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Abstract

Learning generalized models from biased data is an important undertaking toward
fairness in deep learning. To address this issue, recent studies attempt to identify
and leverage bias-conflicting samples free from spurious correlations without prior
knowledge of bias or an unbiased set. However, spurious correlation remains an
ongoing challenge, primarily due to the difficulty in precisely detecting these
samples. In this paper, inspired by the similarities between mislabeled samples
and bias-conflicting samples, we approach this challenge from a novel perspective
of mislabeled sample detection. Specifically, we delve into Influence Function,
one of the standard methods for mislabeled sample detection, for identifying
bias-conflicting samples and propose a simple yet effective remedy for biased
models by leveraging them. Through comprehensive analysis and experiments on
diverse datasets, we demonstrate that our new perspective can boost the precision
of detection and rectify biased models effectively. Furthermore, our approach is
complementary to existing methods, showing performance improvement even when
applied to models that have already undergone recent debiasing techniques.

1 Introduction

Deep neural networks have demonstrated remarkable performance in various fields of machine
learning tasks comparable to or superior to humans on well-curated benchmark datasets [7, 4, 60, 14].
Nevertheless, the efficacy of these models trained on unfiltered, real-world data remains an open
question. In this scenario, a significant concern arises due to the presence of dataset bias [52], where
task-irrelevant attributes are spuriously correlated with labels only in the training set. This can lead to
models that rely on misleading correlations rather than learning the task-related features, resulting in
biased models with poor generalization performance [62, 10].

To prevent models from learning detrimental bias, various methods are proposed to encourage
models to prioritize learning task-relevant features. Recent studies enhance task-related features
by first identifying bias-conflicting (unbiased) samples through loss [40, 36], gradients [1], or bias
prediction techniques [35] during training, using an auxiliary biased model trained with Empirical Risk
Minimization (ERM). Then, they amplify bias-conflicting samples by counteracting the bias-aligned
(biased) samples through loss weighting [40] or weighted sampling [35]. The effectiveness of such
methods largely depends on their precision of bias-conflicting sample detection. Specifically, there is
a risk of erroneously amplifying malignant bias instead of task-relevant features when bias-aligned
samples are inaccurately identified as bias-conflicting. Due to the limited detection performance of
previous methods [40, 36, 1, 35], it presents a crucial challenge that remains unresolved.
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In this paper, we address this challenge from a novel perspective of mislabeled sample detection.
Inspired by the similarities between mislabeled samples and bias-conflicting samples, we delve into
Influence Functions (IF;[27]), one of the standard methods for mislabeled sample detection [55,
57, 29], to identify bias-conflicting samples and propose a simple yet effective approach for biased
models by leveraging them.

We first conduct a comprehensive analysis to explore the efficacy of Self-Influence (SI) [27], a
variant of IF, in biased datasets. SI estimates how removing a specific training sample during training
influences the prediction of the sample itself with the trained model (see Section. 2.2). By measuring
SI, we can identify a minority sample that, if removed from the training set, increases the likelihood
of incorrect predictions of itself by the trained model due to their discrepancies with the majority
samples. In this context, leveraging SI to biased datasets is promising as bias-conflicting samples
constitute the minority and contradict the dominant malignant bias learned by the model. However,
we observe that unlike in mislabeled settings, directly applying SI to biased datasets is not as effective
(Figure 1(a)-1(d)). Therefore, we investigate the differences between mislabeled samples and bias-
conflicting samples and reveal the essential conditions for SI to effectively identify bias-conflicting
samples. Note that we denote SI under found conditions as Bias-Conditioned Self-Influence (BCSI).

Building on our analysis, we propose a simple yet effective method for rectifying biased models
through fine-tuning. We construct a small pivotal subset with a higher proportion of bias-conflicting
samples using BCSI. While not perfect, this pivotal set can serve as an effective alternative to an
unbiased set. Leveraging this pivotal set, we rectify a biased model through fine-tuning with only a
few additional iterations. Extensive experiments demonstrate that our method can effectively rectify
even after models are already debiased by recent methods.

Our contributions are threefold:

• We conduct a comprehensive analysis to explore the efficacy of SI in biased datasets and
reveal the essential conditions for SI to accurately differentiate bias-conflicting samples,
leading to Bias-Conditioned Self-Influence (BCSI).

• We propose a simple yet effective remedy through fine-tuning that utilizes a pivotal set
constructed using BCSI to rectify biased models across varying bias severities.

• Our method is complementary to existing methods, capable of further rectifying models that
have already undergone recent debiasing techniques.

2 Background

2.1 Learning from biased data

We consider a supervised learning setting with training data D = {zn}Nn=1 sampled from the data
distribution Z := (X,Y ), where the input X is comprised of X = (S,B,O) where S is the task-
related signal, B is a task-irrelevant bias, and O is the other task-independent feature. Also, Y is the
target label of the task, where the label is y ∈ {1, . . . , C}. When the dataset is unbiased, ideally, a
model learns to predict the target label using the task-relevant signal: Pθ(Y |X) = Pθ(Y |S,B,O) =
Pθ(Y |S). However, when the dataset is biased, the task-irrelevant bias B is highly correlated with
the task-relevant features S with probability py, i.e., P (B = by|S = sy) = py, where py ≥ 1

C .
Under this relationship, a data sample x = (s, b, o) is bias-aligned if (b = by) ∧ (s = sy) and,
bias-conflicting otherwise, where ∧ denotes the logical conjunction. When B is easier to learn than
S for a model, the model may discover a shortcut solution to the given task, learning to predict
Pθ(Y |X) = P (Y |B) instead of Pθ(Y |X) = P (Y |S). However, debiasing a model inclines the
model towards learning the true task-signal relationship Pθ(Y |X) ≈ P (Y |S).

2.2 Influence Functions

Influence Function (IF; [11, 27]) estimates the impact of an individual sample from the training set
on the model parameters, which in turn influences model predictions. A brute-force approach to
assess the influence of a sample is to exclude the data point from the training set and retrain the
model to compare differences in performance, referred to as leave-one-out (LOO) retaining. However,
performing LOO retraining for all samples is computationally challenging; as an alternative, influence
functions have been introduced as an efficient approximated method.
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Figure 1: Precision of detecting bias-conflicting samples among Loss, Gradient Norm, Influence
function on training set (IFtrain), and Self-Influence (SI). The precision is evaluated with the ground
truth number of bias-conflicting samples. The average precision of loss value, gradient norm, SI, and
IF are presented in bars across three runs.

Here, we review the formal definition of influence function. Given a training dataset D = {zn}Nn=1
where zn = (xn, yn), model parameters θ are learned with a loss function L:

θ∗ = argmin
θ

L(D, θ) = argmin
θ

N∑
n=1

ℓ(zn, θ)

where ℓ(zn, θ) = − log(Pθ(yn|xn)) is the cross-entropy loss for zn with parameter θ.

To measure the impact of a single training sample z on model parameters θ, we consider the retrained
parameter θ∗z,ϵ obtained by up-weighting the loss of z by ϵ:

θ∗z,ϵ = argmin
θ

(L(D, θ) + ϵ · ℓ(z, θ)).

