⊙ is the Hadamard product of matrices.

From a probabilistic perspective, S represents a latent distribution of assignment matrices. Assignment
with the highest probability is selected by Hungarian algorithm. However, there may be better
solutions within the distribution, especially when the quality of solutions can be easily assessed.
Therefore, we switch to Gumbel-Sinkhorn (Mena et al., 2018) by substituting Eq. (6) with

S(0) = Sinkhorn(Ŝ(0) + g), (8)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where g is sampled from a standard Gumbel distribution with the cumulative distribution function.
The Gumbel term models the distribution of extreme values derived from another distribution. With
Eq. (8), we can sample repeatedly a batch of assignment matrices from the original distribution in a
differentiable way. This property actively benefits solution space exploration and makes it easier to
find the optimal solution. These sampled assignment matrices are discretized by Hungarian algorithm
and evaluated by Eq. (7). The best-performing solution among them is chosen as the final solution.
The balance between exploration and speed can be adjusted by tuning the number of Gumbel samples.

5 THEORETICAL ANALYSIS

In this section, we investigate the behavior of NGA from theoretical aspects, particularly answering
subsequent essential questions: 1) How NGA escapes from local optima in Theorem 1; 2) Why
NGA demonstrates better convergence and performance over standard GA in Proposition 2. Upon
these theoretical findings, we argue that NGA offers an adaptive exploration-exploitation mechanism,
leading to well-behaved learning dynamics.

Theorem 1. Given a local optimum S(l), the change ∆J = J(S(l+1))− J(S(l)) satisfies

∆J =
1

2
(
∑
i

λi −
∑
j

µj) + βl ·Var(h) +O(|βl|2), (9)

where hij = [A♢vec(S
(l))]ij , Var(h) is the variance, J(S(l)) = vec(S(l))⊤A♢vec(S

(l)) is the
objective, λi and µj are the Lagrange multipliers.

Proposition 2. Under typical gradient descent conditions where the gradient pushes βl in a consistent
direction for multiple iterations, the product parameterization βl = W⊤

1 W2 can adaptively adjust
the learning rate and induces an accelerating effect on the magnitude of updates to βl.

The proof of Theorem 1 can be found in Appendix E. This theorem quantifies the objective change
around a local optima w.r.t. βl. In general, ∆J has an additional constant term related to Lagrange
multipliers, but still decreases through the variance term when βl < 0. This demonstrates that NGA’s
update is capable of escaping local optimum under mild conditions.

Another contributing factor to the effectiveness of NGA lies in the gradient update aspect. As shown
in Proposition 2, the product parameterization βl = W

(l)⊤
1 W

(l)
2 can adaptively adjust the learning

rate and leads to faster convergence than scalar parameterization. This makes the training process
more stable and efficient. This adaptive behavior is particularly beneficial when addressing complex,
high-dimensional data. Detailed theoretical and empirical validations can be found in Appendix D.2.

We then analyze how switching βl positive and negative interchangeably can help the optimization.
To this end, we make the following definition:

Definition 1. In Alg. 1, let βl = W
(l)⊤
1 W

(l)
2 , then we define two phases according to the value of

βl: 1. Exploration phase: E = {l|βl < 0}; 2. Exploitation phase: S = {l|βl > 0}.

Appendix D.1 provides a proof explaining why the sign of βl represents these two processes,
respectively. Imposing a negative and learnable βl in NGA grants the model the ability to balance
exploration and exploitation. By allowing the two phases, NGA effectively incorporates exploration
and exploitation into the optimization, avoiding premature convergence and enabling the identification
of better solutions.

6 EXPERIMENTS

We evaluate the performance of our proposed method on MCES problems by comparing it with
several baselines across three widely used molecular datasets, covering diverse graph structures. Our
results show that NGA significantly outperforms search-based methods in computational efficiency,
achieving comparable or better accuracy while reducing runtime by several orders of magnitude. This
allows our method to scale to larger graphs that are infeasible for traditional search, highlighting its
effectiveness and scalability in real-world applications.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Beyond solving the MCES problem, we further examine its practical impact on two related tasks:
graph similarity computation and graph retrieval. By effectively solving MCES, our method achieves
strong performance in these tasks, offering a reliable basis for similarity measurement and retrieval.
This confirms that NGA not only addresses MCES effectively but also benefits related applications.

6.1 EXPERIMENTAL SETUP

Baselines. The MCES problem is NP-complete (Garey & Johnson, 1979; Raymond et al., 2002),
meaning no known polynomial-time solutions exist. While search-based algorithms can find exact
solutions with enough computational resources, they quickly become infeasible for large graphs.
Non-search-based methods aim to approximate solutions efficiently without exhaustive search. We
compare our method with search-based RASCAL (Raymond et al., 2002) and Mcsplit (McCreesh
et al., 2017), and use Graduated Assignment (GA) (Rangarajan et al., 1996b; Gold & Rangarajan,
1996) and Gurobi solver as baselines since we can formulate MCES as a QAP. Similar to these solvers,
our NGA tries to solve each MCES instance case by case. We also adapt supervised learning method
NGM (Wang et al., 2021) and unsupervised learning method GANN-GM (Wang et al., 2023) for
comparison. For the graph similarity and retrieval tasks, we compare with state-of-the-art baselines:
NeuroMatch (Lou et al., 2020), SimGNN (Bai et al., 2019), GMN (Li et al., 2019), XMCS (Roy et al.,
2022a), and INFMCS (Lan et al., 2024). Appendix C.3 details baseline choices and configurations.

For fair comparisons, supervised learning approaches are trained for a total of 200 epochs. This
duration is selected to provide sufficient learning time for the models to converge, ensuring robust
evaluation of their performance. For unsupervised learning and search methods, we follow previous
works (Bai et al., 2021) to set a practical time budget of 60 seconds for each instance. This constraint
reflects real-world scenarios where computation time is limited and must be optimized for efficiency.
While search methods are capable of identifying exact solutions given unlimited computational
resources, this assumption is impractical for handling large graph pairs in real-world applications.

Datasets. To evaluate our model across diverse domains, we use several graph datasets commonly
employed in graph-related tasks: AIDS and MCF-7 from TU Dataset (Morris et al., 2020), and
MOLHIV from OGB (Hu et al., 2020), covering various molecular structures. Ground truth is
obtained using exact solvers (Raymond et al., 2002), with solution time and dataset statistics in
Appendix C.1. While exact MCES solutions are feasible for small graphs, they become intractable
for large ones. Unlike prior works that limit graphs to 15 nodes (Bai et al., 2019; Lan et al., 2024),
we focus on harder instances by selecting molecules with over 30 atoms, and randomly sample 1000
graph pairs per dataset for MCES and similarity evaluation. For graph retrieval, we use 100 query
and 100 target graphs, yielding 10,000 query-target pairs. This setup enables a realistic assessment of
scalability and efficiency.

Evaluation. For MCES and graph similarity tasks, we split the dataset into 80% training, 10%
validation, and 10% testing. For graph retrieval, this split is applied to the query graphs. Supervised
methods are trained on the training set, with hyperparameters tuned on the validation set and evaluated
on the test set. Other methods are directly evaluated on the test set. Since all methods yield common
subgraphs, MCES accuracy is measured by the percentage of the common graph size, defined as:

Acc =
|E (CS(G1, G2)) |
|E (MCES(G1, G2)) |

. (10)

As for the graph similarity computation, the Johnson similarity (Johnson, 1985) is calculated as

sim(G1, G2) =
(|V (G12)|+ |E (G12)|)2

(|V (G1)|+ |E (G1)|) · (|V (G2)|+ |E (G2)|)
, (11)

where G12 is the MCES between graphs G1 and G2, and we use Root Mean Square Error (RMSE)
as the evaluation metric. For graph retrieval, we evaluated all models using three metrics: Mean
Reciprocal Rank (MRR), Precision at 10 (P@10), and Mean Average Precision (MAP). These metrics
collectively provide insights into the retrieval capability from various perspectives.

6.2 SOLVING MCES PROBLEMS

The key property of NGA is its ability to approximate solutions in polynominal time complexity.
As shown in Table 1, our model outperforms baselines on all datasets. Our results are very close to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AIDS MOLHIV MCF-7

M
ol

ec
ul

e
1

M
ol

ec
ul

e
2

Figure 3: Visualization of MCES with NGA. Matched atoms and bonds are highlighted in red, with
circles of the same color indicating correspondences.

optimal in all datasets, which shows that NGA can effectively approximate solutions within limited
time. We have additionally analyzed how often the MCES found by NGA matches the optimal
solution in Appendix G.1. The supervised graph matching method does not perform well, possibly
because the MCES problem is inherently multi-modal, meaning it has multiple equally optimal
solutions. It is thus difficult for supervised learning method to learn some patterns from multiple
ground truth node matching signals. The search method, on the other hand, suffers from scalability
issues due to the NP-complete nature of the MCES problem. In the following part, we provide several
case studies that investigate the effects of increasing the time budget on performance.

