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Abstract

Inference-time computational methods signifi-
cantly enhance the reasoning abilities of Large
Language Models (LLMs). Among these, Best-of-
N has gained attention for its simplicity and scala-
bility. It generates N solutions from the LLM and
selects the best one based on the reward model’s
evaluation. Due to imperfect rewards, even with
a large N , the probability of selecting the cor-
rect answer does not necessarily converge to one.
To mitigate this limitation, we propose Majority-
of-the-Bests (MoB), a novel and hyperparameter-
free selection mechanism that estimates the output
distribution of Best-of-N via bootstrapping and
selects its mode. Experimental results across five
benchmarks, three different base LLMs, and two
reward models demonstrate consistent improve-
ments over Best-of-N in 25 out of 30 setups. We
further provide theoretical results for the consis-
tency of the bootstrapping.

1. Introduction
Scaling the inference-time computation of language models
(LMs) has led to a significant improvement of their perfor-
mance on a variety of tasks (Brown et al., 2024; Snell et al.,
2024; Wu et al., 2024; OpenAI, 2024; DeepSeek-AI, 2025).
A growing number of methods have been introduced in this
paradigm, such as generating long chains-of-though (Wei
et al., 2022; Muennighoff et al., 2025), asking the model to
evaluate and improve its own outputs (Madaan et al., 2023),
and tree search (Yao et al., 2023; Hao et al., 2023; Zhang
et al.). Another family of such algorithms, termed sample-
and-marginalize by Wang et al. (2022), generate multiple
outputs from the model and then aggregate them into a final
answer. Examples include Self-consistency (Wang et al.,
2022), Best-of-N (Lightman et al., 2023), and Weighted
Best-of-N (Li et al., 2022). These methods have gained
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popularity due to their simplicity and scalability.

Self-consistency (SC) (Wang et al., 2022), also referred to as
“majority voting”, is a widely used algorithm in sample-and-
marginalize. It samples multiple outputs from the model
and selects the final answer that appears most frequently
among them. SC improves the performance by leveraging a
key property of the model’s output distribution: on difficult
problems, the probability of generating the correct answer
is often far from 1, making single-sample predictions unre-
liable. SC capitalizes on the fact that, even if the model’s
output distribution is imperfect, it may still favor the correct
answer and generate it more frequently than incorrect ones.

Best-of-N (BoN) (Lightman et al., 2023) uses a reward
model to evaluate the generated outputs and chooses the
final answer in the highest-scoring output. With an ideal
reward model, BoN succeeds as long as one of the generated
outputs is correct. In this paper, we highlight that in the
realistic setting of an imperfect reward model, the success
of BoN is no longer (nearly) guaranteed. In such cases, BoN
exhibits stochastic behavior akin to the underlying genera-
tive model. While the reward model improves the likelihood
of selecting the correct answer, it often falls short of ensur-
ing certainty. This is the same property that underlies the
effectiveness of SC. Motivated by this observation, we show
that applying a similar principle—aggregating multiple sam-
ples to identify the most probable answer—leads to a better
performance over BoN.

We introduce Majority-of-the-Bests (MoB), a method that
leverages bootstrapping to improve upon BoN by approxi-
mating the most probable output of BoN. As illustrated in
Figure 1, after obtaining multiple (parallel) solution samples
for a given question and computing their rewards, we apply
bootstrapping: we create subsets of size m by sampling with
replacement from the generated outputs. For each subset,
we select the sample with the highest reward. This results
in a new set of high-reward samples, over which we per-
form majority voting to determine the final answer. Just
like BoN and SC, MoB can be applied independent of the
output generation procedure. It only modifies the selection
of the final answer with marginally extra computation on
the CPU. We provide a procedure to adaptively select m and
eliminating any critical hyperparameters from the algorithm.
We show the consistency of the algorithm theoretically, and
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Figure 1: Majority-of-the-Bests: first, N outputs are generated for the given question. Then, we create a large number of
subsets of size m < N by sampling with replacements from the generated outputs. From each subset, we choose the output
with the highest reward. The most frequent answer among these chosen outputs is reported as the final answer.

empirically show significant improvements over BoN on 25
out of 30 tested setups.

2. Background
In this section, we formulate BoN and bootstrapping and
provide some background for the algorithm and its theoreti-
cal grounds. Given a prompt x, in the standard procedure
with LLMs, we sample an output Y ∼ pref from a base
model pref. This output yields a corresponding final answer
Z = f(Y ) after applying a post-processing or evaluation
function f . For example, for a multiple choice problem, Z
is the chosen option and Y is the whole output containing
both Z and its justification. We denote the distribution of
the final answer in this procedure as πref, that is, Z ∼ πref.
The goal is to find the correct final answer z∗. We de-
fine the success probability for this given problem as the
probability of selecting the correct final answer. If the algo-
rithm’s final answer is Z, the success probability is defined
as P(Z = z∗). Given a dataset of questions, the average of
the success probabilities over all questions is referred to as
the accuracy. For the standard procedure, the success proba-
bility is equal to πref(z

∗) and the corresponding accuracy is
called the pass@1 accuracy. We assume access to a reward
model r that assigns a reward R = r(Y ) to the output Y ,
reflecting its accuracy, coherence, or alignment with human
preferences (Uesato et al., 2022; Lightman et al., 2023).

Reward models can be categorized into two distinct groups:
Outcome-supervised Reward Models (ORMs) and Process-
based Reward Models (PRMs). ORMs are trained to predict
a scalar reward by evaluating the quality or correctness
of the generated output. In contrast, PRMs are trained to
provide rewards for each intermediate step or component
within a generation process, thereby offering more granular
feedback on the reasoning or constructive path taken to reach
an outcome (Uesato et al., 2022; Lightman et al., 2023).

For a given budget N , sample-and-marginalize algorithms
generate N independent outputs Y1, . . . , YN ∼ pref and
select the final answer reached by one of these outputs. BoN
selects the final answer from the output with the highest
reward, that is,

ZBest
N = f

(
argmax

y∈{Y1,...,YN}
r(y)

)
.

Alternatively, self-consistency or majority voting selects the
final answer that occurs most frequently among Z1, . . . , ZN

where Zi = f(Yi) is the final answer for output Yi. If N is
large enough, this most frequent answer will be the mode of
the final answer distribution πref. Li et al. (2022) suggested
the Weighted Best-of-N (WBoN) selection method. For
each final answer, WBoN sums the rewards of all outputs
that lead to it. Then it selects the final answer with the
highest cumulated reward.