Then, IF, the impact of z on another sample z′, is defined as the deviation of the retrained loss
ℓ(z′, θ∗z,ϵ) from the original loss ℓ(z′, θ∗):

Iϵ(z, z′) = ℓ(z′, θ∗z,ϵ)− ℓ(z′, θ∗)

For infinitesimally small ϵ, we have

I(z, z′) = dIϵ(z, z′)
dϵ

∣∣∣∣
ϵ=0

= ∇θℓ(z
′, θ∗)⊤H−1∇θℓ(z, θ

∗) (1)

where H := ∇2
θL(D, θ∗) ∈ RP×P is the Hessian of the loss function with respect to the model

parameters at θ∗. Intuitively, the influence I(z, z′) estimates the effect of z on z′ through the learning
process of the model parameters. Note that IF is commonly computed once a model has converged
since Equation 1 approximates more accurately when the average gradient norm of the training set is
sufficiently small.

Influence function also can be calculated on itself to measure the Self-influence of z:

Iself(z) ≈ ∇θℓ(z, θ
∗)⊤H−1∇θℓ(z, θ

∗),

which approximates the difference in loss of z when z itself is excluded from the training set. This
metric is commonly used for detecting mislabeled training samples in the noisy label setting [27, 51,
55, 57, 29] or important samples in data pruning for efficient training [49, 59].

3 An analysis of Self-Influence in bias-conflicting sample detection

In this section, we conduct a comprehensive analysis to delve into the efficacy of SI in bias-conflicting
sample detection. First, we examine the process of identifying bias-conflicting sample detection
through the perspective of mislabeled sample detection (Section 3.1). Next, we introduce essential
conditions required for SI to effectively identify bias-conflicting samples by analyzing the differences
between mislabeled and bias-conflicting samples (Section 3.2). We term the SI calculated under
these conditions as Bias-Conditioned Self-Influence (BCSI) and demonstrate that BCSI outperforms
SI in detecting bias-conflicting samples.
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Figure 2: The overview of our method. We compute Bias-Conditioned Self-Influence (BCSI) of the
training data and construct a small but concentrated pivotal set with a high ratio of bias-conflicting
samples. Then, we remedy biased models through fine-tuning that utilizes the pivotal set and remaining
samples.

3.1 Bias-conflicting sample detection from the perspective of mislabeled sample detection

IF is one of the standard methods for mislabeled sample detection [27]. The use of influence functions
for mislabeled sample detection generally involves two approaches: computing influence scores using
a clean validation set or computing self-influence scores. The former, I(zi,V), utilizes a validation
set V free of mislabeled samples to measure the impact on validation loss, identifying samples whose
removal reduces this loss as likely mislabeled. The latter, Self-influence I(zi, zi), estimates how
the loss of a sample zi changes when it is removed from the training set. If removing a sample
significantly increases its own loss, it indicates that the sample is likely mislabeled, as normal samples
can still be correctly predicted using the remaining samples. For instance, in a task classifying dogs
and cats, if a dog image is mislabeled as a cat, removing this mislabeled sample from the training set
decreases the likelihood of correctly predicting it as a cat.

In this context, mislabeled samples and bias-conflicting samples share a key characteristic that both
are minority samples contradicting the dominant features learned by the model. Mislabeled samples
have incorrect labels that conflict with the learned features, making them easily identifiable through
SI. Similarly, bias-conflicting samples contradict the malignant bias that a model learns from a biased
dataset. Despite the different contexts, both types of samples can be detected through the same
underlying principle of IF.

In summary, given the similarities between mislabeled samples and bias-conflicting samples, it is
promising to leverage the perspective and methodology of mislabeled sample detection to identify
bias-conflicting samples. However, in real-world scenarios, preemptively identifying malignant bias
and constructing an unbiased validation set to mitigate the bias problem is impractical. Therefore,
using self-influence offers a more feasible and practical solution for addressing bias-conflicting
samples instead of using influence scores on a validation set. Consequently, we center our approach
on SI to effectively detect bias-conflicting samples.

3.2 Bias-Conditioned Self-Influence (BCSI)

To validate Self-Influence (SI) in detecting bias-conflicting samples, we conduct experiments on
benchmark datasets with diverse bias types and severities: Colored MNIST, Corrupted CIFAR10,
Biased FFHQ (BFFHQ), and Waterbird. These datasets feature bias related to color, synthetic
corruption, gender, and place background, respectively (details in Appendix N.1). In contrast to
the mislabeled setting, we observe that directly applying SI to detect bias-conflicting samples in
biased datasets often fails. In Figure 1, the detection precision of SI is significantly low, mostly below
25%. Note that since an unbiased validation set is unavailable in our target problem, we additionally
estimate the influence score on the training set, indicated as IFtrain in Figure 1.
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Figure 3: A comprehensive analysis of Influence function on the training set (IFtrain) and Self-
Influence (SI) in biased datasets. Figure 3(a) shows the classification accuracy of bias-aligned and
bias-conflicting samples over training epochs. Figure 3(b) and 3(c) depict the detection precision
of IFtrain and SI across training epochs for varying ratios of bias-conflicting samples in CIFAR10C.
Figure 3(d) shows histograms of sample distribution in CIFAR10C (1%) and each bar indicates the
number of samples within a specific range.

This is due to the inherent differences between mislabeled samples and bias-conflicting samples.
While mislabeled samples strongly conflict with the dominant features learned by the model due to
their incorrect labels, bias-conflicting samples share task-related features with bias-aligned samples.
For instance, in a biased dataset where seagulls are spuriously correlated with sea backgrounds, a
seagull image against a desert background still retains the features of a seagull. Despite the dominance
of malignant bias, these features are still partially utilized. Therefore, bias-conflicting samples do not
exhibit a clear contrast with the dominant features of a biased model, posing a challenge for using SI.

To address this challenge, we introduce essential conditions that enable SI to accurately detect bias-
conflicting samples. The key concept is to restrict the model from learning task-related features and
instead induce the model to focus more on the malignant bias to achieve better separation. A simple
but effective way to attain this is by leveraging models in the early stages of training, since malignant
bias is learned first, followed by task-related features later, according to Nam et al. [40]. In Figure 3(a),
experiments on CIFAR10C and CMNIST demonstrate that the classification accuracy of bias-aligned
samples increases rapidly, while that of bias-conflicting samples shows a slower rise. In addition, as
shown in Figure 3(b) and 3(c), our experiments on CIFAR10C with diverse ratios of bias-conflicting
samples (0.5%, 1%, 2%, and 5%) demonstrate a significant decline in detection precision of IF and
SI as training epochs increase, since the model gradually learns task-related features. Therefore,
computing SI with models in the early stages of training can achieve better separation. Formally,
given a model parameterized by θ at an early epoch t, we compute the self-influence Iself(z) as:

Iself(z) = ∇θtℓ(z, θt)
⊤H−1

t ∇θtℓ(z, θt), (2)

where Ht is the Hessian of the loss function at the parameter θt.
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Figure 4: Comparison of average precision between SI
and BCSI across diverse datasets over three runs.

To further enhance the separation of SI,
we employ Generalized Cross Entropy
(GCE) [61] to induce the model to focus
more on the easier-to-learn bias-aligned
samples, resulting in a more biased model.
GCE emphasizes samples that are easier
to learn, thereby amplifying the model’s
bias by tending to give more weight to bias-
aligned samples in the training set.

