
Multi-Epoch Matrix Factorization
Mechanisms for Private Machine Learning

Christopher A. Choquette-Choo 1 H. Brendan McMahan 1 Keith Rush 1 Abhradeep Thakurta 1

Abstract
We introduce new differentially private (DP)
mechanisms for gradient-based machine learn-
ing (ML) with multiple passes (epochs) over a
dataset, substantially improving the achievable
privacy-utility-computation tradeoffs. We for-
malize the problem of DP mechanisms for adap-
tive streams with multiple participations and in-
troduce a non-trivial extension of online ma-
trix factorization DP mechanisms to our setting.
This includes establishing the necessary theory
for sensitivity calculations and efficient compu-
tation of optimal matrices. For some applications
like >10, 000 SGD steps, applying these optimal
techniques becomes computationally expensive.
We thus design an efficient Fourier-transform-
based mechanism with only a minor utility loss.
Extensive empirical evaluation on both example-
level DP for image classification and user-level
DP for language modeling demonstrate substan-
tial improvements over all previous methods, in-
cluding the widely-used DP-SGD. Though our
primary application is to ML, our main DP re-
sults are applicable to arbitrary linear queries and
hence may have much broader applicability.

1. Introduction
Differentially private stochastic gradient descent (DP-
SGD) is the de facto standard algorithm for DP machine
learning (ML) (Song et al., 2013; Bassily et al., 2014;
Abadi et al., 2016a). However, obtaining state-of-the-
art privacy-utility tradeoffs critically requires use of pri-
vacy amplification techniques like shuffling (Erlingsson
et al., 2019; Feldman et al., 2022) or (Poisson) subsam-
pling (Bassily et al., 2014; Zhu & Wang, 2019; Wang
et al., 2019). These in turn require strong assumptions on

1Google Research. Correspondence to:
<{cchoquette,krush,mcmahan,athakurta}@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

the manner in which data is processed that often do not
hold under the processing performed by centralized ML
pipelines, and are particularly challenging in cross-device
federated learning (Kairouz et al., 2021).

Kairouz et al. (2021) recently proposed the DP-FTRL
framework that avoids reliance on amplification by
sampling, instead leveraging DP streaming of prefix
sums (Dwork et al., 2010; Chan et al., 2011; Honaker,
2015). DP-FTRL can match (or outperform) DP-SGD in
privacy-utility tradeoffs. This algorithm enabled McMahan
& Thakurta (2022) to train the first known provably DP ML
model on user data in a production setting.

Several works have since focused on this primitive as
an instantiation of the streaming matrix mechanism (see
Eq. (1)) (Henzinger et al., 2022; Fichtenberger et al., 2022;
Denisov et al., 2022); in particular, Denisov et al. (2022)
showed that leveraging the flexibility inherent in this for-
mulation to design optimal matrices led to significant em-
pirical improvements, though their work was restricted to
the single-epoch setting.

Our Contributions This single-epoch restriction is un-
natural from the perspective of modern ML, where many
passes over the training data are common. We extend ma-
trix factorization mechanisms for ML to the multi-epoch
setting by tackling several intertwined problems. This en-
ables state-of-the-art mechanisms for DP-ML, with poten-
tially broader applicability to, e.g., online PCA, marginal
estimation, and top-k selection, as discussed in Denisov
et al. (2022).

1) We provide a framework for computing the sensitivity
of matrix mechanisms under general participation schemas
with vector contributions: these are essential to ML appli-
cations where we wish to privatize high-dimensional mod-
els. However, the efficient computation of optimal ma-
trix factorizations only allows for sensitivity constraints
on scalar contributions. In the single participation case a
trivial argument equates sensitivity under scalar and vector
contributions and the computation of sensitivity is O(n)
by inspection. The situation becomes dramatically more
complex under multiple participations. To our surprise,
computing even scalar sensitivity can be NP-hard, and the

1

Multi-Epoch Matrix Factorization

Figure 1: Our optimal multi-epoch matrix and FFT-based mechanisms outperform all others, including DP-SGD
with amplification, as low as ε ≈ 4. Using our sensitivity calculation of Thm. 2.1 and stamping (Sec. 5), we optimize
a single pass (k = 1) matrix of Denisov et al. (2022) but apply it here with > 1 pass. We use an online Honaker-based
decoder equivalent to that of Kairouz et al. (2021) except for a significant improvement to tree-completion in App. D.3.
Models trained for 20 epochs on CIFAR10 with a batch size of 500. We repeat each setting 12 times and show 95%
bootstrapped confidence intervals. Empirical setup is in Sec. 5.2.

vector-to-scalar reduction does not hold in general (see
App. H.2). Nevertheless, we establish sufficient conditions
for both computational tractability and the necessary reduc-
tion (Cor. 2.1, Thm. H.1), enabling our next contribution:

2) We obtain a closed-form representation of the Lagrange
dual function for the loss-minimization problem of com-
puting an optimal matrix factorization subject to multiple-
participation sensitivity constraints, in Eq. (6), substan-
tially generalizing the approach of Denisov et al. (2022).
This dual formulation is used to efficiently compute opti-
mal factorizations for our experiments.

3) We explore the computational tradeoffs of our ap-
proaches. Computing optimal matrix factorizations may
become relatively expensive when more than ≈ 10, 000
steps are required. While this is uncommon in federated
algorithms for user-level DP, it can be a limitation when
training with SGD for example-level privacy. To reduce
this cost, we propose and investigate an approach based on
the Fast Fourier Transform (FFT) (Cooley & Tukey, 1965).
Careful analysis of the DFT, shows it is near-optimal for the
single-epoch setting and efficiently computable for most, if
all, ML settings. Indeed, we find this approach still out-
performs the mechanisms from the extant literature, even
under multiple participations.