Bootstrapping. Bootstrapping is a powerful and widely
used non-parametric resampling technique for estimating
the distribution of a statistic by repeatedly drawing samples
with replacement from the original dataset (Efron, 1992;
Efron and Tibshirani, 1994). The core idea is to generate
multiple “bootstrap samples”, by sampling observations
uniformly and with replacement. For each bootstrap sample,
the statistic of interest is computed. The collection of these
computed statistics from the many bootstrap samples forms
an empirical approximation of the statistic’s true distribution.
We use this technique to approximate the distribution of
BoN’s output.

3. Motivation: Output Distribution of
Best-of-N

To motivate our algorithm, we highlight the behavior of
BoN’s final answer distribution. We denote this distribution

2
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Figure 2: (Left) BoN’s success probability as a function of N for question 647 from MMLU-Pro-Math. The success
probability remains bellow 80%. (Middle) Distribution of the reward for correct and incorrect outputs for the same question.
A separation between the two distributions is ideal. (Right) Histogram of Best-of-64 success probabilities over 500 questions.

by πN . It means,

ZBest
N ∼ πN .

Assume among the N sampled outputs, Nc outputs
{Y c

1 , . . . , Y
c
Nc

} ⊆ {Yi}Ni=1 yield the correct final answer:
f(Y c

i ) = z∗. Conversely, Nw = N − Nc outputs
{Y w

1 , . . . , Y w
Nw

} ⊆ {Yi}Ni=1 lead to an incorrect solution.
Then, BoN’s output is correct if the highest reward among
the correct outputs is larger than the highest reward among
the incorrect ones. Formally, we can express this condition
as:

max
(
r(Y c

1 ), . . . , r(Y
c
Nc

)
)
> max

(
r(Y w

1 ), . . . , r(Y w
Nw

)
)
.

(1)
There are two factors that influence the probability of this
event. First, note that each side of (1) is the maximum of
some random variables. As the number of random variables
increases, the probability distribution of their maximum
shifts towards higher values. Therefore, larger values of
Nc and smaller values of Nw, make condition (1) more
likely. The values of Nc and Nw depend on πref(z

∗), the
probability of the correct answer z∗ in the base model’s final
answer distribution πref. For large enough n, we will have

Nc ≈ N · πref(z
∗) , Nw ≈ N · (1− πref(z

∗)).

It means that if the base model has a higher chance of
solving the problem, BoN is also more likely to select the
correct answer.

The second factor is the distribution of r(Y c
i ) and r(Y w

i ) on
each side of (1). The reward of a correct output follows the
conditional distribution Pc ≜ P(r(Y )|f(Y ) = z∗) while
the reward of an incorrect output follows the conditional
distribution Pw ≜ P(r(Y )|f(Y ) ̸= z∗). We hope that the
reward model assigns higher rewards to correct outputs, and

r(Y c
i ) ∼ Pc on the left side of (1) generally be larger than

r(Y w
i ) ∼ Pw on the right side.

Therefore, the success probability of BoN heavily depends
on the separation between Pc and Pw. A perfect reward
model would always assign a higher value to a correct output
than to an incorrect one. In that case, as long as at least one
correct output is generated (which is highly likely for large
enough N ), condition (1) is satisfied. The resulting success
probability is close to 1, indicating a nearly deterministic
final answer. On the other hand, consider the case where
Pc and Pw are identical. In this case, the reward of an
output becomes independent of its correctness, and choosing
according to the reward model will be no better than a
random choice. Consequently, the success probability of
BoN will be the same as the base model, i.e. πN (z∗) =
πref(z

∗). We provide a complete theoretical analysis in
Appendix A.1. In practice, our reward models exhibit a
middle ground between these two extremes. They might not
be perfect for BoN to succeed with a single correct output,
but they can still be somewhat informative to increase the
success probability of BoN compared to the base model.

In Figure 2, we show an example of these dynamics for
Question 647 of the MMLU-Pro-Math benchmark (Wang
et al., 2024b) with base model Qwen2.5-3b-instruct
(Qwen Team, 2024) and reward model ArmoRM (Wang
et al., 2024a). We approximate the output distribution pref
with a large pool of 1400 samples. In Question 647 (Fig-
ure 2), the two distributions Pc and Pw are overlapping, and
even with large values of N , the success probability remains
below 80%. Nonetheless, BoN still outperforms the base
model, which is equivalent to Best-of-1 and has a success
probability of 30% in this case.

We expect the stochasticity of BoN’s output to depend on
the difficulty of the question relative to the base and re-
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ward models’ capabilities. For more difficult questions, the
base model generates fewer correct outputs, and the reward
model is less likely to distinguish the correct outputs from
the incorrect ones. Through the two factors discussed above,
BoN is not able to pick the correct answer with high cer-
tainty. The right plot in Figure 2 shows the histogram of
the success probability of Best-of-64 among 500 randomly
selected MMLU-Pro-Math problems. We see that for ap-
proximately 175 problems, BoN has a success probability
between 0.1 and 0.9. That means, BoN has a significant
chance of returning the correct answer but fails to do so
reliably. The idea behind our introduced method, MoB, is
that if we can find the most probable output of the BoN
distribution, we may reliably pick the correct answer even if
its probability is well below 1.

4. Majority-of-the-Bests
In Section 3, we showed that BoN’s final answer is stochas-
tic, and this stochasticity might remain true even with a very
large budget N . In this section, we introduce Majority-of-
the-Bests (MoB). MoB can select the correct answer with
high probability as long as the correct answer is the most
probable output of BoN, even if its probability is well below
1. We first showcase this idea in the hypothetical case where
BoN’s output distribution πN is given by an oracle. Later,
we show how to estimate this distribution using bootstrap-
ping.

4.1. MoB with Oracle Access to BoN’s Output
Distribution

Suppose the distribution of BoN’s final answer πN is known
through an oracle. Instead of sampling from this distribution,
which is equivalent to BoN and is a noisy decision, we
propose selecting the mode of this distribution. That is

zOracleMoB
N = argmax

z
πN (z). (1)

We refer to this algorithm as Oracle MoB as it relies on an
oracle. By selecting the mode, if the correct answer has
a higher probability than any of the other answers, it will
be selected without any randomness that would reduce the
success probability. Since πref = π1, we can say SC for
a large N is equivalent to Oracle MoB with N = 1. It
has been extensively shown that SC improves the LLM’s
original accuracy. As we will also empirically show, MoB
similarly increases the accuracy of BoN by selecting the
mode of its output distribution.

