Under review as a conference paper at ICLR 2023

HLOENV: A GRAPH REWRITE ENVIRONMENT FOR
DEEP LEARNING COMPILER OPTIMIZATION RESEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce HloEnv, an environment based on Accelerated Linear Algebra (XLA)
for deep learning (DL) compiler optimization research. HloEnv transforms all
graph rewrites into a common representation, providing a flexible interface to
control and modify existing graph optimization passes. In this representation, an
XLA pass is converted into a set of sequential rewrite decisions, which control when
and if the rewrites are applied. Along with HloEnv, we present a dataset with broad
coverage of computation graphs drawn from modern real-world machine learning
models. We select two XLA passes with the largest impact on the runtime of the
compiled program, and explore the potential for further improvement over XLA in
this decision space. We show that using simple heuristics for decision-making can
achieve on-par or better performance than XLA. Using search algorithms further
boosts performance. We intend for HloEnv and our dataset to be an open-source,
community-driven effort that helps spur advances in DL compiler optimization
research.

1 INTRODUCTION

Deep Learning (DL) models have been getting significantly larger and more computationally expen-
sive (Thompson et al.| |2020). As a result, computational efficiency is now increasingly important for
the economic and technical viability, as well as the environmental sustainability of a DL project. DL
compiler optimization is important for achieving this efficiency. A DL compiler parses user-defined
DL model code (usually written in Python) into a high-level directed acyclic graph (DAG) that can
then be optimized to run efficiently on DL hardware through a sequence of sub-graph rewrite passes.
Current production-ready DL compilers are still heavily hand-engineered, and require deep domain
knowledge to create well-optimized results.

Great efforts have been made to alleviate the reliance on human engineers. TASO (Jia et al.| [2019c¢)) is
the most representative work on search-based DL compiler optimization. It automatically generates
graph rewrites and searches for better optimization solutions on a larger search space. However,
the set of DL operators it considers contains only 12 operators, which does not generalize well to
newly emerged DL models. Recent works on learning-based DL. compiler optimization such as
REGAL (Paliwal et al.,[2020) and GO (Zhou et al.,|2020a) model a limited set of passes each with
a different representation. To our best knowledge, there has been no work that generalizes to all
optimization passes with a common representation.

In short, at the current stage, research on DL compiler optimization is still facing the following
challenges: First, due to their non-unified implementations, there is no systematic interface that has a
wide coverage of optimization types. Second, most existing works focus on specific sets of passes.
Third, current DL compiler optimization benchmarks use either closed-source or small datasets with a
limited set of DL models. The community has not yet centered its efforts to build a publicly accessible
dataset of real-world DL computation graphs.

We propose the following to address these challenges. First, we develop HloEnv, an environment
for the optimization agent to inter-operate XLA (Leary & Wang||2017), a production-quality cross-
framework DL compiler. This environment provides a common representation for any type of
graph rewrites. Second, we present a dataset with broad coverage of High-Level Operations (HLO)
graphs drawn from real-world JAX-implemented machine learning code, extracted from a variety of
open-source repositories on GitHub (Table[A.2), with spectrum spans through various domains. This

Under review as a conference paper at ICLR 2023

provides a more representative dataset of workloads for DL compiler optimization research. Third,
based on a thorough analysis of XLLA optimization passes, we determine two XLA passes with the
most significant impact on the runtime of the compiled program. We explore using simple heuristics
and search-based algorithms to further optimize these passes.

The design of HloEnv points to a potential future where DL compiler engineers only need to develop
and maintain a simple set of rewrite rules and leave the complicated heuristics to machine learning-
generated optimization strategies that generalize to both new DL models and new DL hardware.

2 SYSTEM DESIGN OF HLOENV

2.1 XLA PRELIMINARIES

XLA compiles computation graphs in High-Level Operations (HLO) IR format into machine instruc-
tions for different backends. As part of this compilation process, XLA runs a series of passes to
modify the HLO graph. The passes perform rewrites (using pattern matching and replacement) on
the HLO graph to optimize the performance or ensure the correctness of the graph. These passes can
be composed in a pipeline and recursively grouped in a parent pipeline. These passes/pipelines are
run sequentially in a fixed order and can be run either once or repeatedly in a loop until the pass no
longer changes the HLO graph.

2.2 OVERVIEW OF HLOENV

Frontend Optimization Environment

Decision Making Agent
Modified XLA Pipelines

Heuristics-based
Methods

augmented HLO graph) | |
with alternative nodes Actions Search-based
Methods
Originall XLA Pipelines
—{ Optimized HLO Module }
Backend Optimizations

Figure 1: The HloEnv interaction loop.

HloEnv aims to provide a flexible interface that allows for easy control of the XLLA optimization
passes and pipelines. Each pass and pipeline in HloEnv can be individually set to dry-mode to allow
us to intercept and control the rewrites they perform.

As shown in Fig. [T} HloEnv’s Python interface parses an HLO text file into an HLO graph and loads
it into the frontend optimization environment. A user-specified set of XL A passes/pipelines is then
applied to the HLO graph. HloEnv executes the original pass/pipeline directly if dry-mode is turned
off, while it captures these rewrites without actually applying to the source graph when dry-mode is
turned on. An augmented graph that contains both the source graph and all the rewrite opportunities
is generated for the user. Using the augmented graph as an input, the user can develop various
decision-making agents to decide which rewrites to apply. This process can be applied multiple
times until the output HLO graphs stay unchanged (converge) or until a decision is made to end the
optimization for that pass/pipeline. The user can then use XLA’s backend APIs to generate the final
device code.

From the decision-making and control point of view, our system defines a Markov Decision Process
(MDP) M = (S, A, P, R). S stands for the state space, in our case, the augmented graph. From the
state, the agent computes the action in the action space A that decides which rewrite rules to apply.
P describes the transition function of the HloEnv, i.e., change of the graph when certain rewrite rules
are applied. R is the reward generated from the decision, in our case, the improvement of runtime
between the old and new graphs.

Under review as a conference paper at ICLR 2023

HloEnv allows users to design the action space at both a macro (the ordering of passes and composition
of passes in a pipeline) and a micro level (the ability to decide whether to apply individual rewrites
from a pass).

2.3 INTERCEPT REWRITES FROM XLA PIPELINES WITH DRY-MODE

Desirably, at each optimization step, the decision-making agent is provided with the source HLO
graph, the matched sub-graphs of all rewrite rules, and the target sub-graphs that will replace the
matched patterns. The actual rewriting of the graph only happens after the agent has made decisions
on which rewrites to apply.

However, existing XLA passes operate greedily by making an immediate replacement once a rewrite
rule has its match. Hence it is non-trivial to refactor XL A into the above-described optimization
iterations. Fortunately, we notice that all rewrites are carried out via only a few core APIs that modify
the graph. Therefore, by intercepting those graph modification APIs, we introduce a dry-mode to
XLA. Instead of making immediate replacements, we save necessary information of all the rewrite
opportunities under dry-mode while keeping the source graph unchanged. Given all the opportunities
identified from the dry-mode, the agent makes decisions on which rewrites to apply, which get
executed by the HloEnv afterward. The dry-mode is general to most passes in XLLA and maximizes
the reuse of XL A’s existing code by introducing minimal code change. Dry-mode also brings an
additional positive side effect: parallel execution of passes becomes possible since the source graph
is read-only under dry-mode.

2.4 THE ALTERNATIVE GRAPH REPRESENTATION

Existing works such as REGAL (Paliwal et al., 2019) and GO (Zhou et al., 2020a)) use the source
graph as the state and predict an action for each node of the graph. This state and action space work
well for optimizations like device placement or execution priority. However, they are insufficient for
complex graph rewrites like algebraic simplification.

3 \ \
CD cD
5

XLA A (CD) Reroute D
DryRun, | [:>
:> e Augment Prune
the DAG — >

wm O] T O
® ®e 0o 0
®» ® ® ®

1 2 3

:

To generalize to any type of graph rewrite, and to enable joint consideration of multiple rewrite rules
that potentially conflict with each other, we introduce the representation shown in Fig. 2] When
a source graph is processed in a pass with dry-mode enabled, we capture each rewrite opportunity
instead of applying them. We then augment the graph with the identified rewrite opportunities using a
special kAlternative instruction (yellow triangle), resulting in an alternative graph. This alternative
graph serves as the state for the agent. After decisions are made on which input path to take for each
kAlternative instruction in the reroute step (details in Section [3), HloEnv applies a pruning step to
remove all unused nodes and perform additional clean-up.

Figure 2: The alternative graph-based optimization pipeline.

Interfering Rewrites Commonly, two rewrites on the same graph can interfere with each other, i.e.,
their matched pattern overlaps. Therefore, in existing XLA pipelines, rewrites happen sequentially in
a pre-defined order to avoid race conditions. In our pipeline, two interfering rewrites are both inserted

Under review as a conference paper at ICLR 2023

as alternatives. This enables our agent to make a more knowledgeable decision based on all available
opportunities. Two or more interfering rewrites can cause the resulting graph to violate the acyclic
constraint. Hence we introduce a cycle detection function to reject all such alternatives.

Writing New Passes in XLA The generality of our alternative graph representation means that we
can easily enable dry-mode for any new pass we create, as long as it utilizes XLA’s core APIs. This
is important as it allows us to easily introduce modified versions of XLLA passes into HloEnv, with
larger action spaces for an agent or heuristic to make the rewrite decisions. See our custom General
Fusion pass in Section |5.2|for an example.

2.5 CusTtoM HASH FUNCTION FOR HLO GRAPH

We require an HLO graph hash function for de-duplicating the dataset or uniquely labeling the state
when performing a search over the state space. However, the existing hash implementation in XLA
does not satisfy our needs. It does not fully account for the graph topology or the parameters specific
to individual instruction types. This can potentially lead to a higher rate of hash collisions. At the same
time, it also is affected by irrelevant information such as the ordering of the instructions/computations.
Hence, we developed HloDagHash, a more powerful hash that captures the graph topology and all
instruction parameters to allow for the unique identification of each graph. The details about its
implementation can be found in Appendix [B]

3 OPTIMIZATION STRATEGIES

Section 2.4 details how we organize alternative rewrites in the alternative graph (i.e. step 2 & 3 in
Fig.[2] and the Augment method in Algorithm [I|below). In this section, we utilize HloEnv’s ability to
control individual rewrites to explore alternative optimization strategies, including heuristic-based and
search-based methods. These methods select one input path for each alternative node, as represented
in the GenerateAction method in Algorithm [T below.

As shown in Algorithm [T} we frame the HLO graph optimization for a certain pass (identified as
pass_id) as a Markov Decision Process (MDP). Given a certain augmented graph G € S, the

corresponding action space is A = A; x --- x Ap, where D is the number of kAlternative
nodes in G.

