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Abstract

In this paper, we present two new algorithms for covariance estimation under
concentrated differential privacy (zCDP). The first algorithm achieves a Frobenius
error of Õpd1{4

?
tr{

?
n `

?
d{nq, where tr is the trace of the covariance matrix.

By taking tr “ 1, this also implies a worst-case error bound of Õpd1{4{
?
nq, which

improves the standard Gaussian mechanism’s Õpd{nq for the regime d ą rΩpn2{3q.
Our second algorithm offers a tail-sensitive bound that could be much better
on skewed data. The corresponding algorithms are also simple and efficient.
Experimental results show that they offer significant improvements over prior
work.

1 Introduction

Consider a dataset represented by a matrix X P Rdˆn, where each column Xi, i “ 1, . . . , n
corresponds to an individual’s information. As standard in the literature, we assume that all the Xi’s
live in Bd, the d-dimensional ℓ2-unit ball centered at the origin. In this paper, we revisit the problem
of estimating the (empirical) covariance matrix ΣpXq :“ 1

n

ř

i XiX
T
i “ 1

nXXT under differential
privacy (DP), a fundamental problem in high-dimensional data analytics and machine learning that
requires little motivation. We often write ΣpXq as Σ when the context is clear. As with most prior
work, we use the Frobenius norm }rΣ ´ Σ}F to measure the error of the estimated covariance rΣ. To
better focus, in the introduction we state all results under concentrated different privacy (zCDP) [10];
extensions of our results to pure-DP are given in Appendix I.

1.1 A Trace-sensitive Algorithm

For any symmetric matrix A, we use PrAs and ΛrAs to denote its matrices of eigenvectors and
eigenvalues, respectively, such that A “ PrAsΛrAsPrAsT ; we use λirAs to denote its ith largest
eigenvalue. When A “ Σ “ ΣpXq, we simply write P “ PrΣs,Λ “ ΛrΣs, λi “ λirΣs, so that
Λ “ diagpλ1, ¨ ¨ ¨ , λdq and Σ “ PΛPT . Let P “ rP1 P2 ¨ ¨ ¨ Pds, where Pi is the orthonormal
basis vector corresponding to λi. Rudimentary linear algebra yields λk “ 1

n

ř

ipP
T
k Xiq

2 for
1 ď k ď d and ||Xi||

2
2 “

ř

kpPT
k Xiq

2 for 1 ď i ď n. Thus, it follows that

trrΣs “ trrΛs “
ÿ

k

λk “
ÿ

k

1

n

ÿ

i

pPT
k Xiq

2 “
1

n

ÿ

i

ÿ

k

pPT
k Xiq

2 “
1

n

ÿ

i

||Xi||
2
2.

That is, 0 ď trrΛs ď 1 is the average ℓ2 norm (squared) of the Xi’s, and we simply write it as tr.

Recall that it is assumed that all the Xi’s live in Bd. In practice, this is enforced by assuming an
upper bound B on the norms and scaling down all Xi by B. As one often uses a conservatively
large B, typical values of tr can be much smaller than 1, so a trace-sensitive algorithm would be
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Figure 1: Currently known worst-case error bounds (both axes are in log scale).

more desirable. Indeed, Amin et al. [2] take this approach, describing an algorithm with error1

Õpd3{4
?
tr{

?
n `

?
d{nq under zCDP2. Note that the

?
d{n term inherits from mean estimation and

the first term is the “extra” difficulty for covariance estimation. In this paper, we improve this term to
d1{4

?
tr{

?
n (we have a similar, albeit lesser, improvement under pure-DP; see Appendix I). Our

algorithm is very simple: We first estimate Λ using the Gaussian mechanism (this is the same as
in [2, 22]), then we estimate P by doing an eigendecomposition of Σ masked with Gaussian noise.
Intuitively, we obtain a

?
d-factor improvement over the iterative methods of [2, 22], because we can

obtain all eigenvectors from one noisy Σ, while the iterative methods must allocate the privacy budget
to all d eigenvectors. Our algorithm is also more efficient, performing just two eigendecompositions
and one matrix multiplication, whereas the algorithm in [2, 22] needs Opdq such operations.