Consequently, we employ the model
trained under these conditions to measure
SI and refer to SI estimated by this heav-
ily biased model with Equation 2 as Bias-
Conditioned Self-Influence (BCSI). Since
we induce the model to heavily exploit bias and discourage the model from learning task-related
features, BCSI can effectively detect bias-conflicting samples. To avoid the impracticality of manually
searching epoch t for each dataset, we base our method on the well-known findings of Frankle et al.
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(a) Bias-conflicting
with high BCSI

(b) Bias-conflicting
with low BCSI

(c) Bias-aligned
with high BCSI
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Figure 5: Example images from BFFHQ ranked within the top 100 by BCSI score. (a) and (b) are
bias-conflicting samples with high and relatively lower BCSI scores, respectively. (c) is a bias-aligned
sample with a high BCSI score, while (d) is a bias-aligned sample with a low BCSI score.

[9] that the primary directions of the model’s parameter weights are determined during 500 to 2,000
iterations. Thus, we set epoch t within this range according to the mini-batch size of each dataset.
Specifically, we used t=5 for all datasets to ensure practicability and consistency across experiments,
but fine-tuning the epoch t for each dataset can yield further improvement.

We validate the efficacy of BCSI in detecting bias-conflicting samples. Since calculating H−1 :=
(∇2

θL(D, θ∗))−1 is computationally expensive for large networks due to their extensive number of
parameters, we calculate H−1 and the loss gradient of the sample z, ∇θℓ(z, θ

∗), by using the last
layer of the model following Koh and Liang [27], Pruthi et al. [43]. In Figure 4, BCSI outperforms
conventional SI in detection precision.

Additionally, Figure 3(d) demonstrates that BCSI has a notable tendency for bias-conflicting samples
to exhibit larger scores compared to bias-aligned samples, in contrast to SI. This trend is also observed
in other biased datasets, as shown in Appendix A and C. These experimental results support that
BCSI can serve as an effective indicator for identifying bias-conflicting samples. To further analyze
the qualitative characteristics of bias-conflicting and bias-aligned samples within the top 100 samples
ranked by BCSI, we examine BCSI on BFFHQ, as illustrated in Figure 5. In BFFHQ, gender serves as
the bias attribute and age as the target attribute, leading to spurious correlations between ’young’ and
’woman’ as well as ’old’ and ’man’. For bias-conflicting samples, Figure 5(a) shows that BCSI assigns
high scores to clear counterexamples, such as boys or very elderly women. In contrast, Figure 5(b)
exhibits relatively lower BCSI scores for cases like slightly older young men or elderly women
who appear younger, indicating that BCSI prioritizes samples with stronger opposition to spurious
correlations. A similar trend is observed for bias-aligned samples in Figure 5(c) and Figure 5(d),
enhancing that BCSI effectively distinguishes between varying degrees of alignment with the spurious
correlations.

4 Remedy biased models through fine-tuning

In this section, we propose a simple but effective remedy that first utilizes BCSI to construct a
concentrated pivotal subset abundant in bias-conflicting samples and then employs it for rectifying
biased models via fine-tuning without leveraging the supervision of bias or an unbiased validation set.
Our method is complementary to existing methods, capable of rectifying models that have already
undergone other debiasing techniques. The overall pipeline is described in Figure 2.

Constructing a pivotal subset. We select the top-k subset of samples from each class, based
on their BCSI scores, to form a pivotal subset of bias-conflicting samples as follows: ZP =
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Figure 6: Test accuracy under varying bias-conflicting ratios. Figure 6(a) shows the accuracy for last
layer retraining across varying bias ratios in pivotal sets. Figure 6(b) depicts performance changes of
last layer retraining and fine-tuning under diverse bias ratios. In Figure 6(c), our performance gains
are provided. We present the average accuracy with the error bars indicating the standard error across
three runs.

⋃C
c=1

{
zBCSI-rank(n,c)

}k

n=1
, where C is the number of classes and BCSI-rank(n, c) is the dataset

index of the n-th training sample of class c sorted by BCSI score. Due to the unknown ratio of
bias-conflicting samples beforehand, determining a proper k through hyper-parameter tuning for each
dataset is computationally expensive. To mitigate this, we repeat the selection process three times
with different randomly initialized models and use the intersection of the resulting sets as the pivotal
set. This ensures a high likelihood of selecting bias-conflicting samples, as they are consistently
identified by three runs. We provide the resulting bias-conflicting ratios of the pivotal sets across
various datasets in Appendix E and confirm that this process improves detection precision by 16.11%
on average. Note that we set k = 100 across all datasets in our experiments. For computational costs,
since we only train models for five epochs, this iterative approach incurs negligible cost compared
to full training, as commonly done in previous studies [40, 31, 19]. We confirm that in Appendix G.
The detailed filtering process is outlined in Algorithm 1, which can be found in Appendix B.

Efficient remedy via fine-tuning. Recent works [26, 32] show that retraining specific layers of
a model using a small unbiased set can effectively mitigate bias in biased models, overcoming the
inefficiency of retraining models from scratch [40, 31, 19]. However, preemptively identifying the
bias and curating an unbiased set is very costly, making it an impractical solution. Instead, our method
leverages the pivotal set which has a high proportion of bias-conflicting samples, as a practical
alternative. While not perfect, our method can efficiently remedy biased models with just a few
additional training iterations without the need for prior knowledge of bias or unbiased datasets. As
shown in Figure 6(a), even without a perfect pivotal set, its concentration facilitates its applicability
in fine-tuning. Note that contrary to the claims of Kirichenko et al. [26], we observed that in highly
biased scenarios, the feature extractor also becomes biased, making last-layer retraining insufficient,
as demonstrated in Figure 6(b). Therefore, we fine-tune all the parameters in the models.

In addition, we formulate a counterweight cross-entropy loss by drawing a mini-batch from the
remaining training set. In real-world scenarios, the unpredictability of bias severity necessitates ro-
bustness across a wide range of bias severities. However, previous methods often assume a sufficient
presence of bias-aligned samples in the training set, which limits their performance in low-bias sce-
narios. Despite its significance, the study on both low and high-bias scenarios has been underexplored,
and to the best of our knowledge, we are the first to bring up this issue.

We then train the model using both the cross-entropy loss on the pivotal subset and the counterweight
loss on the remaining training set:

L(ZP,ZR) := LCE(ZP) + λLCE(ZR),

where ZP is the pivotal subset, ZR ∼ Z \ ZP a randomly drawn mini-batch from the remaining
training set, and LCE is the mean cross-entropy loss.

To this end, our method efficiently remedies bias through fine-tuning that utilizes a pivotal set
constructed via BCSI across varying bias severities. Additionally, our approach complements existing
methods, capable of further rectifying models that have already undergone recent debiasing techniques.
The overall process is described in Algorithm 2, which is included in Appendix B.

7



Table 1: The average and the standard error over three runs. Ours indicates our method applied to a
model initially trained with the prefix method. The best accuracy is annotated in bold. ✓ indicates
that a given method uses bias information while ✗ denotes that a given model does not use any bias
information.