In Figure 3, we compare the accuracy of Oracle MoB with
BoN on MATH500 (Lightman et al., 2023; Hendrycks et al.,
2021) and math problems of MMLU-Pro (Wang et al.,
2024b). We use the same output pool, base model, and
reward model as Figure 2. We can see that depending on

the value of N , Oracle MoB provides 5 to 10 percent points
improvement in accuracy. Oracle MoB unrealistically re-
quires an oracle access to πN . Next, we will show how πN

can be estimated via bootstrapping and remove the oracle
dependence.

4.2. MoB with Estimated BoN’s Output Distribution

We now discuss how, without the oracle access to the BoN’s
output distribution πN , one can approximately find its most
probable output. The most obvious approach is to follow
the same procedure as SC. For some k ≥ 1, we can run k
independent BoN procedures. Then, out of the k resulting
answers, we select the final answer that appears the most
number of times. The answer of the BoN procedures let us
approximate πm, and selecting the most frequent answer
among them will approximate Oracle MoB (1) with budget
m. We refer to this algorithm as “BoN+SC” due to its
simple combination of BoN and SC. To keep the generation
budget fixed at N , we are forced to use a smaller budget m
for each of the BoN runs. For now, we treat the choice of
m as a hyperparameter, but will return to this choice later.
Assume m < N and k = ⌊N/m⌋. Formally,

ZBest,(i)
m = f

(
argmax

y∈{Yim,...,Y(i+1)m−1}
r(y)

)
(i = 1, . . . , k),

(2)

ZBoN + SC
m,n = argmax

z

∑
i

I
[
ZBest,(i)
m = z

]
. (3)

The main problem with BoN+SC is that it is too expensive.
We would like to have a large value for m to get the benefits
offered by BoN, and to have a fairly accurate estimation of
πm, we need a reasonably large value for k. Together, this
requires a large budget N ≈ mk.

The deficiency of BoN+SC comes from the fact that each
sample Yi only contributes to generating one BoN output.
To address this deficiency, we propose estimating πm not by
generating independent samples from it, but by bootstrap-
ping. To do that, we first note that the distribution πm of
ZBest
m is a function of the unknown distribution pref. Boot-

strapping suggests to estimate πm with the BoN’s output
distribution under a known approximation p̂ref ≈ pref. The
typical non-parametric approach is to set p̂ref to be the em-
pirical distribution of the generated samples {Y1, . . . , YN}.
Since p̂ref is known, we can cheaply sample from it. For
any arbitrarily large value B, we generate B approximately
sampled BoN outputs. We first create B datasets of size m
from p̂ref. That is

Di = {Ŷi,1, Ŷi,2, . . . , Ŷi,m} ∼ p̂ref, (i = 1, . . . , B).

This is equivalent to sampling m outputs from the origi-
nal pool {Y1, . . . , Yn} with replacement. Then, similar to

4
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Figure 3: Final answer accuracy comparison of BoN, MoB, and Oracle MoB on MMLU-Pro-Math using
Qwen2.5-3b-instruct (Left) and Llama3.1-8b-instruct (Right) as the base model, and ArmoRM as the reward
model. Results are averaged across all problems and multiple runs. Shaded area indicates the standard error.

BoN+SC, we can run BoN on each dataset, and then pick
the most common outcome. Formally,

ẐBest,(i)
m = f

(
argmax
y∈Di

r(y)

)
(i = 1, . . . , B),

(4)

ZMoB
m,N = argmax

z

B∑
i=1

I
[
ẐBest,(i)
m = z

]
. (5)

This procedure is our MoB algorithm for a given m. We
define π̂m,N to be the (random) distribution of Ẑ

Best,(1)
m

given {Yi} at hand. With sufficiently large B (usually
B = 10, 000 is sufficient), the empirical distribution of
{ẐBest,(i)

m } will accurately estimate π̂m,N . With this approx-
imation, we can write

ZMoB
m,N ≈ argmax

z
π̂m,N (z) (6)

Note that this is a light computation that can be carried
out on the CPU. Therefore, we can freely choose a large
B. In the supplementary material, we provide an even
more efficient way of estimating π̂m,N with O(N logN)
complexity.

In Figure 4, we compare MoB with BoN+SC in the same
setup as Figure 3. In the left plot, we fix m = 8 and
compare the algorithms’ error on estimating πm for a range
of values for N . We measure the distance between the
two distributions according to the ℓ1-norm. As we can see,
bootstrapping is consistently the superior approach for this
approximation task and offers a more accurate estimation of
πm. In the right plot, we set m = ⌊

√
N⌋ and compare the

final accuracy of the algorithms. The choice of m = ⌊
√
N⌋
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Figure 4: Comparison of MoB and BoN+SC us-
ing Qwen2.5-3b-instruct (reference model) with
ArmoRM as the reward model. Left: ℓ1 error of πm for m=8.
Right: average accuracy on MMLU-Pro-Math. Shaded ar-
eas show standard error.

ensures that k ≈
√
N and will also increase as N increases.

We observe that the superior accuracy of bootstrapping in
the estimation of πm translates to a better final accuracy
of the algorithm, especially when the budget N is more
limited.

One might wonder if it is possible to choose m to be much
larger than what was possible in BoN+SC, potentially even
m = N . There is no obvious limitation on the size of
resampled datasets Di, and nonetheless, most commonly
in bootstrapping, the size of resampled datasets is equal to
the original dataset. However, estimating the distribution of
values related to the extremes of random samples is a classic
example of failure for the conventional bootstrapping, see
for example Athreya and Fukuchi (1994) and Efron and
Tibshirani (1994, Section 7.4). Since BoN selects the output
with the highest reward, it is affected by the same failure. To
see this, note that the output with the highest reward appears
in each dataset with the probability of 1− (N−1

N )m, and it
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will be chosen in any dataset in which it appears. Therefore,
if m = N ,

P
(
ẐBest,(i)
m = ZBest

N

)
≥ 1−

(N − 1

N

)N ≈ 1−e−1 ≈ 0.632.

This means that π̂N,N will always assign a probability of
at least 0.632 to the conventional BoN’s answer. As we
discussed in Section 3, πN might be quite stochastic, which
means such approximation cannot be accurate. Even more
critically for our use of this approximation, the mode of
π̂N,N will always coincide with BoN’s answer, and MoB
becomes equivalent to BoN.

