
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Majority of the Bests: Improving Best-of-N via Bootstrapping

Anonymous Authors1

Abstract

Inference-time computational methods signifi-
cantly enhance the reasoning abilities of Large
Language Models (LLMs). Among these, Best-of-
N has gained attention for its simplicity and scala-
bility. It generates N solutions from the LLM and
selects the best one based on the reward model’s
evaluation. Due to imperfect rewards, even with
a large N , the probability of selecting the cor-
rect answer does not necessarily converge to one.
To mitigate this limitation, we propose Majority-
of-the-Bests (MoB), a novel and hyperparameter-
free selection mechanism that estimates the output
distribution of Best-of-N via bootstrapping and
selects its mode. Experimental results across five
benchmarks, three different base LLMs, and two
reward models demonstrate consistent improve-
ments over Best-of-N in 25 out of 30 setups. We
further provide theoretical results for the consis-
tency of the bootstrapping.

1. Introduction
Scaling the inference-time computation of language models
(LMs) has led to a significant improvement of their perfor-
mance on a variety of tasks (Brown et al., 2024; Snell et al.,
2024; Wu et al., 2024; OpenAI, 2024; DeepSeek-AI, 2025).
A growing number of methods have been introduced in this
paradigm, such as generating long chains-of-though (Wei
et al., 2022; Muennighoff et al., 2025), asking the model to
evaluate and improve its own outputs (Madaan et al., 2023),
and tree search (Yao et al., 2023; Hao et al., 2023; Zhang
et al.). Another family of such algorithms, termed sample-
and-marginalize by Wang et al. (2022), generate multiple
outputs from the model and then aggregate them into a final
answer. Examples include Self-consistency (Wang et al.,
2022), Best-of-N (Lightman et al., 2023), and Weighted
Best-of-N (Li et al., 2022). These methods have gained

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

popularity due to their simplicity and scalability.

Self-consistency (SC) (Wang et al., 2022), also referred to as
“majority voting”, is a widely used algorithm in sample-and-
marginalize. It samples multiple outputs from the model
and selects the final answer that appears most frequently
among them. SC improves the performance by leveraging a
key property of the model’s output distribution: on difficult
problems, the probability of generating the correct answer
is often far from 1, making single-sample predictions unre-
liable. SC capitalizes on the fact that, even if the model’s
output distribution is imperfect, it may still favor the correct
answer and generate it more frequently than incorrect ones.

Best-of-N (BoN) (Lightman et al., 2023) uses a reward
model to evaluate the generated outputs and chooses the
final answer in the highest-scoring output. With an ideal
reward model, BoN succeeds as long as one of the generated
outputs is correct. In this paper, we highlight that in the
realistic setting of an imperfect reward model, the success
of BoN is no longer (nearly) guaranteed. In such cases, BoN
exhibits stochastic behavior akin to the underlying genera-
tive model. While the reward model improves the likelihood
of selecting the correct answer, it often falls short of ensur-
ing certainty. This is the same property that underlies the
effectiveness of SC. Motivated by this observation, we show
that applying a similar principle—aggregating multiple sam-
ples to identify the most probable answer—leads to a better
performance over BoN.

We introduce Majority-of-the-Bests (MoB), a method that
leverages bootstrapping to improve upon BoN by approxi-
mating the most probable output of BoN. As illustrated in
Figure 1, after obtaining multiple (parallel) solution samples
for a given question and computing their rewards, we apply
bootstrapping: we create subsets of size m by sampling with
replacement from the generated outputs. For each subset,
we select the sample with the highest reward. This results
in a new set of high-reward samples, over which we per-
form majority voting to determine the final answer. Just
like BoN and SC, MoB can be applied independent of the
output generation procedure. It only modifies the selection
of the final answer with marginally extra computation on
the CPU. We provide a procedure to adaptively select m and
eliminating any critical hyperparameters from the algorithm.
We show the consistency of the algorithm theoretically, and

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Majority of the Bests: Improving Best-of-N via Bootstrapping

Sampling with
replacement

Question

y3

y1

y6

Majority Voting

B

Best Reward

Best Reward

Best Reward

y1: ... final answer is B

y2: ... final answer is A

y3: ... final answer is D

y4: ... final answer is B

y5: ... final answer is A

y6: ... final answer is A

r=2.2

r=3.7

r=2.1

r=3.4

r=2.5

r=3.6

y1 y5
3.6 2.2

y1
3.6

y1 y5
3.4 2.2

y4
3.6

y5 y6
2.2 2.5

y2
2.1

y2 y3
2.1 3.7

y4
3.6

y4
Best Reward

Figure 1: Majority-of-the-Bests: first, N outputs are generated for the given question. Then, we create a large number of
subsets of size m < N by sampling with replacements from the generated outputs. From each subset, we choose the output
with the highest reward. The most frequent answer among these chosen outputs is reported as the final answer.

empirically show significant improvements over BoN on 25
out of 30 tested setups.

2. Background
In this section, we formulate BoN and bootstrapping and
provide some background for the algorithm and its theoreti-
cal grounds. Given a prompt x, in the standard procedure
with LLMs, we sample an output Y ∼ pref from a base
model pref. This output yields a corresponding final answer
Z = f(Y) after applying a post-processing or evaluation
function f . For example, for a multiple choice problem, Z
is the chosen option and Y is the whole output containing
both Z and its justification. We denote the distribution of
the final answer in this procedure as πref, that is, Z ∼ πref.
The goal is to find the correct final answer z∗. We de-
fine the success probability for this given problem as the
probability of selecting the correct final answer. If the algo-
rithm’s final answer is Z, the success probability is defined
as P(Z = z∗). Given a dataset of questions, the average of
the success probabilities over all questions is referred to as
the accuracy. For the standard procedure, the success proba-
bility is equal to πref(z

∗) and the corresponding accuracy is
called the pass@1 accuracy. We assume access to a reward
model r that assigns a reward R = r(Y) to the output Y ,
reflecting its accuracy, coherence, or alignment with human
preferences (Uesato et al., 2022; Lightman et al., 2023).

Reward models can be categorized into two distinct groups:
Outcome-supervised Reward Models (ORMs) and Process-
based Reward Models (PRMs). ORMs are trained to predict
a scalar reward by evaluating the quality or correctness
of the generated output. In contrast, PRMs are trained to
provide rewards for each intermediate step or component
within a generation process, thereby offering more granular
feedback on the reasoning or constructive path taken to reach
an outcome (Uesato et al., 2022; Lightman et al., 2023).

For a given budget N , sample-and-marginalize algorithms
generate N independent outputs Y1, . . . , YN ∼ pref and
select the final answer reached by one of these outputs. BoN
selects the final answer from the output with the highest
reward, that is,

ZBest
N = f

(
argmax

y∈{Y1,...,YN}
r(y)

)
.

Alternatively, self-consistency or majority voting selects the
final answer that occurs most frequently among Z1, . . . , ZN

where Zi = f(Yi) is the final answer for output Yi. If N is
large enough, this most frequent answer will be the mode of
the final answer distribution πref. Li et al. (2022) suggested
the Weighted Best-of-N (WBoN) selection method. For
each final answer, WBoN sums the rewards of all outputs
that lead to it. Then it selects the final answer with the
highest cumulated reward.

Bootstrapping. Bootstrapping is a powerful and widely
used non-parametric resampling technique for estimating
the distribution of a statistic by repeatedly drawing samples
with replacement from the original dataset (Efron, 1992;
Efron and Tibshirani, 1994). The core idea is to generate
multiple “bootstrap samples”, by sampling observations
uniformly and with replacement. For each bootstrap sample,
the statistic of interest is computed. The collection of these
computed statistics from the many bootstrap samples forms
an empirical approximation of the statistic’s true distribution.
We use this technique to approximate the distribution of
BoN’s output.