We selected several cases for detailed analysis. The largest MCES solution found thus far as time
grows is illustrated in Figure 8 (in Appendix G.2). The visualizations of the MCES structures
identified by our NGA method and the second-best method, RASCAL, are shown in Figure 3 and
Figure 10 (in Appendix G.2). From these figures, it is evident that our method can find better solutions
in less time, demonstrating its superiority over other competitive baselines.

Table 1: Results of Accuracy (%) ↑ for MCES.

Dataset AIDS MOLHIV MCF-7

RASCAL 90.67 88.74 90.26
FMCS 60.63 67.99 71.54
Mcsplit 61.32 72.74 69.23
GLSearch 43.47 41.12 42.08
NGM 33.34 52.21 42.38
GANN-GM 49.76 72.18 63.47
GA 70.99 71.09 72.92
Gurobi 74.52 78.67 80.76
NGA (ours) 98.64 99.20 97.94

Table 2: Results of MSE (×10−3) ↓ for graph
similarity.

Dataset AIDS MOLHIV MCF-7

NeuroMatch 13.92 19.17 17.34
SimGNN 15.42 14.38 20.29
GMN 39.38 29.77 24.03
XMCS 36.42 21.47 32.22
INFMCS 25.18 16.39 31.12
NGA (ours) 1.13 0.66 0.99

6.3 GRAPH SIMILARITY COMPUTATION AND GRAPH RETRIEVAL

In the graph similarity computation experiments, we compare NGA with several baselines. As shown
in Table 2, our method surpasses other compared methods by an order of magnitude. Although some
methods, such as XMCS and INFMCS, learn similarity by implicitly inferring the size of MCES,
they disregard the detailed structure of the MCES solution. Our method can learn to generate precise
approximation of the MCES structure, leading to lower similarity computation errors.

The graph retrieval results are summarized in Table 3, where three evaluation metrics are employed
to assess performance from different perspectives. As another application of MCES, graph retrieval
emphasizes the relative similarity between graphs rather than the precise computation of graph
similarity. However, in cases where a group of target graphs share similar characteristics with
the query graph, distinguishing their differences may require analyzing the details of common
substructures. The experimental results demonstrate that our method is stable in retrieval scenarios.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of graph retrieval results in terms of three evaluation metrics.

Mean Reciprocal Rank (MRR) ↑ Precision at 10 (P@10) ↑ Mean Average Precision (MAP) ↑
AIDS MOLHIV MCF-7 AIDS MOLHIV MCF-7 AIDS MOLHIV MCF-7

NeuroMatch 0.676 0.540 0.393 0.870 0.870 0.730 0.911 0.779 0.739
SimGNN 0.419 0.207 0.468 0.870 0.830 0.850 0.875 0.726 0.703
GMN 0.238 0.291 0.279 0.400 0.310 0.540 0.683 0.699 0.652
XMCS 0.575 0.192 0.530 0.850 0.770 0.730 0.890 0.712 0.753
INFMCS 0.560 0.261 0.324 0.800 0.540 0.840 0.914 0.489 0.788
NGA (ours) 0.844 0.806 0.803 0.890 0.980 0.890 0.974 0.951 0.966

0 2 4 6 8
The number of iterations in NGA

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

AIDS
MOLHIV
MCF-7

(a) Varying number of iteration m

1 2 4 8 16 32 64 128
Hidden dimension of learnable weights

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

AIDS
MOLHIV
MCF-7

(b) Varying hidden dimension d

Figure 4: How NGA performs on MCES with different parameters.

6.4 MORE ANALYSIS

In this section, we first analyze the hyperparameters to better understand their impact on the per-
formance of NGA. Details of the ablation study are provided in Appendix F, and the analysis of
the number of Gumbel samples is shown in Appendix G.4. Here, we summarize the impact of the
number of iterations m and the hidden dimensions d in Figure 4.

Whenm = 0 , our method excludes the NGA process entirely, relying solely on similarities computed
by the graph feature encoder (Eq. (6)). In this scenario, we observe a sharp decrease in performance,
highlighting the critical role of NGA in achieving strong results. Unlike traditional GA, which
requires dozens of iterations to converge, our method delivers competitive performance with as few as
two iterations (layers). This demonstrates that the parameterization of temperature is more effective
than employing a static parameterization.

Moreover, the hidden dimension d significantly affects the expressiveness of our model. When the
hidden dimension d is small, the expressiveness is rather limited. As evidenced in Figure 4(b) when
d = 1, the performance of NGA is comparable to that of traditional method. However, as d increases,
the performance steadily improves until it saturates at higher dimensions. This further validates the
effectiveness of the temperature parameterization in NGA in accordance with Proposition 2. Based
on this analysis, we set m = 4 and d = 32 in all experiments to strike a balance between performance
and computational efficiency.

To broaden the scope and potential impact of our work, we have conducted additional experiments on
a subset of QAPLIB (Burkard et al., 1997) instances across different categories in Appendix G.5,
where our method exhibits competitive performance compared with baseline methods.

7 CONCLUSION

This study introduces Neural Graduated Assignment (NGA), a novel approach to the Maximum Com-
mon Edge Subgraph (MCES) problem, of which the scalability remains a challenge for traditional
methods. Drawing inspirations from annealing mechanism in statistical physics, NGA employs a
neural architecture to iteratively refine the assignment process, leveraging high-dimensional learnable
parameters to improve computational efficiency, scalability, and adaptive problem-solving. Empirical
results show that NGA significantly outperforms prior methods in both runtime and accuracy, demon-
strating strong performance across tasks like graph similarity and retrieval. The introduction of this
versatile method offers substantial contributions to the understanding and resolution of assignment
problems, suggesting pathways for future exploration and innovation in related areas.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive set of resources. The
complete source code, including scripts for result evaluation, is made available through an anony-
mous link. A detailed README file offers step-by-step guidance for setting up the computational
environment and reproducing the experiments described in this paper.

This research focuses on methodological and technical contributions. It does not involve human
subjects, personal data, or sensitive information. We are not aware of any direct ethical concerns
arising from this work.

REFERENCES

Laura Bahiense, Gordana Manić, Breno Piva, and Cid C De Souza. The maximum common edge
subgraph problem: A polyhedral investigation. Discrete Applied Mathematics, 160(18):2523–2541,
2012.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. In Proceedings of the twelfth ACM
international conference on web search and data mining, pp. 384–392, 2019.

Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. Glsearch: Maximum common subgraph
detection via learning to search. In International Conference on Machine Learning, pp. 588–598.
PMLR, 2021.

A Patrı́cia Bento, Anne Hersey, Eloy Félix, Greg Landrum, Anna Gaulton, Francis Atkinson, Louisa J
Bellis, Marleen De Veij, and Andrew R Leach. An open source chemical structure curation pipeline
using rdkit. Journal of Cheminformatics, 12:1–16, 2020.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. The maximum clique
problem. Handbook of Combinatorial Optimization: Supplement Volume A, pp. 1–74, 1999.

Horst Bunke and Kim Shearer. A graph distance metric based on the maximal common subgraph.
Pattern recognition letters, 19(3-4):255–259, 1998.

Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment problems: revised reprint.
SIAM, 2012.

Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem
library. Journal of Global optimization, 10(4):391–403, 1997.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph matching. In
Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part V 11, pp. 492–505. Springer, 2010.

Diane J Cook and Lawrence B Holder. Substructure discovery using minimum description length
and background knowledge. Journal of Artificial Intelligence Research, 1:231–255, 1993.

Surnjani Djoko, Diane J. Cook, and Lawrence B. Holder. An empirical study of domain knowledge
and its benefits to substructure discovery. IEEE Transactions on Knowledge and Data Engineering,
9(4):575–586, 1997.

Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review. Wiley Interdisciplinary Reviews: Computa-
tional Molecular Science, 1(1):68–79, 2011.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M Kriege. Deep graph
matching consensus. In International Conference on Learning Representations, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marcelo Fiori, Pablo Sprechmann, Joshua Vogelstein, Pablo Musé, and Guillermo Sapiro. Robust
multimodal graph matching: Sparse coding meets graph matching. Advances in neural information
processing systems, 26, 2013.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph matching. IEEE
Transactions on pattern analysis and machine intelligence, 18(4):377–388, 1996.

Martin Grohe, Gaurav Rattan, and Gerhard J Woeginger. Graph similarity and approximate isomor-
phism. arXiv preprint arXiv:1802.08509, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, 40(3), 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification. In The Thirteenth
International Conference on Learning Representations, 2025.

Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Mirror, mirror of the flow: How does regularization
shape implicit bias? In Forty-second International Conference on Machine Learning, 2025.

Mark Johnson. Relating metrics, lines and variables defined on graphs to problems in medicinal
chemistry. In Graph theory with applications to algorithms and computer science, pp. 457–470,
1985.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Chris Kolb, Tobias Weber, Bernd Bischl, and David Rügamer. Deep weight factorization: Sparse
learning through the lens of artificial symmetries. In The Thirteenth International Conference on
Learning Representations, 2025.

Zixun Lan, Binjie Hong, Ye Ma, and Fei Ma. More interpretable graph similarity computation via
maximum common subgraph inference. IEEE Transactions on Knowledge and Data Engineering,
2024.

Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using
pairwise constraints. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, volume 2, pp. 1482–1489. IEEE, 2005.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In International conference on machine
learning, pp. 3835–3845. PMLR, 2019.

Zhiyuan Li, Tianhao Wang, Jason D Lee, and Sanjeev Arora. Implicit bias of gradient descent
on reparametrized models: On equivalence to mirror descent. Advances in Neural Information
Processing Systems, 35:34626–34640, 2022.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. Advances in Neural Information Processing Systems,
36:49555–49578, 2023.

Ciaran McCreesh, Samba Ndojh Ndiaye, Patrick Prosser, and Christine Solnon. Clique and constraint
models for maximum common (connected) subgraph problems. In International Conference on
Principles and Practice of Constraint Programming, pp. 350–368, 2016.

Ciaran McCreesh, Patrick Prosser, and James Trimble. A partitioning algorithm for maximum
common subgraph problems. 2017.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Samba Ndojh Ndiaye and Christine Solnon. Cp models for maximum common subgraph problems.
In International Conference on Principles and Practice of Constraint Programming, pp. 637–644.
Springer, 2011.

Deepti Pachauri, Risi Kondor, and Vikas Singh. Solving the multi-way matching problem by
permutation synchronization. Advances in neural information processing systems, 26, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Anand Rangarajan, Steven Gold, and Eric Mjolsness. A novel optimizing network architecture with
applications. Neural Computation, 8(5):1041–1060, 1996a.

Anand Rangarajan, Alan L Yuille, Steven Gold, and Eric Mjolsness. A convergence proof for the
softassign quadratic assignment algorithm. Advances in neural information processing systems, 9,
1996b.

John W Raymond, Eleanor J Gardiner, and Peter Willett. Rascal: Calculation of graph similarity
using maximum common edge subgraphs. The Computer Journal, 45(6):631–644, 2002.

Indradyumna Roy, Soumen Chakrabarti, and Abir De. Maximum common subgraph guided graph
retrieval: late and early interaction networks. Advances in Neural Information Processing Systems,
35:32112–32126, 2022a.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
neural subgraph matching for graph retrieval. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8115–8123, 2022b.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348, 1967.

Jan-Grimo Sobez and Markus Reiher. Molassembler: Molecular graph construction, modification,
and conformer generation for inorganic and organic molecules. Journal of chemical information
and modeling, 60(8):3884–3900, 2020.

Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer, Eric T
Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast approximate quadratic
programming for graph matching. PLOS one, 10(4):e0121002, 2015.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning lawler’s
quadratic assignment problem with extension to hypergraph and multiple-graph matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9):5261–5279, 2021.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Unsupervised learning of graph matching with
mixture of modes via discrepancy minimization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(8):10500–10518, 2023.

Yifan Xia, Tianwei Ye, Huabing Zhou, Zhongyuan Wang, and Jiayi Ma. Multi-shape matching with
cycle consistency basis via functional maps. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 8575–8583, 2025.

Xifeng Yan, Philip S Yu, and Jiawei Han. Substructure similarity search in graph databases. In
Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp.
766–777, 2005.

Chaolong Ying, Xinjian Zhao, and Tianshu Yu. Boosting graph pooling with persistent homology. In
Advances in Neural Information Processing Systems, volume 37, pp. 19087–19113, 2024.

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the graph
matching problem. IEEE transactions on pattern analysis and machine intelligence, 31(12):
2227–2242, 2008.

Xiang Zhao, Chuan Xiao, Xuemin Lin, Qing Liu, and Wenjie Zhang. A partition-based approach to
structure similarity search. Proceedings of the VLDB Endowment, 7(3):169–180, 2013.

Xinjian Zhao, Chaolong Ying, Yaoyao Xu, and Tianshu Yu. Graph learning with distributional
edge layouts. KDD ’25, pp. 2055–2066, New York, NY, USA, 2025. Association for Computing
Machinery. ISBN 9798400712456. doi: 10.1145/3690624.3709206. URL https://doi.org/
10.1145/3690624.3709206.

Weiguo Zheng, Lei Zou, Xiang Lian, Dong Wang, and Dongyan Zhao. Graph similarity search with
edit distance constraint in large graph databases. In Proceedings of the 22nd ACM International
Conference on Information and Knowledge Management, pp. 1595–1600. ACM, 2013.

13

https://doi.org/10.1145/3690624.3709206
https://doi.org/10.1145/3690624.3709206


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

O

C C

C

G1 Oxetane

O

C C

MCIS

O

C C

C C

O

C

C

G2 Ether

MCES

C

Figure 5: The maximum common induced subgraph (MCIS) and the maximum common edge
subgraph (MCES) of two labeled graphs.

A MORE BACKGROUND

Maximum Common Subgraph. The maximum common subgraph (MCS) problem (Bunke &
Shearer, 1998) is a fundamental topic in graph theory with significant implications in various real-
world applications. Given two graphs, the goal of the MCS problem is to find the largest subgraph that
is isomorphic to a subgraph of both input graphs. The MCS problem inherently captures the degree
of similarity between two graphs, is domain-independent, and therefore finds extensive applications
across various fields, such as substructure similarity search in databases (Yan et al., 2005), source
code analysis (Djoko et al., 1997) and computer vision (Cook & Holder, 1993). The MCS problem
can be broadly categorized into two variants: the maximum common induced subgraph (MCIS) and
the maximum common edge subgraph (MCES). The key distinction between these variants lies in
the structural constraints: MCIS focuses on finding a subgraph that preserves both vertex and edge
connectivity, whereas MCES concentrates on maximizing common edge structure without enforcing
vertex-induced constraints (Ndiaye & Solnon, 2011). An example of MCIS and MCES is shown in
Figure 5. This paper focuses on the MCES problem, which is particularly applicable to practical tasks
in bioinformatics, such as finding similar substructures in compounds with similar properties (Ehrlich
& Rarey, 2011), where the edge-based relationships often carry significant biological meaning.

Graph Similarity. A key challenge in pharmaceutical research involving small molecules is
organizing individual compounds into structurally related families or clusters. Manually sorting
through large databases can be labor-intensive, which is why automated methods are frequently
employed. These automated clustering techniques require a similarity metric for pairwise structure
comparison and a clustering algorithm to categorize compounds into related groups.

Graph Retrieval. Graph retrieval involves identifying and ranking target graphs based on their
similarity to a given query graph Gq (Roy et al., 2022b;a). The task can be framed as a ranking
problem, where a graph retrieval system assigns similarity scores or distance metrics to target graphs
relative to Gq. The process typically consists of two steps: first, calculating a similarity score for
each target graph Gt; and second, ranking the target graphs in decreasing order of similarity. The
quality of a graph retrieval algorithm depends on its ability to place the most relevant graphs at the
top of the ranking. A key challenge in this domain is the design of effective scoring functions. In this
work, we adopt the Johnson similarity as scoring function, where the target graph with the highest
similarity to Gq is deemed the most relevant and ranked highest.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Graph Neural Networks. Graph Neural Networks (GNNs) are a class of deep learning models
specifically designed to process data represented as graphs. By leveraging the graph structure, GNNs
can capture complex dependencies and interactions, enabling them to learn rich representations of
nodes and entire graphs. These models utilize message passing mechanisms to iteratively aggregate
information from neighboring nodes, ultimately allowing them to excel in various applications. As
GNNs continue to evolve, they offer powerful tools for tackling challenges in machine learning and
artificial intelligence across diverse domains (Hamilton et al., 2017; Ying et al., 2024; Zhao et al.,
2025). Given an input graph, typical GNNs compute node embeddings h(t)

u , ∀u ∈ V with T layers of
iterative message passing (Gilmer et al., 2017):

h(t+1)
u = ψ

(
h(t)
u ,

∑
v∈Nu

h(t)
v · ϕ(euv)

)
, (12)

for each t ∈ [0, T − 1], where Nu = {v ∈ V|(u, v) ∈ E}, while ψ and ϕ are neural networks, e.g.
implemented using multilayer perceptrons (MLPs).

Graduated Assignment. The Graduated Assignment (GA) is a classical optimization method
rooted in principles of statistical physics and commonly applied to assignment problems such as
graph matching (Gold & Rangarajan, 1996; Cho et al., 2010). GA operates by iteratively updating a
soft assignment matrix, which represents the probabilistic relationship between elements of two sets
(e.g., nodes, edges) that are being matched. One should note that GA is not a neural method and only
consists of forward updates.

B ASSOCIATION COMMON GRAPH EXPLANATION

Proposition 1. Denote the node set of G1♢G2 as V♢ = {(u, v)|u ∈ V(G1), v ∈ V(G2)}. Consider
a set of subgraphs of G1♢G2 where each node of G1 and G2 is selected at most once, i.e. any two
nodes (ui, vi) and (uj , vj) in this set satisfy ui ̸= uj and vi ̸= vj . Any subgraph in this set is a
valid common subgraph of G1 and G2, and finding the MCES of two graphs is reduced to finding the
largest subgraph in this set.