Fortunately, using smaller resampled datasets, as we do
in MoB, is one of the remedies for such failures of boot-
strapping and is well-studied in the literature, (Athreya and
Fukuchi, 1994; Bickel et al., 2011) and is referred to as m-
out-of-n bootstrapping. We show that under the usual con-
ditions of m-out-of-n bootstrapping and mild assumptions
on the tail of reward distributions, our use of bootstrapping
to estimate πm is a valid one. Similar to the typical guaran-
tees for bootstrap estimations, we show that our bootstrap
estimation is indeed consistent.
Theorem 4.1. Under mild assumptions on the tail of dis-
tribution of rewards, if there are finite possible values for
Z and as N → ∞, we have m → ∞ and m/N → 0, then
for any ϵ > 0, the estimated π̂m,N will converge to the true
distribution πm. That is,

lim
n→∞

P
(
∥π̂m,N − πm∥1 ≥ ϵ

)
= 0.

We defer the exact technical statement and proof to the sup-

plementary material. Theorem 4.1 shows that the estimated
distribution π̂m,N will match the true BoN output distribu-
tion πm. It means that MoB with bootstrapped distribution
in (6) will reach the same accuracy as its oracle version in
(1), but with a larger required budget due to m < N . To
achieve this, it suffices to pick m such that the condition of
Theorem 4.1 holds, which is possible by simply using a fix
schedule of the form m(n) = nα for some 0 < α < 1. In
the next section, we will discuss the choice of m in more
detail and provide a procedure to choose m automatically.

4.3. Adaptive Subsample Size m

The choice of m imposes a trade-off. A larger value of m
means that we are running BoN with a larger number of
samples. Since we expect the success probability of BoN
to increase with more samples, this means that the mode
of πm will be more likely to be correct. On the other hand,
as m becomes larger and closer to n, our estimate π̂m,N of
πm becomes more inaccurate. As we saw in Section 4.2,
bootstrapping might fail to provide a consistent estimate if
m = N .

Ideally, we would like to find an m such that our final
answer ZMoB

m,N based on the estimated distribution as in (6)
becomes closest to the Oracle MoB (1) of Section 4.1. The
natural approach for this goal is to find the value of m that
minimizes the distance between π̂m,N and πN , that is

M∗
N = argmin

m
∥π̂m,N − πN∥1. (7)

This minimization problem automatically captures both as-
pects of the trade-off. Large values of m make πm, which
is approximated by π̂m,N closer to πN , but at the same time
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Figure 6: Accuracy comparison on different datasets using base model Qwen2.5-3b-instruct and GRM reward model.
Standard deviation is shown as the shaded area. (Left): GSM8k. (Right): MMLU-Pro-Chem.

if m is too large, the error of this approximation becomes
too large and increase the objective ∥π̂m,N − πN∥1.

Unfortunately, the distribution πN in the objective of (7)
is unknown, and therefore cannot be used in practice. The
theoretical results by Götze and Račkauskas (2001) show
that if Z only takes two possible values and under some
other technical conditions, the distance ∥π̂m,N − π̂m/2,N∥1
is proportional to the one in (7)1:

∥π̂m,N − π̂m/2,N∥1 ∝ ∥π̂m,N − πN∥1.

Inspired by this result, Bickel and Sakov (2008) provides
some optimality results for choosing m by minimizing the
more general loss ∥π̂m,N − π̂qm,N∥1 for some 0 < q < 1
instead of just q = 0.5 considered by Götze and Račkauskas
(2001).

Based on the findings of Bickel and Sakov (2008), we pro-
pose using the following approach to pick m. We first
consider the candidates of the form ⌊qjN⌋ and pick the
value among them that minimizes ∥π̂m,N − π̂qm,N∥1.

mj = ⌊qjn⌋ (j = 0, 1, 2, . . .),

M̂∗
N = argmin

m=mj

∥π̂mj ,N − π̂mj−1,N∥1.

Note that this involves calculating the approximating π̂m,N

for all values of mj . These will be just O(log n) distribu-
tions and computationally cheap. Finally, MoB’s output

1This is a rough interpretation of the results by Götze and
Račkauskas (2001), where the ratio of the two losses is studied.
We refer the reader to the original paper for more details.

is

ZMoB
N = ZMoB

M̂∗
N ,N

. (8)

The choice of q has been observed not to be critical in
most applications. Bickel and Sakov (2008) observes no
significant difference among q = 0.75, 0.65, 0.6, 0.5. In our
experiments, we fix q = 0.75. In Figure 5, we evaluate the
efficiency of this procedure to select m. For each N , we find
the optimal m by evaluating the accuracy of the resulting
MoB output for a set of candidate values. Specifically, we
choose from {Nα} for α ∈ [0.1, 0.9]. We call the accuracy
of this optimal m, MOB (optimal m). We plot the accuracy
of our adaptive m approach against this for two different
settings. These figures show that adaptive m performance
closely follows the optimal m variant.

5. Experiments
We conducted a series of experiments to compare the perfor-
mance of our proposed method against several well-known
test-time sample-and-marginalize approaches across a range
of datasets, generative models, and reward models. The
datasets include MATH500 (Lightman et al., 2023), GSM8K
(Cobbe et al., 2021b), MMLU-Pro-Math and Chem (Wang
et al., 2024b), and CommonSenseQA (Talmor et al., 2018).
We have experimented with three different generative mod-
els from different families and different sizes: Qwen2.5-
3B-Instruct (Qwen Team, 2024), Llama-3.1-8B-Instruct
(Grattafiori et al., 2024), and Gemma-2-9B (Team et al.,
2024). For reward models, we used two widely adopted

7
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Table 1: Qwen2.5-3B and GRM3B as base and reward models, N = 128

MATH500 MMLU-PRO-MATH MMLU-PRO-CHEM GSM8K COMMONSENSEQA

BON 64.15±1.07 66.00±1.06 49.15±1.12 80.80±0.88 77.70±0.93
SC 66.30±1.06 65.70±1.06 52.65±1.12 80.25±0.89 76.15±0.95
WBON 67.30±1.05 64.55±1.07 53.70±1.12 80.95±0.88 54.75±1.11
MOB (OURS) 69.80±1.03 69.65±1.03 56.55±1.11 82.95±0.84 77.40±0.94

Table 2: Results on MATH500 across all base and reward models (N=128)

ARMORM GRM

GEMMA-2-9B LLAMA3.1-8B QWEN2.5-3B GEMMA-2-9B LLAMA3.1-8B QWEN2.5-3B

BON 52.20±1.12 51.65±1.12 60.50±1.09 53.85±1.11 56.55±1.11 64.15±1.07

SC 52.65±1.12 61.15±1.09 66.30±1.06 52.65±1.12 61.15±1.09 66.30±1.06

WBON 53.60±1.12 63.10±1.08 67.05±1.05 56.00±1.11 63.65±1.08 67.30±1.05

MOB (OURS) 56.65±1.11 62.50±1.08 68.25±1.04 57.80±1.10 64.15±1.07 69.80±1.03

↑MOB OVER BON 4.45±1.57 10.85±1.56 7.75±1.51 3.95±1.57 7.60±1.54 5.65±1.48

ORMs: ArmoRM (Wang et al., 2024a) and GRM (Yang
et al., 2024), with 8B and 3B parameters, respectively. These
choices result in thirty diverse experimental setups that rig-
orously evaluate our method’s performance.