4) We perform detailed empirical comparisons of our
mechanisms, e.g., above in Fig. 1. We compare with both
the prior matrix mechanism approaches and DP-SGD.
We show that the methods proposed here outperform
all others (in particular, DP-SGD with amplification), to
privacy budgets as low as ε ≈ 2, and without any need
for privacy amplification. We also find in Fig. 3 that our

methods can achieve near the folklore upper bound of
full-batch DPGD, but at 340x less compute. Our code is
at: https://github.com/google-research/
federated/tree/master/multi_epoch_dp_
matrix_factorization.

Related work The core privacy primitive here is the ma-
trix mechanism (Li et al., 2015). Its long history of study
and application was, until recently, primarily oriented to-
wards offline, statistical queries (McKenna et al., 2018;
Edmonds et al., 2020; Yuan et al., 2016; Hardt & Tal-
war, 2010). Fichtenberger et al. (2022); Denisov et al.
(2022) independently applied it to the adaptive streaming
setting, where outputs are released one-by-one and pri-
vacy analysis must account for an adversary adaptively
defining the inputs. Denisov et al. (2022) connected the
matrix mechanism to DP ML, via the DP-FTRL algo-
rithm of Kairouz et al. (2021), and showed that computing
optimal factorizations significantly improves the privacy-
utility-computation tradeoffs when making only a single
pass (epoch) over the training data.

Example- and user-level DP, and the connection to fed-
erated learning (FL) In addition to example-level DP,
we consider user-level DP. As observed by McMahan et al.
(2018), private FL algorithms are well suited to provid-
ing user-level DP or other multi-example units of privacy,
e.g. document-level, as bounding the sensitivity of a single
user’s contribution to an aggregate update is made straight-
forward by the per-user data processing pattern inherent in
FL. However, our primary application is to datacenter train-
ing, where user data can be processed in a fixed shuffled

2

https://github.com/google-research/federated/tree/master/multi_epoch_dp_matrix_factorization
https://github.com/google-research/federated/tree/master/multi_epoch_dp_matrix_factorization
https://github.com/google-research/federated/tree/master/multi_epoch_dp_matrix_factorization

Multi-Epoch Matrix Factorization

order, unlike cross-device FL. We use the term ‘participa-
tion’ to denote the event that an example (user or client in
FL) contributes to the gradient sum (or a model update in
FL) xi for a given step/iteration (round in FL) i. Individual
contributions to xi are scaled so their maximum `2 norm is
ζ. Our mechanisms compute sums over individual clipped
contributions and post-process by dividing by the batch size
(or clients/round) to compute an average gradient (or model
update). We assume ζ = 1, applying appropriate scaling as
needed. App. A lists terminology and notation.

2. Differential Privacy for Adaptive Streams
with Multiple Participations

We define and efficiently bound the sensitivity of the multi-
participation adaptive streaming (continual release) setting,
by generalizing Denisov et al. (2022, Sec. 2). Assume a
database of m examples (users in FL, records in general
DP applications) that is processed as a stream over n steps.
A batch of B examples is selected on each step i, and pro-
cessed via an adaptively chosen function (e.g., computing
a gradient at the current model), producing a vector of `2
norm at most ζ. These vectors are summed and provided
to the DP mechanism as xi ∈ Rd, which releases a priva-
tized function of [x1, . . . ,xi], the stream so far. When a
particular example contributes to the sum xi, we say it par-
ticipates on step i. We are primarily interested in the case
where n × B/m > 1, and hence, some examples are used
on more than one step. This is the multiple epoch setting
of ML. Because our privacy guarantee is for the worst-case
data-sample, we take k to be the ceiling of this value.

Two data streams x and x̃ are said to be neighboring if they
differ in the contributions derived from a single example,
either by zeroing out all of its contributions, or by replac-
ing them arbitrarily subject to the norm bound ζ. Thus, the
participation pattern does not change: all records contribute
to the same steps in x and x̃, with only the vector contri-
butions associated with one record changing. We define a
participation schema Π as the set of possible participation
patterns π ∈ Π, with each π ⊆ [n] indicating a set of steps
in which a single example might participate. Assuming
each record contributes at most once (single-participation,
Π = {{1}, {2}, . . . {n}}), recovers the standard streaming
setting. This captures, for example, training with minibatch
SGD using a single pass (epoch) over a training dataset. At
the other extreme, we have every-step participation with
Π = {[n]} where each record contributes to every step.
This captures full gradient descent, where the gradient is
computed on the full training dataset at each iteration.

Fixed-epoch-order participation We focus on a gener-
alization of the above two, (k, b)-participation, where each
example participates at most k times, with any adjacent par-

ticipations exactly b steps apart: formally, Π is the set of all
π such that |π|≤ k, and if π = {i1, . . . , ik} indexed in in-
creasing order, we have ∀j ∈ {2, . . . , k}, ij − ij−1 = b.
Note (k=1, b=n)-participation recovers the single-epoch
setting, and (k=n, b=1)-participation recovers every-step
participation, and for example (k=3, b=2)-participation
has Π = {{1, 3, 5}, {2, 4, 6}}. We focus on this partici-
pation schema because of the following three reasons. 1)
It encompasses multi-epoch SGD training using a data pro-
cessing pattern well-supported by modern ML infrastrac-
ture.1 The only requirement is that rather than shuffling the
dataset for each epoch, the dataset is shuffled once and the
same order of minibatches is used for each epoch. With
this setup, k epochs of training on a dataset of size m with
a batch size B gives n = mk/B total training steps, and
satisfies (k,m/B)-participation. 2) We show that in im-
portant cases, e.g., Eq. (3), this participation schema allows
for the efficient computation of sensitivity. 3) We will see
in Sec. 3 that the more possible participation patterns π,
the more constrained the problem of finding optimal mech-
anisms becomes (that is, fewer matrix factorizations sat-
isfy sensitivty ≤ 1). Hence, a relatively limited (but practi-
cal) schema like (k, b)-participation yields more favorable
privacy-utility tradeoffs when we directly optimize matri-
ces for this schema.