Proof. Denote the node set of G1♢G2 as V♢ = {(ui, vj) | ui ∈ V(G1), vj ∈ V(G2)}. In every
common subgraph G′ of G1 and G2, each vertex is isomorphic to a distinct vertex in V(G1) and
V(G2). If the subgraph of the ACG we select contains two vertices in the same row, it implies that
a vertex in G2 corresponds to two vertices in G1, which is not valid. To prevent duplication in the
mapping between the two graphs, we define a subgraph of the association graph as valid if and only
if it satisfies the following conditions:

V(G) ⊆ V♢,
E(G) ⊆ E♢,
|V(G)| = min{|V(G1)|, |V(G2)|},
∀(ui, vj), (uk, vl) ∈ V(G), i ̸= k, j ̸= l

(13)

We aim to show that each valid subgraph G can be transformed into a common subgraph G′ of G1

and G2, satisfying |E(G)| = |E(G′)|. In this way, finding the MCES of two graphs is reduced to
finding the largest subgraph in this set. Let G1 denote the set of all valid subgraphs of G1♢G2, and
let G2 denote the set of all common subgraphs of G1 and G2. We claim that there exists a surjective
function f : G1 → G2 that transforms G into G′, such that |E(G)| = |E(f(G))|. If this claim holds,
each subgraph of the association graph G1♢G2 corresponds to a common subgraph of G1 and G2

without omitting any common subgraph. Consequently, the subgraph with the largest number of
edges corresponds to the MCES. Here we give the construction of f , and the proof of the surjection
of function f . The edge set of G is given by E = {((ui, vi), (uj , vj)) | ((ui, vi), (uj , vj)) ∈ E♢}.
From this edge set, we restore all the edge information in the original graph G1, denoted as E ′ =
{(ui, uj) | ((ui, vi), (uj , vj)) ∈ E} ⊆ E(G1). The corresponding vertex set is naturally defined as
V ′ = {uk | ∃ul, (uk, ul) ∈ E ′}. Thus, the subgraphG′ = {E ′,V ′} ⊆ G1 is uniquely determined, and
we define f(G) = G′. Similarly, we can construct G′′ = {E ′′ ⊆ E(G2),V ′′ ⊆ V(G2)} ⊆ G2. Since
the matching pair in E is unique, G′ is isomorphic to G′′. Hence, G′ = f(G) is the desired common
subgraph of G1 and G2. Furthermore, it is straightforward to verify that |E(G)| = |E(f(G))|.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C

C

O

OCC

1

2

3

a b c

1a 1b 1c

2a 2b 2c

3a 3b 3c

a b c d

1

2

3

1a 1b

2a 2b

3c

a b c d

1

2

3

a b c d

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

1a 1b 1c

2a 2b 2c

3a 3b 3c

1c

2c

3a 3b

O

d

1d

2d

3d

1d

2d

3d

3d

1d

2d

Figure 6: An illustration of the ACG. Each value in the soft assignment S or hard assignment P
corresponds to a node in the ACG A♢ and thus can be considered as node features in A♢.

Next, we represent the node information of a valid subgraphG ofG1♢G2 using an assignment matrix.
Let P = (Pij), where Pij = 1 if and only if (ui, vj) ∈ V(G). Since the association graph is already
known, the assignment matrix P is sufficient to restore the valid subgraph. Thus, from this point
forward, we only need to work with the assignment matrix. Any assignment can be be mapped to
a common subgraph, thereby enhancing interpretability of our formulation of MCES. Consider an
example in Figure 6, where NGA outputs an assignment matrix with entries P1a = P2b = P3c = 1.
In this case, the assignment represents a valid subgraph G with vertices V(G) = {1a, 2b, 3c}. Using
the association graph, it is straightforward to derive the unique corresponding subgraph G and the
original common subgraph G′ by applying the function f . Thus, instead of working directly with G′

or G, we can represent the subgraph using only the assignment matrix.

C EXPERIMENTAL SETUP

C.1 DATASETS

Table 4: The statistics of datasets.

#graphs #nodes #edges

AIDS 2000 ∼15.7 ∼16.2
MCF-7 27770 ∼26.4 ∼28.5

MOLHIV 41127 ∼25.5 ∼27.5

The key statistics of datasets used in this paper are summarized in Table 4. The solution time
distributions of three datasets are illustrated in Figure 7.

C.2 IMPLEMENTATION DETAILS

Hyperparameters. In our method, we use two neural networks: the first Ψθ0 is an 8-layer Graph
Convolutional Network (GCN) (Kipf & Welling, 2016), which utilizes 32 feature channels. In our
NGA model, the number of iterations m is set to 4 and the hidden dimension of learnable weights
is set to 32. For the Sinkhorn layer, we set the number of iterations to 20 to allow for sufficient
optimization. The GumbelSinkhorn layer is configured with 10 times sampling. The model is trained
using the Adam (Kingma, 2014) optimizer with a learning rate of 0.001. These hyperparameter
settings were chosen to balance model performance and computational efficiency, allowing for
effective training and convergence across the evaluated tasks.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Solution time
<60
[60, 3600]
[3600, 20000]
>20000

(a) AIDS

Solution time
<60
[60, 3600]
[3600, 20000]
>20000

(b) MOLHIV

Solution time
<60
[60, 3600]
[3600, 20000]
>20000

(c) MCF-7

Figure 7: Solution time distributions on three datasets

Training Details of NGA. The training and inference processes are summarized in Alg. 2. Similar
to conventional MCES solvers (McCreesh et al., 2017; Raymond et al., 2002), our method addresses
one pair of molecular graphs from the test set at a time. During the training stage, our method learns
to optimize the objective in Eq. (5). In the inference stage, the assignment matrix S learned at the
training stage is transformed into an assignment matrix P, which is then used to compute the MCES
result with Eq. (7). Specifically, when Gumbel sampling is employed for optimization, Eq. (6) in line
6 is replaced with Eq. (8). Under this setup, in lines 11-12, M assignment matrices are generated
using M sampled Gumbel noises, leading to M predicted MCES results. These results are evaluated
using Eq. (5), and the result with the best objective value is retained as the final output.

Model Configuration. Our implementation of NGA and the baseline methods was conducted using
Pytorch and PyG (Paszke et al., 2017; Fey & Lenssen, 2019), with careful attention to reproducibility
and fairness in comparisons. Most baseline methods were adapted from their official source code
repositories to ensure consistency with their original implementations. However, for INFMCS, no
official source code was publicly available, so we implemented this method from scratch, closely
following the algorithmic details and hyperparameter settings described in the original paper (Lan
et al., 2024). Our implementation was rigorously validated against the reported results in the literature
to ensure correctness. Given the molecular nature of our dataset, we utilized the atom encoder and
bond encoder from the Open Graph Benchmark library2 for feature encoding in all models employing
GNN as their backbone. This ensured a fair and consistent representation of molecular data across
all GNN-based baselines and our proposed method. The experiments are conducted using an AMD
EPYC 7542 CPU and a single NVIDIA 3090 GPU.

C.3 DISCUSSION OF BASELINE METHODS

For our comparison, we select baseline methods that are directly or indirectly related to solving
the MCES problem. RASCAL and FMCS are the most relevant baselines, as they are specifically
designed to solve MCES. While some methods, such as Mcsplit, are primarily developed for the
MCIS problem, they are still capable of generating common subgraphs. According to the definition of
MCES, the number of edges in the common subgraph of an MCIS will always be less than or equal to
that of an MCES, i.e., |E(MCIS(G1, G2))| ≤ |E(MCES(G1, G2))|. As such, MCIS solvers are also
valid comparisons. However, some methods are not suitable for serving as compared baselines. Some
studies, such as (Bahiense et al., 2012), disregard edge labels that are essential for molecular graphs.
XMCS and INFMCS, on the other hand, only implicitly infer the size of the MCS for downstream
tasks without providing explicit MCS structures. As a result, these methods are used only as baselines
in our graph similarity computation and graph retrieval experiments.

Besides, we provide time complexity comparison between baseline methods and ours in this section.
For notation simplicity, we assume that both the input graphs have N nodes and E edges. The
construction of the ACG requires enumerating all edge pairs between the two input graphs G1 and
G2, leading to a time complexity of O(E2). In practice, however, this cost is very limited because

2https://github.com/snap-stanford/ogb

17

https://github.com/snap-stanford/ogb


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

molecular graphs are typically sparse — each atom usually has only a few neighbors (typically
up to 4) due to chemical valency constraints and thus E2 ≪ N2. Besides, an edge in the ACG
exists only when the corresponding pair of edges in G1 and G2 satisfy the compatibility constraints.
Consequently, the actual number of edgesM in ACG satisfiesM < E2 ≪ N2. The space complexity
of constructing the ACG is O(M). To handle this efficiently, we can store the ACG using sparse data
structures, such as sparse tensors, which allow memory usage to scale with O(M) rather than with
the dense upper bound. This ensures that the space overhead remains manageable even for relatively
large graphs.