Figure 6 presents the accuracy of different methods on
GSM8K and MMLU-Pro-Chem across varying values of
N . Our method consistently outperforms the baselines,
showing clear improvements even at smaller N values. Ta-
ble 1 presents the accuracy of our method alongside SC,
BoN, and WBoN for N = 128 across all benchmarks, us-
ing Qwen2.5-3b-instruct and GRM as the base and
reward models, respectively. Our method achieves state-of-
the-art performance on all five benchmarks. In Table 2, we
report the accuracy on MATH500 for all base and reward
model combinations. This table also includes a row showing
the performance improvement of our method over BoN. As
shown in Table 2, MoB consistently outperforms BoN in
every setting. These results show the potential of MoB as a
drop-in replacement of BoN in all these widely used experi-
mental setups with negligible additional CPU computation
and no extra hyperparameters. Complete results for all thirty
experiment configurations are provided in the Appendix.

6. Conclusion and Future Work
In this paper, we examined how imperfect reward models
can lead to distributional overlap between correct and incor-
rect answers in Best-of-N (BoN), often resulting in incorrect
selections. To address this, we introduced Majority-of-the-
Bests (MoB), a bootstrapped method designed to improve
estimation of the BoN distribution. MoB achieves superior
performance compared to other selection algorithms, BoN,
self-consistency (SC), and WeightedBoN (WBon) outper-

forming them in 25 out of 30 experimental setups. Our
method is scalable, requires no hyperparameter tuning, and
adds only negligible CPU computational overhead. We pro-
pose that MoB can serve as a drop-in replacement for BoN
in any task that involves selecting a final answer based on
noisy reward signals. Looking forward, we believe MoB’s
selection signal could enable early stopping in parallel LLM
generation, or be applied more broadly in any framework
that relies on sampling from an LLM. However, MoB is
limited to settings where the task requires producing a fi-
nal answer, and like all sampling-based methods, it incurs
higher inference costs compared to zero-shot approaches.
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List of Appendices
We provide a brief description of the material in the appendix of the paper.

• Appendix A provides theoretical results on the asymptotic behavior of BoN’s output distribution and the proof for
Theorem 4.1.

• Appendix B provides a closed-form calculation of bootstrapped BoN’s output distribution for more efficient calculations.

• Appendix C investigates the effect of reward noise and base model on different algorithms in a synthetic setup.

• Appendix D provides extra details for the experiments and implementations.

• Appendix E provides additional experimental results.

A. Theoretical Results
In this section, we provide the formal theoretical results and the proof of Theorem 4.1. To do so, we first need to show
the convergence of BoN’s output distribution, which is done in Section A.1 and Theorem A.1. We prove Theorem 4.1 in
Section A.2.

A.1. Asymptotic Behavior of BoN’s Output Distribution

Theorem A.1. For final answer z such that πref(z) ∈ (0, 1), let F0 and F1 represent continuous cumulative distribution
functions (CDFs) of the conditional distributions P(r(Y )|f(Y ) = z) and P(r(Y )|f(Y ) ̸= z), respectively. Define x0 and
x1 to be right endpoint of them,

x0 ≜ sup{x ∈ R : F0(x) < 1}, x1 ≜ sup{x ∈ R : F1(x) < 1}.

As N → ∞, if

(i) x0 < x1, we have πN (z) → 0.

(ii) x0 > x1, we have πN (z) → 1.

(iii) x0 = x1 = x∗, assume for c ∈ [0,∞], we have

lim
x↑x∗

1− F0(x)

1− F1(x)
= c, (1)

then,

πN (z) →
c · πref(z)

1 + (c− 1) · πref(z)
.

Proof. We first define some random variables to better express πN (z). Assume we use F0 and F1 to generate i.i.d. samples
R0

1, R
0
2, . . .

i.i.d.∼ F0 and R1
1, R

1
2, . . .

i.i.d.∼ F1. For n ≥ 1, let S0
n and S1

n be the maximum of the first n samples from F0 and
F1, that is,

S0
n ≜ max

i=1,...,n
R0

i , S1
n ≜ max

i=1,...,n
R1

i .

Also, for outputs Y1, . . . , YN let Zi = f(Yi), N0 be the number of outputs that reach the final answer z, and N1 = N −N0

be the number of outputs that do not reach the final answer z.

We can express πN (z) as

πN (z) =
∑
z1:N

P
(
ZBest
N = z|Z1:N = z1:N

)
· P(Z1:N = z1:N )

=
∑
z1:N

P
(
max
zi=z

r(Yi) > max
zi ̸=z

r(Yi)|Z1:N = z1:N

)
· P(Z1:N = z1:N ). (2)
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Now, note that due Y1, . . . , YN being i.i.d., we have

P(r(Y1), . . . , r(YN )|Z1:N = z1:N ) =
∏
i

P(r(Yi)|Zi = zi).

By definition of R0
i and R1

i , we can therefore write (2) as

πN (z) =
∑
z1:N

P
(
S0
N0 > S1

N1 |Z1:N = z1:N
)
· P(Z1:N = z1:N ) = P

(
S0
N0 > S1

N1

)
.

For simplicity, we define S1 ≜ S1
N1 and S0 ≜ S0

N0 . Now, we can express πN (z) as

πN (z) = P
(
S0 > S1

)
.

Note that S0 d→ x0 and S1 d→ x1, which leads to the statement for cases (i) and (ii) straightforward. We focus on case
(iii). Let F̄0(x) ≜ 1− F0(x) and F̄1(x) ≜ 1− F1(x) be the complementary CDFs of F0 and F1, respectively. To quantify
P
(
S0 > S1

)
, we note that F̄1 is strictly decreasing in a neighborhood of S1. Thus,

lim
N→∞

πN (z) = lim
N→∞

P
(
S0 > S1

)
= lim

N→∞
P
(
NF̄1(S

0) < NF̄1(S
1)
)
. (3)

Therefore, we turn to study the joint distribution of (NF̄1(S
0), NF̄1(S

1)) as N → ∞. This will be achieved by quantifying
the distribution of (n0F̄1(S

0
n0
), n1F̄1(S

1
n1
)) as n0, n1 → ∞ and relating it to the distribution of (NF̄1(S

0), NF̄1(S
1)).