3. Motivation: Output Distribution of
Best-of-N

To motivate our algorithm, we highlight the behavior of
BoN’s final answer distribution. We denote this distribution

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 25 50 75 100 125
N

0.0

0.2

0.4

0.6

0.8

1.0
Bo

N
Su

cc
es

s P
ro

ba
bi

lit
y

0.05 0.10 0.15
Reward Value

0

5

10

15

20

25

30

De
ns

ity

Correct Output
Incorrect Output

< 0.1 0.1 - 0.9 > 0.9
Success Probability

0

50

100

150

200

Fr
eq

ue
nc

y

Figure 2: (Left) BoN’s success probability as a function of N for question 647 from MMLU-Pro-Math. The success
probability remains bellow 80%. (Middle) Distribution of the reward for correct and incorrect outputs for the same question.
A separation between the two distributions is ideal. (Right) Histogram of Best-of-64 success probabilities over 500 questions.

by πN . It means,

ZBest
N ∼ πN .

Assume among the N sampled outputs, Nc outputs
{Y c

1 , . . . , Y
c
Nc

} ⊆ {Yi}Ni=1 yield the correct final answer:
f(Y c

i) = z∗. Conversely, Nw = N − Nc outputs
{Y w

1 , . . . , Y w
Nw

} ⊆ {Yi}Ni=1 lead to an incorrect solution.
Then, BoN’s output is correct if the highest reward among
the correct outputs is larger than the highest reward among
the incorrect ones. Formally, we can express this condition
as:

max
(
r(Y c

1), . . . , r(Y
c
Nc

)
)
> max

(
r(Y w

1), . . . , r(Y w
Nw

)
)
.

(1)
There are two factors that influence the probability of this
event. First, note that each side of (1) is the maximum of
some random variables. As the number of random variables
increases, the probability distribution of their maximum
shifts towards higher values. Therefore, larger values of
Nc and smaller values of Nw, make condition (1) more
likely. The values of Nc and Nw depend on πref(z

∗), the
probability of the correct answer z∗ in the base model’s final
answer distribution πref. For large enough n, we will have

Nc ≈ N · πref(z
∗) , Nw ≈ N · (1− πref(z

∗)).

It means that if the base model has a higher chance of
solving the problem, BoN is also more likely to select the
correct answer.

The second factor is the distribution of r(Y c
i) and r(Y w

i) on
each side of (1). The reward of a correct output follows the
conditional distribution Pc ≜ P(r(Y)|f(Y) = z∗) while
the reward of an incorrect output follows the conditional
distribution Pw ≜ P(r(Y)|f(Y) ̸= z∗). We hope that the
reward model assigns higher rewards to correct outputs, and

r(Y c
i) ∼ Pc on the left side of (1) generally be larger than

r(Y w
i) ∼ Pw on the right side.

Therefore, the success probability of BoN heavily depends
on the separation between Pc and Pw. A perfect reward
model would always assign a higher value to a correct output
than to an incorrect one. In that case, as long as at least one
correct output is generated (which is highly likely for large
enough N), condition (1) is satisfied. The resulting success
probability is close to 1, indicating a nearly deterministic
final answer. On the other hand, consider the case where
Pc and Pw are identical. In this case, the reward of an
output becomes independent of its correctness, and choosing
according to the reward model will be no better than a
random choice. Consequently, the success probability of
BoN will be the same as the base model, i.e. πN (z∗) =
πref(z

∗). We provide a complete theoretical analysis in
Appendix A.1. In practice, our reward models exhibit a
middle ground between these two extremes. They might not
be perfect for BoN to succeed with a single correct output,
but they can still be somewhat informative to increase the
success probability of BoN compared to the base model.

In Figure 2, we show an example of these dynamics for
Question 647 of the MMLU-Pro-Math benchmark (Wang
et al., 2024b) with base model Qwen2.5-3b-instruct
(Qwen Team, 2024) and reward model ArmoRM (Wang
et al., 2024a). We approximate the output distribution pref
with a large pool of 1400 samples. In Question 647 (Fig-
ure 2), the two distributions Pc and Pw are overlapping, and
even with large values of N , the success probability remains
below 80%. Nonetheless, BoN still outperforms the base
model, which is equivalent to Best-of-1 and has a success
probability of 30% in this case.

We expect the stochasticity of BoN’s output to depend on
the difficulty of the question relative to the base and re-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Majority of the Bests: Improving Best-of-N via Bootstrapping

ward models’ capabilities. For more difficult questions, the
base model generates fewer correct outputs, and the reward
model is less likely to distinguish the correct outputs from
the incorrect ones. Through the two factors discussed above,
BoN is not able to pick the correct answer with high cer-
tainty. The right plot in Figure 2 shows the histogram of
the success probability of Best-of-64 among 500 randomly
selected MMLU-Pro-Math problems. We see that for ap-
proximately 175 problems, BoN has a success probability
between 0.1 and 0.9. That means, BoN has a significant
chance of returning the correct answer but fails to do so
reliably. The idea behind our introduced method, MoB, is
that if we can find the most probable output of the BoN
distribution, we may reliably pick the correct answer even if
its probability is well below 1.

4. Majority-of-the-Bests
In Section 3, we showed that BoN’s final answer is stochas-
tic, and this stochasticity might remain true even with a very
large budget N . In this section, we introduce Majority-of-
the-Bests (MoB). MoB can select the correct answer with
high probability as long as the correct answer is the most
probable output of BoN, even if its probability is well below
1. We first showcase this idea in the hypothetical case where
BoN’s output distribution πN is given by an oracle. Later,
we show how to estimate this distribution using bootstrap-
ping.

4.1. MoB with Oracle Access to BoN’s Output
Distribution

Suppose the distribution of BoN’s final answer πN is known
through an oracle. Instead of sampling from this distribution,
which is equivalent to BoN and is a noisy decision, we
propose selecting the mode of this distribution. That is

zOracleMoB
N = argmax

z
πN (z). (1)

We refer to this algorithm as Oracle MoB as it relies on an
oracle. By selecting the mode, if the correct answer has
a higher probability than any of the other answers, it will
be selected without any randomness that would reduce the
success probability. Since πref = π1, we can say SC for
a large N is equivalent to Oracle MoB with N = 1. It
has been extensively shown that SC improves the LLM’s
original accuracy. As we will also empirically show, MoB
similarly increases the accuracy of BoN by selecting the
mode of its output distribution.

In Figure 3, we compare the accuracy of Oracle MoB with
BoN on MATH500 (Lightman et al., 2023; Hendrycks et al.,
2021) and math problems of MMLU-Pro (Wang et al.,
2024b). We use the same output pool, base model, and
reward model as Figure 2. We can see that depending on

the value of N , Oracle MoB provides 5 to 10 percent points
improvement in accuracy. Oracle MoB unrealistically re-
quires an oracle access to πN . Next, we will show how πN

can be estimated via bootstrapping and remove the oracle
dependence.

4.2. MoB with Estimated BoN’s Output Distribution

We now discuss how, without the oracle access to the BoN’s
output distribution πN , one can approximately find its most
probable output. The most obvious approach is to follow
the same procedure as SC. For some k ≥ 1, we can run k
independent BoN procedures. Then, out of the k resulting
answers, we select the final answer that appears the most
number of times. The answer of the BoN procedures let us
approximate πm, and selecting the most frequent answer
among them will approximate Oracle MoB (1) with budget
m. We refer to this algorithm as “BoN+SC” due to its
simple combination of BoN and SC. To keep the generation
budget fixed at N , we are forced to use a smaller budget m
for each of the BoN runs. For now, we treat the choice of
m as a hyperparameter, but will return to this choice later.
Assume m < N and k = ⌊N/m⌋. Formally,

ZBest,(i)
m = f

(
argmax

y∈{Yim,...,Y(i+1)m−1}
r(y)

)
(i = 1, . . . , k),

(2)

ZBoN + SC
m,n = argmax

z

∑
i

I
[
ZBest,(i)
m = z

]
. (3)

The main problem with BoN+SC is that it is too expensive.
We would like to have a large value for m to get the benefits
offered by BoN, and to have a fairly accurate estimation of
πm, we need a reasonably large value for k. Together, this
requires a large budget N ≈ mk.