Implication to worst-case bounds. Covariance matrix has also been studied in the traditional
worst-case setting, i.e., the bound should only depend on d and n. Dwork et al. [17] show that the
ℓ2-sensitivity of Σ, i.e., maxX„X1 }ΣpXq ´ ΣpX1q}F where X „ X1 denotes two neighboring
datasets that differ by one column, is Op1{nq. Thus, the standard Gaussian mechanism achieves an
error of Õpd{nq by adding an independent Gaussian noise of scale Õp1{nq to each of the d2 entries
of Σ. By taking tr “ 1, our trace-sensitive bound degenerates into Õpd1{4{

?
nq. Note that the

?
d{n

term is dominated by d1{4{
?
n for d ă Õpn2q, which is the parameter regime that allows non-trivial

utility (i.e., the error is less than 1).

To better understand the situation, it is instructive to compare covariance estimation with mean
estimation (where data are also drawn from the ℓ2 unit ball and the error is measured in ℓ2 norm), as
the hardness of covariance estimation lies between d-dimensional mean estimation (only estimating
the diagonal entries of Σ) and d2-dimensional mean estimation (treating Σ as a d2-dimensional
vector). This observation implies a lower bound rΩp

?
d{nq following from the same lower bound

for mean estimation [19]3, and an upper bound Õpd{nq attained by the Gaussian mechanism. For
d ă Op

?
nq, Kasiviswanathan et al. [23] prove a higher lower bound4 Ω̃pd{nq, which means that

the complexity of covariance estimation is same as d2-dimensional mean estimation in the low-
dimensional regime, so one cannot hope to beat the Gaussian mechanism for small d. However, in
the high-dimensional regime, our result indicates that the covariance problem is strictly easier, due
to the correlations of the d2 entries of Σ. Another interesting consequence is that our error bound
has utility for d up to Õpn2q (utility is lost when the error is Õp1q, as returning a zero matrix can
already achieve this error). This is the highest d that allows for any utility, since even mean estimation
requires d ă Õpn2q to have utility under zCDP [19, 10]. We pictorially show the currently known

1We use the Õ notation to suppress the dependency on the privacy parameters and all polylogarithmic factors.
We use e as the base of log (unless stated otherwise) and define logpxq “ 1 for any x ď e.

2Their paper states the error bound under pure-DP and for estimating XXT (i.e., without normalization by
1{n); we show how this bound is derived from their result in Appendix C.

3This paper proves the lower bound under the statistical setting; in Appendix D, we show how it implies the
claimed lower bound under the empirical setting.

4Their lower bound is under approximate-DP, which also holds under zCDP.
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(worst-case) upper and lower bounds in Figure 1. It remains an interesting open problem to close the
gap for rΩp

?
nq ă d ă Õpn2q.

Through private communication with Aleksandar Nikolov, it is observed that the projection mecha-
nism [31, 15] can also be shown to have error Õpd1{4{

?
nq when applied to the covariance problem.

In Appendix E, we make this connection more explicit, while also giving an efficient implementation.
However, the projection mechanism is not trace-sensitive.

1.2 A Tail-sensitive Algorithm

A trace-sensitive bound only makes use of the average ℓ2 norm, which cannot capture the full
distribution. Next, we design an algorithm with an error bound that more closely depends on the
distribution of the norms. We characterize this distribution using the τ -tail (Ip¨q is the indicator
function):

γpX, τq “
1

n

ÿ

i

}Xi}
2
2 ¨ Ip}Xi}2 ą τq, τ P r0, 1s. (1)

Note that γpX, τq decreases as τ increases. In particular, γpX, 0q “ tr, γpX, 1q “ 0.

A common technique to reduce noise, at the expense of some bias, is to clip all the Xi’s so that they
have norms at most τ , for some threshold τ . This yields an error of NoisepX, τq ` γpX, τq, where
NoisepX, τq denotes the error bound of the mechanism when all the Xi’s have norm bounded by
τ , and γpX, τq is the (additional) bias caused by clipping. Opting for the better of the Gaussian
mechanism or our trace-sensitive mechanism, we have

NoisepX, τq “ Õ

˜

min

˜

τ2d

n
,
τd1{4

?
tr

?
n

`
τ2

?
d

n

¸¸

. (2)

The technical challenge is therefore choosing a good τ in a differentially private manner. We design
a DP mechanism to choose the optimal τ up to a polylogarithmic multiplicative factor and an
exponentially small additive term. It also adaptively selects the better of Gaussian mechanism or the
trace-sensitive mechanism depending on the relationship between d, n, and a privatized tr. More
precisely, our adaptive mechanism achieves an error of

Õ
´

min
τ

pNoisepX, τq ` γpX, τqq ` 2´dn
¯

. (3)

Note that this tail-sensitive bound is always no worse (modulo the 2´dn term) than NoisepX, 1q

(i.e., without clipping), and can be much better for certain norm distributions. In particular, the
tail-sensitive bound would work very well on many real datasets with skewed distributions, e.g.,
most data vectors have small norms with a few having large norms. For example, suppose d “ n3{4,
and a constant number of data vectors have ℓ2 norm 1 while the others have norm n´1{4. Then?
tr “ Θpn´1{4q, so NoisepX, 1q takes the trace-sensitive bound, which is Õpn´9{16q. On the other

hand, (3) is at most Õpn´13{16q by taking τ “ n´1{4.