Algorithm 1 Frontend HLO Graph Optimization Pass

1: function OPTIMIZATION PASS(GP, pass_id) >G° = (V,E)
2 G° Augment (G, pass_id)

3 step <+ 0

4 while Gt £ G***° do > Loop while still having alternative nodes
5 a + GenerateAction(G°*®, pass_id) > Action space ASP = Ay x - x Ap
6: G+ ApplyAction(GS*P, a) > Step 4 & 5 in Fig.
7: Gt Augment(GtPH! pass_id)

8 step < step+1

9 end while

0 return G°**° > The final optimized HLO graph
1:

10:
11: end function

3.1 HEURISTIC-BASED METHODS

Heuristic-based methods use human-designed rules for decisions on each alternative node in the
alternative graph. We present a simplistic pick-first heuristic. This baseline heuristic always takes
the first choice available on each kAlternative instruction which leads to graph change (i.e., first
alternative after the original sub-graph). This acts as a baseline for other methods and the original
XLA pipeline.

Under review as a conference paper at ICLR 2023

3.2 SEARCH-BASED METHODS

Search-based methods explore multiple actions at each graph state while backtracking is allowed
and determine an optimal decision sequence starting from G° to an end graph GV. We exhibit two
search-based methods: beam search (BS) and factorized Monte-Carlo tree search (f-MCTS).

Beam Search For graph G* with action space A, beam search (BS) enumerates all next graph states

{ G?’l } ‘Zéll and uses a runtime upper bound as pruning rule to discard children violating Eq. in the
search tree, equipping our beam search with adaptive bandwidth.

T(GIY) < a-T(GY). (1)

Our beam search uses depth-first strategy, implemented with a stack to prioritize search depth (details
in Appendix [C.2). We use large « to approximate an exhaustive search at the cost of a large search
space. Therefore, beam search could only search on small graphs.

Factorized Monte-Carlo Tree Search To deal with graphs with arbitrary sizes, we base our search
algorithm on the widely used (Silver et al., 2016} [2018; |Schrittwieser et al.l 2020) Monte-Carlo tree
search (MCTS). However, our computation graph optimization problem poses new challenges to
existing MCTS methods. First, the optimization spaces differ for each computation graph as the
action space varies from search node to search node. Second, the actions are naturally factorized in
our problem, while the upper confidence bounds in MCTS are usually developed for flattened actions.
Third, one search node might have multiple different parent nodes. Therefore, we propose factorized
MCTS (f-MCTS) to address the above challenges.

MCTS maintains statistics for visit counts and action (Q) values, representing the expected cumulative
reward for taking a specific action at a state. The key idea of f-MCTS is to replace the joint Q
value with a set of marginal Q values based on the number of kAlterantive nodes in the current
computation graph. In this way, the space complexity for storing all Q values is linear to the number
of kAlterantive nodes, and different numbers of factors are allowed for different graphs. Thus, the
tree search can operate on dynamic action spaces. In the simulation phase, each kAlternative node
can make decisions independently. However, in the backup phase, related marginal statistics will be
updated to fulfill the marginalization operation (details in Appendix [C.3). This way, our method can
address the above three difficulties and work efficiently on arbitrarily large graphs.

4 ANALYSIS OF XLA OPTIMIZATION PASSES

The previous section assumes a certain pass is selected and layouts the optimization loop. In this
section, our experiments lead us to the design of our action space, namely, which passes are of
interest.

We conduct a pass analysis on the optimization passes in XLA’s frontend to determine their impact
on runtime performance. Thanks to the flexible interface provided by HloEnv, we can easily reorder
and disable any pass in our Python analysis script and evaluate its effect on the resulting HLO
graph’s runtime. Without loss of generality, we only consider optimization-focused passes (ignoring
passes strictly for ensuring runtime correctness) and restrict our analysis to NVIDIA GPUs, the most
commonly used backend for existing DL compilers. From this analysis, we select optimization passes
with the most significant impact to explore how changes in their rewrites can potentially improve
performance over XLA’s heuristics (Section 3)).

Overview There are 222 passes in total, of which 143 passes operate on the HLO graph when
compiled for GPU. We ignore correctness-critical passes and select 21 runtime/memory optimization-
focused passes for our analysis. For each of these passes, we utilize HloEnv to remove all instances
of the pass type from the optimization pipeline and measure how this removal changes the runtime of
the resulting HLO graph as compared to a fully optimized HLO graph with all optimization passes
(see Table[T).

Measurement of Performance Impact We analyze the impact on the performance of an optimiza-
tion pass/pipeline on the HLO dataset from two perspectives: the proportion of the dataset affected by
that pass (% Affected HLOs), and the average change in performance as a result of that pass (runtime
ratio w/ and w/o the pass). The results can be shown by a few metrics presented in Table

Under review as a conference paper at ICLR 2023

Table 1: Analysis on selected XLLA optimization passes. A higher runtime ratio indicates that the pass
improved runtime since its absence in the optimization pipeline resulted in a higher relative runtime.

% Affected HLOs Runtime ratio w/ and w/o the pass
Removed Pass/Pipeline %Changed Z{)mgpg) ?i]])%%r) Avg. Ratio I(ACV}%Angité())
ZeroSizedHloElimination 7.46 0.32 0.46 1.000 1.004
AlgebraicSimplifier 36.85 0.92 5.91 1.012 1.033
DotMerger 5.31 0.03 0.36 1.001 1.019
SortSimplifier 5.35 0.05 0.36 1.001 1.019
TupleSimplifier 5.73 0.08 0.38 1.001 1.021
WhileLoopSimplifier 7.20 0.07 2.24 1.012 1.165
HloConstantFolding 11.24 0.14 0.63 1.002 1.018
ConditionalSimplifier 5.47 0.14 0.42 1.001 1.020
TransposeFolding 542 0.08 0.42 1.000 1.023
AllReduceFolder 5.46 0.16 0.43 1.001 1.024
AllReduceReassociate 5.48 0.13 0.42 1.001 1.023
AllGatherBroadcastReorder 5.54 0.18 0.46 1.001 1.025
CudnnVectorizeConvolutions 5.46 0.15 0.44 1.001 1.023
CublasPadForGemms Pipeline 5.52 0.18 0.46 1.001 1.023
GpuTreeReductionRewriter 5.71 0.21 0.52 1.001 1.024
GemmRewriter 8.56 2.03 1.78 1.047 1.552
GemmBroadcastFoldingRewriter 5.54 0.20 0.44 1.001 1.024
Fusion Pipeline 49.22 0.25 44.61 1.579 2.178
AllGatherCombiner 5.49 0.28 0.46 1.001 1.019
AllReduceCombiner 5.57 0.26 0.53 1.001 1.023
ReduceScatterCombiner 5.59 0.27 0.51 1.001 1.023

* the percentage of graphs that have been transformed by the pass (%Changed) as determined
by comparing their HloDagHash;

* the percentage of graphs that have improved/degraded performance (%Impr./%Degr.);
¢ the average improvement in runtime they result in across all graphs (Avg. Ratio);

* the average improvement in performance specifically for the graphs that change when the pass
is removed, i.e., graphs which the pass affects on (% Avg. Ratio - Changed).

Some passes have a significant impact on performance on the graphs that they affect but only affect a
minimal number of graphs (e.g., WhileLoopSimplifier). Hence these passes have a lower average
difference in the performance change. Due to runtime noise, we evaluate a graph as having improved
performance when the relative runtime ratio against XLA (i.e., the runtime of that graph divided by
the runtime of the fully XL A optimized graph) is less than 0.94, and degraded performance when it is
above 1.06 (see Appendix for more details on how we set these limits).

Passes/Pipelines of Significance There are two passes/pipelines which have the most significant
impact on the HLO graphs on which they operate. Hence we choose to focus our experiments on
these two passes/pipelines. These are the AlgebraicSimplifier pass and the Fusion pipeline (consisting
of a variety of passes related to instruction fusion). Of most significance is the Fusion pipeline,
which affects the most significant percentage of HLO graphs and results in the largest performance
improvement. AlgebraicSimplifier similarly affects a large percentage of HLO graphs but results in a
more negligible general performance improvement (see Table|[T).

Insights Results from Table (1| show that these optimization passes do not always result in a
runtime improvement. For example, removing the GemmRewriter pass results in 2.1% of the HLO
graphs showing more than 6% of runtime improvement. This applies even for a trivial pass like
HloConstantFolding, which seems like it should always be applied. Our pass analysis found cases
where removal of the HloConstantFolding pass resulted in a final graph that ran approximately
two times faster (see Fig.[6]in Appendix [E). This demonstrates that there is much room for further
optimization in many of the passes and pipelines, even at the macro level of deciding whether to run
them on a given HLO graph.

Under review as a conference paper at ICLR 2023

5 EXPERIMENTS

5.1 DATASETS

HLO graphs in our dataset are of high variance in terms of the number of instructions they contain.
To better measure the performance of various proposed methods, we developed a tool that traverses a
full HLO graph and extracts random sub-graphs that contain a given range of instruction numbers.
Applying this tool to the original HLO text files, we generate a sub-dataset with different ranges of
instruction numbers: 10 to 20 (94332 sub-graphs) and 20 to 40 (3118 sub-graphs). We refer these
2 sub-datasets as inst-10-20 and inst-20-40. For each of the passes/pipelines analyzed (Algebraic
Simplification and Fusion), we further filter these sub-datasets to obtain an experiment set for each
of these two passes. For each pass, we remove sub-graphs whose runtime correctness is affected by
these passes. This allows us to focus fully on the optimization aspects of a pass. We also filter out
sub-graphs for which our search-heuristic optimization cannot conclude in a reasonable amount of
time. More details can be found in Appendix[A.3]

5.2 PASS SELECTION AND MODIFICATION

We select the Fusion pipeline of passes and the Algebraic Simplification pass to evaluate the perfor-
mance of our alternative optimization strategies. These passes have the most significant impact on
performance, as shown in Table m

Algebraic Simplification Pass There are five separate Algebraic Simplification passes at different
locations in the optimization pipeline. For our experiments, we selected the third Algebraic Simplifi-
cation pass in the entire pipeline for optimization and disabled the other four Algebraic Simplification
passes. This pass was selected for two reasons: 1) It can be isolated from the passes before and after.
In contrast, the first Algebraic Simplification pass is located in a smaller pipeline that is run multiple
times in a loop and has potential inter-dependency with these other passes. Selecting this pass for
optimization results in a higher percentage of correctness issues; 2) The third Algebraic Simplification
pass is run to convergence, i.e., it runs multiple times until it no longer modifies the HLO graph. This
gives us a larger space for optimization over multiple runs. To obtain a fair comparison, the same four
passes were disabled in the XLLA pipeline. The resulting pipeline was used to obtain the reference
results.

Fusion Pipeline XL A’s Fusion Pipeline consists of various passes (e.g., MultiOutputFusion,
HorizontalFusion, etc.) that fuse different instructions and computations patterns. These passes
are sequentially run in a fixed order. Additionally, they contain many hand-written heuristics that
determine whether a fusion should occur. In our alternative graph-based representation, however,
the philosophy is to keep both alternatives and delay the heuristics to the routing step. Therefore,
we remove heuristic decisions from XLA’s existing pipeline but keep only the rewrite rules. As a
testimony, we introduce a General Fusion pass that is heuristics-free to replace the existing fusion
pipeline. General Fusion has much shorter lines of code than the original fusion passes and provides
a much larger search space.