The deficiency of BoN+SC comes from the fact that each
sample Yi only contributes to generating one BoN output.
To address this deficiency, we propose estimating πm not by
generating independent samples from it, but by bootstrap-
ping. To do that, we first note that the distribution πm of
ZBest
m is a function of the unknown distribution pref. Boot-

strapping suggests to estimate πm with the BoN’s output
distribution under a known approximation p̂ref ≈ pref. The
typical non-parametric approach is to set p̂ref to be the em-
pirical distribution of the generated samples {Y1, . . . , YN}.
Since p̂ref is known, we can cheaply sample from it. For
any arbitrarily large value B, we generate B approximately
sampled BoN outputs. We first create B datasets of size m
from p̂ref. That is

Di = {Ŷi,1, Ŷi,2, . . . , Ŷi,m} ∼ p̂ref, (i = 1, . . . , B).

This is equivalent to sampling m outputs from the origi-
nal pool {Y1, . . . , Yn} with replacement. Then, similar to

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Majority of the Bests: Improving Best-of-N via Bootstrapping

Figure 3: Final answer accuracy comparison of BoN, MoB, and Oracle MoB on MMLU-Pro-Math using
Qwen2.5-3b-instruct (Left) and Llama3.1-8b-instruct (Right) as the base model, and ArmoRM as the reward
model. Results are averaged across all problems and multiple runs. Shaded area indicates the standard error.

BoN+SC, we can run BoN on each dataset, and then pick
the most common outcome. Formally,

ẐBest,(i)
m = f

(
argmax
y∈Di

r(y)

)
(i = 1, . . . , B),

(4)

ZMoB
m,N = argmax

z

B∑
i=1

I
[
ẐBest,(i)
m = z

]
. (5)

This procedure is our MoB algorithm for a given m. We
define π̂m,N to be the (random) distribution of Ẑ

Best,(1)
m

given {Yi} at hand. With sufficiently large B (usually
B = 10, 000 is sufficient), the empirical distribution of
{ẐBest,(i)

m } will accurately estimate π̂m,N . With this approx-
imation, we can write

ZMoB
m,N ≈ argmax

z
π̂m,N (z) (6)

Note that this is a light computation that can be carried
out on the CPU. Therefore, we can freely choose a large
B. In the supplementary material, we provide an even
more efficient way of estimating π̂m,N with O(N logN)
complexity.

In Figure 4, we compare MoB with BoN+SC in the same
setup as Figure 3. In the left plot, we fix m = 8 and
compare the algorithms’ error on estimating πm for a range
of values for N . We measure the distance between the
two distributions according to the ℓ1-norm. As we can see,
bootstrapping is consistently the superior approach for this
approximation task and offers a more accurate estimation of
πm. In the right plot, we set m = ⌊

√
N⌋ and compare the

final accuracy of the algorithms. The choice of m = ⌊
√
N⌋

20 40 60 80 100 120
Number of Generations (n)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Ap

pr
ox

im
at

ed
 D

ist
rib

ut
io

n
Er

ro
r

BoN + SC
MoB

23 24 25 26 27

Number of Generations (n)

60

62

64

66

68

70

Ac
cu

ra
cy

 (%
)

BoN + SC
MoB

Figure 4: Comparison of MoB and BoN+SC us-
ing Qwen2.5-3b-instruct (reference model) with
ArmoRM as the reward model. Left: ℓ1 error of πm for m=8.
Right: average accuracy on MMLU-Pro-Math. Shaded ar-
eas show standard error.

ensures that k ≈
√
N and will also increase as N increases.

We observe that the superior accuracy of bootstrapping in
the estimation of πm translates to a better final accuracy
of the algorithm, especially when the budget N is more
limited.

One might wonder if it is possible to choose m to be much
larger than what was possible in BoN+SC, potentially even
m = N . There is no obvious limitation on the size of
resampled datasets Di, and nonetheless, most commonly
in bootstrapping, the size of resampled datasets is equal to
the original dataset. However, estimating the distribution of
values related to the extremes of random samples is a classic
example of failure for the conventional bootstrapping, see
for example Athreya and Fukuchi (1994) and Efron and
Tibshirani (1994, Section 7.4). Since BoN selects the output
with the highest reward, it is affected by the same failure. To
see this, note that the output with the highest reward appears
in each dataset with the probability of 1− (N−1

N)m, and it

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Majority of the Bests: Improving Best-of-N via Bootstrapping

70.0

67.5

0 65.0

>, u 62.5ro

� 60.0

57.5

55.0

52.5

0 20
T

40 60 80

MoB (Optimal m)

MoB (Adaptive)

BoN
T T

100 120
Number of generations (n)

I-

� 52 _,_,___,,
>,u ro
5 50

48...--------------------------+- ---t

46-+--<----+---+---+-----l

44-+--<ll-----+---+---+-----l

T

0 20 40 60 80

MoB (Optimal m) 1-

MoB (Adaptive)

BoN I-

T T

100 120
Number of generations (n)

Figure 5: Average answer accuracy comparison using ArmoRM reward model with MMLU-Pro-Math and
Qwen2.5-3b-instruct (Left) and MATH500 and Llama3.1-8b-instruct (Right). Shaded area indicates the
standard error.

will be chosen in any dataset in which it appears. Therefore,
if m = N ,

P
(
ẐBest,(i)
m = ZBest

N

)
≥ 1−

(N − 1

N

)N ≈ 1−e−1 ≈ 0.632.

This means that π̂N,N will always assign a probability of
at least 0.632 to the conventional BoN’s answer. As we
discussed in Section 3, πN might be quite stochastic, which
means such approximation cannot be accurate. Even more
critically for our use of this approximation, the mode of
π̂N,N will always coincide with BoN’s answer, and MoB
becomes equivalent to BoN.

Fortunately, using smaller resampled datasets, as we do
in MoB, is one of the remedies for such failures of boot-
strapping and is well-studied in the literature, (Athreya and
Fukuchi, 1994; Bickel et al., 2011) and is referred to as m-
out-of-n bootstrapping. We show that under the usual con-
ditions of m-out-of-n bootstrapping and mild assumptions
on the tail of reward distributions, our use of bootstrapping
to estimate πm is a valid one. Similar to the typical guaran-
tees for bootstrap estimations, we show that our bootstrap
estimation is indeed consistent.
Theorem 4.1. Under mild assumptions on the tail of dis-
tribution of rewards, if there are finite possible values for
Z and as N → ∞, we have m → ∞ and m/N → 0, then
for any ϵ > 0, the estimated π̂m,N will converge to the true
distribution πm. That is,

lim
n→∞

P
(
∥π̂m,N − πm∥1 ≥ ϵ

)
= 0.

We defer the exact technical statement and proof to the sup-

plementary material. Theorem 4.1 shows that the estimated
distribution π̂m,N will match the true BoN output distribu-
tion πm. It means that MoB with bootstrapped distribution
in (6) will reach the same accuracy as its oracle version in
(1), but with a larger required budget due to m < N . To
achieve this, it suffices to pick m such that the condition of
Theorem 4.1 holds, which is possible by simply using a fix
schedule of the form m(n) = nα for some 0 < α < 1. In
the next section, we will discuss the choice of m in more
detail and provide a procedure to choose m automatically.

4.3. Adaptive Subsample Size m

The choice of m imposes a trade-off. A larger value of m
means that we are running BoN with a larger number of
samples. Since we expect the success probability of BoN
to increase with more samples, this means that the mode
of πm will be more likely to be correct. On the other hand,
as m becomes larger and closer to n, our estimate π̂m,N of
πm becomes more inaccurate. As we saw in Section 4.2,
bootstrapping might fail to provide a consistent estimate if
m = N .