The initial assignments are obtained by GNN with a complexity of O(N2d). Therefore, the overall
complexity is O(M + N2). The complexity of NGA iteration is O(mk(M + N2)), where m is
the number of iterations and k is the number of epochs in training. Overall, the time complexity
of our method is O(mk(M + N2)). GA has the same iteration process as our method, which
has a complexity of O(m(M + N2)). NGM has the same complexity as our method, which
is O(mk(M +N2)). The rest baseline methods, including RASCAL, FMCS and Mcsplit have a
complexity of approximatelyO(2N ) due to the NP-complete nature of the MCES problem. Compared
with these baseline methods, our proposed method provides efficient approximations of the solution
in polynomial time without relying on exhaustive exploration of the solution space.

D CONVERGENCE ANALYSIS

In this section, we first analyze the convergence behavior under our learnable temperature parameteri-
zation, and then prove the advantages of product parameterization.

D.1 CONVERGENCE BEHAVIOR UNDER LEARNABLE PARAMETERS

The quadratic assignment objective function in Eq. (1) is formulated as follows (Rangarajan et al.,
1996a) with regularizations:

E(S, µ, ν) = −1

2
vec(S)⊤A♢vec(S) + µ⊤(S1n2

− 1n1
)

+ ν(S⊤1n1
− 1n2

)− γ

2
vec(S)⊤vec(S)

+
1

β

∑
S logS,

(14)

where E is the energy function, µ and ν are Lagrange parameters for constraint satisfaction, γ is a
parameter for the self-amplification term, and β is a deterministic annealing control parameter.

We analyze the convergence behavior at each iteration layer and temporarily omit the layer index (i)
for simplicity and denote βl = W⊤

1 W2 as the learnable parameter. In the first part of the proof, we
show that a proper choice of parameter γ, is guaranteed to decrease the energy function. The energy
function in Eq. (14) can be simplified by collecting together all quadratic terms in S, i.e. we define

A(γ)
♢ = A♢ + γI. (15)

Consider the following algebraic transformation:

−X⊤X

2
→ min

σ
(−X⊤σ +

σ⊤σ

2
) (16)

and we can convert the quadratic form into a simpler, more tractable linear form:

E(S, µ, ν, σ) = −vec(S)⊤A(γ)
♢ σ +

1

2
σ⊤A(γ)

♢ σ

+ µ⊤(S1n2
− 1n1

) + ν(S⊤1n1
− 1n2

)

+
1

βl

∑
S logS

(17)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We use degi to represent the degree of node i and degmax = maxi∈V♢ degi. By setting γ = degmax+ϵ,
where ϵ > 0 is a small quantity, the following equation holds for any nonzero vector x:

x⊤A(γ)
♢ x

= x⊤A♢x+ x⊤ diag(γ)x

=

n∑
j=1

(

n∑
i=1

xiaij)xj +

n∑
i=1

x2
i (degi + degmax − degi + ϵ)

=
1

2
(

n∑
i=1

degix
2
i + 2

n∑
i,j=1

xixjaij +

n∑
j=1

degjx
2
j )

+

n∑
i=1

x2
i (degmax − degi + ϵ)

=
1

2

n∑
i,j=1

aij(xi + xj)
2 +

n∑
i=1

x2
i (degmax − di + ϵ)

> 0

(18)

which proves that A(γ)
♢ is positive definite.

Extremizing Eq. (17) with respect to σ, we have

A(γ)
♢ vec(S) = A(γ)

♢ σ ⇒ σ = vec(S) (19)

is a minimum, which means that setting σ = vec(S) is guaranteed to decrease the energy function.

In the second part of the proof, we show how the energy function in Eq. (17) increases or decreases
according to βl. In the first part of the proof, we set σ = vec(S), referring σ as the original value of
vec(S). To achieve convergence, we need to show that E(σ, σ) ≥ E(vec(S), σ) in Eq. (17). The S
here is the new doubly stochastic matrix gained after executing the Sigmoid and Sinkhorn operator.
After each iteration, the new matrix S always reduces the value of the objective function.

Minimizing Eq. (17) with respect to Sai, we get

1

βl
log Sai = [A(γ)

♢ σ]ai − (µa + νi)−
1

βl
(20)

From Eq. (20), we get the summation

1

βl

∑
Sai log Sai =

vec(S)TA(γ)
♢ σ − µTvec(S)1n2

+ νvec(S)T1n1 −
1

βl

∑
Sai

(21)

and
1

βl

∑
σai log Sai =

σTA(γ)
♢ σ − µTσ1n2

+ νσT1n1
− 1

βl

∑
σai

(22)

From Eq. (21) and Eq. (22), we get

E(σ, σ)− E(vec(S), σ) =

−σTA(γ)
♢ σ − (−vec(S)TA(γ)

♢ σ)

+
∑ σai

βl
log σai −

∑ Sai

βl
log Sai

=
1

βl

∑
σai log

σai
Sai

(23)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

By the non-negativity of the Kullback-Leibler measure, E(σ, σ)−E(vec(S), σ) = 1
βl

∑
σ log σ

S ≥ 0

when βl > 0 and vice versa. The doubly stochastic property of S and σ ensures that the Lagrange
parameters can be eliminated from the energy function Eq. (17). The new matrix S gained after
setting σ = vec(S) guarantees the decrease of the energy function.

We distill the core of the proof to highlight the key aspects. At each temperature, the algorithm
performs the following steps repeatedly until it reaches convergence.

Step 1: σ ← vec(S)

Step 2:

Step 2a: Ŝai ← exp(βl
∑
bj

(A(γ)
♢ )ai,bjσbj)

Step 2b: S← Sinkhorn(Ŝ)

Return to Step 1 until convergence.

(24)

Our proof shows that when a suitably constructed energy function is affect by the temperature
parameter βl during both Step 1 and Step 2. This energy function corresponds to Eq. (17) without the
terms involving the Lagrange parameters.

D.2 PROOF OF FASTER CONVERGENCE FOR PRODUCT PARAMETERIZATION

Proposition 2. Under typical gradient descent conditions where the gradient pushes βl in a consistent
direction for multiple iterations, the product parameterization βl = W⊤

1 W2 can adaptively adjust
the learning rate and induces an accelerating effect on the magnitude of updates to βl.

Proof. Let J(S) = vec(S)⊤A♢ vec(S)and g(t) = ∂J
∂βl(t)

be the gradient of the loss at step t. For a
direct scalar parameterization βl and learning rate η, the gradient update reads:

βl(t+ 1) = βl(t) + ηg(t). (25)

For the product parameterization, the update is:

W1(t+ 1) = W1(t) + ηg(t)W2(t), W2(t+ 1) = W2(t) + ηg(t)W1(t) (26)

Let’s examine how βl changes over time. After one update,

βl(t+ 1) = W1(t+ 1)⊤W2(t+ 1)

= (W1(t) + ηg(t)W2(t))
⊤(W2(t) + ηg(t)W1(t))

= W1(t)
⊤W2(t) + ηg(t)W1(t)

⊤W1(t) + ηg(t)W2(t)
⊤W2(t) + η2g(t)2W2(t)

⊤W1(t)

= βl(t) + ηg(t)
(
∥W1(t)∥2 + ∥W2(t)∥2

)
+ η2g(t)2βl(t)

(27)

This is a nonlinear update equation with respect to the gradient g(t), containing both the first-order
term ηg(t)

(
∥W1(t)∥2 + ∥W2(t)∥2

)
and the second-order term η2g(t)2βl(t). If we omit the higher

order gradients, the term W1(t)
⊤W2(t) can adaptively adjust the learning rate.

Let’s analyze the scenario where the gradient g(t) > 0 for several consecutive iterations, indicating
that increasing βl would increase the loss. This is a common scenario in optimization where the
algorithm consistently moves in a beneficial direction. For the direct scalar parameterization, the
update is

βl(t+ 1) = βl(t) + η|g(t)|. (28)

After k iterations with approximately constant gradient magnitude |g|, we get

βl(t+ k) ≈ βl(t) + kη|g|. (29)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Let W1(0) = W0, W2(0) = U0 as the initialization state, we can derive:

W1(k) ≈
(W0 +U0)

2
(1 + η|g|)k +

(W0 −U0)

2
(1− η|g|)k

W2(k) ≈
(W0 +U0)

2
(1 + η|g|)k − (W0 −U0)

2
(1− η|g|)k.

(30)

Thus, the first-order term becomes:

η|g|
(
∥W1(t)∥2 + ∥W2(t)∥2

)
=
η|g|
2

[
(
∥W0∥2 + ∥U0∥2

) (
(1 + η|g|)2k + (1− η|g|)2k

)
+ 2

(
W⊤

0 U0

) (
(1 + η|g|)2k − (1− η|g|)2k

)]
,

(31)

which grows exponentially with the iteration count k. Therefore, the product parameterization leads
to accelerating updates to βl. In contrast, the direct scalar parameterization has a constant update
magnitude η|g|regardless of the iteration count. Aside from this, this reparameterization naturally

introduces bounds on the magnitude of βl: |βl| ≤ ∥W(l)
1 ∥∥W

(l)
2 ∥ ≤ (

∥W(l)
1 ∥2+∥W(l)

2 ∥2

2 )2.