Method
Bias CMNIST CIFAR10C BFFHQ

Info 0.5% 1% 2% 5% 0.5% 1% 2% 5% 0.5%

GroupDRO ✓ 79.57 90.50 94.89 97.54 33.44 38.30 45.81 57.32 54.80

ERM ✗ 71.76±1.84 86.47±0.61 93.87±0.32 96.28±0.29 20.50±0.54 24.91±0.33 28.99±0.42 40.24±0.28 53.53±2.05

LfF ✗ 89.06±1.87 89.50±2.88 85.74±4.37 94.30±0.67 25.28±2.89 31.15±1.67 38.64±0.39 46.15±0.54 55.33±2.69

DFA ✗ 84.71±1.66 90.20±1.29 92.31±0.77 94.33±1.23 27.13±1.66 31.26±2.71 37.96±0.71 44.99±0.84 52.07±1.91

BPA ✗ 73.34±2.37 87.21±0.30 89.42±3.37 97.13±0.15 25.50±1.03 26.86±0.69 27.47±1.46 34.29±2.20 51.40±2.98

DCWP ✗ 85.16±7.75 89.68±6.95 89.42±4.23 95.17±1.75 31.27±0.24 34.87±0.63 41.47±0.06 52.86±1.24 57.33±1.75

SelecMix ✗ 84.46±0.58 94.51±0.53 95.75±1.34 98.09±0.13 37.63±0.81 40.14±0.42 47.54±0.59 54.86±0.76 63.07±2.32

Ours ERM ✗ 75.87±1.60 89.69±0.41 95.08±0.17 96.79±0.13 26.61±0.38 33.47±0.29 40.75±0.37 49.30±0.46 56.00±1.07

Ours LfF ✗ 90.79±1.13 94.10±1.08 92.95±1.17 95.59±0.53 27.63±1.00 35.29±1.21 43.36±0.78 51.95±0.29 57.13±2.46

Ours DFA ✗ 88.39±0.28 92.85±067 95.67±0.12 97.52±0.06 25.66±0.85 33.53±2.01 42.80±0.81 52.61±0.54 56.60±2.83

Ours SelecMix ✗ 87.63±1.20 95.35±0.17 97.15±0.48 98.13±0.17 38.74±0.36 46.18±0.33 52.70±0.40 59.66±0.31 65.80±3.12

5 Experiments

In this section, we present experiments applying our method to models trained with ERM and
recent debiasing methods. We validate our method and its individual components by following prior
conventions. Below, we provide a brief overview of our experimental setting in Section 5.1, followed
by empirical results presented in Section 5.2, 5.3, and 5.4.

5.1 Experimental settings

We now describe datasets, baselines, and evaluation protocol. Detailed descriptions about these are
provided in Appendix N.

Datasets. For a fair evaluation, we follow the conventions of using benchmark biased datasets [40].
Colored MNIST dataset (CMNIST) is a synthetically modified MNIST [6], where the labels are
correlated with colors. We conduct benchmarks on bias ratios of r ∈ {0.5, 0.1, 0.2, 5}. CIFAR10C is
a synthetically modified CIFAR10 [30] dataset with common corruptions. To evaluate our method
in low-bias scenarios, we expand our scope and conduct experiments with varying bias ratios
r ∈ {0.5, 0.1, 0.2, 5, 20, 30, 50, 70, 90(unbiased)}. Biased FFHQ (BFFHQ) [31] is a curated Flickr-
Faces-HQ (FFHQ) [22] dataset, which consists of facial images where ages and genders exhibit
spurious correlation. The Waterbirds dataset [53] consists of bird images, to classify bird types, but
their backgrounds are correlated with bird types. Non-I.I.D. Image dataset with Contexts (NICO) [16]
is a natural image dataset for out-of-distribution classification. We follow the setting of [54], inducing
long-tailed bias proportions within each class, simulating diverse bias ratios in a single benchmark.
Additionally, to demonstrate the effectiveness of our method on NLP datasets, we conduct experiments
on CivilComments [2, 28] and MultiNLI [58, 45], as detailed in appendix F.

Baselines. Since our goal is addressing the dataset bias without leveraging any prior knowledge
of bias or an unbiased set, we evaluate our method with such baselines. GroupDRO [44] uses bias
supervision to debias models. LfF [40], BPA [48], and DCWP [41] adjust the loss function to amplify
the learning signals for bias-conflicting samples. DFA [31] and SelecMix [19] augment samples
possessing various biases different from the original data.

Evaluation protocol. Following other baselines, we calculate the accuracy for unbiased test sets
in CMNIST, CIFAR10C, and NICO. We measure the minority-group accuracy in BFFHQ, and
the worst-group accuracy in Waterbird. Note that we use the models from the final epoch for all
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Table 2: The average and the standard error over three runs on
low-bias scenarios.

Method
CIFAR10C

20% 30% 50% 70% 90%(unbiased)

ERM 59.47±0.59 65.64±0.51 71.33±0.09 74.90±0.25 76.03±0.26

LfF 59.78±0.85 60.56±0.96 60.35±0.37 62.52±0.49 63.42±0.63

DFA 60.34±0.46 64.24±0.44 65.97±1.80 64.97±0.20 66.59±5.20

SelecMix 62.05±1.26 62.17±0.35 62.52±1.54 66.23±0.09 65.81±0.96

Ours ERM 62.78±0.67 65.61±0.77 70.61±0.62 73.20±0.35 73.57±0.16

Ours LfF 64.46±0.29 64.40±0.27 65.82±0.15 67.29±0.17 68.15±0.76

Ours DFA 66.30±0.48 68.13±0.45 72.79±0.38 73.56±0.15 70.36±4.08

Ours SelecMix 66.67±0.43 64.51±1.44 66.45±0.28 69.97±0.21 69.29±0.75

Table 3: Accuracy on Waterbirds,
NICO

Method Waterbird NICO

ERM 68.74±2.65 39.56±1.77

LfF 75.27±2.12 34.56±1.47

DFA 77.57±1.60 44.59±0.33

SelecMix 74.72±1.14 33.87±1.27

Ours ERM 87.64±1.30 43.54±0.50

Ours LfF 87.85±0.68 40.18±0.91

Ours DFA 87.12±0.68 45.69±1.12

Ours SelecMix 89.67±0.38 44.33±0.55
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Figure 7: Figure 7(a) displays the test accuracy for SelecMix and our method at different bias ratios.
Figure 7(b), 7(c), and 7(d) depict the unbiased evaluation under varying the size k in the pivotal set,
λ, the number of epochs for detection models, respectively. We present the average accuracy with the
error bars indicating the standard error across three runs.

experiments to evaluate performance. We report the average value and the error bars denote standard
errors across three runs.

5.2 Results on highly biased scenarios

We evaluate our method to measure the degree of rectification of baseline models when combined
with ours on benchmark datasets. In Table 1, we significantly enhance the performance of baselines
on the majority of datasets under various experimental settings. Ours SelecMix achieves state-of-the-art
accuracy on CIFAR10C. Also, we observe that performance gain is larger as the ratio of bias-
conflicting samples increases in CIFAR10C. We conjecture that fine-tuning becomes more effective
in CIFAR10C (2%) and (5%) since the bias-conflicting sample purity of the pivotal set increases, as
shown in Section 4. In Figure 6(c), performance gain mainly stems from the increased performance
of bias-conflicting samples.

5.3 Results on low-bias scenarios

We validate the baselines on CIFAR10C under varying ratios of bias-conflicting samples in Table 2
and 3. Baselines exhibit performance deterioration compared to ERM when the bias-conflicting ratio
is high. In contrast, our method can significantly rectify remaining bias within a model, even in
mildly biased datasets except for ERM. Albeit there is a slight decrease in performance for ERM, the
accuracy gap is much lower than other baselines. Since the innate nature of fine-tuning can minimize
friction by training from pre-trained parameters, our method can remedy bias in a wider range of bias
ratios, as in Figure 7(a). The results for other methods are provided in Appendix D.