2 Related Work

Mean estimation and covariance estimation are perhaps the most fundamental problems in statistics
and machine learning, and how to obtain the best estimates while respecting individual’s privacy
has attracted a lot of attention in recent years. Mean estimation under differential privacy is now
relatively well understood, with the optimal worst-case error being Θ̃p

?
d{nq [19], achieved by the

standard Gaussian mechanism [17]. In contrast, the covariance problem is more elusive. As indicated
in Figure 1, its complexity is probably a piecewise linear (in the log-log scale) function.

When most data have norms much smaller than the upper bound given a priori, the worst-case
bounds above are no longer optimal. In these cases, it is more desirable to have an error bound that is
instance-specific. Clipping is a common technique for mean estimation [3, 18, 4, 34, 29] and it is
known that running the Gaussian mechanism after clipping X with a certain quantile of the norms of
the Xi’s achieves instance-optimality in a certain sense [3, 18]. However, for covariance estimation,
we show in Appendix F that no quantile can be the optimal clipping threshold achieving the bound in

3



(3). Nevertheless, the bound in (3) is only achieving the optimal clipping threshold; we cannot say
that is instance-optimal, since Noisep¨q is not even known to be worst-case optimal.

Closely related to covariance estimation are the PCA problem and low-rank approximation. Instead
of finding all eigenvalues and eigenvectors, they only aim at finding the largest one or a few. For
these problems, iterative methods [2, 22, 38, 17, 11, 36] should perform better than the Gaussian
mechanism or our algorithm, both of which try to recover the full covariance matrix.

Many covariance estimation algorithms have been proposed under the statistical setting, where
the Xi’s are i.i.d. samples drawn from a certain distribution, e.g., a multivariate Gaussian [19, 9,
8, 1, 21, 28, 5, 25]. Instead of the Frobenius error, many of them adopt the Mahalanobis error
}rΣ´Σ}Σ :“ }Σ´1{2

rΣΣ´1{2 ´ I}F , which can be considered as a normalized version of the former.
It is known that λd}A ´ Σ}Σ ď }A ´ Σ}F ď λ1}A ´ Σ}Σ, so when ΣD is well-conditioned, i.e.,
λ1{λd “ Op1q, any Frobenius error directly translates to a Mahalanobis error. However, for the
Mahalanobis error, the more challenging question is how to deal with an ill-conditioned Σ, for which
[19, 8] have provided elegant solutions for the case where D is a multivariate Gaussian. It would be
interesting to see if their methods can be combined with the tail-sensitive techniques in this paper to
solve this problem for other distribution families, in particular, heavy-tailed distributions. For the
lower bound, very recently, Kamath et al. [20] proved a similar lower bound for the low-dimensional
regime as in [23] but under the statistical setting.

3 Preliminaries

3.1 Differential Privacy

We say that X,X1 P Rdˆn are neighbors if they differ by one column, denoted X „ X1.
Definition 1 (Differential Privacy (DP) [16]). For ε ą 0 and δ ě 0, a randomized mechanism
M : Rdˆn Ñ Y satisfies pε, δq-DP if for any X „ X1 and any S Ď Y , PrrMpXq P Ss ď

eε ¨ PrrMpX1q P Ss ` δ.

In particular, we call it pure-DP if δ “ 0; otherwise approximate-DP.
Definition 2 (Concentrated Differential Privacy (zCDP) [10]). For ρ ą 0, a randomized mechanism
M : Rdˆn Ñ Y satisfies ρ-zCDP if for any X „ X1, Dα pMpXq||MpX1qq ď ρ ¨ α for all α ą 1,
where Dα pMpXq||MpX1qq is the α-Rényi divergence between MpXq and MpX1q.

The relationship between these DP definitions is as follows. Pure-DP, also written as ε-DP, implies
ε2

2 -zCDP, which further implies
´

ε2

2 ` ε
b

2 log 1
δ , δ

¯

-DP for any δ ą 0.