Moreover, this proposition is supported by empirical evidence. Specifically, we provide the loss
curves in Figure 13. Compared to parameterizing the temperature as a learnable scalar, our method
exhibits faster convergence. Within the same training time, this results in improved performance.
As shown in Table 5 from Appendix F, the product parameterization (NGA) outperforms the scalar
version (NGA-Scalar) by approximately 15%. These results highlight the effectiveness of our method
compared to directly parameterizing βl as a learnable scalar.

Recent works in the implicit-bias literature have shown that reparameterized models—particularly
those involving quadratic or low-rank factorizations—can induce non-trivial optimization dynamics
that resemble adaptive or mirror-descent–like updates. For example, Li et al. (2022) and Jacobs
et al. (2025) demonstrate that such reparameterizations implicitly modify the effective geometry of
gradient descent, leading to adaptive learning-rate behaviors without explicit scheduling. Related
work on sparsity-inducing training (Jacobs & Burkholz, 2025; Kolb et al., 2025) further illustrates
how factored parameterizations can shape convergence trajectories and amplify or damp particular
update directions.

Our product parameterization of the temperature term shares conceptual similarities with these
findings. These perspectives provide additional insight into why our reparameterizations can yield
favorable optimization behavior in our setting.

E BEHAVIOR AT LOCAL OPTIMA

Before proving Theorem 1, we first conclude the following Lemma.

Lemma 1. For a local optimum S(l), and for |βl| sufficiently small, the following property holds:

S
(l+1)
ij =

1

n
[1 + βl(hij − h̄) +O(|βl|2)] (32)

where hij = [A♢vec(S
(l))]ij and h̄ is the mean of hij over all i and j.

Proof. First, we can characterize the pre-Sinkhorn matrix M(l) through its log-space representation:

lnM
(l)
ij = βlhij (33)

By the Sinkhorn-Knopp theorem (Sinkhorn & Knopp, 1967), there exist diagonal matrices Dr and
Dc with positive entries such that:

S(l+1) = DrM
(l)Dc (34)

is doubly stochastic. Taking logarithm we have:

lnS
(l+1)
ij = lnD(i)

r + βlhij + lnD(j)
c (35)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Let’s define the potentials ui = lnD
(i)
r and vj = lnD

(j)
c . These satisfy:

exp(ui + βlhij + vj) = S
(l+1)
ij (36)∑

j

S
(l+1)
ij =

∑
j

exp(ui + βlhij + vj) = 1

∑
i

S
(l+1)
ij =

∑
i

exp(ui + βlhij + vj) = 1
(37)

When βl = 0, the Sinkhorn algorithm has a trivial solution:

S
(l+1)
ij =

1

n
, u

(0)
i = v

(0)
j = −1

2
lnn (38)

For small |βl|, we can view the solution as a perturbation around this base solution. By the implicit
function theorem, if the Sinkhorn algorithm converges (guaranteed by our assumptions) and |βl| is
sufficiently small, the functions involved are smooth.

Let’s write the system of equations that defines our problem. For the doubly stochastic constraints
(Eq. (37)):

Fi(u, v, βl) =
∑
j

exp(ui + βlhij + vj)− 1 = 0 ∀i (39)

Gj(u, v, βl) =
∑
i

exp(ui + βlhij + vj)− 1 = 0 ∀j (40)

For this system, the smoothness can be verified by checking the insingularity of the Jacobian matrix.
Therefore, by the implicit function theorem, there exist unique (up to addition of constants) functions
ui(βl) and vj(βl) in a neighborhood of βl = 0 that satisfy our constraints and are continuously
differentiable. Since these functions are differentiable at βl = 0, we can write their Taylor expansions:

ui(βl) = u
(0)
i + βlu

(1)
i +O(|βl|2)

vj(βl) = v
(0)
j + βlv

(1)
j +O(|βl|2)

(41)

where u(1)i = dui

dβl
|βl=0 and v(1)j =

dvj

dβl
|βl=0. Then the potentials ui and vj are analytic functions of

βl near 0. To determine u(1)i and v(1)j , we use the row and column sum constraints:∑
j

exp(ui + βlhij + vj) = 1 (42)

Substituting the expansions (as when βl = 0, we have u(0)i = v
(0)
j = − 1

2 lnn)

ui = −
1

2
lnn+ βlu

(1)
i +O(|βl|2)

vj = −
1

2
lnn+ βlv

(1)
j +O(|βl|2)

(43)

into the numerator of S(l+1)
ij :

exp(βlhij + ui + vj)

= exp(βlhij − lnn+ βl(u
(1)
i + v

(1)
j ) +O(|βl|2))

=
1

n
exp(βl(hij + u

(1)
i + v

(1)
j ) +O(|βl|2))

=
1

n
(1 + βl(hij + u

(1)
i + v

(1)
j ) +O(|βl|2))

(44)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Inside the exponential:

ui + βlhij + vj

= (−1

2
lnn+ βlu

(1)
i +O(|βl|2)) + βlhij + (−1

2
lnn+ βlv

(1)
j +O(|βl|2))

= − lnn+ βl(u
(1)
i + hij + v

(1)
j ) +O(|βl|2)

(45)

Therefore:

exp(ui + βlhij + vj)

= exp(− lnn+ βl(u
(1)
i + hij + v

(1)
j ) +O(|βl|2))

=
1

n
exp(βl(u

(1)
i + hij + v

(1)
j ) +O(|βl|2))

(46)

For small |βl|, using Taylor expansion of exponential:

exp(βl(u
(1)
i + hij + v

(1)
j ) +O(|βl|2))

= 1 + βl(u
(1)
i + hij + v

(1)
j ) +O(|βl|2)

(47)

Then we have: ∑
j

exp(ui + βlhij + vj)

=
∑
j

1

n
(1 + βl(u

(1)
i + hij + v

(1)
j ) +O(|βl|2))

=
1

n

∑
j

(1 + βl(u
(1)
i + hij + v

(1)
j ) +O(|βl|2)) = 1

(48)

For this equation to be consistent for small |βl|, we must have:∑
j

(u
(1)
i + hij + v

(1)
j ) = 0,

∑
i

(u
(1)
i + hij + v

(1)
j ) = 0 (49)

These equations determine u(1)i and v(1)j up to an additive constant.

Next, we check how the overall behavior of S(l+1) when |βl| is sufficiently small. For the assignment
matrix:

S
(l+1)
ij =

exp(βlhij + ui + vj)∑
k,m exp(βlhkm + uk + vm)

(50)

Substitute Eq. (43) into the numerator, we get the same formulation as Eq. (44). For |βl| sufficiently
small, the subsequent Sinkhorn layer can converge very fast. Therefore, in the denominator:∑

k,m

exp(βlhkm + uk + vm)

=
∑
k,m

1

n
(1 + βl(hkm + u

(1)
k + v(1)m ) +O(|βl|2))

= 1 + βl(
1

n

∑
k,m

hkm +
∑
k

u
(1)
k +

∑
m

v(1)m ) +O(|βl|2)

(51)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Let’s define h̄ = 1
n2

∑
k,m hkm. Using Eq. (49) and the division formula (1 + a)/(1 + b) =

1 + (a− b) +O((a− b)2) for small a, b:

S
(l+1)
ij =

1
n (1 + βl(hij + u

(1)
i + v

(1)
j ) +O(|βl|2))

1 + βl(n2h̄+
∑

k u
(1)
k +

∑
m v

(1)
m ) +O(|βl|2)

=
1

n
[1 + βl(hij + u

(1)
i + v

(1)
j − n

2h̄−
∑
k

u
(1)
k −

∑
m

v(1)m ) +O(|βl|2)]

=
1

n
[1 + βl(hij − h̄) +O(|βl|2)]

(52)

where h̄ is the mean of hij .

Having Lemma 1, we can further conclude the following theorem.

Theorem 1. Given a local optimum S(l), the change ∆J = J(S(l+1))− J(S(l)) satisfies

∆J =
1

2
(
∑
i

λi −
∑
j

µj) + βl ·Var(h) +O(|βl|2), (9)

where hij = [A♢vec(S
(l))]ij , Var(h) is the variance, J(S(l)) = vec(S(l))⊤A♢vec(S

(l)) is the
objective, λi and µj are the Lagrange multipliers.