5.4 Ablation study

We examine the sensitivity of hyperparameters such as the number of selected samples per class (k)
in the pivotal set, the weight for the remaining data in fine-tuning (λ), and the number of epochs
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to train detection models. In Figure 7(b), there is a slight performance decrease as k increases in
CIFAR10C (0.5%). In contrast, the accuracy in CIFAR10C (5%) increases. Since there are a few
bias-conflicting samples per class in CIFAR10C (0.5%), additional usage of samples dilutes the ratio
of bias-conflicting data in the pivotal set, leading to a performance drop. In Figure 7(c), we observe
a marginal accuracy drop as λ increases in CIFAR10C (0.5%), CIFAR10C (90%) experiences a
performance increase. These results indicate that learning the remaining samples is beneficial in
CIFAR10C (90%), fostering the model to capture task-relevant signals. For the number of epochs used
to train the model for the detection, we compute the final performance when combining SelecMix
in Figure 7(d). Except for insufficiently trained 1 epoch, the performance is not sensitive to the
number of epochs between 3 and 11 epochs. We note that the analysis for intersections is provided in
Appendix H.

6 Related work

Debiasing deep neural networks. Research on mitigating bias has centered on modulating task-
related information and malignant bias during training. Early works relied on human knowledge
through direct supervision or implicit information of bias [44, 33, 18, 12], which is often impractical
due to its acquisition cost. Thus, several studies have focused on identifying and utilizing bias-
conflicting samples without relying on human knowledge. Loss modification methods [40, 36, 41]
amplify the learning signals of (estimated) bias-conflicting samples by modifying the learning
objective. Sampling methods [35, 1] overcome dataset bias by sampling (estimated) bias-conflicting
data more frequently. Data augmentation approaches [31, 34, 20, 19] synthesize samples with various
biases distinct from the inherent bias of the original data. Recently, based on the observation that bias
in classification layers is severe compared to feature extractors, several approaches focus on rectifying
the last layer [23, 39, 26]. Similarly, Lee et al. [32] demonstrated that selectively fine-tuning a subset
of the layers with an unbiased dataset can match or even surpass the performance of commonly
used fine-tuning methods. However, identifying the bias and curating an unbiased set is very costly,
making it an impractical essential condition.

Influence functions. Influence function (IF) and its approximations [43, 46, 24] have been utilized
in various deep learning tasks by measuring the importance of training samples and the relationship
between them. One application of IF is in quantifying memorization by self-influence, which is
the increase in loss when a training sample is excluded [43, 8]. IF can be used to estimate the
significance of samples, enabling the reduction of less important ones for efficient training [49, 59].
Recent works utilize IF to identify and relabel mislabeled samples in noisy label settings [27, 51,
55, 57, 29]. Furthermore, IF has also been applied in 3D domains like NeRF, where it measures
pixel-wise distraction caused by unexpected objects, aiding in the identification and mitigation of
such distractions [21].

7 Conclusion

In this work, we introduce a novel perspective of mislabeled sample detection on biased datasets.
By conducting a comprehensive analysis of Self-Influence in detecting bias-conflicting samples,
we discover essential conditions required for SI to effectively identify these samples, which we
denote as Bias-Conditioned Self-Influence (BCSI). Building on our analysis, we propose a simple
yet effective remedy for biased models through fine-tuning that utilizes a small but concentrated
pivotal set constructed via BCSI. Our method is not only capable of further rectifying models that
have already undergone recent debiasing techniques but also demonstrates better generalization on a
wide range of bias severities compared to previous studies.

Limitations. In this work, we rectify biased models via a simple fine-tuning approach. However,
this is the basic method; more sophisticated techniques such as sample weighting or curriculum
learning are possible. We believe that our introduction of this novel perspective will pave the way for
more advanced future work.

Broader impact. Our work aims to learn unbiased deep learning models without bias annotations.
Since filtering every training data under every given circumstance, the social impact of the ability to
debias a biased deep learning model after its training is much needed in terms of fairness.
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A Distribution of Self-Influence and bias-conditioned Influence

In Figure 1(c) and Figure 1(d) of the main paper, we have shown the influence histogram of naive
self-influence and bias-conditioned self-influence (Ours) for the training set of CIFAR10C (1%). In
this section, we show the histograms of self-influence and bias-conditioned self-influence for the
training sets of an extended variety of bias ratios and datasets. Figure 8 shows the influence histograms
for CIFAR10C, and BFFHQ. Figure 9 shows the influence histograms of CMNIST, Waterbird, and
NICO. In accordance with the main paper, we observe that bias-conditioned self-influence generally
exhibits better separation compared to naive self-influence, deeming it a better option to detect
bias-conflicting samples.
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(a) Self-IF in CMNIST (0.5%).
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(b) BCSI in CMNIST (0.5%).
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(c) Self-IF in CMNIST (1%).
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(d) BCSI in CMNIST (1%).
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(e) Self-IF in CMNIST (2%).
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(f) BCSI in CMNIST (2%).
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(g) Self-IF in CMNIST (5%).
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(h) BCSI in CMNIST (5%).
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(i) Self-IF in Waterbirds (5%).
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(j) BCSI in Waterbirds (5%).
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(k) Self-IF in NICO.
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(l) BCSI in NICO.

Figure 8: Histogram of self-influence and bias-conditioned self-influence for CMNIST, Waterbird,
and NICO.
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(a) Self-IF in CIFAR10C (0.5%).
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(b) BCSI in CIFAR10C (0.5%).
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(c) Self-IF in CIFAR10C (2%).
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(d) BCSI in CIFAR10C (2%).
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(e) Self-IF in CIFAR10C (5%).
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(f) BCSI in CIFAR10C (5%).
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(g) Self-IF in CIFAR10C (20%).
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(h) BCSI in CIFAR10C (20%).
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(i) Self-IF in CIFAR10C (30%).
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(j) BCSI in CIFAR10C (30%).
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(k) Self-IF in CIFAR10C (50%).
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(l) BCSI in CIFAR10C (50%).
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(m) Self-IF in CIFAR10C (70%).
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(n) BCSI in CIFAR10C (70%).
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(o) Self-IF in BFFHQ (0.5%).
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(p) BCSI in BFFHQ (0.5%).

Figure 9: Histogram of self-influence and bias-conditioned self-influence for the CIFAR10C dataset
with varying bias-conflicting ratio and BFFHQ.
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B Algorithm

Algorithm 1 Construct a pivotal set
1: Input: model parameters θ, GCE LGCE, number of

epochs nepoch, learning rate ρ, number of classes
C, train set Z, number of topk ntopk

2: Initialize: Model parameter θ.
3: for i = 0, 1, 2, · · · , nepoch do
4: θ← θ − ρ∇θLGCE(Z, θ)
5: end for
6: # Select samples with high self-influence
7: ZP ← ∅
8: for c = 0, 1, 2, · · · , C do
9: Zc← {(x, y) ∈ Z|y = c}

10: for j = 0, 1, 2, · · · , ntopk do
11: zhighest ← argmaxz∈Zc

Iself(z)
12: Zc← Zc \ {zhighest}
13: ZP ← ZP ∪ {zhighest}
14: end for
15: end for
16: Output: ZP

Algorithm 2 Post-training with the pivotal set
1: Input: pre-trained model parameters θ∗, CE LCE,

number of iterations niter, learning rate ρ, train set
Z, pivotal set ZP, weight of remaining set λ