To preserve ε-DP for a query Q, a standard mechanism is to add independent Laplace noises with
scale proportional to the (global) ℓ1-sensitivity of Q to each dimension.
Lemma 1 (Laplace Mechanism [13]). Given Q : Rdˆn Ñ Rk, let GSQ :“ maxX„X1 }QpXq ´

QpX1q}1. The mechanism MpXq “ QpXq `
GSQ

ε ¨ Y where Y „ Lapp1qk, preserves ε-DP.

The following composition property of ε-DP allows us to design algorithms in a modular fashion.
Lemma 2 (Basic Composition). If M is an adaptive composition of mechanisms M1,M2, . . . ,Mt,
where each Mi satisfies εi-DP, then M satisfies p

ř

i εiq-DP.

For ρ-zCDP, the standard method is the Gaussian mechanism:
Lemma 3 (Gaussian Mechanism [10]). Given Q : Rdˆn Ñ Rk, let GSQ :“ maxX„X1 }QpXq ´

QpX1q}2. The mechanism MpXq “ QpXq `
GSQ?

2ρ
¨ Y where Y „ N p0, Ikˆkq, preserves ρ-zCDP.

It has been shown that the covariance matrix has an ℓ2-sensitivity of
?
2

n [8]. Thus, the Gaussian
mechanism for covariance, denoted GaussCov, simply adds an independent Gaussian noise with
scale 1?

ρn to each entry of Σ. Considering that Σ is symmetric, symmetric noises also suffice, which
preserve the symmetry of the privatized Σ. More precisely, we draw a random noise matrix W
where wj,k „ N p0, 1q i.i.d. for 1 ď j ď k ď d and wk,j “ wj,k, denoted as W „ SGWpdq. Then
GaussCov outputs rΣGau “ Σ ` 1?

ρn ¨ W.
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A similar composition property exists for ρ-zCDP.

Lemma 4 (Composition Theorem [10]). If M is an adaptive composition of algorithms
M1,M2, . . . ,Mt, where each Mi satisfies ρi-zCDP, then M satisfies p

ř

i ρiq-zCDP.

3.2 The Sparse Vector Technique

The Sparse Vector Technique (SVT) [14] has as input a sequence of scalar queries,
f1pXq, f2pXq, . . . , ftpXq, where each has sensitivity 1, and a threshold T . It aims to find the
first query (if there is) whose answer is approximately above T . See Appendix A for the detailed
algorithm. The SVT has been shown to satisfy ε-DP with following utility guarantee.

Lemma 5 (Extension of Theorem 3.24 in [16]). With probability at least 1´β, SVT returns a k such
that, for any i ă k, fipXq ď T ` 6

ε logp2t{βq, and if k ‰ t ` 1, then fkpXq ě T ´ 6
ε logp2t{βq.

3.3 Concentration Inequalities

Lemma 6 ([26]). Given Y „ N p0, Idˆdq, with probability at least 1 ´ β,

}Y}2 ď ηpd, βq :“

b

d ` 2
a

d logp1{βq ` 2 logp1{βq.

Lemma 7 ([8, 26]). Given W „ SGWpdq, with probability at least 1 ´ β,

}W}2 ď υpd, βq :“ 2
?
d ` 2d1{6 log1{3 d `

6p1 ` plog d{dq1{3q
?
log d

a

logp1 ` plog d{dq1{3qq
` 2

a

2 logp1{βq.

Also, with probability at least 1 ´ β,

}W}F ď ωpd, βq :“

b

d2 ` 2
a

d logp2{βqp1 `
a

2pd ´ 1qq ` 6 logp2{βq.

Ignoring polylogarithmic factors, ηpd, βq and υpd, βq are both in Õp
?
dq, while ωpd, βq is in Õpdq.

These concentration inequalities are very useful for error analysis. For example, the bound on }W}F

immediately implies that GaussCov has error 1?
ρn ¨ ωpd, βq “ Õpd{nq.

4 Trace-sensitive Algorithm

The state-of-the-art trace-sensitive algorithm [2] first obtains an estimate of the eigenvalues, and then
iteratively finds the eigenvectors by the exponential mechanism (EM), so we denote this algorithm as
EMCov. Under zCDP, it has an error of Õpd3{4

?
tr{

?
n `

?
d{nq. Below, we present an algorithm

that is simpler, faster, and more accurate, improving the trace-dependent term by a
?
d-factor.