5.3 EVALUATION AND METRICS

We note T'(G) the runtime, given a graph G. Based on our experiment results on profiling of
the runtime noise (Appendix [D.3)), we define T'(G) = min(G.evaluate(10).async_timing). For
both pass/pipeline, we compute the runtime ratio of the final optimized graph w.r.t. XLA p =
T (Gmethod)/T (Gxra) and report its avg, max and min across the dataset. We also report the
proportion of the graphs with performance compared against XLLA with criteria. We statistically set
p < 0.94 (resp. p > 1.06) as criteria for faster (resp. slower) than XLA to avoid false positives caused
by noise (Appendix [D.3|and Fig.[5). We identify Gyethoda = Gx1.a using our custom HloDagHash
(Section [2.5) and report the proportion of graphs that end with an equal hash. To further reduce the
impact of noise on the maximum and minimum runtime ratios, we retest the graphs with the largest
and smallest relative runtime ratios to remove outliers.

Under review as a conference paper at ICLR 2023

Table 2: Results on all sub-datasets of 2 passes. f-MCTS is factorized MCTS with uniform prior.

Runti i % of graphs of

untime ratio oo Srapne S

Pass Dataset Method w.r.t. XLA e dentica
Faster Slower (cqual hash)

Avg. Max. Min. (<0.94) (>1.06)

pick-first 1.000 1.158 0.740 0.1 % 0.04 % 96.2 %

inst-10-20

Alg-Simp BS 0981 1442 0383 112% 1.0% 34.9 %
inst 2040 Pick-first 1000 1197 0883 0.19% 025% 922%

f-MCTS 0995 1449 0570 53% 12% 55.5 %

o il0.0p Dickdfitst 0997 1709 0679 31% 03% 26.4 %

General "™ BS 0986 1252 0430 52% 03% 11.7 %
Fusion o io0.qp Pickfist 0989 3313 0738 134% 19% 11.6 %
f-MCTS 0992 1755 0349 145% 77% 49 %

5.4 RESULTS AND ANALYSIS

Finding exemplars of performance gains over XLA In cases where the alternative optimization
strategy generated a graph with faster performance, we performed additional evaluations, using
T(G) = min(G.evaluate(100).async_timing), to confirm that their performance gains were not
due to noise. These cases are shown below as proof that an alternative optimization strategy can
achieve significant performance gains over XLA.

5.4.1 HEURISTIC-BASED METHODS

On both inst-10-20 and inst-20-40 (where graphs are not exhaustively searchable), a pick-first heuristic
serves as a strong baseline.

Algebraic Simplification Table [5.4|shows that the pick-first heuristic performs on par with XL A in
the Algebraic Simplification pass, with more than 90 % of the final pick-first optimized graphs being
identical to XL A’s. This is expected as in the Algebraic Simplification case, pick-first after dry-run
has a high probability of recovering the behavior of original XLA.

General Fusion For the general fusion pass, the pick-first heuristic performs even better than XLA
(i.e. with an average runtime ratio w.r.t. XLA of less than 1) for both inst-10-20 and inst-20-40. In
this case, we are comparing XLA’s fusion pipeline, which contains a variety of heuristics used to
evaluate if fusion should be performed, with our modified general fusion pass, which removes most
of these heuristics. Hence, the good performance of the pick-first heuristic on both sets shows that a
large portion of graphs can be optimized well despite ignoring XLA’s hand-designed heuristics and
simply fusing everything.

5.4.2 SEARCH-BASED METHODS

In general, using search-based methods resulted in a faster average runtime over XLA (as well as
heuristic-based methods) for both the insz-10-20 and inst-20-40 sets for both the Fusion and Algebraic
Simplification passes. We remove pruning from beam search on inst-10-20 for exhaustive search.

Algebraic Simplification On insz-10-20, using search-based methods to optimize the HLO graphs
showed general reductions in their evaluation timings, with superior performance compared to the
pick-first heuristic. On average, BS-optimized graphs were 1.9% faster than the equivalent XLA-
optimized graphs, with the most optimized graphs performing up to 161.1% better (Fig. [7). On
inst-20-40, performance was slightly worse than on inst-10-20, with f-MCTS being on average 0.5 %
faster than XL A. Nevertheless, the most optimized graphs were still significantly faster than XLA
and ran up to 75.4% faster (Fig. [§).

We examine the differences between the best-performing search-optimized and XLA-optimized HLO
Graphs to understand the source of these performance gains. In these cases, not performing certain

Under review as a conference paper at ICLR 2023

Algebraic Simplification rewrites either directly improve performance, or allow for subsequent passes
to make better optimizations (e.g., by allowing for a later Fusion pass to fuse more instructions into a
single kernel, or allowing a different cuDNN call to be used). Exemplars of these cases can be found

in Appendix [FI]

General Fusion On inst-10-20, using search-based methods showed general reductions in their
evaluation timings. On average, best-first search optimized graphs were 1.42% faster than the
equivalent XLA-optimized graphs, with the best graphs performing 132.5% faster (Fig. [I3). On
inst-20-40, f-MCTS has approximately equal performance to the pick-first heuristic. This is despite
the best performing f-MCTS graph running 186% faster than the XLLA optimized equivalent (Fig.
[I4). One reason for this could be that greedily performing as much fusion as possible is optimal in
most cases.

As we did with the Algebraic Simplification results, we examine the best-performing search-optimized
graphs and compare them to XLA-optimized graphs to understand why they performed better. These
cases can be split into two general types: 1) Trivial fusion cases, where the speed up happens due to
the instructions being fused into a smaller number of kernels and 2) Non-trivial fusion cases where
the number of kernels is the same or fewer, but changes to the topology of the resulting graph result
in a faster runtime. Exemplars of both these types can be found in Appendix

6 RELATED WORKS

The efficient deployment of various DL models on diverse DL hardware is a challenging task (Jia
et al.l [2019a; Jouppi et al., 2017; |Chen et al 2014). It has driven development and research on
DL compilers such as TVM (Chen et al., 2018)), XLA (Leary & Wang} [2017), DLVM (Wei et al.,
2017), nGraph (Cyphers et al.,2018), and Glow (Rotem et al.| [2018]). Several third-party systems and
methods have also been proposed to enlarge the search space (Jia et al.,[2019b; Wang et al.| [2021)),
include better optimization strategies (Looks et al.l 2017} [Liu et al., 2019; [Zheng et al., |2020), or
providing new high-level IR (Roesch et al., |2019). More recently, people have started exploring
learning-based methods for DL compiler frontend optimization (Paliwal et al [2020; Zhou et al.|
2020b). CompilerGym (Cummins et al.| 2022)) and MLGO (Trofin et al.| [2021)) are two works related
to ours in the traditional compiler optimization field. They provide Python environments for users
to interact with a selected subset of LLVM optimization passes. TensNet (Zheng et al.|[2021) is a
dataset for tensor programs that target lower-level optimization for tensor compilers.

7 DISCUSSIONS AND CONCLUSIONS

We develop HloEnv, the first (to our knowledge) general interface that inter-operates with a production-
quality DL compiler. HloEnv provides a common representation for graph rewrites. We utilize this
common representation to test alternative optimization strategies for specific, high-impact passes on
a broad range of HLO graphs. We show that these alternative strategies can achieve on-par or better
results than the DL compiler’s native optimization strategy. Allowing the user to control the action
space of the graph rewrites provides a more generic and flexible (as a result, more challenging) setup.
This action space can be restricted (e.g., if users only select certain passes of interest) or, in principle,
infinite (by defining and introducing new passes with novel graph rewrite rules). To supplement
research with HloEnv, we also generate a large-scale HLO graph dataset to act as an ideal testbed for
computation graph optimization.

We hope that HloEnv and this HLO graph dataset provide valuable tools to the community to spur
progress in developing DL compiler systems. Building on the baseline presented in this paper, we
believe that a well-designed action space (system research) and a well-trained agent (ML research)
are both essential for this purpose. More specifically, we hope for HloEnv to enable DL compiler
development in the following directions: 1) open up opportunities for more types of decision-making
agents that improve native optimization passes for existing DL compiler systems such as XLA; 2)
less effort to introduce new passes as the heuristics will be replaced by the optimization agent, e.g.,
General Fusion, and 3) lead to the development of learning-based policies to generate optimization
strategies that generalize to new DL models running on new DL hardware.

Under review as a conference paper at ICLR 2023

REFERENCES

Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel Abdous, Taha
Arbaoui, Karima Benatchba, and Saman P. Amarasinghe. A deep learning based cost
model for automatic code optimization. In Alex Smola, Alex Dimakis, and Ion Stoica
(eds.), Proceedings of Machine Learning and Systems 2021, MLSys 2021, virtual, April
5-9, 2021. mlsys.org, 2021. URL https://proceedings.mlsys.org/paper/2021/hash/
3def184ad8f4755f1269862ea77393dd-Abstract.html.

Tiangi Chen, T. Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen, M. Cowan,
Leyuan Wang, Yuwei Hu, L. Ceze, Carlos Guestrin, and A. Krishnamurthy. Tvm: An automated
end-to-end optimizing compiler for deep learning. 2018. URL https://www.semanticscholar,
org/paper/dfe13al17ab84d5403361da4538a04d574f58be83.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei
Xu, Ninghui Sun, et al. Dadiannao: A machine-learning supercomputer. In 2074 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 609-622. IEEE, 2014.

Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya Jain,
Jia Liu, Olivier Teytaud, Benoit Steiner, et al. Compilergym: Robust, performant compiler
optimization environments for ai research. In 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 92-105. IEEE, 2022.

Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew Brookhart,
Avijit Chakraborty, William Constable, Christian Convey, Leona Cook, Omar Kanawi, Robert
Kimbeall, Jason Knight, Nikolay Korovaiko, Varun Kumar Vijay, Yixing Lao, Christopher R. Lishka,
Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath Narayana, Adam Procter, and Tristan J.
Webb. Intel ngraph: An intermediate representation, compiler, and executor for deep learning.
CoRR, abs/1801.08058, 2018. URL http://arxiv.org/abs/1801.08058.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL |https://openreview.net/forum?id=YicbFdNTTy.

Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. Dissecting the graphcore ipu
architecture via microbenchmarking. arXiv preprint arXiv:1912.03413, 2019a.

Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski, M. Zaharia, and A. Aiken.
Taso: optimizing deep learning computation with automatic generation of graph substi-
tutions. Proceedings of the 27th ACM Symposium on Operating Systems Principles,
2019b. doi: 10.1145/3341301.3359630. URL https://www.semanticscholar.org/paper/
80b362efee95c1759c6dab9219eb77ca3ee44475.

Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and Alex Aiken. Opti-
mizing dnn computation with relaxed graph substitutions. Proceedings of Machine Learning and
Systems, 1:27-39, 2019c.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1-12, 2017.