Sensitivity of linear queries on multi-participation
adaptive streams Consider a full-rank square query (or
workload) matrix A ∈ Rn×n; we wish to compute the func-
tion x 7→ Ax in a differentially private manner, where we
consider inputs x and outputs Ax to be elements of Rn×d,
under geometry inherited from the Frobenius inner product.

Gradient descent with fixed learning rate represents a
canonical example of this setup: letting x represent the
stream of unnoised gradients generated by a training proce-
dure, the partially trained model at every step of the training
procedure is simply a scalar multiple (with scalar being the
negative learning rate) of the partial sums of this gradient
stream. This partial-sum operation is represented by the
matrix A of all 1s on the lower triangle. The ‘adaptivity’
of the stream x reflects the fact that the point at which we
compute gradients during the training procedure depends
on the previously released models, and is therefore required
to capture privacy guarantees for ML model training.

We utilize the matrix mechanism (Li et al., 2015), which,
1This is in contrast to Poisson or independent fixed-sized batch

sampling, with replacement across steps, as is assumed by many
works (Abadi et al., 2016a; Bassily et al., 2014; Zhu & Wang,
2019; Wang et al., 2019). Many works in fact process batches
in a shuffled order without replacement and then incorrectly ap-
ply DP analysis for, e.g., Poisson sampling. Indeed, we use this
same—incorrect—analysis for our DP-SGD baseline because it
reproduces the previous state-of-the-art results for DP-SGD.

3

Multi-Epoch Matrix Factorization

provided a factorization A = BC, computes the estimate

Âx = B (Cx + z) , (1)

where z is a sample from appropriately scaled isotropic
Gaussian noise. The scale is determined by the sensitiv-
ity of the mapping x 7→ Cx; roughly, how much outputs of
this mapping can vary (in `2 norm) when we swap the input
stream x for a neighboring one x̃. We refer to this matrix
C as the “encoder”, as it encodes x as Cx before adding
Gaussian noise. Similarly, we call B the “decoder”.

Let N be the set of all pairs of neighboring streams x and
D := {x− x̃ | (x, x̃) ∈ N} represent the set of all possi-
ble deltas between neighboring x, x̃. The definition of D
implies it is symmetric (u ∈ D ⇒ −u ∈ D). We will say
a D satisfies the participation schema Π if the indices of
all nonzero elements in each vector u ∈ D correspond to
some π ∈ Π. Critically, for linear queries D fully captures
the sensitivity of the query:
Definition 1. The sensitivity of the matrix factorization
mechanism Eq. (1) is defined as

sensD(C) = sup
(x,x̃)∈N

‖Cx−Cx̃‖F= sup
u∈D
‖Cu‖F . (2)

Convexity of ‖Cu‖F in u implies that supu∈D‖Cu‖F=
supu∈conv(D)‖Cu‖F , and hence without loss of generality
(wlog), we take D to be convex as needed. It is illustrative
to consider some specific Ds for scalar per-step contribu-
tions with ζ = d = 1. Single-participation corresponds to
D = conv{αei|α ∈ [−1, 1], i ∈ [n]} where ei for i ∈ [n]
are the standard basis vectors. Noting ‖Cu‖= ‖−Cu‖ and
convexity of ‖Cu‖, we see the maximum will be achieved
at some ei, recovering the ‘max-`2-norm-over-columns’
measurement of sensitivity of Li et al. (2015, Proposition
3). Every-step participation corresponds to the `∞ ball,
D = {x | ‖x‖∞≤ 1}.

Reductions to per-iterate scalar contributions In ML,
examples are used to calculate gradients of d > 1 dimen-
sions, and so we wish to consider x ∈ Rn×d, with rows
xi ∈ Rd corresponding to the sum of gradients for exam-
ples participating in step i. In order to compute sensitivity,
one may hope that the sensitivity for each xi ∈ Rd can
be bounded by only considering some appropriately worst-
case xi ∈ R. More formally, consider a fixed participation
schema Π, and further assume (wlog) ζ = 1. Then, for
vector-valued contributions we have

Dd
Π = conv{G ∈ Rn×d | ∃π ∈ Π s.t.
‖G[i,:]‖2≤ 1 for i ∈ π and G[i,:] = 0 for i 6∈ π}.

In the d = 1 case, we have a much simpler polytope, D1
Π =

conv(D1
Π) where

D1
Π =

⋃
π∈Π

{
u ∈ Rn | ui ∈ {−1, 1} if i ∈ π, 0 otherwise

}
.

One might hope to show sensDd
Π

(C) ≤ sensD1
Π

(C), and
the authors in fact initially conjectured this to be true. To
our surprise, while this inequality holds under a variety of
assumptions, it does not hold in general (App. H.2 gives a
counterexample).2 Empirically we have observed that for
various query matrices A and (k, b)-participation with d =
1, the optimal C satisfy (or almost satisfy) the condition
C>C ≥ 0 (element-wise non-negativity). In this case, we
can show:
Corollary 2.1. When per-step contributions bounded by
ζ = 1, for any participation schema Π and dimension-
ality d ≥ 1, when C>C ≥ 0 elementwise, we have
sensDd

Π
(C) = sensD1

Π
(C).