The first step of our algorithm SeparateCov (shown in Algorithm 1) is basically the same as
EMCov, where we obtain an estimate of the eigenvalues with half of the privacy budget. [2] uses
the Laplace mechanism for pure-DP; for zCDP, we use the Gaussian mechanism, which relies on
the ℓ2-sensitivity of Λ, which we provide in Lemma 10 in the Appendix B. For the eigenvectors, we
use GaussCov to obtain a privatized rΣGau with the other half of the privacy budget, and perform an
eigendecomposition. Finally, we assemble the eigenvalues of eigenvectors to obtain a privatized Σ. It
should be clear that, after computing Σ, SeparateCov just needs two eigendecompositions and one
full matrix multiplication, plus some Opd2q-time operations. On the other hand, EMCov performs
Opdq eigendecompositions and matrix multiplications, plus a nontrivial sampling procedure for the
EM.

That SeparateCov satisfies ρ-zCDP easily follows from the privacy of the Gaussian mechanism and
the composition property. The utility is given by the following theorem:

Theorem 1. Given any ρ ą 0, for any X P Bn
d , and any β ą 0, with probability at least 1 ´ β,

SeparateCov returns a rΣSep such that }rΣSep ´ Σ}F ď 21.25
?
tr

ρ1{4
?
n

¨

c

υ
´

d, β
2

¯

`
?
2

?
ρn ¨ η

´

d, β
2

¯

“

Õ
´

d1{4
?
tr?

n
`

?
d

n

¯

.
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Algorithm 1 SeparateCov

Input: data X P Bn
d ; privacy parameter ρ ą 0.

1: Λ Ð the eigenvalues of Σ “ 1
nXXT

2: rΛSep Ð Λ `
?
2

?
ρn ¨ Y, where Y „ N p0, Idˆdq

3: rΣGau Ð GaussCovpX, ρ
2 q

4: rPSep Ð P
”

rΣGau

ı

5: rΣSep Ð rPSep
rΛSep

rPT
Sep

6: return rΣSep

Remark While SeparateCov strictly improves over EMCov, it does not dominate GaussCov:
When tr ă Õpd3{2{nq, SeparateCov is better; otherwise, GaussCov is better. EMCov is better
than GaussCov for a smaller trace range: tr ă Õp

?
d{nq.

Theorem 1 implies our worst-case bound by taking tr “ 1:
Theorem 2. Given any ρ ą 0, for any X P Bn

d , and any β ą 0, with probability at least 1 ´ β,

SeparateCov returns a rΣSep such that }rΣSep ´ Σ}F “ Õ
´

d1{4
?
n

`
?
d

n

¯

.

5 Tail-sensitive Algorithm

5.1 Clipped Covariance

Clipping is a common technique to reduce the sensitivity of functions at the expense of some bias.
Given τ ě 0 and a vector X P Rd, let ClippX, τq “ min

´

1, τ
}X}2

¯

¨X . Similarly, for any X P Rdˆn,
ClippX, τq denotes the matrix whose columns have been clipped to have norm at most τ . Clipping
can be applied to both GaussCov and SeparateCov with a given τ : just run the mechanism on
1
τ ¨ClippX, τq and scale the result back by τ2. We denote the clipped versions of the two mechanisms
as ClipGaussCov and ClipSeparateCov, respectively.

The following lemma bounds the bias caused by clipping in terms of the τ -tail as defined in (1).
Lemma 8. }ΣpXq ´ ΣpClippX, τqq}F ď 1

n

ř

i

`

}Xi}
2
2 ´ τ2

˘

¨ I p}Xi}2 ě τq ď γpX, τq.

Thus, running the better of ClipGaussCov and ClipSeparateCov yields a total error of
NoisepX, τ, ρ, βq ` γpX, τq, where

NoisepX, τ, ρ, βq “ min

˜

τ2
?
ρn

¨ ωpd, βq,
21.25τ

?
tr

ρ1{4
?
n

¨

d

υ

ˆ

d,
β

2

˙

`

?
2τ2

?
ρn

¨ η

ˆ

d,
β

2

˙

¸

, (4)

which is the exact version of (2). Note that the trace-sensitive term is only scaled by τ , which follows
from the proof of Theorem 1 when all Xi live in τ ¨ Bd.