2: Initialize: Last-layer of model θ∗last-layer.
3: ZR ← Z \ ZP
4: nP ← |ZP|
5: for i = 0, 1, 2, · · · , niter do
6: # Sample data from remaining samples
7: ZS ← ∅
8: for j = 0, 1, 2, · · · , nP do
9: z ∼ ZR

10: ZS ← ZS ∪ {z}
11: end for
12: L← LCE(ZP, θ

∗)
13: L← L+ λLCE(ZS, θ

∗)
14: θ∗← θ∗ − ρ∇θL
15: end for
16: Output: θ∗

C Detection precision for other datasets

We now describe the detailed experimental setting used in Figure 4 of the main paper. We first train
ResNet18 [15] for five epochs and then compute self-influence, and bias-conditioned self-influence.
Note that we only use the last layer when computing self-influence, and bias-conditioned self-
influence. Subsequently, we sort the training data in descending order based on the values obtained by
each method, selecting samples ranging from the highest to the k-th sample, where k is the number
of total bias-conflicting samples in the training set. We then calculate the precision in detecting
bias-conflicting samples within the selected data.

To further demonstrate the effectiveness of bias-conditioned self-influence in detecting bias-conflicting
samples, we compare bias-conditioned self-influence with self-influence on other datasets including
CMNIST (0.5%, 2%, 5%), CIFAR10C (0.5%, 2%, 5%, 20%, 50%), NICO. As shown in Table 4,
bias-conditioned self-influence exhibits superior performance or is comparable to self-influence in
most cases. This observation is consistent with the result in the main paper.

Table 4: Comparison of bias-conflicting sample detection precisions between self-influence (SI), and bias-
conditioned self-influence (BCSI) across various datasets. The average and the standard error of precision over
three runs are provided.

Method
CMNIST CIFAR10C

NICO
0.5% 2% 5% 0.5% 2% 5% 20% 50%

SI 31.94±2.85 39.35±1.38 37.91±0.84 63.33±1.75 20.19±2.22 42.17±1.74 41.11±0.08 58.73±0.30 89.37±0.21

BCSI 92.08±0.24 82.86±1.38 44.00±3.77 38.33±2.52 50.45±0.34 60.48±1.91 69.48±0.39 71.78±0.29 90.86±0.39
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D Performance with respect to the bias-conflicting ratio

In Figure 4.2 of the main paper, we showed the unbiased accuracy trends of the CIFAR10C dataset
with respect to the bias-conflicting ratio for SelecMix and SelecMix with our method. In Figure 10,
we provide the CIFAR10C accuracy trends of LfF [40] and DFA [31] alone and with our method.
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(a) The performance of LfF and Ours.
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(b) The performance of DFA and Ours.

Figure 10: Performance of the other baselines and Ours on the CIFAR10C dataset with varying bias
ratio. The performance of LfF [40] is shown in Figure 10(a). Figure 10(b) displays the performance
of DFA [31].

E Bias-conflicting ratio of the pivotal set

We provide the resulting bias-conflicting ratios (i.e.bias-conflicting detection precisions) of the pivotal
set produced across a variety of datasets. Table 5 and Table 6 show the bias-conflicting ratios for
CMNIST (0.5%, 1%, 2%, 5%), CIFAR10C (0.5%, 1%, 2%, 5%, 20%, 30%, 50%, 70%), BFFHQ,
Waterbirds, and NICO.

Table 5: The average and the standard error of detection precision over three runs. Note that we com-
pute the precision of the pivotal sets across varying ratios of bias-conflicting samples in CIFAR10C.

CIFAR10C

0.5% 1% 2% 5% 20% 30% 50% 70%

Accuracy 45.57±1.63 68.18±0.96 86.13±1.18 96.60±0.11 99.94±0.06 99.88±0.12 98.30±0.30 85.81±2.05

Table 6: The average and the standard error of detection precision over three runs. Note that we
compute the precision of the pivotal sets on CMNIST, BFFHQ, Waterbirds, and NICO.

CMNIST BFFHQ Waterbirds
NICO

0.5% 1% 2% 5% 0.5% 5%

Accuracy 68.19±4.57 84.61±1.86 97.27±0.51 73.24±6.55 66.32±3.94 64.26±1.93 94.01±2.57

F Results on natural language processing datasets

To verify the effectiveness of our method on NLP datasets, we conduct experiments on two widely
used benchmarks, CivilComments and MultiNLI. CivilComments contains user-generated comments
labeled as either toxic or non-toxic. The spurious attribute in this dataset indicates whether a comment
mentions one of the protected attributes, such as male, female, LGBT, black, white, Christian, Muslim,
or other religions. These attributes are disproportionately associated with toxic comments, creating
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a spurious correlation. Similarly, the MultiNLI dataset comprises pairs of sentences with labels
denoting their relationship as contradiction, entailment, or neutral. The spurious attribute in MultiNLI
is the presence of negation words, which are more frequently observed in the contradiction class. Both
datasets are structured into groups based on combinations of the label y and the spurious attribute s,
resulting in four groups in CivilComments and six in MultiNLI.

As shown in table 7, our method demonstrates its effectiveness in further rectifying models previously
debiased with JTT, achieving increases in worst-group accuracy of 3.4% and 14.8% on MultiNLI and
CivilComments, respectively.

Table 7: The average and the worst-group accuracy on NLP datasets.

Method MultiNLI CivilComments
Avg. Worst-group Avg. Worst-group

ERM 82.4 67.9 92.6 57.4
JTT 80.0 70.2 92.6 63.7
Ours JTT 79.8 73.6 86.9 78.5

G Comparison of time costs

In this section, we analyze the time cost of our method and compare it with the other baselines.
For a practical and tangible comparison, we measure the wall clock time for the CIFAR10C (0.5%)
dataset. We run our experiments with a machine equipped with Intel Xeon Gold 5215 (Cascade
Lake) processors, 252GB RAM, Nvidia GeForce RTX2080ti (11GB VRAM), and Samsung 860
PRO SSD. For self-influence calculation, we utilize the JAX [3] library for fast Hessian vector
product calculation. For all other deep learning functionalities, we utilize Pytorch [42]. In Table 8, the
wall-clock duration of each component of our method is shown. We observe that the self-influence
calculation step takes a longer time compared to the fine-tuning step due to the intersection process.
However, this can be executed in parallel, which reduces the time cost of self-influence calculation
approximately threefold. In Table 9, a wall-clock time comparison with the other baselines is shown.
Our method consumes a significantly lesser amount of time, dropping to less than half the time of
ERM full training when the self-influence calculation is executed in parallel. Reflecting on these
results, we assert that the time cost of our method is rather small or even negligible compared to the
full training time of other baselines.

Table 8: The average and the standard error of computational costs over three runs. We measure the
computing time for full training as the wall-clock time of each component. Self-influence (parallel)
represents calculating the bias-conditioned self-influence in GPU-parallel. Note that † indicates that
corresponding methods use JAX while others utilize PyTorch.

Component Self-influence Self-influence (parallel) Fine-tuning

Time (min.) 11.46†±0.08 3.86†±0.03 1.08±0.04

Table 9: The average and the standard error of computational costs over three runs. We measure the
computing time for full training as the wall-clock time of each method. Ours (parallel) presents our
method which computes bias-conditioned self-influence in GPU-parallel. Note that † indicates that
corresponding methods use JAX while others utilize PyTorch.