In particular, this implies that if C is optimal in the d = 1
case and satisfies C>C ≥ 0, it is also optimal in the d > 1
case. This result is a corollary of Thm. H.1, which es-
tablishes additional conditions under which sensDd

Π
(C) ≤

sensD1
Π

(C) holds. All proofs are in App. H onwards.

Difficulty of computing sens(C) In general, computing
sens(C) is a convex quadratic maximization problem over
a convex set, which can be NP-hard. Even the simple case
of computing the sensitivity for an arbitrary matrix C un-
der every-step participation with scalar (d = 1) contribu-
tions is NP-hard—it is exactly the problem of computing
the `∞−`2 operator norm (Tropp, 2004). In fact, it is useful
to observe sensD(·) can always be viewed as an operator
norm, see App. B. This hardness is in stark contrast to the
single-participation setting, where calculating sensitivity is
trivial. However, we can in some cases compute sensitivity
exactly by brute force. Take d = 1. Observe D1

Π is a fi-
nite set and so a direct calculation by using Eq. (2) is often
possible. But, |D1

Π|= |Π|2k, and observing the symmetry
‖Cu‖= ‖C(−u)‖ can reduce the computational cost only
by half. In general |Π| may be exponential in k, but in the
special case of (k, b)-participation, we have |Π|= b (the
number of steps in one epoch). Hence, for modest numbers
of epochs k, directly computing sensitivity is possible, e.g.,
in our StackOverflow experiments in Sec. 5.3, we can re-
duce u ∈ D1

Π to only 342 · 25 = 10, 944 vectors. Thm. H.1
can be used to translate bounds from scalar to higher di-
mensions.

Computing sensitivity when C>C ≥ 0 Let X =
C>C. When X has only nonnegative elements, one may
reduce the problem of computing sensDd

Π
(C) to

sensDd
Π

(C) = max
u∈D1

Π

‖Cu‖F by Cor. 2.1

= max
u∈D1

Π

√
u>Xu = max

π∈Π

√
1>X[π,π]1, (3)

2We conjecture it is “almost” true; tightly bounding the neces-
sary error term is an interesting open question.

4

Multi-Epoch Matrix Factorization

where X[π,π] ∈ Rk×k is the submatrix of X formed from
the rows and columns selected by π, |π|= k and 1 ∈
Rk. The max over u must be achieved by the maximum-
magnitude nonnegative vector u, specifically 1k. As noted
above, the matrices we consider satisfy this property, and
hence we can compute the exact sensitivity for (k, b)-
participation in time O(bk2).

Upper-bounding sensitivity As an alternative to struc-
tural conditions on C or X allowing efficient exact compu-
tation of sensitivity for d > 1, we can look to (reasonably
tight) upper bounds on the sensitivity of C. In the case of
(k, b)-participation, one efficient method of computing up-
per bounds for the multiple-participation sensitivity of C
has shown itself to be particularly useful:

Theorem 2.1. Let C ∈ Rn×n, and take some partici-
pation schema Π, with k = maxπ∈Π|π| the maximum
number of participations. With C[:,π] representing select-
ing the columns of the matrix C indexed by π and ‖·‖2
the spectral matrix norm, let λ = max

π∈Π

∥∥C[:,π]

∥∥
2
. Then

sensD1
Π

(C) ≤ λ
√
k.

In the (k, b)-participation case, |Π|= b. The complexity
of computing the largest eigenvalue of the subselected C
matrix is cubic in k. Thus, computing this upper bound is
O(bk3), easily computable for the range of k, b considered
here (k ≤ 100, b ≤ 500).

Differential Privacy Guarantee Using our generaliza-
tion of adaptive streams to multiple participations we ob-
tain the following result (a straightforward generalization
of Denisov et al. (2022, Theorem 2.1)). The proof is iden-
tical to (Denisov et al., 2022), except we replace the sensi-
tivity bound with that for multiple participations obtained
via Cor. 2.1.

Theorem 2.2. Let A ∈ Rn×n be a lower-triangular full-
rank query matrix, and let A = BC be any factoriza-
tion with the following property: for any two neighbor-
ing streams x, x̃ ∈ Rn×d, we have ‖C(x − x̃)‖F≤ κ.
Let Z ∼ N (0, κ2σ2)n×d with σ large enough so that
M(x) = Ax + BZ = B(Cx + Z) satisfies (ε, δ)-DP (or
ρ-zCDP or µ-Gaussian DP) in the nonadaptive continual
release model. Then, M satisfies the same DP guarantee
(with the same parameters) even when the rows of the input
are chosen adaptively.

3. Optimal Matrices for Multiple Epochs
We now present methods for computing optimal matrix
mechanisms that are specialized to (optimized for) a spe-
cific participation schema Π and query matrix A. For ex-
ample, Fig. 2 shows the optimal factorization for A repre-
senting SGD with momentum and learning-rate cooldown

under (k=6, b=342)-participation, used in Sec. 5.3. Spe-
cializing the mechanism to both the participation pattern
and specific query workload enables us to obtain state-of-
the-art results in ML (Sec. 5).

We build on the approach of Denisov et al. (2022). We
begin by defining the loss of interest, i.e., the total variance
of noise added, for the mechanism defined in Eq. (1). Note
that this loss characterizes other downstream tasks like DP
mean estimation. Given D, assume that we may represent
D = conv(D) for some finite set D—as we have seen,
this is the case, e.g., in (k, b)-participation. Then the loss
which corresponds to total squared error of a factorization,
at a fixed privacy level, may be expressed as:

L(B,C) = sens2
D(C) ‖B‖2F where

sens2
D(C) = sup

u∈D
‖Cu‖22= sup

u∈D
‖Cu‖22.