Ideally, we would like to find the optimal noise-bias trade-off, i.e., achieving an error of
minτ pNoisepX, τq ` γpX, τqq. Two issues need to be addressed towards this goal: The first, minor,
issue is that tr is sensitive, so we cannot use it directly to decide whether to use ClipGaussCov
or ClipSeparateCov. This can be addressed by using a privatized upper bound of tr. The more
challenging problem is how to find the optimal τ in a DP fashion. This problem has been well studied
for the clipped mean estimator [18, 3], where it can be shown that setting τ to be the Õp

?
dq-th

largest }Xi}2 results in the optimal noise-bias trade-off [18]. Then the problem boils down to finding
a privatized quantile, for which multiple solutions exist [18, 12, 32, 6, 37]. For the clipped mean
estimator, using such a quantile of the norms results in the optimal trade-off because NoisepX, τq

takes the simple form Õpτ
?
d{nq. In fact, if we only had ClipGaussCov, setting τ to be the Õpdq-th

largest }Xi}2 would also yield an optimal trade-off, as ClipGaussCov is really just clipped mean in
d2 dimensions. However, due to the trace-sensitive noise term, it is no longer the case. In Appendix F,
we give examples showing that no quantile, whose rank may arbitrarily depend on d, n, tr, can achieve
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an optimal trade-off even ignoring polylogarithmic factors. It thus calls for a new threshold-finding
mechanism, which we describe next.

5.2 Adaptive Covariance: Finding the Optimal Clipping Threshold

Our basic idea is to try successively smaller values τ “ 1, 1
2 ,

1
4 , . . . . As we reduce τ , the noise

decreases while the bias increases. We should stop when they are approximately balanced, which
would yield a near-optimal τ .

To do so in a DP manner, we need to quantify the noise and bias. Consider the bias first. Given a τ ,
we divide the interval pτ, 1s into sub-intervals pτ, 2τ s, p2τ, 4τ s, . . . , p 1

2 , 1s. For any X P X such that
}X}2 P p2s, 2s`1s, let qX “ ClippX, τq and then by Lemma 8,

}XXT ´ qX qXT }F ď 22s`2 ´ τ2. (5)
That is, clipping X can at most lead to 1

n ¨ p22s`2 ´ τ2q bias. Besides, since }X}2 P p2s, 2s`1s, we
have

22s`2 ´ τ2 ď 22s`2 ď 2 ¨ }X}22. (6)
Then, given X, for any s P Z, we define CountspXq :“

ˇ

ˇ

␣

Xi : }Xi}2 P p2s, 2s`1s
(
ˇ

ˇ. It is easy to
see for any X „ X1, Counts differs by at most 1, so does the sum of any subset of Counts’s. We
can define an upper bound on the bias: yBiaspX, τq :“ 1

n ¨
řsă0

s“log2pτq Counts ¨ p22s`2 ´ τ2q. Let
qX “ ClippX, τq. By (5) and (6), we have

1

n
}XXT ´ qXqXT } ď yBiaspX, τq ď 2 ¨ γpX, τq. (7)

By the property of Counts’s, given any τ , the sensitivity of yBiasp¨, τq is bounded by 1
n .

Now we turn to the noise. Recall that NoisepX, τ, ρ, βq is the smaller of two parts. The first part
GaussNoisepτ, ρ, βq :“ τ2 ¨ 1?

ρn ¨ ωpd, βq is independent of X, so can be used directly. The second

part depends on tr, is thus sensitive. Since its sensitivity is 1
n , we can easily privatize it by adding a

Gaussian noise of scale Θ
´

1?
ρn

¯

. For technical reasons, we need to use an upper bound, so we add

Θ
´

logp1{βq
?
ρn

¯

to it so as to obtain a privatized ptr ě tr. Then we set

SeparateNoisepptr, τ, ρ, βq :“ τ ¨
21.25

?
ptr

ρ1{4
?
n

¨

d

υ

ˆ

d,
β

2

˙

` τ2 ¨

?
2

?
ρn

¨ η

ˆ

d,
β

2

˙

,

and use {Noisepptr, τ, ρ, βq :“ min
`

GaussNoisepτ, ρ, βq,SeparateNoisepptr, τ, ρ, βq
˘

as a DP upper
bound of NoisepX, τ, ρ, βq. Note that given ptr, {Noisepptr, τ, ρ, βq is independent of X.

Finally, we run SVT on the following sequence of sensitivity-1 queries with T “ 0:

DiffpX, ptr, τ, ρ, βq :“ n ¨

´

yBiaspX, τq ´ {Noisepptr, τ, ρ, βq

¯

, τ “ 1,
1

2
, . . . , 2´dn.