Rasmus Munk Larsen and Tatiana Shpeisman. Tensorflow graph optimizations, 2019. URL https:
//research.google/pubs/pub48051/.

Chris Leary and Todd Wang. Xla: Tensorflow, compiled, 2017.

Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing cnn model infer-
ence on cpus. In Dahlia Malkhi and Dan Tsafrir (eds.), USENIX Annual Technical Conference, pp.
1025-1040. USENIX Association, 2019. URL http://dblp.uni-trier.de/db/conf/usenix/
usenix2019.html#LiuWYLSW19.

10

https://proceedings.mlsys.org/paper/2021/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://www.semanticscholar.org/paper/df013a17ab84d5403361da4538a04d574f58be83
https://www.semanticscholar.org/paper/df013a17ab84d5403361da4538a04d574f58be83
http://arxiv.org/abs/1801.08058
https://openreview.net/forum?id=YicbFdNTTy
https://www.semanticscholar.org/paper/80b362efee95c1759c6dab9219eb77ca3ee44475
https://www.semanticscholar.org/paper/80b362efee95c1759c6dab9219eb77ca3ee44475
https://research.google/pubs/pub48051/
https://research.google/pubs/pub48051/
http://dblp.uni-trier.de/db/conf/usenix/usenix2019.html#LiuWYLSW19
http://dblp.uni-trier.de/db/conf/usenix/usenix2019.html#LiuWYLSW19

Under review as a conference paper at ICLR 2023

Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. Deep learning with
dynamic computation graphs. In ICLR (Poster). OpenReview.net, 2017. URL http://dblp.
uni-trier.de/db/conf/iclr/iclr2017.html#LooksHHN17,

Roman Novak, Lechao Xiao, Jiri Hron, Jachoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=Sk1D9yrFPS,

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs. arXiv preprint
arXiv:1905.02494, 2019.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
rkxDoJBYPB.

Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Josh Pollock, Logan Weber, Ziheng Jiang,
Tiangi Chen, Thierry Moreau, and Zachary Tatlock. Relay: A high-level IR for deep learning.
CoRR, abs/1904.08368, 2019. URL http://arxiv.org/abs/1904.08368.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman Dzhabarov,
Nick Gibson, James Hegeman, Meghan Lele, Roman Levenstein, et al. Glow: Graph lowering
compiler techniques for neural networks. arXiv preprint arXiv:1805.00907, 2018.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484—489, jan 2016. ISSN 0028-0836.
doi: 10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140-1144, 2018. doi: 10.1126/science.
aar6404. URL |https://www.science.org/doi/abs/10.1126/science.aar6404.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. The computational
limits of deep learning, 2020. URL |http://arxiv.org/abs/2007.05558 cite arxiv:2007.05558.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Li.
MLGO: a machine learning guided compiler optimizations framework. CoRR, abs/2101.04808,
2021. URL https://arxiv.org/abs/2101.04808.

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan
Rong, Yuanyong Chen, and Zhihao Jia. Pet: Optimizing tensor programs with partially equivalent
transformations and automated corrections. 2021. URL |https://www.semanticscholar.org/
paper/elel18f27e4aec1648f440a526f56b66dba2elf5c.

Richard Wei, Vikram S. Adve, and Lane Schwartz. DLVM: A modern compiler infrastructure for deep
learning systems. CoRR, abs/1711.03016, 2017. URL |http://arxiv.org/abs/1711.03016.

Lianmin Zheng, Ruochen Liu, Junru Shao, Tianqi Chen, Joseph E. Gonzalez, Ion Stoica, and
Ameer Haj Ali. Tenset: A large-scale program performance dataset for learned tensor compilers.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1),2021. URL https://openreview.net/forum?id=alfp8kLuvc9.

11

http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#LooksHHN17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#LooksHHN17
https://openreview.net/forum?id=SklD9yrFPS
https://openreview.net/forum?id=rkxDoJBYPB
https://openreview.net/forum?id=rkxDoJBYPB
http://arxiv.org/abs/1904.08368
https://www.science.org/doi/abs/10.1126/science.aar6404
http://arxiv.org/abs/2007.05558
https://arxiv.org/abs/2101.04808
https://www.semanticscholar.org/paper/e1e18f27e4aec1648f440a526f56b66dba2e1f5c
https://www.semanticscholar.org/paper/e1e18f27e4aec1648f440a526f56b66dba2e1f5c
http://arxiv.org/abs/1711.03016
https://openreview.net/forum?id=aIfp8kLuvc9

Under review as a conference paper at ICLR 2023

Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi Zhao, Lansong Diao, Jun
Yang, and Wei Lin. Fusionstitching: Boosting memory intensive computations for deep learning
workloads. ArXiv, abs/2009.10924, 2020. URL |https://www.semanticscholar.org/paper/,
682bc@138e7c6e555eb741844e94e740aef9917d.

Yangi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu,
Phitchaya Phothilimtha, Shen Wang, Anna Goldie, et al. Transferable graph optimizers for ml
compilers. Advances in Neural Information Processing Systems, 33:13844—13855, 2020a.

Yanqi Zhou, Sudip Roy, AmirAli Abdolrashidi, Daniel Wong, Peter C. Ma, Qiumin Xu, Hanxiao
Liu, Mangpo Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, and James
Laudon. Transferable graph optimizers for ML compilers. CoRR, abs/2010.12438, 2020b. URL
https://arxiv.org/abs/2010.12438.

12

https://www.semanticscholar.org/paper/682bc0138e7c6e555eb741844e94e740aef9917d
https://www.semanticscholar.org/paper/682bc0138e7c6e555eb741844e94e740aef9917d
https://arxiv.org/abs/2010.12438

Under review as a conference paper at ICLR 2023

A DATASET INFORMATION

The goal of our HLO dataset is twofold. First, we want to present a large-scale dataset for training
different computation graph optimization strategies. Second, we want the dataset to serve as an
ideal test-bed against which people could measure the performance of arbitrary computation graph
optimization strategies.

A.1 DATASET COLLECTION

We manually select a list of JAX implemented repositories from GitHub, and harvest the HLO text
files by setting the XLLA_ DUMP_TO flag while running the model. In this way, we dump all the
unoptimized HLO graphs generated during JAX’s Just-In-Time (JIT) compilation process. We then
remove duplicate HLO text files by comparing hash using our HloDAGHash implementation (see
Appendix [B] for more details), and filter the resulting files to remove the very small ones which have
minimal opportunities for optimization. After the above steps, we can guarantee three properties
of HLO graphs in our dataset: 1) They all come from real-world deep learning models; 2) They all
have different DAG and tensor shapes, and 3) They all provide at least some space for optimization
opportunities. In total, we build a dataset containing 40,711 HLO graphs from deep learning models
defined in 26 distinguished GitHub repositories.

A.2 DATASET OVERVIEW AND ANALYSIS

20% | 41% | 9% 3% A

o
O
Vv
ﬂ = O% o e
R
0% 5% 13% 7% 0% 0% 3% 0% 36% 0% 0% 0% 14% 0% 5% 0% 31% 5% 0% 0% 71%
0% 13% 0% 1% 0% 0% 3% 0% 0% 2% 0% 4% 0% 0% 37% 10% 0% 0% 0% 0% 0% 0% 5% 17% 0% 0%

0% 6% 0% 1% 0% 0% 0% 0% 0% 2% 0% 7% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

o
£
S
> 0% 2% 0% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 3% 0% 0% 55% 0% 0% 5% 0% 0% 0% 0% 0%
s
P 0% 15% 7% 2% 1% 0% 0% 1% 0% 1% 7% 12% 10% 0% 11% 15% 5% 21% 19% 0% 19% 15% 5% 0% 0% 14%
> o o o & o & N
JE L T A G L A
< S N & N 4
& ¢ S K 5 & S $ & & & R <& & ¥ @@@
S & F &9 < ¢ < & =

Figure 3: Distribution of the sizes of HLO graphs

Our dataset covers a broad range of network architectures, centering around modern, real-world
models in various domains. The GitHub repositories we pick include Vision Transformer (ViT) (Doso}
2021), Neural-Tangent (Novak et al.| 2020), MuZero (Schrittwieser et al.| [2020), and
more. Figure [3|shows that most HLO graphs generated during JAX’s JIT compilation contain less
than 1000 instructions. More than half of the repository set majorly contains a dataset with less
than 200 instructions. We also show a breakdown of top HLO opcodes that appear in our dataset in

Figure 4]

13

Under review as a conference paper at ICLR 2023

exponential
0.6%
negate

1.0%
custom-call
o
%

concatenate
1.6%
pad

broadcast
22.2%

transpose

subtract

dot

3.4%

tuple S
3.6%

compare
4.4%

reshape
7.4%

slice
4.7%
select
5.4%
call
5.4%

multiply
7.4%

Figure 4: Distribution of the Ops in our HLO dataset.

A.3 SUB-DATASET FILTERING

Algebraic Simplification The Algebraic Simplification pass is used for both optimization and
correctness purposes. Hence it is possible that modifications to the rewrites applied by this pass result
in a graph that cannot be correctly evaluated on the backend. Of the 94332 inst-10-20 sub-graphs
generated, we filtered out 34000 graphs for which the correctness of the graph was not dependent on
any graph rewrites performed by the Algebraic Simplification pass. Filtering inst-20-40 results in
1619 graphs.

General Fusion Our implementation of a General Fusion pass allows almost any two instruc-
tions/computations to be fused. Additionally, fusion can result in the cloning of computation. As a
result, the action space for General Fusion is significantly larger than for the Algebraic Simplification
pass. To ensure our search algorithms can finish in a reasonable time, we empirically filter graphs
from the sub-datasets with action space less than 10,000 in size after the first optimization pass. Note
that the number of instructions in a graph can significantly increase over multiple rewrite operations
during a search. This filtering leads to inst-10-20 containing 28,507 graphs and inst-20-40 containing
2791 graphs.

B DETAILS ON THE IMPLEMENTATION OF THE H1oDAGHash FUNCTION

The XLA HLO graph hash implementation is lacking in two ways which increase the number of
hash collisions: 1) It simply hashes the instructions in the HLO graph in post-order, and does not
recursively consider the structure and connections of each HLO instruction and computation in the
HLO graph; 2) Instruction specific parameters (e.g. the size and stride of an HLO Convolution
instruction) are not considered in the hash of each instruction as well.

Our custom Hl1oDAGHash function builds upon XLA’s hash implementation, but is designed to be a
more powerful hash that additionally accounts for graph topology and the parameters unique to each

14

Under review as a conference paper at ICLR 2023

Table 3: Commit hashes and GitHub URLs of open-source repositories we used to generate our

dataset.