Ideally, we would like to find an m such that our final
answer ZMoB

m,N based on the estimated distribution as in (6)
becomes closest to the Oracle MoB (1) of Section 4.1. The
natural approach for this goal is to find the value of m that
minimizes the distance between π̂m,N and πN , that is

M∗
N = argmin

m
∥π̂m,N − πN∥1. (7)

This minimization problem automatically captures both as-
pects of the trade-off. Large values of m make πm, which
is approximated by π̂m,N closer to πN , but at the same time

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 20 40 60 80 100 120
Number of Generations (n)

74

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

BoN
SelfConsistency
WeightedBestOfN
MoB

0 20 40 60 80 100 120
Number of Generations (n)

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

BoN
SelfConsistency
WeightedBestOfN
MoB

Figure 6: Accuracy comparison on different datasets using base model Qwen2.5-3b-instruct and GRM reward model.
Standard deviation is shown as the shaded area. (Left): GSM8k. (Right): MMLU-Pro-Chem.

if m is too large, the error of this approximation becomes
too large and increase the objective ∥π̂m,N − πN∥1.

Unfortunately, the distribution πN in the objective of (7)
is unknown, and therefore cannot be used in practice. The
theoretical results by Götze and Račkauskas (2001) show
that if Z only takes two possible values and under some
other technical conditions, the distance ∥π̂m,N − π̂m/2,N∥1
is proportional to the one in (7)1:

∥π̂m,N − π̂m/2,N∥1 ∝ ∥π̂m,N − πN∥1.

Inspired by this result, Bickel and Sakov (2008) provides
some optimality results for choosing m by minimizing the
more general loss ∥π̂m,N − π̂qm,N∥1 for some 0 < q < 1
instead of just q = 0.5 considered by Götze and Račkauskas
(2001).

Based on the findings of Bickel and Sakov (2008), we pro-
pose using the following approach to pick m. We first
consider the candidates of the form ⌊qjN⌋ and pick the
value among them that minimizes ∥π̂m,N − π̂qm,N∥1.

mj = ⌊qjn⌋ (j = 0, 1, 2, . . .),

M̂∗
N = argmin

m=mj

∥π̂mj ,N − π̂mj−1,N∥1.

Note that this involves calculating the approximating π̂m,N

for all values of mj . These will be just O(log n) distribu-
tions and computationally cheap. Finally, MoB’s output

1This is a rough interpretation of the results by Götze and
Račkauskas (2001), where the ratio of the two losses is studied.
We refer the reader to the original paper for more details.

is

ZMoB
N = ZMoB

M̂∗
N ,N

. (8)

The choice of q has been observed not to be critical in
most applications. Bickel and Sakov (2008) observes no
significant difference among q = 0.75, 0.65, 0.6, 0.5. In our
experiments, we fix q = 0.75. In Figure 5, we evaluate the
efficiency of this procedure to select m. For each N , we find
the optimal m by evaluating the accuracy of the resulting
MoB output for a set of candidate values. Specifically, we
choose from {Nα} for α ∈ [0.1, 0.9]. We call the accuracy
of this optimal m, MOB (optimal m). We plot the accuracy
of our adaptive m approach against this for two different
settings. These figures show that adaptive m performance
closely follows the optimal m variant.

5. Experiments
We conducted a series of experiments to compare the perfor-
mance of our proposed method against several well-known
test-time sample-and-marginalize approaches across a range
of datasets, generative models, and reward models. The
datasets include MATH500 (Lightman et al., 2023), GSM8K
(Cobbe et al., 2021b), MMLU-Pro-Math and Chem (Wang
et al., 2024b), and CommonSenseQA (Talmor et al., 2018).
We have experimented with three different generative mod-
els from different families and different sizes: Qwen2.5-
3B-Instruct (Qwen Team, 2024), Llama-3.1-8B-Instruct
(Grattafiori et al., 2024), and Gemma-2-9B (Team et al.,
2024). For reward models, we used two widely adopted

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Majority of the Bests: Improving Best-of-N via Bootstrapping

Table 1: Qwen2.5-3B and GRM3B as base and reward models, N = 128

MATH500 MMLU-PRO-MATH MMLU-PRO-CHEM GSM8K COMMONSENSEQA

BON 64.15±1.07 66.00±1.06 49.15±1.12 80.80±0.88 77.70±0.93
SC 66.30±1.06 65.70±1.06 52.65±1.12 80.25±0.89 76.15±0.95
WBON 67.30±1.05 64.55±1.07 53.70±1.12 80.95±0.88 54.75±1.11
MOB (OURS) 69.80±1.03 69.65±1.03 56.55±1.11 82.95±0.84 77.40±0.94

Table 2: Results on MATH500 across all base and reward models (N=128)

ARMORM GRM

GEMMA-2-9B LLAMA3.1-8B QWEN2.5-3B GEMMA-2-9B LLAMA3.1-8B QWEN2.5-3B

BON 52.20±1.12 51.65±1.12 60.50±1.09 53.85±1.11 56.55±1.11 64.15±1.07

SC 52.65±1.12 61.15±1.09 66.30±1.06 52.65±1.12 61.15±1.09 66.30±1.06

WBON 53.60±1.12 63.10±1.08 67.05±1.05 56.00±1.11 63.65±1.08 67.30±1.05

MOB (OURS) 56.65±1.11 62.50±1.08 68.25±1.04 57.80±1.10 64.15±1.07 69.80±1.03

↑MOB OVER BON 4.45±1.57 10.85±1.56 7.75±1.51 3.95±1.57 7.60±1.54 5.65±1.48

ORMs: ArmoRM (Wang et al., 2024a) and GRM (Yang
et al., 2024), with 8B and 3B parameters, respectively. These
choices result in thirty diverse experimental setups that rig-
orously evaluate our method’s performance.

Figure 6 presents the accuracy of different methods on
GSM8K and MMLU-Pro-Chem across varying values of
N . Our method consistently outperforms the baselines,
showing clear improvements even at smaller N values. Ta-
ble 1 presents the accuracy of our method alongside SC,
BoN, and WBoN for N = 128 across all benchmarks, us-
ing Qwen2.5-3b-instruct and GRM as the base and
reward models, respectively. Our method achieves state-of-
the-art performance on all five benchmarks. In Table 2, we
report the accuracy on MATH500 for all base and reward
model combinations. This table also includes a row showing
the performance improvement of our method over BoN. As
shown in Table 2, MoB consistently outperforms BoN in
every setting. These results show the potential of MoB as a
drop-in replacement of BoN in all these widely used experi-
mental setups with negligible additional CPU computation
and no extra hyperparameters. Complete results for all thirty
experiment configurations are provided in the Appendix.

6. Conclusion and Future Work
In this paper, we examined how imperfect reward models
can lead to distributional overlap between correct and incor-
rect answers in Best-of-N (BoN), often resulting in incorrect
selections. To address this, we introduced Majority-of-the-
Bests (MoB), a bootstrapped method designed to improve
estimation of the BoN distribution. MoB achieves superior
performance compared to other selection algorithms, BoN,
self-consistency (SC), and WeightedBoN (WBon) outper-

forming them in 25 out of 30 experimental setups. Our
method is scalable, requires no hyperparameter tuning, and
adds only negligible CPU computational overhead. We pro-
pose that MoB can serve as a drop-in replacement for BoN
in any task that involves selecting a final answer based on
noisy reward signals. Looking forward, we believe MoB’s
selection signal could enable early stopping in parallel LLM
generation, or be applied more broadly in any framework
that relies on sampling from an LLM. However, MoB is
limited to settings where the task requires producing a fi-
nal answer, and like all sampling-based methods, it incurs
higher inference costs compared to zero-shot approaches.

References
K. B. Athreya and J. Fukuchi. Bootstrapping extremes of

I.I.D. random variables. In Proceedings of the Conference
on Extreme Value Theory and Applications, Volume 3.
National Institute of Standards and Technology (NIST),
1994.

Peter J Bickel and Anat Sakov. On the choice of m in the
m out of n bootstrap and confidence bounds for extrema.
Statistica Sinica, pages 967–985, 2008.