The SVT would return a τ that balances the bias and noise. After finding such a τ , we choose to run ei-
ther GaussCov or SeparateCov by comparing GaussNoisepτ, ρ, βq and SeparateNoisepptr, τ, ρ, βq.
As the sequence consists of dn queries, SVT has an error of Oplogpdnqq, which, as we will show,
affects the optimality by a logarithmic factor. Meanwhile, the smallest τ we search over will induce
an additive 2´dn error.

The algorithm above can almost give us the desired error bound in (3), except that one thing may
go wrong: The SVT introduces an error that is a logarithmic factor larger than the optimum, but
at least rΩp1{nq. This would be fine as long as there is one Xi with }Xi}2 ě rΩp1q, so that the
optimum error is rΩp1{nq. However, when all the Xi’s have very small norms, say 1{n2, the rΩp1{nq

error from SVT would not preserve optimality. To address this issue, we first find the radius
radpXq “ maxi }Xi}2, and use it to clip X. The following lemma shows that, under DP, it is
possible to find a 2-approximation of radpXq plus an additive b so that only Oplog logp1{bqq vectors
are clipped. This allows us to set b “ 2´dn while only incurring an Oplog dnq error. Nicely, they
match the additive and multiplicative errors that already exist from the SVT, so there is no asymptotic
degradation in the optimality.
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Algorithm 2 AdaptiveCov

Input: data X P Bn
d ; privacy parameter ρ ą 0; high probablity parameter β.

1: r̃ Ð PrivRadiuspX,
?
ρ

2 , β
8 , 2

´2dnq

2: rX Ð ClippX, r̃q

3: rtr Ð 1
n

ř

i } rXi}
2
2

4: ptr Ð min
´

rtr ` 2r̃2?
ρn ¨ N p0, 1q ` 2

?
2r̃2

?
ρn ¨

a

logp8{βq, r̃2
¯

5: t̃ Ð log2pr̃q`1´SVT
´!

Diff
´

rX, ptr, r̃, ρ
2 ,

β
2

¯

,Diff
´

prX, ptr, r̃
2 ,

ρ
2 ,

β
2

¯

, . . . ,Diff
´

prX, ptr, 2´dn, ρ
2 ,

β
2

¯)

, 0,
?
ρ

?
2

¯

6: τ̃ Ð min
´

2t̃`1, r̃
¯

7: if SeparateNoisepptr, τ̃ , ρ
2 ,

β
2 q ě GaussNoisepτ̃ , ρ

2 ,
β
2 q

8: rΣAda Ð ClipGaussCovprX, ρ
2 , τ̃q

9: else
10: rΣAda Ð ClipSeparateCovprX, ρ

2 , τ̃q

11: return rΣAda

Lemma 9 ([12]). For any ε ą 0, β ą 0 and b ą 0, given X P Bn
d , with probability at least

1 ´ β, PrivRadius returns a r̃ “ PrivRadiuspX, ε, β, bq such that r̃ ď 2 ¨ radpXq ` b and

|t}Xi}2 ą r̃u| “ O
´

1
ε log

logpradpXq{bq

β

¯

.

The complete algorithm is given in Algorithm 2. Its privacy follows from the privacy of PrivRadius,
SVT, GaussCov, SeparateCov, and the composition theorem of zCDP; its utility is analyzed in the
following theorem:

Theorem 3. Given any ρ ą 0 and β ą 0, for any X P Bn
d , with probability at least 1 ´ β,

AdaptiveCov returns a rΣAda such that
›

›

›

rΣAda ´ Σ
›

›

›

F
“O

ˆ

min
τ

ˆ

Noise

ˆ

X, τ,
ρ

2
,
β

2

˙

¨
logp1{βq1{4

ρ1{4
¨ logpnq ` γpX, τq ¨

logpdn{βq
?
ρ

˙

` 2´dn

˙

“Õ
´

min
τ

pNoise pX, τq ` γpX, τqq ` 2´dn
¯

.

6 Experiments

We conducted experiments5 to evaluate our algorithms on both synthetic and real-world datasets. We
compare SeparateCov and AdaptiveCov against GaussCov [17], EMCov [2]. We implemented
EMCov in Python following the pseudo-code provided in [2] and the descriptions of the sampling
algorithm in [24]. We also tested CoinPress [8], but since it is designed to minimize the Mahalanobis
error, it does not perform well when measured in Frobenius error. The two distance measures coincide
when Σ is well-conditioned but in this case, CoinPress degenerates into GaussCov. Therefore, we
omit it from the reported results. As a baseline, we include returning a zero matrix, which has error
Optrq, hence a trivial trace-sensitive algorithm. When radpXq is much smaller than 1, it is unfair
for GaussCov and EMCov, so we scale all datasets such that 0.5 ď radpXq ď 1. As a result, we
do not need the step to obtain a private radius in AdaptiveCov, either. Each experiment is repeated
50 times, and we report the average error. Furthermore, we have also conducted experiments under
pure-DP; the results can be found in Appendix J.