GitHub Repo Name Commit Hash URL

BayesNewton e3a7251 AaltoML/BayesNewton

GANs-JAX 099111f lweitkamp/GANs-JAX

antibiotic-resistance 7634f9c magi-1/antibiotic-resistance

bayeSDE 43511d2 xwinxu/bayeSDE

brax 730e05d google/brax

continuation-jax c145260 harsh306/continuation-jax

cwvae-jax d724112 juliuskunze/cwvae-jax

deeperwin 5c8d497 mdsunivie/deeperwin

deepmind-research 1642ae3 deepmind/deepmind-research

dks a92c184 deepmind/dks

dm_pix 6accc96 deepmind/dm_pix

efax 61ad838 NeilGirdhar/efax

efficientnet-jax a65811f rwightman/efficientnet-jax

flaxvision d5b7e6¢c rolandgvc/flaxvision

jax-bayes b91432c jamesvuc/jax-bayes

jax-enhance 3a3dd40 isaaccorley/jax-enhance

jax-flows 26dce81 ChrisWaites/jax-flows

jax-gat 4d48e2b gcucurull/jax-gat

jax-md 2b8754a google/jax-md

jax-models ae57505 DarshanDeshpande/jax-models

jax-rl 820cb5d henry-prior/jax-rl

jax-unirep b8048db E1Arkk/jax-unirep

jax_muzero b8ab362 Hwhitetooth/jax_muzero

jax_verify e02aabb deepmind/jax_verify

jaxfg 893c347 brentyi/jaxfg

jaxlie 65d6351 brentyi/jaxlie

jaxrl 1286300 ikostrikov/jaxrl

jraph 36071d5 deepmind/jraph

maml_flax a4a8819 gcucurull/maml_flax

medclip ff9e5f6 Kaushalya/medclip

metax 1212478 tristandeleu/metax

mlp-gpt-jax 571ccfo lucidrains/mlp-gpt-jax

neural-tangents 5bb274c google/neural-tangents

ott f4dafa8 ott-jax/ott

revisiting_rainbow 7cd2bc6é JohanSamir/revisiting_rainbow

scenic 978fead google-research/scenic

siren-jax 0806e61 KeunwooPark/siren-jax

tree-math 46214b5 google/tree-math

i?fﬁfmglxwres 4412de7 yuneg11/Scale-Mixtures-of-NNGP

Toy—neurgl—' 3a1d5d8 rasutt/Tgy—Qeural—

network-in-jax network-in-jax
Information-Fusion-

NuX bd996dd Lab-Umass/NuX
ASEM0@00Q/Physics-informed-

PINN-JAX 561a8d9 neural-network-in-JAX

jax_cosmo 522009 DifferentiableUniverse

Initiative/jax_cosmo

15

Under review as a conference paper at ICLR 2023

instruction. This reduces the chance of a hash collision when determining if a graph has been seen
before, or is identical to another graph.

Implementation The HloDAGHash algorithm walks the HLO graph, starting from the root instruc-
tion, in Depth-First Traversal order. At each instruction, we take the original XLA hash of that
instruction and additionally hash it with two things. The first is the HLoDAGHash of each operand of
that instruction (unlike the XL A hash which hashes the shape of each operand of that instruction). In
this way, we can ensure that two HLO graphs with the same post-order of instructions, but different
structures, will not have the same hash. The second is that the XILA hash of each HLO instruction is
further hashed with the attributes specific to that instruction opcode (e.g. the slice starts, limits, and
strides of an HLO Slice instruction). This further decreases the chance of a hash collision between
two differing HLO graphs.

16

Under review as a conference paper at ICLR 2023

C DETAILS ON ALTERNATIVE OPTIMIZATION STRATEGIES

C.1 NOTATIONS

We note G = (V, E) the HLO computation graph parsed from HLO text file by our utility; G =
(V E) the alternative graph augmented from G,V =V U {d}P, with D kAlternative nodes. In

reinforcement learmng setup, G corresponds to the state. The action space given G (or G) is denoted
as A = Ay x---xAp. Foralld =1,...,D, Ay = {k - d Ak € V}and |44] = in degree(d).
We note an action a=(aq), € .AG We omit the superscript for A9 and note .4 when there is no
ambiguity.

In our sequential decision problem, we use superscript for G and a to denote the search steps: Starting
from a graph G°, we apply an action a® to produce the next graph G''; we repeat the above for N
steps to get the final graph GV. We note T as the function for calculating the running time of graph

G described in[D.3] specifically, Eq.

C.2 BEAM SEARCH

We maintain a stack S with no size limit and a global minimum runtime 7,,;,, during the search.
S has one element GV initially. At every search step ¢, we pop from S the graph G*; we apply all
possible actions a € A to its alternative graph G to obtain new graphs {GEJrl } Lﬁ‘l, we evaluate the

runtime of each new graph and only push it back into S with criteria
T(GIY) < a-T(GY).)

« controls the pruning when runtime degradation happens. The number of new graphs being pushed
back is capped by a pre-fixed expand budget. The search ends when the stack S is empty or a global
timeout is triggered. Beam search becomes exhaustive when we push all new graphs into the stack
(equivalent to setting o = +oco with no expand budget) at every step.

When the search finishes, we extract the graph with runtime 7T},;,, and its trajectory starting from G°.

Beam search can achieve optimization at the cost of large search space as the number of
kAlternative nodes increases (e.g. for a graph with 10 kAlternative nodes with each node
2 choices, the search space is of size 21V). Therefore, an exhaustive search is only feasible on graphs
with a considerably small number of alternatives.

C.3 FACTORIZED MCTS

Factorized MCTS (f-MCTS) maintains a search tree to decide which action to take to transit from

G' to Gt For a trajectory (G, ..., G"), f-MCTS maintains N search trees, each with root node
G, ...,GN~1. Without loss of generality, we present the algorithm for one search tree with root
node G°.

We note (G, a) the state-action pair and G’ the graph obtained after applying a on G. We define the
reward function as follows:

R(G,a,G') = T(G) — T(G"). 3)

The action value function for G and a = (a1, ...,ap) is represented by Q(G, a1, . ..,ap), which
grows exponentially as the number of alternative nodes increases. To deal with the joint action
space A, we propose to replace the joint Q with a set of marginal Q value function Q4(G, agq) =
Ea,,i2a|Q(G,a1,...,ap)],d =1,...,D. Each Qq(G, aq) represents the expected value if only one
action ag4 for d-th alternative node is taken. In this way, we can select actions for different alternative
nodes independently.

During the search procedure, we associate each search node with a computation graph state G.
Each search node maintains a set of statistics {T'(G), {N4(G, aq), Qua(G, aq), P4(G, aq) }a=1,.. D}
representing the running time 7°, marginal visit counts N, marginal action value () and factorized
policy P for each of the alternative vertices. For each action a there is an edge (G, a, G’) storing the
transition information and the corresponding reward R. The search repeats the following three stages
for a given number of budgets.

17

Under review as a conference paper at ICLR 2023

Selection: We use superscript k to denote the search depth in the tree. The root node is thus given
by GY. All simulations start from the same root graph state G° and finish when a leaf graph G* is
achieved or a cycle is formed. For each time-step k along the search path, a joint action a is obtained
by selecting each af} according to the upper confidence bound (UCB) score described below:

>, Na(G,ba) >y N(G,bg) +co+1
k A ba ’
al = arg H‘llgjx Q4(G,aq) + Pa(G,aq) 1+ Na(G, a0) <C1 + log < o >> .

“
P, is a prior policy while (); accumulates knowledge from simulations. ¢; and ¢, are two hyperpa-
rameters to trade off the relative importance of Py and ()4. At the beginning of a search, UCB relies
more on the prior policy but gradually moves its attention to value statistics. In our experiments, we
choose ¢; = 1.25 and co = 19652 following AlphaGo (Silver et al.| 2016).

Expansion: Expansion happens when a computation graph is visited for the first time in the search
tree, i.e., when a simulation terminates. Consider a terminal transition (G*~1, a*~1 G*), a new
node representing G will be created and added to the search tree. Once prior policies {eye,
for kAlternative nodes {d}¥ and a value function vy(G) to obtain the value v* are glven The
node statistics will be initialized to { Nq(G*, aq) = 0, Qa(G*, aq) = 0, P4(G*,aq) = p}2_,. The
running time is set to 7Y = T(G*). The reward for the current transition is also initialized by
R(G*~1,a*~1,G* = T~ — T*. Note that, for the expansion of the root note representing G,
there will not be a reward as transitions exist.

Backup: Each simulation generates a search path {G°, G, ..., G*}. The statistics of nodes/graphs
along this path need to be updated in reverse order. Let 7! denote the reward for transition
(G*1,at=1, G"), and v be the discounting factor. The (¢ — k)-step return estimation at k-th step is
given by

—1—k
Z ,yT k+1+7’+,yé—k'v€, (5)

where v* is the value for G*. For k = £,...,1,0 we update the marginal statistics for each
(G, aé)d:1 ,,,,, p as follows:

Na(G*, ab) - Qa(GF, ak) + G*
G* al) = 4T Td ' Vd=1,...,D;
Qd(aad) Nd(Gk 045) 5 3 s L (6)

Na(GF,ak) = Ny(G*,ak)+1, vd=1,...,D.

However, the reward and value might have an arbitrary scale in our setting. We propose to normalize
the Q values such that @ € [0, 1] to geta stable calculation of the UCB score. To this end, we keep
track of the minimum (Q)i,) and maximum (Q).x) values observed in the search tree. A normalized

Q value is thus obtained by Q = QQ“ QCS‘;“ When we calculate the UCB score in Eq. 4}, we are

actually using normalized Q instead of un-normalized ones in Eq.[6]

18

Under review as a conference paper at ICLR 2023

D EXPERIMENTS

D.1 HARDWARE AND SOFTWARE ENVIRONMENT

We empirically found that competing processes running on the same machine is a major source of
noise in the runtime evaluation of a graph. To get the best estimation of runtime in a real-world
environment, we directly evaluate the runtime of an HLO graph on a clean bare-metal GPU node
with minimal other processes running. The GPU node has two AMD EPYC 7352 24-Core processors
(with hyper-threading 96 cores), 512GB of main memory, and eight 40GB memory NVIDIA A100
GPUs. All tests run on Ubuntu 20.04 with CUDA 11.2, cuDNN 8.1.1, and TensorFlow 2.9.1.

D.2 XLA VERSION

HloEnv, along with all our experiments presented in this paper, was developed from
the following version of XLA (https://github.com/tensorflow/tensorflow/commit/
Obd7a41db27060eaae55dadc4572catba29c6690).

D.3 PROFILING AN HLO GRAPH

To evaluate the effectiveness of any given optimization strategy, it is critical to get an accurate
runtime oracle €2 : Optimized_HLO_Module — Runtime. To approximate oracle 2, researchers in
the community either build a cost model or directly evaluate the runtime. The cost model is either
learning-based (i.e. trained from a supervised dataset) (Baghdadi et al.,2021) or rule-based. The latter
requires a large amount of engineering effort as it needs to predict the runtime without evaluation,
e.g. Grappler (Larsen & Shpeisman, 2019) for Tensorflow Graph. On the other hand, although
direct runtime evaluation often suffers from real-world noises, given an environment with sufficient
computing resources where noise can be controlled, it provides a way to do an accurate evaluation
with minimum cost. In this paper, we use the direct runtime evaluation.