Peter J Bickel, Friedrich Götze, and Willem R van Zwet.
Resampling fewer than n observations: gains, losses, and
remedies for losses. In Selected works of Willem van
Zwet, pages 267–297. Springer, 2011.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirhoseini.
Large language monkeys: Scaling inference compute
with repeated sampling. arXiv preprint arXiv:2407.21787,
2024.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Majority of the Bests: Improving Best-of-N via Bootstrapping

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. Training ver-
ifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
Training verifiers to solve math word problems, 2021.
URL https://arxiv. org/abs/2110.14168, 9, 2021b.

DeepSeek-AI. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learn-
ing. https://github.com/deepseek-ai/
DeepSeek-R1/blob/main/DeepSeek_R1.pdf,
2025.

Bradley Efron. Bootstrap methods: another look at the
jackknife. In Breakthroughs in statistics: Methodology
and distribution, pages 569–593. Springer, 1992.

Bradley Efron and Robert J Tibshirani. An introduction to
the bootstrap. Chapman and Hall/CRC, 1994.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Ja-
son Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. The lan-
guage model evaluation harness, 07 2024. URL https:
//zenodo.org/records/12608602.

Friedrich Götze and Alfredas Račkauskas. Adaptive choice
of bootstrap sample sizes. Lecture Notes-Monograph
Series, pages 286–309, 2001.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhi-
nav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning with
language model is planning with world model. arXiv
preprint arXiv:2305.14992, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. Measuring mathematical problem solv-
ing with the MATH dataset. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021. URL https:
//openreview.net/forum?id=7Bywt2mQsCe.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. Making large lan-
guage models better reasoners with step-aware verifier.
arXiv preprint arXiv:2206.02336, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s ver-
ify step by step. In The Twelfth International Conference
on Learning Representations, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Halli-
nan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. Self-refine:
Iterative refinement with self-feedback. Advances in Neu-
ral Information Processing Systems, 36:46534–46594,
2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa
Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candès, and Tatsunori
Hashimoto. s1: Simple test-time scaling. arXiv preprint
arXiv:2501.19393, 2025.

OpenAI. Introducing openai o1. https://openai.
com/o1/, 2024. OpenAI Blog.

Qwen Team. Qwen2.5: A party of foundation models,
September 2024. URL https://qwenlm.github.
io/blog/qwen2.5/.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar.
Scaling llm test-time compute optimally can be more
effective than scaling model parameters. arXiv preprint
arXiv:2408.03314, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. Commonsenseqa: A question answer-
ing challenge targeting commonsense knowledge. arXiv
preprint arXiv:1811.00937, 2018.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. CommonsenseQA: A question an-
swering challenge targeting commonsense knowledge.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4149–4158, Minneapo-
lis, Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert
Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and
technology. arXiv preprint arXiv:2403.08295, 2024.

9

https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openai.com/o1/
https://openai.com/o1/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://aclanthology.org/N19-1421

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Majority of the Bests: Improving Best-of-N via Bootstrapping

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis
Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geof-
frey Irving, and Irina Higgins. Solving math word prob-
lems with process-and outcome-based feedback. arXiv
preprint arXiv:2211.14275, 2022.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and
Tong Zhang. Interpretable preferences via multi-objective
reward modeling and mixture-of-experts. In EMNLP,
2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more
robust and challenging multi-task language understanding
benchmark. In The Thirty-eight Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. Advances in neural information pro-
cessing systems, 35:24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and
Yiming Yang. An empirical analysis of compute-optimal
inference for problem-solving with language models.
2024.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and
Tong Zhang. Regularizing hidden states enables learn-
ing generalizable reward model for llms. arXiv preprint
arXiv:2406.10216, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with
large language models, 2023. URL https://arxiv.
org/abs/2305.10601, 3, 2023.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yux-
iao Dong, and Jie Tang. Rest-mcts*: Llm self-training
via process reward guided tree search, 2024a. URL
https://arxiv. org/abs/2406.03816.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Majority of the Bests: Improving Best-of-N via Bootstrapping

List of Appendices
We provide a brief description of the material in the appendix of the paper.

• Appendix A provides theoretical results on the asymptotic behavior of BoN’s output distribution and the proof for
Theorem 4.1.

• Appendix B provides a closed-form calculation of bootstrapped BoN’s output distribution for more efficient calculations.

• Appendix C investigates the effect of reward noise and base model on different algorithms in a synthetic setup.

• Appendix D provides extra details for the experiments and implementations.

• Appendix E provides additional experimental results.

A. Theoretical Results
In this section, we provide the formal theoretical results and the proof of Theorem 4.1. To do so, we first need to show
the convergence of BoN’s output distribution, which is done in Section A.1 and Theorem A.1. We prove Theorem 4.1 in
Section A.2.

A.1. Asymptotic Behavior of BoN’s Output Distribution

Theorem A.1. For final answer z such that πref(z) ∈ (0, 1), let F0 and F1 represent continuous cumulative distribution
functions (CDFs) of the conditional distributions P(r(Y)|f(Y) = z) and P(r(Y)|f(Y) ̸= z), respectively. Define x0 and
x1 to be right endpoint of them,

x0 ≜ sup{x ∈ R : F0(x) < 1}, x1 ≜ sup{x ∈ R : F1(x) < 1}.

As N → ∞, if

(i) x0 < x1, we have πN (z) → 0.

(ii) x0 > x1, we have πN (z) → 1.

(iii) x0 = x1 = x∗, assume for c ∈ [0,∞], we have

lim
x↑x∗

1− F0(x)

1− F1(x)
= c, (1)

then,

πN (z) →
c · πref(z)

1 + (c− 1) · πref(z)
.

Proof. We first define some random variables to better express πN (z). Assume we use F0 and F1 to generate i.i.d. samples
R0

1, R
0
2, . . .

i.i.d.∼ F0 and R1
1, R

1
2, . . .

i.i.d.∼ F1. For n ≥ 1, let S0
n and S1

n be the maximum of the first n samples from F0 and
F1, that is,

S0
n ≜ max

i=1,...,n
R0

i , S1
n ≜ max

i=1,...,n
R1

i .

Also, for outputs Y1, . . . , YN let Zi = f(Yi), N0 be the number of outputs that reach the final answer z, and N1 = N −N0

be the number of outputs that do not reach the final answer z.

We can express πN (z) as

πN (z) =
∑
z1:N

P
(
ZBest
N = z|Z1:N = z1:N

)
· P(Z1:N = z1:N)

=
∑
z1:N

P
(
max
zi=z

r(Yi) > max
zi ̸=z

r(Yi)|Z1:N = z1:N

)
· P(Z1:N = z1:N). (2)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Majority of the Bests: Improving Best-of-N via Bootstrapping

Now, note that due Y1, . . . , YN being i.i.d., we have

P(r(Y1), . . . , r(YN)|Z1:N = z1:N) =
∏
i

P(r(Yi)|Zi = zi).

By definition of R0
i and R1

i , we can therefore write (2) as

πN (z) =
∑
z1:N

P
(
S0
N0 > S1

N1 |Z1:N = z1:N
)
· P(Z1:N = z1:N) = P

(
S0
N0 > S1

N1

)
.

For simplicity, we define S1 ≜ S1
N1 and S0 ≜ S0

N0 . Now, we can express πN (z) as

πN (z) = P
(
S0 > S1

)
.

Note that S0 d→ x0 and S1 d→ x1, which leads to the statement for cases (i) and (ii) straightforward. We focus on case
(iii). Let F̄0(x) ≜ 1− F0(x) and F̄1(x) ≜ 1− F1(x) be the complementary CDFs of F0 and F1, respectively. To quantify
P
(
S0 > S1

)
, we note that F̄1 is strictly decreasing in a neighborhood of S1. Thus,

lim
N→∞

πN (z) = lim
N→∞

P
(
S0 > S1

)
= lim

N→∞
P
(
NF̄1(S

0) < NF̄1(S
1)
)
. (3)

Therefore, we turn to study the joint distribution of (NF̄1(S
0), NF̄1(S

1)) as N → ∞. This will be achieved by quantifying
the distribution of (n0F̄1(S

0
n0
), n1F̄1(S

1
n1
)) as n0, n1 → ∞ and relating it to the distribution of (NF̄1(S

0), NF̄1(S
1)).