Method ERM LfF DFA SelecMix Ours Ours ( parallel)

Time (min.) 22.55±0.32 33.64±0.34 53.18±2.55 352.53±5.13 12.54†±0.08 4.94†±0.03

H Analysis of intersections within pivotal sets

In this section, we analyze the effects of intersections between pivotal sets obtained from various
random initializations of models. For the comparison, we provide the number of samples, detection
precision, and performance after fine-tuning models across different numbers of the intersections
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in Table 10, Table 11, and Table 12. We observe that the detection precision increases as the
number of intersections rises, while the number of samples in the pivotal set decreases. For the
performance, a higher number of intersections shows effectiveness in the highly-biased scenarios, as
bias-conflicting samples are scarce, and intersections reduce the size of the pivotal set. In contrast,
a fewer intersections exhibit superior performance in low-based scenarios as there are abundant
bias-conflicting samples. Note that, to observe the trend across varying ratios of bias-conflicting
samples, we conduct experiments on CIFAR10C (0.5%, 1%, 2%, 5%, 20%, 30%, 50%, 70%).

Table 10: The average and the standard error of the number of pivotal sets over three runs considering
numbers of intersections.

Number of CIFAR10C

Intersections 0.5% 1% 2% 5% 20% 30% 50% 70%

1 1000 1000 1000 1000 1000 1000 1000 1000

2 322.67±3.38 386.67±11.98 503.67±39.75 577.00±16.46 554.00±63.38 421.67±21.17 309.67±40.03 290.00±70.32

3 201.67±4.91 267.00±8.50 388.33±19.06 430.33±30.66 452.00±65.09 281.00±11.02 144.67±30.99 141.67±30.99

Table 11: The average and the standard error of detection precision over three runs considering
numbers of intersections.

Number of CIFAR10C

Intersections 0.5% 1% 2% 5% 20% 30% 50% 70%

1 13.27±0.50 24.90±0.87 47.07±0.65 76.27±0.50 97.10±0.95 97.60±1.20 91.27±2.02 80.83±1.15

2 31.68±1.61 52.83±1.80 75.17±3.66 92.01±0.80 99.77±0.16 99.02±0.74 96.00±0.47 83.68±0.99

3 45.57±1.63 68.18±0.96 86.13±1.18 96.60±0.11 99.94±0.06 99.88±0.12 98.30±0.30 85.81±2.05

Table 12: The average and the standard error of classification accuracy of ‘Ours+SelecMix’ over
three runs considering numbers of intersections.

Number of CIFAR10C

Intersections 0.5% 1% 2% 5% 20% 30% 50% 70%

1 36.44±0.34 40.76±0.03 49.57±0.41 59.31±0.15 67.99±0.33 67.04±0.65 67.39±0.79 70.09±0.28

2 38.85±0.62 43.47±0.21 51.43±0.53 60.22±0.19 66.96±0.25 65.90±0.81 66.77±0.40 69.92±0.53

3 38.74±0.36 46.18±0.33 52.70±0.40 59.66±0.31 66.66±0.43 64.51±1.44 66.45±0.28 69.97±0.21

I Improving performance in low-bias settings

In CIFAR-10C, as the bias severity decreases from 30% to 90%, the dataset gradually transitions
into the low-bias domain, approaching an unbiased state at 90%. This reduction undermines the
assumption that the bias is sufficiently malignant, reducing the effectiveness of debiasing methods
and allowing ERM to achieve better performance. In this context, to improve the performance of
our method when applied to ERM—which leverages a large number of conflicting samples—it is
necessary to increase the size of the pivotal set, thereby expanding the number of conflicting samples.
As shown in Table 13, expanding the pivotal set can improve performance in low-bias settings. This
result implies that we could further enhance performance by adjusting the top-k value if we had
access to information regarding bias severity.
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Table 13: The average and the standard error of classification accuracy over three runs.

Method
CIFAR10C

30% 50% 70% 90%

ERM 65.64±0.51 71.33±0.09 74.90±0.25 76.03±0.26

Ours ERM (k=100) 65.61±0.77 70.61±0.62 73.20±0.35 73.57±0.16

Ours ERM (k=2000) 71.25±0.34 74.46±0.34 75.84±0.33 76.14±0.23

J Qualitative analysis using Grad-CAM

This section provides qualitative results of our method using Grad-CAM [47] on BFFHQ and
Waterbird. For BFFHQ, the target attributes are {young, old} and the bias attributes are {man,
woman}. For Waterbird, the target attributes are {waterbird, landbird}, and the bias attributes are
{water, land}. In Figure 11 (a) and (c), ERM focuses on biased features such as gender and background.
However, ERM combined with our method tends to focus more on task-relevant features including
age-related facial features and the birds themselves. This implies that our approach effectively guides
the model in prioritizing target attributes over biased ones.

(a) ERM (b) Ours ERM (c) ERM (d) Ours ERM

Figure 11: The Grad-CAM of ERM and ERM+Ours on BFFHQ and Waterbird. (a-b) show results on
BFFHQ, while (c-d) display results on Waterbird. (a) and (c) represent the Grad-CAMs for ERM,
and (b) and (d) correspond to Grad-CAMs for ERM combined with our method.
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K Ablation study on the loss function of the detection model

In this section, we conduct an ablation study on the learning objectives of the detection model. Our
method uses Generalized Cross Entropy (GCE), a commonly adopted loss function in debiasing tasks
to acquire biased models. However, conceptually, our method can be applied to any loss function to
obtain biased models. To demonstrate the generality of our approach with different loss functions,
we evaluate it on BFFHQ and Waterbird using alternative objectives, such as GCE, SCE [56], and
NCE+RCE [38], which are designed for handling noisy label environments. In Table 14, both SCE
and NCE+RCE demonstrate performance comparable to GCE. Since these objectives encourage
models to focus more on the majority samples, our method combined with these loss functions also
achieves similar results. Note that, naive cross-entropy, which does not promote majority sample
utilization, fails on the BFFHQ dataset.

Table 14: The average and the standard error over three runs.

Method
BFFHQ Waterbirds

0.5% 5%

SelecMix 63.07±2.32 74.72±1.14

Ours w/ CE SelecMix 62.73±3.71 88.73±0.45

Ours w/ GCE SelecMix 65.80±3.12 89.67±0.38

Ours w/ SCE SelecMix 66.20±0.53 89.46±0.36

Ours w/ NCE+RCE SelecMix 67.73±1.99 89.72±0.41

L Ablation study on Influence estimation methods

We conduct an ablation study on other influence estimation methods. We leverage the fundamental
form of Influence Functions to demonstrate the generalizability of our approach. However, other
estimation methods are compatible. To further show this, we evaluate our method on BFFHQ and
Waterbird using MoSo [50], TracIn [43], and Arnoldi [46]. As shown in Table 15, TracIn outperforms
the basic IF, while MoSo and Arnoldi exhibit comparable performance. These results indicate that
our method can enhance performance across various estimation approaches.

Table 15: The average and the standard error of detection precision over three runs.