Since F1 is continuous, F1(R
1
i ) ∼ U [0, 1] is uniformly distributed for any i. Define Ui = F̄1(R

1
i ) ∼ U [0, 1]. It is well

known that

n1 min
i=1,...,n1

Ui
d→ Exp(1) (n1 → ∞),

which due to mini F̄1(R
1
i ) = F̄1(S

1
n1
), translates to

n1F̄1(S
1
n1
)

d→ Exp(1) (n1 → ∞). (4)

Similarly, we can show that n0F̄0(S
0
n0
)

d→ Exp(1) as n0 → ∞. However, our goal is to analyze the distribution of

n0F̄1(S
0
n0
). To do so, we use the tail-equivalence condition (1). We note that S0

n0

d→ x∗, therefore, F̄0(S
0
n0
)/F̄1(S

0
n0
)

d→ c
as n0 → ∞. Together, we get

n0F̄1(S
0
n0
) =

n0F̄0(S
0
n0
)

F̄0(S0
n0
)/F̄1(S0

n0
)

d→ Exp(1)

c
(n0 → ∞). (5)

Due to the independence of S1
n1

and S0
n0

, we can combine (4) and (5) to get(
n0F̄1(S

0
n0
), n1F̄1(S

1
n1
)
) d→ (E/c, F ) (n0, n1 → ∞),

where E,F
i.i.d.∼ Exp(1). As N → ∞, we have N0, N1 p→ ∞, therefore,(

N0F̄1(S
0
N0), N1F̄1(S

1
N1)

) d→ (E/c, F ) (N → ∞).

Finally, we use the fact that N0/N
d→ πref(z) and N1/N

d→ 1− πref(z) to get(
NF̄1(S

0), NF̄1(S
1)
)
=

(
N0F̄1(S

0
N0)

N0/N
,
N1F̄1(S

1
N1)

N1/N

)
d→
(

E

c · πref(z)
,

F

1− πref(z)

)
. (6)

Combined with (3), we conclude that

lim
N→∞

πN (z) = P
(

E

c · πref(z)
<

F

1− πref(z)

)
=

cπref(z)

1− πref(z) + cπref(z)
.

12
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A.2. Proof of Theorem 4.1

We restate Theorem 4.1 with the assumptions not included in the main text.

Theorem A.2. Assume that there are finite possible values for Z and for every possible final answer z, the conditions of
Theorem A.1 hold. If as N → ∞, we have m → ∞ and m/N → 0, then for any ϵ > 0, the estimated π̂m,N will converge
to the true distribution πm. That is,

lim
n→∞

P
(
∥π̂m,N − πm∥1 ≥ ϵ

)
= 0.

Proof. Since there are finite possible values for Z, it suffices to show the convergence in estimated probability of each
possible final answer z. We show that for any z, and ϵ > 0, we have

lim
N→∞

P(|π̂m,N (z)− πm(z)| ≥ ϵ) = 0. (7)

We use the result by Bickel et al. (2011, Equation 3.14) to show this claim. To do so, we first frame our problem in their
notation. For 1 ≤ i ≤ N , let Zi ≜ f(Yi) be (the one-hot encoding of) the final answer reached by Yi, and Ri ≜ r(Yi) be
the numerical reward of Yi. We define

Xi ≜ (Zi, Ri).

We define the bootstrap statistic of X1, . . . , Xm as

Tm = I
[
ZBest
m = z

]
+

D

4
∼ Lm,

where I[·] is the indicator function, D ∼ Bernoulli(0.5) is an independent Bernoulli random variable, and Lm is defined to
be the distribution of Tm. Basically, Tm is the indicator of z being selected by BoN, plus a small random noise to ensure
the non-degeneracy condition as m → ∞. We define the function h(t) = I[t > 0.5], so that the parameter of interest θm
becomes

θm ≜ Eh(Tm) = πm(z),

as intended. Lastly, one can verify that since Tm is invariant of repetitions and permutations of its inputs X1, . . . , Xm, in
our case, we have for any 0 < x < 1,

δm(x) ≜
∣∣π⌊mx⌋(z)− πm(z)

∣∣.
We now show the conditions of Bickel et al. (2011, Theorem 2). First, we need to show that Lm, the distribution of Tm, is
convergent. According to Theorem A.1, we have

lim
m→∞

πm(z) ≜ π∞(z)

for some π∞(z) ∈ [0, 1]. Therefore, as m → ∞, we have

Lm
d→ Bernoulli(π∞(z)) +

Bernoulli(0.5)

4
.

For condition Bickel et al. (2011, Equation 3.11) we need to show that for any M < ∞, we have

δm(1− xm−1/2) → 0

uniformly for all 0 < x < M . By definition, it suffices to show that for any 0 < x < M , we have∣∣π⌊m−x
√
m⌋(z)− πm(z)

∣∣ → 0.

This follows from the fact that πm(z) is convergent to π∞(z). For any ε > 0, pick M0 such that for any m0 ≥ M0, we have

|πm0(z)− π∞(z)| < ε

2
,

13
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and M1 such that for any M1 −M
√
M1 ≥ M0. Then for any m ≥ M1, we have∣∣π⌊m−x

√
m⌋(z)− π∞(z)

∣∣ < ε/2 and |πm(z)− π∞(z)| < ε/2.

Together, we have ∣∣π⌊m−x
√
m⌋(z)− πm(z)

∣∣ < ε

and achieve the uniform convergence condition.

Finally, note that our statistic Tm is not dependent on the sampling distribution pref and Bickel et al. (2011, Equation 3.13) is
satisfied.

B. Closed-Form Calculation of Bootstrapped BoN’s Output Distribution
In Section 4.2, we proposed approximating π̂m,N by running BoN on a large number B of subsets of size m sampled with
replacement from the N generated outputs. In practice, B = 10, 000 is sufficient. This calculation is negligible compared to
the generation of outputs from the LLM and can be carried out on a CPU. Nonetheless, we here show that it can also be
done in O(N logN).

Define Ri = r(Yi) for 1 ≤ i ≤ N , and let i1, i2, . . . , iN be such that

Ri1 < Ri2 < . . . < RiN .