Since F1 is continuous, F1(R
1
i) ∼ U [0, 1] is uniformly distributed for any i. Define Ui = F̄1(R

1
i) ∼ U [0, 1]. It is well

known that

n1 min
i=1,...,n1

Ui
d→ Exp(1) (n1 → ∞),

which due to mini F̄1(R
1
i) = F̄1(S

1
n1
), translates to

n1F̄1(S
1
n1
)

d→ Exp(1) (n1 → ∞). (4)

Similarly, we can show that n0F̄0(S
0
n0
)

d→ Exp(1) as n0 → ∞. However, our goal is to analyze the distribution of

n0F̄1(S
0
n0
). To do so, we use the tail-equivalence condition (1). We note that S0

n0

d→ x∗, therefore, F̄0(S
0
n0
)/F̄1(S

0
n0
)

d→ c
as n0 → ∞. Together, we get

n0F̄1(S
0
n0
) =

n0F̄0(S
0
n0
)

F̄0(S0
n0
)/F̄1(S0

n0
)

d→ Exp(1)

c
(n0 → ∞). (5)

Due to the independence of S1
n1

and S0
n0

, we can combine (4) and (5) to get(
n0F̄1(S

0
n0
), n1F̄1(S

1
n1
)
) d→ (E/c, F) (n0, n1 → ∞),

where E,F
i.i.d.∼ Exp(1). As N → ∞, we have N0, N1 p→ ∞, therefore,(

N0F̄1(S
0
N0), N1F̄1(S

1
N1)

) d→ (E/c, F) (N → ∞).

Finally, we use the fact that N0/N
d→ πref(z) and N1/N

d→ 1− πref(z) to get(
NF̄1(S

0), NF̄1(S
1)
)
=

(
N0F̄1(S

0
N0)

N0/N
,
N1F̄1(S

1
N1)

N1/N

)
d→
(

E

c · πref(z)
,

F

1− πref(z)

)
. (6)

Combined with (3), we conclude that

lim
N→∞

πN (z) = P
(

E

c · πref(z)
<

F

1− πref(z)

)
=

cπref(z)

1− πref(z) + cπref(z)
.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Majority of the Bests: Improving Best-of-N via Bootstrapping

A.2. Proof of Theorem 4.1

We restate Theorem 4.1 with the assumptions not included in the main text.

Theorem A.2. Assume that there are finite possible values for Z and for every possible final answer z, the conditions of
Theorem A.1 hold. If as N → ∞, we have m → ∞ and m/N → 0, then for any ϵ > 0, the estimated π̂m,N will converge
to the true distribution πm. That is,

lim
n→∞

P
(
∥π̂m,N − πm∥1 ≥ ϵ

)
= 0.

Proof. Since there are finite possible values for Z, it suffices to show the convergence in estimated probability of each
possible final answer z. We show that for any z, and ϵ > 0, we have

lim
N→∞

P(|π̂m,N (z)− πm(z)| ≥ ϵ) = 0. (7)

We use the result by Bickel et al. (2011, Equation 3.14) to show this claim. To do so, we first frame our problem in their
notation. For 1 ≤ i ≤ N , let Zi ≜ f(Yi) be (the one-hot encoding of) the final answer reached by Yi, and Ri ≜ r(Yi) be
the numerical reward of Yi. We define

Xi ≜ (Zi, Ri).

We define the bootstrap statistic of X1, . . . , Xm as

Tm = I
[
ZBest
m = z

]
+

D

4
∼ Lm,

where I[·] is the indicator function, D ∼ Bernoulli(0.5) is an independent Bernoulli random variable, and Lm is defined to
be the distribution of Tm. Basically, Tm is the indicator of z being selected by BoN, plus a small random noise to ensure
the non-degeneracy condition as m → ∞. We define the function h(t) = I[t > 0.5], so that the parameter of interest θm
becomes

θm ≜ Eh(Tm) = πm(z),

as intended. Lastly, one can verify that since Tm is invariant of repetitions and permutations of its inputs X1, . . . , Xm, in
our case, we have for any 0 < x < 1,

δm(x) ≜
∣∣π⌊mx⌋(z)− πm(z)

∣∣.
We now show the conditions of Bickel et al. (2011, Theorem 2). First, we need to show that Lm, the distribution of Tm, is
convergent. According to Theorem A.1, we have

lim
m→∞

πm(z) ≜ π∞(z)

for some π∞(z) ∈ [0, 1]. Therefore, as m → ∞, we have

Lm
d→ Bernoulli(π∞(z)) +

Bernoulli(0.5)

4
.

For condition Bickel et al. (2011, Equation 3.11) we need to show that for any M < ∞, we have

δm(1− xm−1/2) → 0

uniformly for all 0 < x < M . By definition, it suffices to show that for any 0 < x < M , we have∣∣π⌊m−x
√
m⌋(z)− πm(z)

∣∣ → 0.

This follows from the fact that πm(z) is convergent to π∞(z). For any ε > 0, pick M0 such that for any m0 ≥ M0, we have

|πm0(z)− π∞(z)| < ε

2
,

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Majority of the Bests: Improving Best-of-N via Bootstrapping

and M1 such that for any M1 −M
√
M1 ≥ M0. Then for any m ≥ M1, we have∣∣π⌊m−x

√
m⌋(z)− π∞(z)

∣∣ < ε/2 and |πm(z)− π∞(z)| < ε/2.

Together, we have ∣∣π⌊m−x
√
m⌋(z)− πm(z)

∣∣ < ε

and achieve the uniform convergence condition.

Finally, note that our statistic Tm is not dependent on the sampling distribution pref and Bickel et al. (2011, Equation 3.13) is
satisfied.

B. Closed-Form Calculation of Bootstrapped BoN’s Output Distribution
In Section 4.2, we proposed approximating π̂m,N by running BoN on a large number B of subsets of size m sampled with
replacement from the N generated outputs. In practice, B = 10, 000 is sufficient. This calculation is negligible compared to
the generation of outputs from the LLM and can be carried out on a CPU. Nonetheless, we here show that it can also be
done in O(N logN).

Define Ri = r(Yi) for 1 ≤ i ≤ N , and let i1, i2, . . . , iN be such that

Ri1 < Ri2 < . . . < RiN .

For simplicity, we assume no ties occur among the rewards. The key insight is that for any 1 ≤ k ≤ N , the probability of
Yik being selected in a randomly sampled subset of m outputs can be calculated in closed-form. We note that Yik is selected
if the subset only includes outputs among Yi1 , . . . , Yik , but is not limited to Yi1 , . . . , Yik−1

(and therefore contains Yik). We
get

P(Yik is the output of BoN on a resampled subset) =
(

k

N

)m

−
(
k − 1

N

)m

Thus, for any final answer z, the probability of it being selected in a subset is

π̂m,N (z) =
∑

k:Zik
=z

(
k

N

)m

−
(
k − 1

N

)m

.

This procedure only requires sorting the outputs according to their rewards and therefore has complexity of O(N logN).

C. Effect of Reward Noise and Base Model’s Success Probability
In this section, we investigate the effect of the base model and reward noise on the success probability of SC, BoN, and
MoB. We consider a synthetic setup for a TRUE/FALSE question, where the correct answer is TRUE. Let p be the success
probability of the base model, which is the probability that the base model generates a solution reaching the correct final
answer.

Assume roracle is an oracle reward model that always assigns the reward of 1 to solutions that reach the correct answer, and 0
otherwise:

roracle(Y) =

{
1, if f(Y) = TRUE,
0, if f(Y) = FALSE.

To investigate the effect of an imperfect reward model, we consider a noisy reward model rnoisy that is equal to the oracle
reward plus an exponentially distributed noise:

rnoisy(Y) = roracle(Y) + Exp(1/β).