To profile the runtime of an HLO graph we need to obtain both the executable and parame-
ters. We obtain the executable by calling the standard compiler provided by XLA while setting
run_backend_only to prevent the re-invocation of HLO passes. For parameters, we randomly gener-
ate NV(0, 1) for floating-point parameters and fill const values for other types. A fixed random seed
is used to keep the parameters consistent across the optimization process so that we can verify the
correctness of optimizations.

Reducing timing noise There is random variation in the evaluation timing of an HLO graph.
Additionally, when an executable runs multiple times, the initial run is consistently much slower
than subsequent runs of that executable. To reduce this noise in the evaluation timing, we evaluate
the executable multiple times. The first three runs are treated as warm-up runs and are ignored,
and the executable is then evaluated at least 10 additional times. Experiments showed that running
the evaluation more than 10 times did not significantly reduce the variance in the final determined
runtime. We then take the minimum of the timing results across all runs. We take the minimum of
the results instead of the average due to the half-normal distribution of the timing.

Additionally, we obtain three different measurements of the evaluation timing, with each being
progressively more fine-grained:

* full execution timing: The time measured from the moment the evaluation begins till when
it concludes;

» asynchronous evaluation timing: The time taken from the asynchronous dispatch of the
computation to the moment it returns;

* compute timing: The time spent in nanoseconds for the execution, without accounting for
data transfer.

Experiments showed that the full execution timing measurement resulted in more evaluation timing
noise, while the compute timing measurement was too fine-grained and missed out on some of
the performance improvements as a result of memory-related optimizations. Hence, asynchronous
evaluation timing is utilized as the main timing metric for our experiments.

19

https://github.com/tensorflow/tensorflow/commit/0bd7a41db27060eaae55da4c4572cafba29c6690
https://github.com/tensorflow/tensorflow/commit/0bd7a41db27060eaae55da4c4572cafba29c6690

Under review as a conference paper at ICLR 2023

Thus, the formula for obtaining the runtime formally reads:
T(G) = min(G.evaluate(10).async_timing). 7

Additionally, it was determined that noise was higher when both GPUs coupled to a single NUMA
node were utilized. Hence when obtaining our experimental results, we ensured that only a single
GPU in each NUMA node was utilized (four out of eight GPUs on the bare-metal system total).

Profiling effects timing noise on evaluation of relative graph performance In our experiments,
we have to frequently evaluate the relative performance of two HLO graphs, for instance in comparing
whether the heuristic-based optimized graph performs better than XLA (Section[5.3), or the relative
change in performance when a particular XL A optimization pass is removed from the full optimization
pipeline as seen in Table[T]

To determine what relative ratio can be used to determine with confidence that one HLO graph
has faster run-time than another HLO graph, we profile the expected noise seen when evaluating
the relative run-time ratio of two HLO graphs under the same conditions as our experiments (i.e.
only single GPU utilized per NUMA node). This is done by evaluating the same HLO graph twice
and taking the ratio of the first runtime divided by the second runtime. This is repeated 500,000
times to obtain a distribution of the expected range in runtime ratios for a given HLO graph. We
perform this profiling on 10 different graphs, spanning the range of runtimes seen in our HLO dataset
(approximately 25000 ns to 1000000 ns)

From this distribution, we determine upper and lower bounds for the ratios, above/below which we
can say with reasonable confidence that a degradation/improvement in run-time is not due to noise.
This is evaluated by determining the ratios above and below which 99.9 of the data points lie. From
our results, we can see that any run-time ratio < 0.94 and above 1.06 likely represents an actual
change in performance (Fig. [5).

Non-empirical evaluation using HLO graph Cost Analysis The impact of an optimization pass
on an HLO graph can also be estimated by performing an HLO Cost Analysis on the resulting HLO
graph, and seeing how the module changes in the metrics of 1. number of FLOPs, 2. number of
Transcendentals, and 3. Bytes accessed.

D.4 MODEL ARCHITECTURE AND RUNNING TIME

Beam Search The pruning factor « in Eq. [I]is set to 20 to cover most cases.

Factorized MCTS The simulation budget is set to 400. We decay to half (capped by 50) each step
after an action is taken, and produce a new graph along the decision sequence. The budget decay
is based on the observation of the size shrink of action space after the first several steps. The value
function is given by the Monte-Carlo evaluation. We launch 5 rollouts of length 10 based on uniform
sampling. We report the running time of f-MCTS with a uniform prior for reference only, as most
computation is done on the CPU side while only the environment and Monte-Carlo evaluation require
a GPU. f-MCTS with uniform prior takes 50 A100 days on inst-20-40.

20

Under review as a conference paper at ICLR 2023

Mean run-time: 24166 ns
3000 — 0962
— 1.038
2000 4
1000 4
0 T T T T
0.8 0.9 1.0 11 1.2
Mean run-time: 28606 ns
— 0.948
1500 — 1057
1000 4
500
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 33514 ns
— 0.940
2000 1 — 1.063
1000 4
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 60626 ns
4000 A — 0971
— 1.026
2000 A
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 586672 ns
15000 - — 0.996
— 1.004
10000 -
5000 1
0 T T t T T
0.8 0.9 1.0 1.1 1.2

Figure 5: A profile showing the distribution of the runtime ratio noise of 10 different HLO graphs.

Mean run-time: 25447 ns

3000
— 0.944
2000 — 1055
1000 4
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 29818 ns
3000 4 — 0962
— 1.041
2000 A
1000 A
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 37172 ns
3000 — 0969
— 1.034
2000 4
1000 4
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 160943 ns
6000 0987
— 1.013
4000
2000 A
0 T T T T
0.8 0.9 1.0 1.1 1.2
Mean run-time: 905120 ns
— 0.992
10000 — 1.008
5000 A
0 T T T T
0.8 0.9 1.0 1.1 1.2

The blue and green vertical lines encapsulate 99.9% of the ratios.

21

Under review as a conference paper at ICLR 2023

E PASsS ANALYSIS GRAPH EXAMPLES

XLA Optimized Graph without HloConstantFolding Pass

-

5
T UITES

Figure 6: No HloConstantFolding pass runtime/XLA runtime = 0.51 (96.1% faster). This graph
is too large to display its details, but the overall structure of both graphs can be seen to be visibly
different. This is an example of how the removal of a simple pass like HloConstantFolding can cause
compounding differences in the final result as the other passes/pipelines are applied.

22

Under review as a conference paper at ICLR 2023

F SEARCH OPTIMIZED VS XL A OPTIMIZED GRAPH EXAMPLES
F.1 ALGEBRAIC SIMPLIFICATION

In these examples, the beam search and f-MCTS optimization strategies outperform XLA by

removing specific graph rewrites that directly impact performance or allow for later passes to better
optimize the graph.

Beam Search Optimized XLA Optimized

Parameter 2
BALA38B2.10)

Parameter 2
A1 AAIGE3210)

Parameter 2
B3 852.10)

Parameter 2
BAIA43F]93210)

Parameter
[EELRRE RIS e

T
3210} AR B210)

Parameter 0
12881110}

Figure 7: BS runtime/XLA runtime = 0.383 (161.1% faster). By not performing some optimizations
during the Algebraic Simplification pass. The reshape instruction before the final broadcast

instruction does not get optimized out, making later fusion passes able to fully fuse the HLO graph
into one computation.

23

Under review as a conference paper at ICLR 2023

f-MCTS Optimized

Computation entry_computation.clone.clone.clone.clone.clone

XLA Optimized

Parameter 0
64[14050,28,11{1,2,0}

Parameter 1

copy
£64[14050,28,11{2,1,0} | f64[14050,28,28]{2,1,0}

Parameter 1
f64[14050,28,281{2,1,0}

entry_

P

Parameter 0
f64[14050,28,11{1,2,0}

Fused expression for fusion
loop fusion
kind=kLoop

Parameter 1

£64[14050,28,1]{1,2,0}

copy.l1
f64[14050,28,11{1,0,2}

Parameter 0 reshape.44
Fused expression for fusion f64[14050,28,28]{2,1,0} £64[14050,28]{1,0}
loop fusion
kind=kLoop
%4[11;8;3:'1'3‘% {g,l,o} transpose.2 broadcast.25

slice.1
slice={[1:14050], [0:28], [0:1]}
164[14049,28,11{1.2.0}

bitcast.1
64[14049,28]1,0}

reshape.12
64[14049,28,11{1,0,2}

reshape.11
64[1,14049.28,11{2.1,3,0}

reshape.10
164[14049,28,17{2,1,0}
1

map.0
Subcomputation: add
dimensions={0,1,2
£64[14049,28,1]{2.1,0}
operand 0= f64[14049,28,1] 0

b

select.0
£64[14049,28,11{2.1,0}
operand 0= pred[14049,28,1] true
operand 2= f64[14049,28,1] 0

b
dynamic-update-slice.0
64[14050,28,1]{2,1,0}
operand 0= f64[14050,28,1] 0
operand 2= s32[] 0

operand 3=s32[] 0
operand 4= s32[] 0

lo

pad.l
padding=-1_0x0_0x0_0
164[14049,28,1172,1,0
operand 1= f64[] 0

Figure 8: f-MCTS runtime/XLA runtime = 0.57 (75.4% faster).
preserves the map instruction and batch-gemm custom call.