For simplicity, we assume no ties occur among the rewards. The key insight is that for any 1 ≤ k ≤ N , the probability of
Yik being selected in a randomly sampled subset of m outputs can be calculated in closed-form. We note that Yik is selected
if the subset only includes outputs among Yi1 , . . . , Yik , but is not limited to Yi1 , . . . , Yik−1

(and therefore contains Yik ). We
get

P(Yik is the output of BoN on a resampled subset) =
(

k

N

)m

−
(
k − 1

N

)m

Thus, for any final answer z, the probability of it being selected in a subset is

π̂m,N (z) =
∑

k:Zik
=z

(
k

N

)m

−
(
k − 1

N

)m

.

This procedure only requires sorting the outputs according to their rewards and therefore has complexity of O(N logN).

C. Effect of Reward Noise and Base Model’s Success Probability
In this section, we investigate the effect of the base model and reward noise on the success probability of SC, BoN, and
MoB. We consider a synthetic setup for a TRUE/FALSE question, where the correct answer is TRUE. Let p be the success
probability of the base model, which is the probability that the base model generates a solution reaching the correct final
answer.

Assume roracle is an oracle reward model that always assigns the reward of 1 to solutions that reach the correct answer, and 0
otherwise:

roracle(Y ) =

{
1, if f(Y ) = TRUE,
0, if f(Y ) = FALSE.

To investigate the effect of an imperfect reward model, we consider a noisy reward model rnoisy that is equal to the oracle
reward plus an exponentially distributed noise:

rnoisy(Y ) = roracle(Y ) + Exp(1/β).

14
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Figure 7: Success probability of SC, BoN, and MoB with infinite budget for different values of the base model’s success
probability and reward noise.

The parameter β controls the noise level, where a larger β indicates a noisier reward model. To see this, note that the
expected value and the standard deviation of the noise are equal to β. If β is large, the noise will dominate the signal from
the oracle reward, and the noisy reward model will be less informative.

We visualize the success probability of SC, BoN, and MoB with infinite budget N = ∞ in Figure 7. SC’s success probability,
as shown in the left plot of Figure 7, is independent of the reward noise. It is either equal to 1 when p > 0.5 (the correct
answer is the most probable answer), or equal to 0 otherwise. For BoN, consider two extreme cases for the reward noise.
When the reward model is perfect (β small), BoN’s success probability is 1 regardless of the base model’s success probability.
This is shown in the bottom edge of the middle plot in Figure 7. In this case, BoN is preferable over SC. On the other
hand, when the reward model is completely uninformative (β large), BoN’s success probability is equal to the base model’s
success probability. This is shown in the top edge of the middle plot in Figure 7. As shown by Wang et al. (2022), SC has
a higher accuracy over the base model and, in this case, BoN. MoB’s success probability is equal to 1 if BoN’s success
probability is at least 0.5, as shown in the right plot of Figure 7. We see that MoB shows a similar behavior to SC when the
reward model is uninformative, and when the reward model is perfect, MoB behaves like BoN.

In this setup, we can study the success probability of BoN and MoB with an infinite budget N = ∞ theoretically. BoN’s
success probability depends on the reward’s noise level. It can be calculated from Theorem A.1 as

BoN success probability with infinite budget =
e1/βp

1− p+ e1/βp
.

Note that if the reward model is perfect (β = 0), both the numerator and denominator go to infinity, and we reach the success
probability of 1. With B = ∞, the noise becomes dominant, and BoN’s success probability remains equal to the base model
p even with infinite budget. Due to Theorem 4.1, MoB solves the problem if the correct answer is BoN’s most probable
outcome. Therefore,

MoB success probability with infinite budget =

{
1, if e1/βp

1−p+e1/βp
> 0.5,

0, otherwise.

This is favorable over BoN in scenarios where BoN still prefers the correct answer, as it can find the correct answer reliably
without randomness.

D. Implementation and Experiment Details
In this section, we provide more details on how the experiments in the paper are conducted.
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D.1. Evaluation Experiments

Benchmarks. We run our experiments on five popular benchmarks. MATH500, first introduced by Lightman et al. (2023),
is a randomly sampled subset of 500 math questions with short final answers from the MATH dataset (Hendrycks et al.,
2021). We use the math and chemistry questions from the MMLU-Pro benchmark (Wang et al., 2024b), which includes
multiple-choice questions on a variety of topics. We also run our experiments on GSM8K (Cobbe et al., 2021a) that contains
grade school math questions in short final answer format. Lastly, we use the CommonsenseQA benchmark (Talmor et al.,
2019) that tests the model’s commonsense reasoning through multiple-choice questions. For all benchmarks, we randomly
select 500 questions for our experiments.

Implementation Details. In the implementation of MoB, we always use the closed-form calculation of π̂m,N discussed in
Appendix B to efficiently perform the bootstrap estimate. Therefore, in the actual implementation, there is no parameter B
and we effectively operate as if B = ∞ was chosen. We use Huggingface’s Python library for all the output generations. We
always use temperature 1 for inference and no extra modification of the next-token sampling procedure. The final answer
extraction, evaluation, and standard errors are calculated using the Language Model Evaluation Harness (Gao et al., 2024).
For each question, we generate 512 outputs, and for each budget size N , we run each algorithm ⌊512/N⌋ times to provide
better standard errors for the accuracies. For GSM8K, we use a 5-shot prompt. For MATH and MMLU-Pro questions, we
use the zero-shot chain-of-thought prompting used in the official Llama3.1 models evaluation (Grattafiori et al., 2024) on
MATH (Hendrycks et al., 2021). This prompt and the prompt used for CommonsenseQA are given in the following.

Prompt for MATH and MMLU-Pro

Solve the following <topic> problem efficiently and clearly:
- For simple problems (2 steps or fewer): Provide a concise solution with
minimal explanation.
- For complex problems (3 steps or more): Use this step-by-step format:
## Step 1: [Concise description] [Brief explanation and calculations]
## Step 2: [Concise description] [Brief explanation and calculations]
...
Regardless of the approach, always conclude with:
Therefore, the final answer is: $\\boxed{answer}$. I hope it is correct.
Where [answer] is just the final number or expression that solves the
problem.
Problem: <problem from dataset>

Prompt for CommonsenseQA

Use commonsense to solve the following multiple choice question. First
explain your solution and then give the final answer. Always finish your
answer with "the answer is (X)" where X is the correct letter choice.
Question:: <problem from dataset>

D.2. Experiments for Motivation, Oracle MoB, and Selection of Bootstrap Subset Size

In Figure 2, we discussed the success probability of BoN, which requires an estimate of BoN’s output distribution. We
use the same technique as in MoB to estimate this output distribution. To minimize the error of this approximation, we
specifically generate 1,400 outputs for the math problems in MMLU-Pro with Qwen2.5-3b-instruct . Then, we use
π̂N,1400, as defined in Section 4.2 as an estimate for πN . Same technique is used in Figure 3 where the mode of π̂N,1400 is
chosen as the output of oracle MoB, and Figure 4 to where the distribution estimation error is calculated with respect to
π̂m,1400 instead of the true πm.