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Majority of the Bests: Improving Best-of-N via Bootstrapping

0.2 0.4 0.6 0.8 1.0
Base Success Probability

2 2

2 1

20

21

22

23

Re
wa

rd
 N

oi
se

 S
ca

le
 (

)

SC

0.2 0.4 0.6 0.8 1.0
Base Success Probability

BoN

0.2 0.4 0.6 0.8 1.0
Base Success Probability

MoB

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

ro
ba

bi
lit

y

Figure 7: Success probability of SC, BoN, and MoB with infinite budget for different values of the base model’s success
probability and reward noise.

The parameter β controls the noise level, where a larger β indicates a noisier reward model. To see this, note that the
expected value and the standard deviation of the noise are equal to β. If β is large, the noise will dominate the signal from
the oracle reward, and the noisy reward model will be less informative.

We visualize the success probability of SC, BoN, and MoB with infinite budget N = ∞ in Figure 7. SC’s success probability,
as shown in the left plot of Figure 7, is independent of the reward noise. It is either equal to 1 when p > 0.5 (the correct
answer is the most probable answer), or equal to 0 otherwise. For BoN, consider two extreme cases for the reward noise.
When the reward model is perfect (β small), BoN’s success probability is 1 regardless of the base model’s success probability.
This is shown in the bottom edge of the middle plot in Figure 7. In this case, BoN is preferable over SC. On the other
hand, when the reward model is completely uninformative (β large), BoN’s success probability is equal to the base model’s
success probability. This is shown in the top edge of the middle plot in Figure 7. As shown by Wang et al. (2022), SC has
a higher accuracy over the base model and, in this case, BoN. MoB’s success probability is equal to 1 if BoN’s success
probability is at least 0.5, as shown in the right plot of Figure 7. We see that MoB shows a similar behavior to SC when the
reward model is uninformative, and when the reward model is perfect, MoB behaves like BoN.

In this setup, we can study the success probability of BoN and MoB with an infinite budget N = ∞ theoretically. BoN’s
success probability depends on the reward’s noise level. It can be calculated from Theorem A.1 as

BoN success probability with infinite budget =
e1/βp

1− p+ e1/βp
.

Note that if the reward model is perfect (β = 0), both the numerator and denominator go to infinity, and we reach the success
probability of 1. With B = ∞, the noise becomes dominant, and BoN’s success probability remains equal to the base model
p even with infinite budget. Due to Theorem 4.1, MoB solves the problem if the correct answer is BoN’s most probable
outcome. Therefore,

MoB success probability with infinite budget =

{
1, if e1/βp

1−p+e1/βp
> 0.5,

0, otherwise.

This is favorable over BoN in scenarios where BoN still prefers the correct answer, as it can find the correct answer reliably
without randomness.

D. Implementation and Experiment Details
In this section, we provide more details on how the experiments in the paper are conducted.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Majority of the Bests: Improving Best-of-N via Bootstrapping

D.1. Evaluation Experiments

Benchmarks. We run our experiments on five popular benchmarks. MATH500, first introduced by Lightman et al. (2023),
is a randomly sampled subset of 500 math questions with short final answers from the MATH dataset (Hendrycks et al.,
2021). We use the math and chemistry questions from the MMLU-Pro benchmark (Wang et al., 2024b), which includes
multiple-choice questions on a variety of topics. We also run our experiments on GSM8K (Cobbe et al., 2021a) that contains
grade school math questions in short final answer format. Lastly, we use the CommonsenseQA benchmark (Talmor et al.,
2019) that tests the model’s commonsense reasoning through multiple-choice questions. For all benchmarks, we randomly
select 500 questions for our experiments.

Implementation Details. In the implementation of MoB, we always use the closed-form calculation of π̂m,N discussed in
Appendix B to efficiently perform the bootstrap estimate. Therefore, in the actual implementation, there is no parameter B
and we effectively operate as if B = ∞ was chosen. We use Huggingface’s Python library for all the output generations. We
always use temperature 1 for inference and no extra modification of the next-token sampling procedure. The final answer
extraction, evaluation, and standard errors are calculated using the Language Model Evaluation Harness (Gao et al., 2024).
For each question, we generate 512 outputs, and for each budget size N , we run each algorithm ⌊512/N⌋ times to provide
better standard errors for the accuracies. For GSM8K, we use a 5-shot prompt. For MATH and MMLU-Pro questions, we
use the zero-shot chain-of-thought prompting used in the official Llama3.1 models evaluation (Grattafiori et al., 2024) on
MATH (Hendrycks et al., 2021). This prompt and the prompt used for CommonsenseQA are given in the following.

Prompt for MATH and MMLU-Pro

Solve the following <topic> problem efficiently and clearly:
- For simple problems (2 steps or fewer): Provide a concise solution with
minimal explanation.
- For complex problems (3 steps or more): Use this step-by-step format:
Step 1: [Concise description] [Brief explanation and calculations]
Step 2: [Concise description] [Brief explanation and calculations]
...
Regardless of the approach, always conclude with:
Therefore, the final answer is: $\\boxed{answer}$. I hope it is correct.
Where [answer] is just the final number or expression that solves the
problem.
Problem: <problem from dataset>

Prompt for CommonsenseQA

Use commonsense to solve the following multiple choice question. First
explain your solution and then give the final answer. Always finish your
answer with "the answer is (X)" where X is the correct letter choice.
Question:: <problem from dataset>

D.2. Experiments for Motivation, Oracle MoB, and Selection of Bootstrap Subset Size

In Figure 2, we discussed the success probability of BoN, which requires an estimate of BoN’s output distribution. We
use the same technique as in MoB to estimate this output distribution. To minimize the error of this approximation, we
specifically generate 1,400 outputs for the math problems in MMLU-Pro with Qwen2.5-3b-instruct . Then, we use
π̂N,1400, as defined in Section 4.2 as an estimate for πN . Same technique is used in Figure 3 where the mode of π̂N,1400 is
chosen as the output of oracle MoB, and Figure 4 to where the distribution estimation error is calculated with respect to
π̂m,1400 instead of the true πm.

In Figure 5, we consider seven fixed schedules for m, specifically m = ⌊Nα⌋ for α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. At any
budget N , we compared the accuracy of MoB with adaptive m against the highest accuracy among the seven instantiations
of fixed schedule MoB.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Majority of the Bests: Improving Best-of-N via Bootstrapping

E. Additional Experimental Results
In this section, we provide additional experimental results for all 30 setups.

E.1. Adaptive Subset Size Selection

In Section 4, we compared MoB with adaptive choice of m with the optimal choice of m. We provide this compari-
son in MATH500 (Figure 8), MMLU-Pro-Math (Figure 9), MMLU-Pro-Cham (Figure 10), GSM8K (Figure 11), and
CommonsenseQA (Figure 12).

0 20 40 60 80 100 120
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650
Llama3.1-8B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
Gemma2-9B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

 (%
)

GR
M

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.45

0.50

0.55

0.60

0.65

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

MoB (Optimal m)
MoB (Adaptive)
BoN

Figure 8: Comparison of MoB with adaptive m against MoB with optimal m on the MATH500 dataset with ArmoRM (Up)
and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models.
Shaded areas show standard error.

E.2. Evaluation Experiments

We compare MoB with baselines in MATH500 (Figure 13, Table 3), MMLU-Pro-Math (Figure 14, Table 4), MMLU-Pro-
Cham (Figure 15, Table 5), GSM8K (Figure 16, Table 6), and CommonsenseQA (Figure 17, Table 7).