24

dimensions={0,2,1} dimensions={0,2}
f64[14050,28,281{1,2,0} f64[14050,28,28]{1,2,0}
transpose.0 \ /
dimensions={0,2,1 0
f64[14050,28,11{1,2,0}

multiply.1
64[14050,28,28]{1,2,0}

bitcast.1
f64[14050,28,281{2,1,0}

reduce.4
Subcomputation: add
dimensions={1}
f64[14050,28]{1,0}
operand 1= f64[] 0

reshape.43

p
£64[14050,28,1]{2,1,0}

slice.26
slice={[1:14050], [0:28], [0:1]}
f64[14049,28,11{2,1,0}

1

select.2
f64[14049,28,11{2,1,0}
operand 0= pred[14049,28,1] true
operand 2= f64[14049,28,1] 0

1

dynamic-update-slice.2
f64[14050,28,1]1{2,1,0}
operand 0= f64[14050,28,1] 0
operand 2=s32[] 0
operand 3=s32[] 0
operand 4= s32[] 0

'

slice.25
slice={[1:14050], [0:28], [0:1]}
f64[14049,28,11{2,1,0}

The f-MCTS optimized graph

Under review as a conference paper at ICLR 2023

Beam Search Optimized XLA Optimized

Computation entry_computation.clone Computation entry_computation.clone

Parameter 0 Parameter |
132[4,5.6,3]{3.2.1.0} 32[1.2.3.8]{3.2.1.0}

Parameter 0 Parameter 1
£32[4.5.63]13.2.1,0) | | £2[123.8]{3.2,1,0}

Parameter 2 copy. copy.1 broadcast.2
£32[11,1,18]{43.2,1,0 24563012130} | | £5201238]{1.023) Parameter 2 copy copy.1 dimensions{}
B2[1,1,1,1,8]{43.2,1.0} B2[4,5631(2,13,00 | | £201,2381{1,023}
operand= f32[] 0
Fused expression for fusion
loop fusion
kind=kLoop
Fused expression for fusion
arameter 0 st loop fusion
32(1.1,1,1.8]{4.3.2,1,0} custom. kind=kLoop
501 0lio->b01f
Parameter 0 cudnnSconvBiasActivationForward"
32[1,1,1,1,.8]{4.3.2,1,04 .0}, u8[0]{0})
conv_result_scale=0.612372
aciivation_mode=none
arameter | LELC
dimensions={0,1,2,3.4} 32[4,5,5,81{2,1,3,0}
32[1,1,1,1.8]{4.3.2,1,04 tuple-clement 0 of cudnn-conv
Parameter 1
reshape.S £32(4,55.8](2,1.3.0}
B8] I P 0 e i
v 7" broadeast.5
roadeast
i e hape.6
broadeast.2 multiply.0 dimensions={4} e
dimensions={ 1.4 132[4,1,5,5.8]{3.2.4.0,1} 132[4,1 1(3.2.4.0,1} 32[4,1.5,5.8]{3,2,4,0,1}
£2[4,15.5.8113.240,1} | operand I= £33[4.1.5.5] 0.612372398 :
1 (U
0 add.0
add.0 32[4,1,5,5,8]{3,2,4,0,1}
£532[4,1,5,5.8]13.2.4.0,11
0
0
- ‘maximum.0
maximum.0 £32[4,1.5.5.8](3.2.40,1}
£32(4,1,5.58]3.2.40.1} operand 1= 32(4.15.5.8] 0
operand 1= f32[4,1,5.5.8] 0
I v
compare.)
‘c;:::r:rfgc direction=F¢
= pred[4,1.55,8] (3.
pred[4,1,5,5,8]{3,2,4.0.1} -
operand 0~ 133(4,1,5.5.8] 0 operand S A2 [HLY;S

o b

select.
- st m £32[4,1,5,5,8]{32.4,0,1}
} i, 2(4,1,5,5.8] 2
a operand 2= f32[4,1,5,5.8] 1

copy.3 copy3
61[4,1,5,5.);2] 432,104 132[4,1,5,5,81{4,3.2,1,04

Figure 9: BS runtime/XLA runtime = 0.71 (40.8% faster). In this case, the beam search optimization
results in a different set of instructions and custom calls.

25

Under review as a conference paper at ICLR 2023

Beam Search Optimized

Computation entry_computation.clone.clone.clone.clone.clone

Parameter 2 Parameter 0 Parameter 1
$32[64,1]{1,0} £32[128,2]{1,0} $32[64,11{1,0}
Fused expression for fusion
loop fusion
kind=kLoop
Parameter 1 Parameter 0 Parameter 2
$32[64,1]{1,0} 32[128,2]{1,0} $32[64,11{1,0}

J71 / \ le
gather.0 N gather.1
offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1 offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1
slice_sizes={1,2} slice_sizes={1,2}
32[64.21{1,0} 32[64,2]{1,0}

v
reshape.2 reshape.5
32[64,1,2]{2,0,1} 32[1,64,2]{2,1,0}
reshape.0 reshape.4
32[64,2]{1,0} 32[64,2]{1,0}
broadcast.1 broadcast.2
dimensions={0,2} dimensions={1,2}
132[64,64,2]{2,1,0} 132[64,64,2]{2,1,0}
1
0
subtract.0
£32[64,64,2]{2,1,0}
0
add.0

£32[64,64,2]{2,1,0}
operand 1= f32[64,64,2] 0.5

-

XLA Optimized
C ion entry_ jon.clone
Parameter 2 Parameter 0 Parameter 1
532[64,11{1,0} 32[128,2]{1,0} $32[64,1]{1,0}
$ 1 / \A y
gather.5854 g gather.5849
offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1 offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1
slice_sizes={1,2} slice_sizes={1,2
32[64,2]{1,0} 32[64,2]{1,0}
Fused expression for fusion
loop fusion
kind=kLoop
Parameter 0 Parameter 1
32[64,2]{1.0} 32[64.2]{1,0}
broadecast.3 broadcast.4
" " ' " " 5

,2} 22}
£32[64,64.2]{2.1,0) | £32[64,64.21{2,1,0}
|
0
subtract.0
£32[64,64,2]{2,1,0}
0

add.0
32[64,64,2]{2,1,0}
operand 1= 32[64,64,2] 0.5

ROOT |

Figure 10: BS runtime/XLA runtime = 0.79 (26.6 % faster). By not performing some optimizations
during the Algebraic Simplification pass, later fusion passes can fully fuse the HLO graph into one
computation.

26

Under review as a conference paper at ICLR 2023

F.2 FuUSION

F.2.1 TRIVIAL EXAMPLES

In these examples, the beam search reduces the number of computations as compared to XLA by
performing additional fusions of instructions and/or computations.

Beam Search Optimized

Computation entry_computation.clone.clone.clone.clone.clone.clone

Parameter 0 Parameter 1
f64[] fo4[]

Fused expression for fugion.2
loop fusion
kind=kLoop

Parameter 0 Parameter 1
f64[] fo4[]

0
1

divide.0
f64[]

|

broadcast.3
dimensions={}
f64[14050]

ll
multiply.1

f64[14050]
operand 0= constant.3 f64[14050]

ll
subtract.2

f64[14050]
operand 0= f64[14050] 1

Figure 11: BS runtime/XLA runtime = 0.63 (58.7% faster). This is an example where the beam
search finds a more optimized case that trivially involves just performing additional instruction and

computation fusions.

27

XLA Optimized

Computation entry_computation.clone

Parameter 0 Parameter 1
f64[] f64[]

N A

divide.18511
fo4[]

Fused expression for fusion
loop fusion
kind=kLoop

v

Parameter 1
f64[]

|

broadcast.0
dimensions={}
f64[14050]

ll
multiply.0

f64[14050]
operand 0= constant.3 f64[14050]

ll
subtract.0

f64[14050]
operand 0= f64[14050] 1

Under review as a conference paper at ICLR 2023

Beam Search Optimized

C ion entry_
Parameter 3 Parameter 2 Parameter 4
132[] £32[1,163]{2,1,0) | 132[16,1,3]{2.1,0}
Flased expression for fusign
loop fusion
kind=kLoop

Parameter 1
32[16,1,3]{2,1,0}

Parameter 0
1.163]{2.1.0}

3
Parameter 0 Parameter 1 add.2.clone.1
£32[16,163]{2.1,0} | | £32[16,16,3]{2,1.0} £32[16,3]{1.0}

0 1

multiply.127
£32[16,16,3]{2,1,0}

tuple.164

(132[16,16.3], £32(16,3], £32(16,3], £32[16,3))
operand 1= tuple-clement 0 of fusion
operand 2= tuple-clement | of fusion
operand 3= tuple-clement 2 of fusion

XLA Optimized

Computation entry_computation.clone

Parameter 3 Parameter 2
32[] 132[1,16,3]{2,1.0}

Parameter 4
32[16,1,3]{2,1,0}
Fused expression for fusion

kind=kLoop

Parameter 0
132[16,1,3]{2,1.0}

Parameter |
132[1,16,31{2,1.0}

Parameter 0 Parameter 1
32[16.16,31{2.1,0} 132[16,16,31{2.1,0}

0 1

multiply.127 bitcast
1£32[16,16,3]{2,1,0) | £32(163]{1.0}

U 3

Figure 12: BS runtime/XLA runtime = 0.65 (53.8% faster). A second example is where the beam
search finds a more optimized case that trivially involves just performing additional instruction and

computation fusions.

28

Under review as a conference paper at ICLR 2023

F.2.2 NON-TRIVIAL EXAMPLES
In these examples, the beam search and f-MCTS optimized graphs outperform the XLLA graphs
XLA Optimized

C

reter 2 Parameter 3
81(432,10) | | £32(1284.4,3,8]143.2,1,0}
Fused expression for fusion
Toop fusion

tation entry_ i
Parameter 0 Parameter 1
B2[1284438](4321.0} | | £32(1284,43.81{4.3,2,1.0}

despite fusing fewer instructions/computations.

Beam Search Optimized
tation.clone.clone.clone.clone.clone.clone
Parameter |
132(128.44,3,8]{4,3,2,1,0}

eter 0 Paramc
§]{43.2,1.0} £2[12844,53

0
kind-kLoop

Computation entry_
eter 3 Parame
81143210} | | 2128443,

Parameter 2 Parame
£32(1284.438](432,10) | | (32(128.443
Fused expression for fusion.3
ion

Jo

1
i

loop
kind-kLoop
1.0

arameter 0 Parameter | Parameter 2 Parameter 3
132[128,4.4,3,8]{4.3.2,1.0} 132[128,4.4.3.8]{4,3,2,1.0} 32[128,4.4.3.8]{4,3,2,1.0} 32[128,4.4.3.8]{4,3,2,1.0}
multip!
£32(128.44,3.8](4,3.2,1,0)
\ /
(

add.0
32[128,4,4,3,8]{4,3,2,1.0}

itcast.3
32(128,48.8]{2,1,0§
0

Parameter 0 Parameter | Parameter 2 Parameter 3
B2[128443.81(432,1.0) | | £32[12844381{4321.0) | | B32[1284438](4321.0} | | £32(1284,43.8]{43,2,1.0}

0
multiply.1
£32[128.4,4,3,814,3.2,1,0}

add.2
132[128.4,4,3,8]4,3.2,1.0}

bitcast.3
132[128.48.8]{2.1.0}
for fusion.5
ion
reduce.
Subcomputation: add
dimensions={1}
32[128,8]{1,0§
operand 1= 32[] 0

Fused expressipn
Toop fusic
kind=kLoop

Parameter 0
f32[128.48,8]{2,1.0}
532

redu

Subcomputation: add
dimensions={1}
£2[128,8](1,0}

operand 1= 132(] 0

XLA Optimized

Figure 13: BS run-time/XLA run-time = 0.430 (132.5% faster).

f-MCTS Optimized
Computation entry_computation
Parameter 3 Parameter 4 Parameter 2 Parameter 0 Parameter |
64[5300,1,1,2013.2,1.0) | | £64[5300,1,1,20]{32,1,0) | | £64[5300,1,1,201{3,2,1,0} | | f64[5300,1,1,201{3,2,1.0} | | F64[5300,1,1,20]{3,2,1,0}
Fused expresion for fusion

loop fusion

kind=kLoop
o

Parameter 2
FO4(5300,1,1.20]13.2,1,0}

Computation entry_computation
Parameter 4
TS4(S300,11 20113210}

Parameter 3
B4(5300,1,1.20]13.2.1.0}
Fused expressin for fusion 33

oop fusion

Parameter 0 Parameter | Parameter 2 Parameter 3 Parameter 4
£64[5300,1,1,201{32,1.0} | | f64[5300,1,120]{3.2,1,0} | | f64(5300,1,1.20]{3,2,1,0} | | f64[5300,1,1,20]{32,1.0} | | f64[5300,1,1,20]{3.2,1,0}
Lo
- T
multiply.3
f64[5300,1,1,2013,2,1.0}

Parameter 0 Parameter | Parameter 2

500112013210} | | S4[S300120132,10) | | 4(5300,1,120]13.2,1.03
o

negate3

64[5300,1,1.20]{3,2,1.0}

negate.29
54(5300,0:1,2

d
muliply22
f64(5300,1,1.20] (32,10}
exponential.0
164(5300,1,1,20}{3,2,1,04

1

nesate 2y
‘multiply.0
f64[5300,1,1,20]{3,2,1.0}

negate.) negate.2
64{5300,1,1,201{3,2,1,0} | | f64(5300,1,1,20]{32,1,0}
i

(]

Parameter 0 Farameter 1
SOOI E210) | | BS00L0B210)
o !
mlipl 18532
530012013

negatest
AS4(5300,1.1,201{3:2.0)

add.0
£64[5300,1,1.20]{3,2,1,0}

Parameter 1

54[5300,
wple-clement of usion 33

uce.
Subeomputation: add
dimensions={1}
00]
operand 1- 04[] 0

exponential.22
4(5300,1,1,201{3.2,1.0)

Fused expressdn for fusion 44
Toop fusion

Kind|

oper
bitcast23
4(530011113.2,1.0)

Figure 14: f-MCTS runtime/XLA runtime = 0.349 (186.5% faster).