(4)

Observing that ∀α the mechanism A = (αB)(1
αC) has

identical loss, we conclude that we may consider the con-
strained version of the problem of minimizing this loss
where sensD(C) ≤ 1. Since for any C, B = AC† pro-
duces the minimum-Frobenius norm B-matrix, it is suffi-
cient to solve:

min
C
L
(
AC†,C

)
= min

C:sens2
D(C)=1

∥∥AC†
∥∥2

F
. (5)

With the change of variables X = C>C, equivalently:

min
X

tr(A>AX−1) (6)

s.t. X is PD and max
u∈D1

Π

u>Xu ≤ 1.

One of our main contributions is the following theorem
which leads directly to efficient algorithms with provable
optimality gaps for the mathematical program Eq. (6):

Theorem 3.1. Let a finite D = {ui}ki=1 be given,
and assume that the vectors {ui}ki=1 span Rn. As-
sume that A is full-rank, and for v ∈ Rk define
Hv = [u1, . . . ,uk] diag(v)1/2, U = HvH>v . De-
fine the Lagrangian L as L (X,v) := tr(A>AX−1) +∑

u∈D vu

(
u>Xu− 1

)
. Then, for Lagrange multipliers

v such that the U is full-rank, the minimizer X (v)
of L for this fixed v may be represented X (v) =

U−
1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2 , and the Lagrange dual func-

tion g for the problem Eq. (6) can be expressed in closed
form in terms of the dual variables v:

g(v) := inf
X is PD

L(X,v) =

2 tr
(

(U
1
2 A>AU

1
2)

1
2

)
−
∑
u∈D

vu. (7)

Remark The restriction that v yields a full-rank U serves
to restrict to cases where the Lagrangian has a finite,

5

Multi-Epoch Matrix Factorization

Figure 2: The optimal factorization A = BC under (k=6, b=342)-participation, constructed by solving the optimization
problem Eq. (5). Matrix A encodes SGD with momentum 0.95 and a learning-rate cooldown schedule for the last 25% of
rounds, as used in our StackOverlow experiments (Sec. 5.3). The constraints on sensitivity imposed by this participation
schema are evident in the resulting matrices. For example, the white diagonals with a period of b = 342 in X = C>C
show that the columns of C that could correspond to a pair of rounds (i, j) where the same user might participate are in
fact orthogonal. See Fig. 13 in App. F.4 for a larger view.

positive-definite minimizer in the primal variable; if the
vectors {u} span Rn, the problem Eq. (6) has a finite min-
imizer by Lem. I.1. Any setting of the dual variables v
corresponding to this minimizer is contained in a neighbor-
hood uniformly satisfying this full-rank property, and so it
is valid to differentiate our expression for g with respect to
such v (as we will do in App. I.1).
Corollary 3.1. In the same setup as Thm. 3.1,
the gradient of the dual function g is: ∂g

∂vi
=

u>i U−
1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2 ui − 1. Moreover, a maxi-

mizer of the dual v? must satisfy:

v? = diagpart
(

(H>v?A>AHv?)
1
2

)
. (8)

The optimal value of Eq. (6) is tr (v?).

Remark In the single-participation case of Denisov et al.
(2022), Hv = diag(v)

1
2 , and Eq. (8) recovers the fixed

point expression of that paper’s Theorem 3.2. Our Cor. 3.1
implies that the optimization methods presented in Denisov
et al. (2022) may be applied, with suitable translation, to
our setting; we use these methods to generate the optimal
matrices studied empirically in Sec. 5.

Additional constraints on X While Eq. (6) gives a
mathematical program for finding optimal matrices, two
challenges arise: 1) for (k, b)-participation, we have |D1

Π|=
b2k, equal to the number of Lagrange multipliers that must
be used to represent the constraint in Eq. (6). Hence, solv-
ing the dual problem will be intractible for moderately large
k. 2) Even if we could surmount this issue, we cannot
in general use Cor. 2.1 to bound sensitivity under vector
contributions. In order to resolve these issues, in our ex-
periments we introduce an additional constraint X ≥ 0
element-wise, requiring only n2 additional Lagrange mul-
tipliers. This lets us only consider the positive vectors
u ∈ D1

Π in the sensitivity constraint (following Eq. (3)),
and hence we need only a total of n2 +b Lagrange multipli-
ers in the dual optimization. Our empirical results indicate

that X ≥ 0 holds for the optimal solution for the prefix-sum
workload A (proving this conjecture is an interesting open
problem). However, this conjecture does not hold in gen-
eral, and in particular it fails for momentum workloads; see
App. I.3. Nevertheless, enforcing X ≥ 0 produces mech-
anisms that lead to state-of-the-art learning performance in
all cases. App. I.3 demonstrates these gaps on small exam-
ples and provides additional discussion.

4. FFT-based Matrix Factorization
Our work has two types of computation costs: optimiza-
tion costs are those associated with optimizing and gen-
erating (or, computing) a mechanism whereas noise gen-
eration costs are those associated with using the mecha-
nism to sample noise as part of a ML training algorithm.
Once optimized, a single mechanism can be reused indef-
initely to generate noise for other runs by simply resam-
pling new noise and applying the same decoder. The best
known methods for computing the optimal factorizations
scale as at least O(n3) (Yuan et al., 2016; Denisov et al.,
2022). This optimization cost can become intractable when
n grows too large. Thus, in this section we focus on re-
ducing optimization computation at a small decrease in the
achievable privacy-utility tradeoff.