Table 3: Results on MATH500 across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 52.20±1.12 51.65±1.12 60.50±1.09 53.85±1.11 56.55±1.11 64.15±1.07

SC 52.65±1.12 61.15±1.09 66.30±1.06 52.65±1.12 61.15±1.09 66.30±1.06

WBoN 53.60±1.12 63.10±1.08 67.05±1.05 56.00±1.11 63.65±1.08 67.30±1.05

MoB (Ours) 56.65±1.11 62.50±1.08 68.25±1.04 57.80±1.10 64.15±1.07 69.80±1.03

↑MoB over BoN 4.45±1.57 10.85±1.56 7.75±1.51 3.95±1.57 7.60±1.54 5.65±1.48

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 20 40 60 80 100 120
0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Llama3.1-8B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Gemma2-9B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

GR
M

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.50

0.55

0.60

0.65

0.70

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

MoB (Optimal m)
MoB (Adaptive)
BoN

Figure 9: Comparison of MoB with adaptive m against MoB with optimal m on the MMLU-Pro-Math dataset with ArmoRM
(Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base
models. Shaded areas show standard error.

0 20 40 60 80 100 120
0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120

0.40

0.45

0.50

0.55

0.60
Llama3.1-8B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120

0.40

0.45

0.50

0.55

0.60
Gemma2-9B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

 (%
)

GR
M

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.40

0.45

0.50

0.55

0.60

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

MoB (Optimal m)
MoB (Adaptive)
BoN

Figure 10: Comparison of MoB with adaptive m against MoB with optimal m on the MMLU-Pro-Chem dataset with
ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right)
base models. Shaded areas show standard error.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 20 40 60 80 100 120
0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Llama3.1-8B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Gemma2-9B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

 (%
)

GR
M

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.78

0.79

0.80

0.81

0.82

MoB (Optimal m)
MoB (Adaptive)
BoN

Figure 11: Comparison of MoB with adaptive m against MoB with optimal m on the GSM8K dataset with ArmoRM (Up)
and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models.
Shaded areas show standard error.

0 20 40 60 80 100 120
0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120

0.73

0.74

0.75

0.76

0.77

0.78

0.79
Llama3.1-8B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
0.76

0.77

0.78

0.79

0.80

0.81

0.82

Gemma2-9B

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Ac
cu

ra
cy

 (%
)

GR
M

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

MoB (Optimal m)
MoB (Adaptive)
BoN

0 20 40 60 80 100 120
Number of Generations (N)

0.76

0.77

0.78

0.79

0.80

0.81

0.82

MoB (Optimal m)
MoB (Adaptive)
BoN

Figure 12: Comparison of MoB with adaptive m against MoB with optimal m on the CommonsenseQA dataset with
ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B (Middle), and Gemma2-9B (Right) base models. Shaded
areas show standard error.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Majority of the Bests: Improving Best-of-N via Bootstrapping

Table 4: Results on MMLU-Pro-Math across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 60.45±1.09 61.40±1.09 65.95±1.06 56.15±1.11 64.10±1.07 66.10±1.06

SC 49.95±1.12 62.95±1.08 65.60±1.06 49.95±1.12 62.95±1.08 65.60±1.06

WBoN 52.25±1.12 66.45±1.06 66.70±1.05 56.45±1.11 60.05±1.10 64.35±1.07

MoB (Ours) 61.55±1.09 66.70±1.05 69.80±1.03 59.35±1.10 69.05±1.03 69.30±1.03

↑MoB over BoN 1.10±1.54 5.30±1.52 3.85±1.48 3.20±1.56 4.95±1.49 3.20±1.48

Table 5: Results on MMLU-Pro-Chem across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 56.60±1.11 49.70±1.12 48.05±1.12 49.25±1.12 53.05±1.12 49.00±1.12

SC 43.45±1.11 50.35±1.12 52.50±1.12 43.45±1.11 50.35±1.12 52.50±1.12

WBoN 45.45±1.11 57.65±1.11 53.30±1.12 57.25±1.11 49.75±1.12 53.10±1.12

MoB (Ours) 58.05±1.10 57.40±1.11 54.75±1.11 54.60±1.11 60.75±1.09 56.45±1.11

↑MoB over BoN 1.45±1.56 7.70±1.57 6.70±1.58 5.35±1.58 7.70±1.56 7.45±1.57

Table 6: Results on GSM8K across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 84.20±0.82 89.00±0.70 83.85±0.82 81.20±0.87 87.15±0.75 80.95±0.88

SC 80.55±0.89 88.10±0.72 80.40±0.89 80.55±0.89 88.10±0.72 80.40±0.89

WBoN 80.75±0.88 88.70±0.71 81.10±0.88 79.45±0.90 77.75±0.93 81.25±0.87

MoB (Ours) 83.30±0.83 91.75±0.62 83.85±0.82 81.15±0.87 90.50±0.66 82.85±0.84

↑MoB over BoN -0.90±1.17 2.75±0.93 0.00±1.16 -0.05±1.24 3.35±1.00 1.90±1.22

Table 7: Results on CommonsenseQA across all base and reward models (N = 128).

ArmoRM GRM
Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B Gemma-2-9B LLaMA3.1-8B Qwen2.5-3B

BoN 81.20±0.87 77.80±0.93 80.15±0.89 80.55±0.89 78.05±0.93 77.70±0.93

SC 79.25±0.91 75.75±0.96 76.20±0.95 79.25±0.91 75.75±0.96 76.20±0.95

WBoN 80.05±0.89 76.75±0.94 76.60±0.95 49.80±1.12 36.35±1.08 54.90±1.11

MoB (Ours) 81.20±0.87 77.40±0.94 79.40±0.90 81.45±0.87 78.45±0.92 77.40±0.94

↑MoB over BoN 0.00±1.24 -0.40±1.32 -0.75±1.27 0.90±1.24 0.40±1.30 -0.30±1.32

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 20 40 60 80 100 120
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650
Llama3.1-8B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
Gemma2-9B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

 (%
)

GR
M

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.45

0.50

0.55

0.60

0.65

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

BoN
SC
WBoN
MoB (Adaptive)

Figure 13: Comparison of MoB with the baselines on the MATH500 dataset with ArmoRM (Up) and GRM (Down) reward
models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard
error.

0 20 40 60 80 100 120
0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Llama3.1-8B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Gemma2-9B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

 (%
)

GR
M

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.50

0.55

0.60

0.65

0.70

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

BoN
SC
WBoN
MoB (Adaptive)

Figure 14: Comparison of MoB with the baselines on the MMLU-Pro-Math dataset with ArmoRM (Up) and GRM (Down)
reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show
standard error.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 20 40 60 80 100 120
0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120

0.40

0.45

0.50

0.55

0.60
Llama3.1-8B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120

0.40

0.45

0.50

0.55

0.60
Gemma2-9B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

 (%
)

GR
M

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.40

0.45

0.50

0.55

0.60

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.40

0.45

0.50

0.55

BoN
SC
WBoN
MoB (Adaptive)

Figure 15: Comparison of MoB with the baselines on the MMLU-Pro-Chem dataset with ArmoRM (Up) and GRM (Down)
reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show
standard error.

0 20 40 60 80 100 120
0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Llama3.1-8B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Gemma2-9B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

 (%
)

GR
M

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.78

0.79

0.80

0.81

0.82

BoN
SC
WBoN
MoB (Adaptive)

Figure 16: Comparison of MoB with the baselines on the GSM8K dataset with ArmoRM (Up) and GRM (Down) reward
models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard
error.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Majority of the Bests: Improving Best-of-N via Bootstrapping

0 20 40 60 80 100 120
0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

 (%
)

Ar
m

oR
M

Qwen2.5-3B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120

0.73

0.74

0.75

0.76

0.77

0.78

0.79
Llama3.1-8B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
0.76

0.77

0.78

0.79

0.80

0.81

0.82

Gemma2-9B

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

 (%
)

GR
M

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.4

0.5

0.6

0.7

0.8

BoN
SC
WBoN
MoB (Adaptive)

0 20 40 60 80 100 120
Number of Generations (N)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

BoN
SC
WBoN
MoB (Adaptive)

Figure 17: Comparison of MoB with the baselines on the CommonsenseQA dataset with ArmoRM (Up) and GRM (Down)
reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show
standard error.

23