In Figure 5, we consider seven fixed schedules for m, specifically m = ⌊Nα⌋ for α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. At any
budget N , we compared the accuracy of MoB with adaptive m against the highest accuracy among the seven instantiations
of fixed schedule MoB.
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E. Additional Experimental Results
In this section, we provide additional experimental results for all 30 setups.

E.1. Adaptive Subset Size Selection

In Section 4, we compared MoB with adaptive choice of m with the optimal choice of m. We provide this compari-
son in MATH500 (Figure 8), MMLU-Pro-Math (Figure 9), MMLU-Pro-Cham (Figure 10), GSM8K (Figure 11), and
CommonsenseQA (Figure 12).
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Figure 8: Comparison of MoB with adaptive m against MoB with optimal m on the MATH500 dataset with ArmoRM (Up)
and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models.
Shaded areas show standard error.

E.2. Evaluation Experiments

We compare MoB with baselines in MATH500 (Figure 13, Table 3), MMLU-Pro-Math (Figure 14, Table 4), MMLU-Pro-
Cham (Figure 15, Table 5), GSM8K (Figure 16, Table 6), and CommonsenseQA (Figure 17, Table 7).

Table 3: Results on MATH500 across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 52.20±1.12 51.65±1.12 60.50±1.09 53.85±1.11 56.55±1.11 64.15±1.07

SC 52.65±1.12 61.15±1.09 66.30±1.06 52.65±1.12 61.15±1.09 66.30±1.06

WBoN 53.60±1.12 63.10±1.08 67.05±1.05 56.00±1.11 63.65±1.08 67.30±1.05

MoB (Ours) 56.65±1.11 62.50±1.08 68.25±1.04 57.80±1.10 64.15±1.07 69.80±1.03

↑MoB over BoN 4.45±1.57 10.85±1.56 7.75±1.51 3.95±1.57 7.60±1.54 5.65±1.48
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Figure 9: Comparison of MoB with adaptive m against MoB with optimal m on the MMLU-Pro-Math dataset with ArmoRM
(Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base
models. Shaded areas show standard error.
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Figure 10: Comparison of MoB with adaptive m against MoB with optimal m on the MMLU-Pro-Chem dataset with
ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right)
base models. Shaded areas show standard error.
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Figure 11: Comparison of MoB with adaptive m against MoB with optimal m on the GSM8K dataset with ArmoRM (Up)
and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models.
Shaded areas show standard error.
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Figure 12: Comparison of MoB with adaptive m against MoB with optimal m on the CommonsenseQA dataset with
ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B (Middle), and Gemma2-9B (Right) base models. Shaded
areas show standard error.
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Table 4: Results on MMLU-Pro-Math across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 60.45±1.09 61.40±1.09 65.95±1.06 56.15±1.11 64.10±1.07 66.10±1.06

SC 49.95±1.12 62.95±1.08 65.60±1.06 49.95±1.12 62.95±1.08 65.60±1.06

WBoN 52.25±1.12 66.45±1.06 66.70±1.05 56.45±1.11 60.05±1.10 64.35±1.07

MoB (Ours) 61.55±1.09 66.70±1.05 69.80±1.03 59.35±1.10 69.05±1.03 69.30±1.03

↑MoB over BoN 1.10±1.54 5.30±1.52 3.85±1.48 3.20±1.56 4.95±1.49 3.20±1.48

Table 5: Results on MMLU-Pro-Chem across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 56.60±1.11 49.70±1.12 48.05±1.12 49.25±1.12 53.05±1.12 49.00±1.12

SC 43.45±1.11 50.35±1.12 52.50±1.12 43.45±1.11 50.35±1.12 52.50±1.12

WBoN 45.45±1.11 57.65±1.11 53.30±1.12 57.25±1.11 49.75±1.12 53.10±1.12

MoB (Ours) 58.05±1.10 57.40±1.11 54.75±1.11 54.60±1.11 60.75±1.09 56.45±1.11

↑MoB over BoN 1.45±1.56 7.70±1.57 6.70±1.58 5.35±1.58 7.70±1.56 7.45±1.57

Table 6: Results on GSM8K across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 84.20±0.82 89.00±0.70 83.85±0.82 81.20±0.87 87.15±0.75 80.95±0.88

SC 80.55±0.89 88.10±0.72 80.40±0.89 80.55±0.89 88.10±0.72 80.40±0.89

WBoN 80.75±0.88 88.70±0.71 81.10±0.88 79.45±0.90 77.75±0.93 81.25±0.87

MoB (Ours) 83.30±0.83 91.75±0.62 83.85±0.82 81.15±0.87 90.50±0.66 82.85±0.84

↑MoB over BoN -0.90±1.17 2.75±0.93 0.00±1.16 -0.05±1.24 3.35±1.00 1.90±1.22

Table 7: Results on CommonsenseQA across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 81.20±0.87 77.80±0.93 80.15±0.89 80.55±0.89 78.05±0.93 77.70±0.93

SC 79.25±0.91 75.75±0.96 76.20±0.95 79.25±0.91 75.75±0.96 76.20±0.95

WBoN 80.05±0.89 76.75±0.94 76.60±0.95 49.80±1.12 36.35±1.08 54.90±1.11

MoB (Ours) 81.20±0.87 77.40±0.94 79.40±0.90 81.45±0.87 78.45±0.92 77.40±0.94

↑MoB over BoN 0.00±1.24 -0.40±1.32 -0.75±1.27 0.90±1.24 0.40±1.30 -0.30±1.32
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Figure 13: Comparison of MoB with the baselines on the MATH500 dataset with ArmoRM (Up) and GRM (Down) reward
models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard
error.
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Figure 14: Comparison of MoB with the baselines on the MMLU-Pro-Math dataset with ArmoRM (Up) and GRM (Down)
reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show
standard error.
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Figure 15: Comparison of MoB with the baselines on the MMLU-Pro-Chem dataset with ArmoRM (Up) and GRM (Down)
reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show
standard error.
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Figure 16: Comparison of MoB with the baselines on the GSM8K dataset with ArmoRM (Up) and GRM (Down) reward
models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard
error.
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Figure 17: Comparison of MoB with the baselines on the CommonsenseQA dataset with ArmoRM (Up) and GRM (Down)
reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show
standard error.

23