6.1 Synthetic Datasets

We generate synthetic datasets by first following the method in [2], to obtain a matrix X “ ZU,
where U P Rdˆd is sampled from Up0, 1q, and Z P Rnˆd is sampled from N p0, Iq. Then the vectors
in X are adjusted to be centred at 0 and their norms scaled. In [2], the vectors are scaled to have unit
ℓ2 norm; in our experiments, to better control tr and data skewness, we scale the norms so that they

5The code can be found at https://github.com/hkustDB/PrivateCovariance.
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Figure 2: Results on synthetic datasets fixing tr “ 1.
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Figure 3: Results on synthetic datasets as d, n,N or ρ varies.

follow the Zipf’s law. More precisely, we divide the norms into N bins. The number of vectors in the
k-th bin is proportional to 1{ks and their norm is 2k´N . The parameter s characterizes the skewness,
which we fix as s “ 3. Note that N “ 1 corresponds to the unit-norm case with tr “ 1.

The results on tr “ 1 case are shown in Figure 2, which correspond to the worst-case bounds. The ρ
here is fixed at 0.1 and we examine the error growth w.r.t. d for n “ 1000, 4000, 16000. The results
generally agree with the theory: For low d, GaussCov is (slightly) better than SeparateCov, while
the latter is much better for high d. AdaptiveCov is able to choose the better of the two adaptively,
with a small cost due to allocating some privacy budget to estimate tr. Actually, if AdaptiveCov is
given the precondition that all norms are 1, this extra cost can be saved.

Next, we vary one of the parameters while fixing the others at their default values d “ 200, n “ 50000,
N “ 4 and ρ “ 0.1, and the results are reported in Figure 3. The most interesting case is Figure 3(a),
where we increase N , hence reducing tr, which demonstrates the trace-sensitive bounds. Clearly,
GaussCov is not trace-sensitive, while the other 4 methods are. In fact, returning the zero matrix is
the best trace-sensitive algorithm if tr is sufficiently small. However, this may not be very meaningful
in practice, as N “ 25 means that most data have norm 2´31 but a few have norm 1. These few
may be outliers and should be removed anyway. Figure 3(b)–(d) shows that higher d, smaller n,
and smaller ρ all have similar effects, i.e., SeparateCov becomes better while GaussCov becomes
worse, while AdaptiveCov is able to pick the better one.
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Figure 4: Results on MNIST dataset.

6.2 Real-world Datasets

We also evaluate the algorithms on two real-world datasets. The first dataset is the MNIST [27]
dataset, which contains images of handwritten digits. We use its training dataset which contains
60, 000 images represented as vectors in Zd

255, where d “ 784 “ 28 ˆ 28. These vectors are
normalized by 255

?
d in the experiments. We estimate rΣ using samples containing all the digits, we

also estimate rΣ corresponding to individual digits (reported in the Appendix J). In the first case, rΣ
can be used for further dimensionality reduction analysis; in the second case, individual rΣ can be
used for modelling the distributions of individual digits, which together can be used in a collective
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(b) d “ 128, tr “ 1.
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(c) d “ 512, tr “ 1.
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Figure 5: Results on the news dataset.

model for classification (e.g. using a mixture model). The second dataset contains news commentary
data [33] consisting of approximately 15, 000 articles, each containing 500 ´ 4300 words, which we
convert into vectors of various dimensions using the hashing trick implemented in the scikit-learn
package. In this case, the estimated rΣ can be used to help with further feature selection for NLP
models, for example. These vectors are normalized to have unit ℓ2 norm or normalized by the max ℓ2
norm.

The experimental results on these two real dataset are shown in Figure 4 and 5, where we vary n, d,
and ρ, respectively. On these results, we see that GaussCov never outperforms SeparateCov, except
for a very small advantage in a few cases where we have tr “ 1, a low d, and a high ρ. Another
interesting observation is that AdaptiveCov outperforms both GaussCov and SeparateCov in many
cases, something that is not apparent on the synthetic datasets. We believe that this is because these
real datasets have heavier tails than the Zipf distribution (we used s “ 3 for Zipf), which makes
the adaptive clipping threshold selection more effective. This really demonstrates the benefits of a
tail-sensitive bound.
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