Proof. Expand the change in objective value, we have:

∆J = J(S(l+1))− J(S(l))

= vec(S(l+1) − S(l))⊤A♢vec(S
(l)) +

1

2
vec(S(l+1) − S(l))⊤A♢vec(S

(l+1) − S(l))
(53)

From Lemma 1
S
(l+1)
ij − S

(l)
ij =

1

n
[1 + βl(hij − h̄) +O(|βl|2)]− S

(l)
ij (54)

Let’s analyze the first term in Eq. (53):

vec(S(l+1) − S(l))⊤A♢vec(S
(l))

=
∑
i,j

(
1

n
[1 + βl(hij − h̄) +O(|βl|2)]− S

(l)
ij )hij

=
∑
i,j

[
1

n
− S

(l)
ij ]hij +

βl
n

∑
i,j

(hij − h̄)hij +O(|βl|2)

(55)

Since Var(h) = 1
n2

∑
i,j h

2
ij − h̄2:

vec(S(l+1) − S(l))⊤A♢vec(S
(l)) =

∑
i,j

[
1

n
− S

(l)
ij ]hij + βl ·Var(h) +O(|βl|2) (56)

At the local optimum, by KKT conditions:

2hij − λi − µj = 0 (57)

for entries where S
(l)
ij > 0. λi and µj are Lagrange multipliers. Therefore,∑

i,j

[
1

n
− S

(l)
ij ]hij =

∑
i,j

[
1

n
− S

(l)
ij ]

λi + µj

2

=
1

2
(
∑
i

λi −
∑
j

µj)

(58)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Results of Ablation Study in terms of Accuracy (%) ↑ for solving MCES problem.

Dataset AIDS MOLHIV MCF-7

GA 70.99 71.09 72.92
GA-Gumbel 75.08 74.46 76.12
NGA-w/o GNN 97.45 98.77 97.11
NGA-Positive 83.42 85.63 80.32
NGA-Manual 74.27 70.90 76.45
NGA-Scalar 77.48 82.27 72.94
NGA 98.64 99.20 97.94

using the doubly stochastic constraints.

It is easy to show that the second-order term is O(|βl|2). Therefore, summing the two terms we have

∆J =
1

2
(
∑
i

λi −
∑
j

µj) + βl ·Var(h) +O(|βl|2) (59)

F ABLATION STUDY

To better understand the contribution of each component in our framework, we conduct an ablation
study by systematically removing or modifying key modules. This analysis highlights the effective-
ness of individual design choices and demonstrates how each component contributes to the overall
performance. The results are summarized in Table 5.

We first propose an ablated variant named NGA-w/o GNN, which removes GNN and instead employs
a randomly initialized matrix for S(0). Experimental results reveal that this simplified variant
maintains strong performance in solving MCES, thereby demonstrating the crucial role and inherent
effectiveness of our subsequent NGA refinement algorithm. While this variant achieves satisfactory
results, the integration of GNN generates more optimized initial node assignments through learned
representations. This enhanced initialization, when coupled with the NGA refinement process,
translates to superior overall performance.

To demonstrate the effectiveness of the exploration and exploitation process of our proposed NGA,
we tested a variant of our method where we use the Sigmoid function to restrict βl > 0, denoted
as NGA-Positive. This variant disables the exploration ability of our method. We observe that
restricting βl to positive values significantly degrades performance, indicating that allowing negative
temperatures is crucial for effective exploration and for enabling NGA to escape local minima.

To systematically evaluate the sensitivity of NGA to Gumbel sampling, we conduct an ablation
by varying the number of samples M . Empirical analysis in Table 5 reveals that the performance
increases sublinearly withM , demonstrating the expected exploration-computation trade-off. Besides,
the marginal gain becomes statistically insignificant when M ≥ 10. For comparison, we also imple-
ment GA-Gumbel, an variant of GA incorporating the Gumbel-Sinkhorn sampling. Under identical
experimental protocols, GA-Gumbel demonstrates consistent performance gains over baseline GA.
However, our proposed NGA still significantly outperforms GA-Gumbel, highlighting the necessity
of our parameterization of the temperature.

Finally, to demonstrate the superiority of the product parameterization βl in NGA, we introduce
two variants: (1) NGA-Manual employs a manually configured temperature schedule initialized
with negative values that gradually transitions to positive values, aligned with the mean parameter
distribution patterns observed in Fig. 11. (2) NGA-Scalar parameterizes temperature as a learnable
scalar. In Table 5, both variants exhibit suboptimal performance, primarily due to constrained
adaptive capacity and limited expressive power. This performance gap underscores the importance
of our design. Note that MLP is composed of learnable weights, which is equivalent to our original
implementation.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 35903600

Time (seconds)

0

10

20

30

40

50

60

70

80

Si
ze

 o
f B

es
t M

C
ES

 S
ol

ut
io

n 
Fo

un
d 

So
 F

ar NGA
RASCAL
FMCS
Mcsplit
Gurobi
GA

(a) AIDS

0 100 200 300 400 3500 3600

Time (seconds)

0

25

50

75

100

125

150

175

200

Si
ze

 o
f B

es
t M

C
ES

 S
ol

ut
io

n 
Fo

un
d 

So
 F

ar NGA
RASCAL
FMCS
Mcsplit
Gurobi
GA

(b) MOLHIV

0 100 200 3500 3600

Time (seconds)

0

20

40

60

80

100

Si
ze

 o
f B

es
t M

C
ES

 S
ol

ut
io

n 
Fo

un
d 

So
 F

ar NGA
RASCAL
FMCS
Mcsplit
Gurobi
GA

(c) MCF-7

Figure 8: Comparison of the best MCES solution size found so far on different dataset.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL RESULTS FOR SOLVING MCES

We have additionally conducted a detailed analysis of the quality of the solutions obtained by our
proposed NGA. In particular, we examine how frequently the MCES identified by NGA coincides
with the true optimal solution. This evaluation provides deeper insights into the effectiveness and
reliability of NGA beyond average performance metrics. The results highlights not only the overall
accuracy of the method but also its stability across different problem instances. A summary of these
results is provided in Table 6.

Table 6: The percentage of optimal solutions of MCES obtained on different datasets.

AIDS MCF-7 MOLHIV

49% 56% 61%

G.2 RESULTS FOR CASE STUDY

In this section, we select several instances from the three datasets as case studies. We give a time
budget of 3600 seconds and record the best solution found so far for different methods, as shown in
Figure 8. On the AIDS and MCF-7 datasets, our method can find better solutions within the time
budget. On the MOLHIV dataset, both NGA and RASCAL find the best solution, but NGA takes
much shorter time.

Specifically, we take AIDS dataset as an example and give detailed illustration about how optimization
pushes the solution found so far to approximate the optimal MCES. As shown in Figure 9 , the
current identified common edge subgraph serves as a lower bound, which is gradually improved as
the optimization process goes.

G.3 EMPIRICAL EVIDENCE

We conduct extensive experiments to demonstrate the empirical evidence of the effectiveness of
our proposed method. The experiments are performed on three datasets, and all test instances are
included. Specifically, we measure the parameterized temperature at different iterations during the
training process, particularly after the model has converged. The learned sequence of temperatures
across layers represents the optimization trajectory of the problem. This trajectory includes both
positive and negative values, where the negative values often play a critical role in escaping local
optima.

As shown in Figure 11, the parameterized temperature varies with different iterations in NGA, reveal-
ing stable trends across the datasets. In the initial iterations of NGA, we observe a cautious exploration
of the parameter space, characterized by relatively small and stable values of the parameterized tem-
perature. As the NGA iteration progresses, the algorithm transitions to a more aggressive convergence
strategy, reflected by a significant increase in the magnitude of the parameterized temperature. Our

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Molecule 1

Molecule 2

Figure 9: The size of the common edge subgraph found by NGA (serving as a lower bound) increases
over the course of the optimization process (runtime in seconds). Matched atoms and bonds are
highlighted in red.

AIDS MOLHIV MCF-7

M
ol

ec
ul

e
1

M
ol

ec
ul

e
2

Figure 10: Visualization results of MCES for RASCAL.

empirical results consistently align with the theoretical analysis, highlighting distinct patterns along
the optimization trajectory. These patterns reflect the dynamic behavior of the algorithm, where
early stages focus on exploration and later stages emphasize convergence, guided by the learned
temperature sequence.

Importantly, the values shown in Figure 11 correspond to converged or near-converged states. We
additionally visualize how |βl| changes in the optimization process in Figure 12. Empirically, we ob-

1 2 3 4 5 6
Iteration

10

0

10

20

30

40

W
T 1

*W
2

Mean
±1 STD

(a) AIDS

1 2 3 4 5 6
Iteration

20

10

0

10

20

30

40

50

W
T 1

*W
2

Mean
±1 STD

(b) MOLHIV

1 2 3 4 5 6
Iteration

10

0

10

20

30

40

W
T 1

*W
2

Mean
±1 STD

(c) MCF-7

Figure 11: Distribution of parameterized temperature values across iterations in NGA on different
datasets.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

W
T 1

*W
2

Iteration_1
Iteration_2
Iteration_3
Iteration_4
Iteration_5
Iteration_6

(a) AIDS

0 50 100 150 200 250 300
Epoch

0

2

4

6

8

10

12

14

W
T 1

*W
2

Iteration_1
Iteration_2
Iteration_3
Iteration_4
Iteration_5
Iteration_6

(b) MOLHIV

0 50 100 150 200 250 300
Epoch

2

0

2

4

6

8

10

12

14

W
T 1

*W
2

Iteration_1
Iteration_2
Iteration_3
Iteration_4
Iteration_5
Iteration_6

(c) MCF-7

Figure 12: Mean values of parameterized temperature in different NGA iteration layers across epoch
on different datasets.