A prime candidate for this goal is the Discrete Fourier
Transform (DFT) because there are known algorithms both
for nearly-optimal private convolutions (Fawaz et al., 2013)
which are intimately related to the DFT, and for efficient
calculation of the DFT using the Fast Fourier Transform
(FFT) (Cooley & Tukey, 1965; Nussbaumer, 1981). We
present an FFT-based mechanism that reduces noise gener-
ation costs, prove rigorous DP guarantees for it, and show
that these lead to near-optimal privacy-utility tradeoffs in
the single-epoch setting. We provide two improvements
over prior work (Fawaz et al., 2013): 1) extending the re-
sult to the multi-epoch and multi-dimensional setting and
2) providing explicit non-asymptotic analysis of the algo-

6

Multi-Epoch Matrix Factorization

rithm’s utility.

Let A represent the (Toeplitz) matrix of all 1s on or be-
low the main diagonal and 0s elsewhere; i.e., the prefix-
sum matrix. We perform our analysis in the Fourier
domain. To release Ax, we define a circulant matrix
Acirc ∈ R2n×2n with a corresponding input vector xext =
concat(x,0n),0n ∈ {0}n so that the first n entries of
Acircxext are equal to Ax (see App. J.1). Thus, we study
the DP release of Acircxext. Note, to be consistent with the
literature on FFT, in this section, and in App. J, we will in-
dex all the vectors and matrices with starting index of zero.

Thm. J.1 of Gray (2006) (restated in App. J.1) shows there
exists a diagonal Σ such that Acirc = F∗ΣF for diagonal
Σ, where F is the DFT matrix. Then, Acirc can then be
factorized as Acirc = BcircCcirc where Bcirc = F∗Σ1/2

and Ccirc = Σ1/2F.

The (complex-valued) matrix mechanism specified by the
factorization above (and presented as Algorithm 1 of
App. C) is empirically nearly optimal in the class of matrix-
factorization-based mechanisms, as we show in App. J.
Though we prove a simple zCDP guarantee for any par-
ticipation schema having at most k = maxπ∈Π|π| partici-
pations in Thm. 4.1, we can instead use our Cor. 2.1 when
the participation schema is known in advance (as in our ex-
periments with (k, b)-participation).

Theorem 4.1. Under k-participation, Algorithm 1 satisfies
(k2ρ)-zCDP.

The optimal FFT decoder Observe from Theorems 2.1
and 2.2 that the privacy guarantee of our multi-participation
adaptive setting is independent of the choice of decoder, B.
Thus, instead of taking Bcirc above, we take the optimal
decoder using the Moore-Penrose pseudoinverse of a dis-
tributionally equivalent real-valued encoder, as discussed
in App. K. This optimization leads to significant improve-
ments in the privacy-utility tradeoff (see Fig. 9 in App. E).

Computation Costs Though we define the optimal FFT
decoder as a pseudoinverse, observe that we do not need
to optimize (or even compute) the decoder; by App. K,
the problem is reduced to that of solving a highly struc-
tured linear system. However, we find that even subop-
timal implementations using the pseudoinverse can still
factorize a mechanism for n = 10, 000 in 146 minutes
on a V100 GPU, remaining well within practical require-
ments since we need only generate a mechanism once,
before it can be reused indefinitely for training. In con-
trast, computing optimal matrices becomes practically dif-
ficult near n ≈ 10, 000, taking 24 hours to compute an
effective factorization for n = 8, 192 using batch-priority
cloud CPU resources. We remark that this regime of n is
highly practical, e.g., standard federated benchmarks use

n ≈ 2000 (Reddi et al., 2020) and our central image clas-
sification uses n = 2000. In terms of noise generation,
the FFT mechanism shows preferable asymptotic proper-
ties, scaling as O(dn log2 n). However, even the optimal
matrix mechanism with runtime scaling as O(dn2), noise
generation on a GPU (even with significantly suboptimal
implementation) takes negligible time. Further, noise from
our mechanisms can be pre-generated if needed, at a trade-
off in the (typically cheaper) disk space. We discuss these
tradeoffs in App. C.

5. Empirical Evaluation
We compare four main mechanism classes: tree-based
mechanisms (Honaker, 2015), including ‘tree-completion’
of Kairouz et al. (2021); our FFT mechanism; our optimal
factorizations; and DP-SGD (incorrectly) assuming ampli-
fication via Poisson subsampling (Abadi et al., 2016b).

The manner in which baselines from the extant literature
map to this setting can be found in App. D.1. Since the
matrix mechanism reduces privacy cost of training to that
of the release of a single Gaussian mechanism, accounting
in our case becomes quite simple; see App. D.2.

5.1. Applying our Matrix Mechanisms to ML

Our work can be viewed as a drop-in replacement for noise
sampling in DP optimizers through one additional step in
training. Concretely, the three main steps to create DP-
SGD are to 1) compute the per-example gradients, 2) clip
each one to some chosen threshold ζ, then compute the av-
erage as x, and 3) add noise z ∼ N (0, σ) to x where σ, ζ
are calibrated for DP. In our work, we define an additional
step 4) which uses Eq. (1) to generate the noise as Bz us-
ing x from step 2) and z from step 3) with σ = 1. Be-
cause A = BC is the chosen optimizer workload (e.g.,
residual prefix-sum or momentum-sum corresponding with
SGD and SGD-M), we may ignore operations on x.