Method
BFFHQ Waterbirds

0.5% 5%

SelecMix 63.07±2.32 74.72±1.14

Ours SelecMix 65.80±3.12 89.67±0.38

Ours w/ MoSo SelecMix 63.13±3.27 89.72±1.12

Ours w/ TracIn SelecMix 69.20±0.50 90.39±0.70

Ours w/ Arnoldi SelecMix 66.40±3.12 71.08±3.12

M Evaluation with fairness metrics

To further demonstrate the effectiveness of our method, we evaluate it using fairness metrics including
demographic parity (DP) [5] and equalized odds equal opportunity (EOP) [13] on Waterbird. In
Table 16, our method significantly improves performance in both DP and EOP. It indicates that our
method also addresses the fairness problem.
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Table 16: The average and the standard error of demographic parity (DP) and equalized odds equal
opportunity (EOP) over three runs.

Method
Waterbirds

DP (↓) EOP (↓)

ERM 0.1826±0.0044 0.2731±0.0187

SelecMix 0.1146±0.0004 0.1885±0.0100

Ours SelecMix 0.0242±0.0053 0.0099±0.0064

N Experimental settings

N.1 A detailed description of benchmark datasets

(a) Colored MNIST. (b) Corrupted CIFAR10.

Figure 12: Example images of CMNIST and CIFAR10C. Images in the first and second rows are
bias-aligned and images in the third row are bias-conflicting.

(a) Biased FFHQ. (b) Waterbirds.

Figure 13: Example images of BFFHQ and Waterbirds. The red-bordered images are bias-aligned
and the blue-bordered images are bias-conflicting.

Colored MNIST. Colored MNIST (CMNIST) is a synthetically modified version of MNIST [6],
where the digit is the label and the color is the bias. For example, an image of digit 0 is correlated with
the color red. We use the following bias-conflicting ratios: r ∈ {0.5%, 1%, 2%, 5%}. The images are
in 28 x 28 resolution and are resized to 32 x 32. There are approximately 55,000 training, 5,000
validation, and 10,000 test samples. Examples are shown in Figure 12(a).

Corrupted CIFAR10. Corrupted CIFAR10 (CIFAR10C) is a synthetically modified version
of CIFAR10 [30] proposed by Hendrycks and Dietterich [17] with the following common
corruptions as the bias: {Snow, Frost, Fog, Brightness, Contrast, Spatter, Elastic
transform, JPEG, Pixelate and Saturate}. We use the following bias-conflicting ratios:
r ∈ {0.5%, 1%, 2%, 5%, 20%, 30%, 50%, 90%(unbiased)}. The images are in 32 x 32 resolution.
There are approximately 45,000 training, 5,000 validation, and 10,000 test samples. Examples are
shown in Figure 12(b).

Biased FFHQ. Biased FFHQ (BFFHQ) [31] is a curated Flickr-Faces-HQ (FFHQ) [22] dataset,
which consists of images of human faces. The designated task label is the age {young, old} while
the bias attribute is the gender {man, woman}. The bias-conflicting ratio is r ∈ {0.5%}. The images
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are in 128 x 128 resolution and are resized to 224 x 224. There are approximately 20,000 training,
1,000 validation, and 1,000 test samples. Examples are shown in Figure 13(a).

Waterbirds. Waterbirds is proposed by Sagawa et al. [44], which synthetically combines bird
images from the Caltech-UCSD Birds-200-2011 (CUB) with place background as bias. It consists
of bird images to classify bird types {waterbird, landbird}, but their backgrounds {water,
land} are correlated with bird types. The bias-conflicting ratio is r ∈ {5%}. The images are in
varying resolutions and are resized to 224 x 224. There are approximately 5,000 training, 1,000
validation, and 6,000 test samples. Examples are shown in Figure 13(b).

NICO. NICO is a dataset designed to evaluate non I.I.D. classification by simulating arbitrary
distribution shifts. To evaluate debiasing methods, a subset composed of animal classes label is
utilized, as in [54]. The class labels (e.g. "dog") are correlated to spurious contexts (e.g. "on grass",
"in water", "in cage", "eating", "on beach", "lying", "running") which exhibits a long-
tail distribution. The images are in varying resolutions and are resized to 224 x 224. There are
approximately 3,000 training, 1,000 validation, and 1,000 test samples.

N.2 Baselines

We validate our method by combining various debiasing approaches. ERM is the model trained
by cross-entropy loss. GroupDRO [44] minimizes the worst-group loss by exploiting group labels
directly. LfF [40] detects bias-conflicting samples and allocates large loss weights on them. DFA [31]
augments diverse features by swapping the features obtained from the biased model and concatenating
the feature from the debiased model with the exchanged feature. BPA [48] utilizes a clustering method
to identify pseudo-attributes using a clustering approach and adjusts loss weights according to the
cluster size and its loss. DCWP [41] debiases a network by pruning biased neurons. SelecMix [19]
identifies and mixes a bias-contradicting pair within the same class while detecting and mixing a
bias-aligned pair from different classes. Note that we adopt SelecMix+LfF rather than SelecMix since
SelecMix+LfF exhibits superior performance than SelecMix [19].

N.3 Evaluation protocol

We provide experimental setups for evaluation. We use JAX [3] and PyTorch [42] for the experiments.
We conduct our experiments with a machine equipped with Intel Xeon Gold 5215 (Cascade Lake)594
processors, 252GB RAM, Nvidia GeForce RTX2080ti (11GB VRAM) (or Nvidia GeForce RTX3090
(24GB VRAM)), and Samsung 860 PRO SSD. In constructing pivotal sets, we adopt ResNet18 [15]
as the base architecture for all datasets. For optimization, we employ the Adam optimizer [25] with a
learning rate of 0.001, and train the models for 5 epochs. To calculate self-influence, we only utilize
the last layer of the models. In fine-tuning, we deploy ResNet18 for CMNIST, CIFAR10C, BFFHQ,
and NICO while ResNet50 is used for Waterbirds as following other baselines [40, 31, 36]. We adopt
the Adam optimizer for CMNIST, CIFAR10C, BFFHQ, NICO while SGD is used for Waterbirds.
For the learning rate, we use 0.001 for CMNIST, CIFAR10C, Waterbirds, and 10−4 for BFFHQ. We
apply cosine annealing [37] to decay the learning rate to 10−3 of the initial value. We utilize weight
decay of 10−4 for all datasets. We fine-tune the pre-trained models for 100 iterations. We set λ = 0.1
for all experiments. For baselines [31, 19], we use the officially released codes. For our method, we
adopt k = 100, λ = 0.1 for all datasets.

N.4 Licenses for existing assets

Flickr-Faces-HQ (FFHQ) [22] is a high-quality image dataset of human faces, originally created
as a benchmark for generative adversarial networks (GAN). The individual images were published
in Flickr by their respective authors under either Creative Commons BY 2.0, Creative Commons
BY-NC 2.0, Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works license.
NICO [16] dataset does not own the copyright of images. Only researchers and educators who wish
to use the images for non-commercial researches and/or educational purposes, have access to NICO.
JAX [3] has Apache License.

25



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We reflect all our assertions and contributions on Abstach and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

26



Justification: We do not include theoretical results in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the experimental details in Section 5.1 and Appendix N.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use benchmark datasets that are open to the public and provide codes with
supplements.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the experimental details in Section 5.1 and Appendix N.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars and use standard errors. We also state them in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide machine information in Appendix N.3 and computational costs in
Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and agree with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We conduct experiments on recognition models and use benchmark datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the source of data and models in Section 5.1, 6 and Appendix N.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We would not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use benchmark datasets and compute accuracy or precision on them.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use benchmark datasets and compute accuracy or precision on them.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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