0 50 100 150 200
Epochs

50

40

30

20

10

0

-lo
ss

Mean (NGA)
±1 STD (NGA)
Mean (NGA-Scalar)
±1 STD (NGA-Scalar)

(a) AIDS

0 50 100 150 200
Epochs

35

30

25

20

15

10

5

0

-lo
ss

Mean (NGA)
±1 STD (NGA)
Mean (NGA-Scalar)
±1 STD (NGA-Scalar)

(b) MOLHIV

0 50 100 150 200
Epochs

35

30

25

20

15

10

5

0

-lo
ss

Mean (NGA)
±1 STD (NGA)
Mean (NGA-Scalar)
±1 STD (NGA-Scalar)

(c) MCF-7

Figure 13: Loss curves across epochs on different datasets. NGA-Scalar represents an variant of
NGA by setting the temperature value as a learnable scalar.

serve that |βl| takes smaller magnitudes during the early and intermediate iterations—precisely when
escaping shallow local optima is relevant—while larger magnitudes emerge in the final refinement
phase, consistent with the intended design of NGA. This aligns with the theoretical role of Theorem
1, which analyzes updates around a stationary point rather than global dynamics across all layers.

G.4 ADDITIONAL PARAMETER ANALYSIS

To systematically evaluate the sensitivity of our method to Gumbel-Sinkhorn sampling, we conducted
an ablation study by varying the number of samples M . Empirical analysis in Figure 14 reveals that
the performance increases sublinearly with M , demonstrating the expected exploration-computation
trade-off. Besides, the marginal gain becomes statistically insignificant when M ≥ 10. Based on
these findings, we select M = 10 as the optimal trade-off.

G.5 RESULTS ON QAP INSTANCES

To demonstrate the applicability of our method to address the general QAP problem, we conducted
additional experiments on Koopmans-Beckmann’s QAP benchmarks: QAP20, QAP50, and QAP100,
corresponding to problems with 20, 50, and 100 nodes. In each task, location node coordinates are

1 5 10 20
Number of Gumbel samples

95

96

97

98

99

A
cc

ur
ac

y 
(%

)

AIDS
MOLHIV
MCF-7

Figure 14: How the number of Gumbel samples affect NGA.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

uniformly sampled from the unit square [0, 1]2. The flow fij between facility i and j is sampled
uniformly from [0, 1], symmetrized, diagonal entries set to zero, and randomly set to zero with
probability p = 0.7. We train with up to 5120 instances and evaluate on a test set of 256 instances
from the same distribution. Since these tasks do not involve the MCES-specific structure, we omit
ACG construction and directly use the NGA module (Alg. 1). We compare our method with the
heuristic solver SM (Leordeanu & Hebert, 2005) and the learning-based solver NeuOpt (Ma et al.,
2023). The results are summarized in Table 7. Our method achieves competitive or superior solutions
across these QAP instances.

Table 7: Total Assignment Cost (lower is better) on Koopmans-Beckmann’s QAP benchmarks

Method QAP20 QAP50 QAP100

SM 70.07 446.62 1800.75
NeuOpt 61.37 430.61 1789.22
NGA 62.17 407.59 1726.54

Besides, we conduct additional experiments on a subset of QAPLIB instances across different
categories. The compared methods include GLAG (Fiori et al., 2013), PATH (Zaslavskiy et al., 2008),
FAQ (Vogelstein et al., 2015). The results are summarized in Table 8. These results show that while
our method is primarily designed for MCES, it can still perform competitively on general QAP,
further demonstrating the versatility of our approach.

Table 8: Total Assignment Cost (lower is better) on 16 Benchmark Examples of the QAPLIB Library

QAP PATH GLAG FAQ NGA

chr12c 18048 61430 13088 17598
chr15a 19086 78296 29018 17352
chr15c 16206 82452 11936 20978
chr20b 5560 13728 2764 3366
chr22b 8500 21970 8774 8580
esc16b 300 320 314 292
rou12 256320 353998 254336 251094
rou15 391270 521882 371458 389048
rou20 778284 1019622 759838 813576
tai10a 152534 218604 157954 145270
tai15a 419224 544304 397376 418618
tai17a 530978 708754 520754 537896
tai20a 753712 1015832 736140 802464
tai30a 1903872 2329604 1908814 1861206
tai35a 2555110 3083180 2531558 2789834
tai40a 3281830 4001224 3237014 3214724

G.6 RESULTS ON UNLABELED DATASETS

To further enhance the generalizability of our method, we have additionally conducted experiments
on unlabeled graphs. Specifically, we constructed an unlabeled version of the AIDS dataset, denoted
as AIDS-unlabeled, where all atom types were replaced by carbon atoms (C) and all bonds were
converted to single C–C bonds. This transformation results in unlabeled graphs while preserving the
overall structural diversity of the original dataset.

In the unlabeled settings, additional structural embeddings may provide meaningful information. We
replaced the original GCN backbone in our method NGA with a Graph Transformer architecture
equipped with structural encodings (Rampášek et al., 2022) and name this variant as NGA-GPS.
This variant naturally incorporates positional and structural information, enabling NGA to operate
effectively when explicit labels are absent.

The experimental settings follow those used in our paper (Appendix C.2). For NGA and NGA-GPS,
we employ an 8-layer GNN with 32 hidden dimensions. The NGA-GPS is equipped with random

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 9: MCES results on unlabeled dataset

Dataset AIDS-unlabeled

RASCAL 89.74
FMCS 61.53
Mcsplit 74.47
GLSearch 68.13
NGM 55.20
GA 67.44
Gurobi 83.89
NGA 93.72
NGA-GPS 94.37

walk based structural encodings and the multi-head attention mechanism with 4 heads. For the other
baseline methods, we also adhere to the configurations described in our paper. The experimental
results in Table 9 show that our method maintains strong performance even in the unlabeled setting,
demonstrating its robustness and potential applicability beyond labeled molecular graphs.

H LIMITATIONS AND FUTURE WORK

This work focuses on labeled graphs, leaving open the question of how to handle unlabeled ones.
When node or edge labels are absent, learning correspondences relies solely on graph structure,
which increases the number of potential matches per node, enlarges the solution space, and makes the
problem significantly more challenging.

Multi-graph MCES is a meaningful and practically relevant extension of the classical pairwise MCES
formulation. In this work, we focus on the pairwise setting, which is the standard and well-established
definition of MCES and also a necessary first step toward addressing the long-standing and more
general challenge. Pairwise MCES provides the fundamental building block on top of which multi-
graph formulations are typically constructed. A feasible path toward multi-graph MCES is to combine
pairwise MCES computations with cycle-consistency constraints, which has been long studied in
multi-graph matching (Pachauri et al., 2013; Xia et al., 2025). Our method can be extended along
these lines—by running NGA across all graph pairs and enforcing consistency—to obtain a principled
multi-graph solution. We view this direction as a natural and promising extension of our work.

I DISCUSSION ON GRAPH LABELS

In the MCES formulation, a common subgraph requires exact matching of compatible labels. There-
fore, the choice of labels directly reflects what we consider as ”common structure.” Labels can be
domain-specific features aligned with the MCES problem definition.

Concrete examples across domains:

• Molecular graphs: Atom types (C, N, O) and bond types (single, double, aromatic) are natural
labels because pharmacological similarity requires exact chemical structure matching.

• Social networks: User attributes (occupation, location, age group) could serve as labels
when finding common community structures.

• Knowledge graphs: Entity types and relation types naturally define what constitutes matching
substructures.

If the application requires tolerance to label noise or similarity rather than exact matching, one could:

• Preprocess labels by clustering fine-grained categories into coarser groups
• Define softer compatibility functions in the ACG construction (modifying Eq. 4 to allow

approximate matching)
• Formulate as a different problem variant (e.g., approximate common subgraph)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
assistant. The LLM’s role was strictly limited to improving the clarity, grammar, and readability
of our text through sentence polishing and paragraph restructuring. The LLM did not contribute to
research ideation, experimental design, data analysis, or the formulation of conclusions. All scientific
content and claims are the sole responsibility of the human authors.

31


	Introduction
	Related Work
	Preliminary
	Methodology
	Overview
	Unsupervised Training of MCES
	ACG for Learning the Correspondences
	Neural Graduated Assignment
	Gumbel Sampling for Optimization


	Theoretical Analysis
	Experiments
	Experimental Setup
	Solving MCES Problems
	Graph Similarity Computation and Graph Retrieval
	More Analysis

	Conclusion
	More background
	Association Common Graph Explanation
	Experimental Setup
	Datasets
	Implementation Details
	Discussion of Baseline Methods

	Convergence Analysis
	Convergence Behavior under Learnable Parameters
	Proof of Faster Convergence for Product Parameterization

	Behavior at Local Optima
	Ablation Study
	Additional Experimental Results
	Additional Results for Solving MCES
	Results for Case Study
	Empirical Evidence
	Additional Parameter Analysis
	Results on QAP Instances
	Results on unlabeled datasets

	Limitations and Future Work
	Discussion on Graph Labels
	LLM Usage Statement