To generate the B,C, we must solve Eq. (6).3 Observe that
solving this linear task minimizes the noise required for a
formal DP guarantee; instead, the ML optimizer generates
gradients x for the non-linear learning task. We can in-
stantiate the sensitivity constraint setD to encode the exact
(k, b)-participation schema used in training. However, an
encoder C factorized for one value of k can be applied for
another, by simply computing its new sensitivity (due to
our Sec. 2), though this will alter its privacy-utility trade-
offs. For example, our MF1,6e in Fig. 3 uses this to ex-
tend Denisov et al. (2022) to k > 1.

When applying a mechanism that is determined indepen-

3Equivalently we must use Algorithm 1 of App. C for the FFT
mechanism or App. K for the Optimal FFT Decoder.

7

Multi-Epoch Matrix Factorization

dently of the number of participations (e.g., FFT or tree
aggregation) or extending an optimal mechanism for k par-
ticipations to a larger number of participations, the sensi-
tivity may scale poorly in k. In such cases, it may actually
have lower sensitivity to reuse a single encoder multiple
times over the course of n steps, and hence more favorable
privacy-utility tradeoffs. We term this approach encoder
stamping. This also provides a straightforward method
for extending any factorization to handle more iterations
without, e.g., re-optimizing Eq. (6). Combined with our
Sec. 2, stamping lets us apply mechanisms from Denisov
et al. (2022), e.g., MF(k=1,n=1000)×2 in Fig. 1; mech-
anisms with stamping have “×s” appended in this way.
Discussion of stamping and its relation to existing litera-
ture are in App. D.4.

5.2. Example-level DP for an Image Classification Task

We train image classification models on CI-
FAR10 (Krizhevsky, 2009) which has become a de
facto standard for comparing DP ML algorithms—
sufficiently easy for existing DP algorithms to achieve
nontrivial accuracy, but not so simple so as to be unable
differentiating approaches. Details on our full setup are
in App. E; generally, they match those of Kairouz et al.
(2021). Notably, we make improvements on their Online
Honaker-based approach by not just completing the tree
with virtual steps, but also zeroing out noise from virtual
steps as detailed in App. D.3. We find this led to significant
improvements around a few percentage points. For all
matrix mechanisms except the Denisov et al. (2022)
baseline and our Optimal MF(k = 20, n = 2000) × 1,
we optimize over the stamps s by the losses in App. D.5,
which we find well match the ordering in ML accuracy.

In contrast to Sec. 5.3, in this section we only compare fac-
torizations of the prefix-sum matrix; we do not incorpo-
rate momentum or cooldown directly into the mechanisms,
though we use both momentum and cooldown as postpro-
cessing for the matrix-factorization-based mechanisms and
report results for the best settings we find (with both). For
DP-SGD, we report results for the best setting (no momen-
tum, with cooldown). Details are in App. E.

Main results (Fig. 1) First, we see that the optimal fac-
torization for the target (k, b) = (20, 100) setting outper-
forms all other mechanisms across (nearly) all privacy lev-
els, only slightly underperforming DP-SGD with amplifi-
cation at ε = 2. To the best of our knowledge, this repre-
sents the first empirical demonstration of an ML algorithm
which is competitive with DP-SGD into this high-privacy
regime, without any amplification by sampling. The FFT
(optimal decoder) mechanism outperforms all baselines,
again well toward the high-privacy regime at ε ≈ 4.
Though at a worse privacy-utility tradeoff compared with

our multi-epoch optimal matrices, this mechanism shows
promise for outperforming prior work when n grows too
large for generating optimal factorizations.

Discussion of results A major reason we outperform DP-
SGD is because we take a fundamentally different approach
that enables us to account and optimize for the specifics of
the entire training procedure in a single shot. That is, DP-
SGD views itself as the repeated independent application
of a single mechanism on each iteration, using techniques
like strong composition to obtain a finite DP guarantee
across independent and arbitrary queries (gradient steps).
Our matrix-factorization based ML training procedures, by
contrast, consider the entire training procedure to be the
application of a single mechanism, parameterized by fac-
torizations of the matrix A; we optimize over this space
of mechanisms. We believe this is a more powerful class
of mechanisms because it essentially enables us to (anti-
) correlate noise across iterations to achieve minimal total
squared error (DP-SGD can only use independent noise).

5.3. User-level DP for a Next Word Prediction Task

User-level DP for language models is an important real-
word task (McMahan & Thakurta, 2022). There is much
history in the DP language modelling literature which we
briefly describe in App. F.1. We use the standard bench-
mark: StackOverflow next-word prediction (Reddi et al.,
2020). We use the same empirical setup as Kairouz et al.
(2021) and Denisov et al. (2022) except notable changes
below. Details are in App. F.2.

Notable changes from prior work We use a much
higher 1000 clients per round (≈ 100 in prior work)—
enabled mainly by our multi-epoch factorizations. We also
zero out large updates with `∞ norm greater than 100
(rather than scaling down to our clipping norm of ζ = 1) as
we found this improved the stability of noisy training (see
Table 2 in App. F.3). This may have enabled more consis-
tent success of a higher server learning rate ηs = 1.0.

We conducted initial simulations which verified that two
observations from Denisov et al. (2022) for the single-
epoch setting extended to our multi-epoch and large-batch
(1000 clients/round instead of 167) setting. First, linear
server learning rate cooldown from 1× to 0.05× over the
final 512 rounds offered a small improvement over con-
stant rates (more so in higher-privacy regimes). Second,
optimizing and factorizing with momentum and cooldown
encoded in the query matrix A, rather than applying both
as post-processing, consistently offers a small benefit. See
App. F.2 for details. Thus, we fix these preferable design
choices here and compare the following algorithms.