29

Under review as a conference paper at ICLR 2023

f-MCTS Optimized

Computation entry_computation
Parameter 0 Parameter 1 Parameter 2 Parameter 3

£2ALI003)(21.0) | | B2LI003)(2.10} | | B2(L1003]{21.0} | | £2(1,1003]{2.1.0}
Feked expression for fusion 20

loop fusion

kind-KLoop 0

{

meter 0 Parameter |
S0 | | masosTeA0)

b

w8050

v

powers|
B201100.31(2,1.0}

brondeast

dimensione)
oS0} 36210}
apcrana 15971599 59693

yd

Parameter 4
BLLI)2.10}

Fufed expression for fusion.39
Toop fusion

kind-KLoop
Parameter 0 subt
B2(1,1.3]2,10} i 00 | b0
0
v T
multiply.6
£2(1,1003](2,10}

broadeast.12

dimensions= (2}

£2(1,10031{2,1.0}
|

Parameter |
£21,1003]¢2,1,0}

subtract.24
£2(1,100,3]{2,1,0}

exponential.12
B201100,3](2.1.0}

sz
ubcompuaion:
dimetsions= {0}

operand 1- £32(] 0

ot
o201 501.0)

Parameter 4
132[1,1,3]{2,1.0}

XLA Optimized

Computation entry_computation

Parameter 2 Parameter 3 Parameter 0
B211003]{21,0} | | B2[1.1003]{2.10} | | 32[1,1003](2,10}
used expression for fusiol
loop fusion
kind=kLoop

Parameter 1 ameter 2
132[1,100,3]{2,1,05 m[l 00,3]{2,1,0}

S

Parameter 3
132[1,100,3]{2,1,0}

b

Parameter 0 power.0 2dd.0
£32(1,1.3]{2,1,0} £B2[1,1003]{2,1.0; | £32[1,100.3]{2.1.0}
1
0
subtract.1
132[1,100,3]42,1,0}
0
v
broadeast.2 ltiply.1
dimensions={2} 2[1,100.3]12.1,01
£321,1003]{2,1.0} | operand I- 32[1,100,3] 999.999939
!
(
ubtract.0

201100.312.1.0}

exponential.
132(1,1003](2. i 0}

Subcomputation: add
dimensions={0}

3213
operand 1~ 132(] 0

Figure 15: f-MCTS runtime/XLA runtime = 0.56 (78.6% faster).

f-MCTS Optimized

Computationciry._computaion

L)

wrm ot o)

e ki

Paramete 1

et
brosdeas 6 o
dmenaons-(6) || dimanons |

SO0 10;

SO0

= —

Parameter 1 Parameter s

sl | | o020 | | misaoimipa | |

0

entia 13

maliph 0
M T2,

s 210 | | o5

PECNNITEF)

Parameter s
)

» 0
)

XLA Optimized

Computation entry_computation

Parameter 3 Parameter 2
201610 | | S400.111132,10)
Fused exfesion or fusion
op fusion
ipd-kLoop
Parameter 2 Parameter 3
1200010 | | 400,111 32,10)
Parameter 4
I54(500,1.1112,1.01
2 Parameter |
dimensions=11} | | dimensions={0} salS00 T 5,01

50020110}
!

f4[500201(1,0)

d

multiply2
54[50020]11,0)

dimensions- 10}
54[500,1.1.20]13.2.0

exponentialy
4(500,1,1201{32,1.0

i r]uu 0

preery
500,11 113,210}

Figure 16: f-MCTS runtime/XLA runtime = 0.65 (53.8% faster).

30

Parameter 1
132[1,100,3]{2,1,0}

Parameter
132[1,100,3]{2,1,0}

Under review as a conference paper at ICLR 2023

f-MCTS Optimized

Computation entry_computation

Parameter 1 Parameter 2 Parameter 0 Parameter 3 Parameter 4 Parameter 5 Parameter 6
164[7025.28,28)2,1,0} | | 64[7025.28.28](2,1,0} | | f64[3512,128){2,1,0} | | f64[351228,1]{2,10} | | f64[351228,1}{2,1,00 | | fo4[128.1]{2,1,0} 4[]
Fused expressioh for fusion.54 Fused ckpression for fusion.39
Toop flision Toop fusion
Kind=HLoop Kind=kLoop
Parameter 0 Parameter | Parameter 2 Parameter 0 Parameter 1 Parameter 2 Parameter 3
£64[7025,28,28)2,1,0} | | 64[7025.28.28](2,1,04 | | f64[3S12,128){2,1,0} | | f64[3512281]{2,10} | | f64[351228.1}{2,1,0 | | fo4[1,28.1]¢2,1,0} 4[]

0 1 0 1

add.4s negate.y add.24
64702528 281{2,1,0} 64[3512,1.28]{2,1,0} 64[3512,28,1112,1,0}

slice.12
slice={[1:7025:2], [0:28:1], [0:28:1]}
64[3512.28,282.1.0}

(
2dd.25 Parameter 8 Parameter 7
64[3512.28,1142,1,0} (64351228 281{1,2,0}, predl], 64[3512,28,28{2,1,0}, pred... | | f64[7025,28,28]{2,1,0}

Fused expressign for fusion.46
loop fusion

Kind=kLoop

copy.2 slice20268
f64[3512.28.28]{2,1,0} slice={[1:7025:2], [0:28:1], [0:28:1]}
iple-element 0 of call 20667 164[3512,28,28]{2,1,0}

Parameter |
164(3512,28,11{2,1,0}

cublas-batch.
custom_call_tar
To4[35

40
st bach si
811,04 Ihs_batch_dim:

Ihs_contracting_dims
hs_batch_dims={0}
ths_contracting._dims= (2}
orithm=0

‘multiply.33 bi
F64[3512,28,281{1,2,0} 643

Parameter 0 Lradcart 2y Parameter 2
E5122828]01.20 | | pealmensions 02| | foapasi22828](2..0)
0

T
‘multiply.23
T64[3512,28,28112,1,01

XLA Optimized

Computation entry_computation

Parameter 5 Parameter 6 Parameter 3 Parameter 4 Parameter | Parameter 2 Parameter 0
f64[1,28,11{2,1.0} fo4[] 643512,28,11(2,1.0} | | F64[3512.28,1]{2,1,0} | | f64[7025.28.28]{2.1.0} | | f64[702528.28]{2,1.0} | | f64[3512,1 28]{2,1.0
Fusedjexpression for fusion
Toop fission
kind=kLoop
Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7
164[1,28,11{2,1.0} f64[] 64[3512,28,11{2,1.0} | | F64[3512.28,11{2,1,0} | | f64[7025.28.28] (21,0} | | f64[702528.28){2,1.0} | | f64[3512,1.28]{2,1.0
0 \o
1 i
Parameter § Parameter 7 add.s add.6 negate.1
(F64[3512,28,28){1,2,0}, pred], f64[3512,28,28](2,1,03, pred... | | f64[7025,2828]{2,1,0} f64[351228.1]{2,1.0} £64[7025.2828] (2,1.0} 64[3512,1.28){2,1.0}

1 0
copy2 slice20268 s slice0 ="
(54[3512,08.38](2.1,0} stice={[1:7025:2], [0:28:1],[0:28:11} 5 sice={[1:7025:2] [0:28:1], [0:28:11) east 11
operand= tuple-clement 0 of call 20667 T64[3512.28.28) 2,10} f64[35122811{2,1,0} AR AT f64(3512,28]{1.0}

custom-call
emm. |

" cublisSgemm"
2.0}

dimensions={0.2
f64[3512,28,28]{1,2,0}

bite:
6413512,

contracting dim
algorithm=19

dimensions={0,2}
164[3512,28,28] (3,10

Parameter 0
T64[3512,28,28] (21,0}

\la

muliply.2
164[3512,28,28 (2,10}

o 0
ce.3 reduce.4
Subcomputation: ad Subcomputation: add
dimensions={2} dimensions={1}
164[3512.28](1.0} 154[3512.28](1.0
operand 1~ 64] 0 operand 1~ 64
!
(

2dd.3
f64[3512.28){1,0}

pad.0

padding=0 2 1x0_0_0x0 0.0
164702528, 11{2,1.0]

operand 1- i64{] 0

Figure 17: f-MCTS runtime/XLA runtime = 0.76 (31.6% faster).
31

	Introduction
	System Design of HloEnv
	XLA Preliminaries
	Overview of HloEnv
	Intercept Rewrites from XLA Pipelines with Dry-Mode
	The Alternative Graph Representation
	Custom Hash Function for HLO Graph

	Optimization Strategies
	Heuristic-Based Methods
	Search-Based Methods

	Analysis of XLA Optimization Passes
	Experiments
	Datasets
	Pass Selection and Modification
	Evaluation and Metrics
	Results and Analysis
	Heuristic-Based Methods
	Search-Based Methods

	Related Works
	Discussions and Conclusions
	Dataset Information
	Dataset Collection
	Dataset Overview and Analysis
	Sub-Dataset Filtering

	Details on the implementation of the HloDAGHash Function
	Details on Alternative Optimization Strategies
	Notations
	Beam Search
	Factorized MCTS

	Experiments
	Hardware and Software Environment
	XLA version
	Profiling an HLO Graph
	Model Architecture and Running Time

	Pass Analysis Graph Examples
	Search Optimized vs XLA Optimized Graph Examples
	Algebraic Simplification
	Fusion
	Trivial Examples
	Non-trivial Examples