8

Multi-Epoch Matrix Factorization

Figure 3: Our MF6,6e achieves within 2% relative difference in performance from the non-private baseline at ε=
8.8, δ = 10−6. Our MF1,6e (which is not specifically optimized for the participation schema) still outperforms all
baselines from the literature. Select runs were replicated multiple times, with bootstrap 95% intervals shown. DP-
GDM,2052e is the extreme case of every-round participation (342× more computationally expensive than 6 epochs
of training), and hence generally infeasible. The server learning rate ηs was optimized over 0.5 and 1.0, and additionally
0.25 for ε = 2. The blue bands give the non-private baseline accuracy for 6 epochs of training with ηs = 1.0 and 0.5.

Algorithms All algorithms train for 6 epochs 2052
rounds, and a large-batch 1000 clients/round (better for
DP training) unless otherwise noted. Honaker,6e is the
DP-FTRL algorithm of Kairouz et al. (2021), trained
for 2048 rounds (a power of 2). MF1,1e (Denisov
et al., 2022) is the state-of-the-art for single-epoch train-
ing, using 167 clients/round and k=1. MF1,6e uses our
Eq. (3) to take the (non-negative) (k=1)-optimized ma-
trix of the previous approach but compute the sensitiv-
ity under (k=6, b=342)-participation, allowing us to train
for 6 epochs (2048 rounds) with large batches. MF6,6e
is our approach directly optimizing the matrix factoriza-
tion for (k=6, b=342)-participation via Eq. (6). DP-
SGDM,6e is the DP-FedAvg algorithm of McMahan
et al. (2018), to 2052 rounds, and accounted with Poisson
sampling—incorrect, though standard, as noted in Sec. 1.
DP-GDM,2052e estimates the infeasible-to-actually-run
benchmark of full-batch gradient descent for 2052 rounds
and 2052 epochs, or 342× the computation cost of our 6
epoch runs. We compute the exact privacy cost, and esti-
mate the accuracy from experiments with 1000 clients per
round, following the methodology of Kairouz et al. (2021).
This is essentially an upper bound on the best privacy-
accuracy tradeoffs with unlimited computational resources.

Main results (Fig. 3) We find that our MF6,6e, is
the best feasible private result at 25.25% accuracy and
(17.7, 10−6)-DP. This exceeds the non-private baseline of
25.2% accuracy reported by Kairouz et al. (2021), is within
the margins of small hyperparameter tuning differences of
our improved non-private baselines (25.43%) and private
full-batch gradient descent (25.31%). At (8.84, 10−6)-DP,
MF6,6e achieves 24.94% accuracy, substantially improv-
ing over the previous state-of-the-art at this privacy level
given by MF1,1e at 24.11% accuracy, and considerably

improves on both the accuracy and privacy of Honaker,6e
(24.86% accuracy at (21.0, 10−6)-DP). In fact, we achieve
better accuracy at ε = 8.84 than prior methods achieve at
ε = 17.7. DP-SGDM,6e is outperformed by MF6,6e and
MF1,6e across all ε values evaluated. Fig. 12 in App. F
shows results for each learning rate separately, with nu-
meric results in Tables 4 and 5.

6. Discussion and Conclusions
Our work significantly improves the privacy-utility trade-
offs in DP ML. Indeed, our work outperforms the state-
of-the-art (and, DPSGD with amplification) by ≈ 5 per-
centage points across many privacy levels—and as low as
ε ≈ 2—with practically implementable assumptions.

We compare our mechanisms with DP-SGD on a level-
ground using well-performing but not state-of-the-art mod-
els and training protocols—e.g., very large models, aug-
mentations before clipping (De et al., 2022), public data
usage, and large batch sizes can all aid training. Many,
if not all, of these techniques are applicable to our setting
and can thus be used with our mechanisms to realize ad-
ditional absolute performance gains, again, likely beyond
the performances achieved by DP-SGD. App. G contains
limitations and ethical considerations.

Acknowledgements The authors would like to thank
Adam Smith for helpful conversations in the formulation of
the FFT approach. Shuang Song helped ensure correctness
and comparability with Kairouz et al. (2021) on CIFAR.
Galen Andrew and Sewoong Oh contributed their exper-
tise in matrix calculus, and Ryan McKenna provided help-
ful feedback on the manuscript as well as contributing the
concise counter-example presented in App. H.2.

9

Multi-Epoch Matrix Factorization

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communica-
tions security, pp. 308–318, 2016a.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. Deep learn-
ing with differential privacy. Proceedings of the 2016
ACM SIGSAC Conference on Computer and Commu-
nications Security, Oct 2016b. doi: 10.1145/2976749.
2978318. URL http://dx.doi.org/10.1145/
2976749.2978318.

Bassily, R., Smith, A., and Thakurta, A. Private empirical
risk minimization: Efficient algorithms and tight error
bounds. In Proc. of the 2014 IEEE 55th Annual Symp.
on Foundations of Computer Science (FOCS), pp. 464–
473, 2014.

Bun, M. and Steinke, T. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In The-
ory of Cryptography Conference, pp. 635–658. Springer,
2016.

Campbell, S. L. and Meyer, C. D. Generalized in-
verses of linear transformations / S. L. Campbell, C. D.
Meyer. Pitman London ; San Francisco, 1979. ISBN
0273084224.

Cao, L., McLaren, D., and Plosker, S. Centrosymmetric
stochastic matrices. Linear and Multilinear Algebra, 70
(3):449–464, 2022.

Carlini, N., Liu, C., Erlingsson, U., Kos, J., and Song,
D. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In Proceedings of
the 28th USENIX Conference on Security Symposium,
SEC’19, pp. 267–284, USA, 2019. USENIX Associa-
tion. ISBN 9781939133069.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, Ú., Oprea, A., and Raffel, C. Extract-
ing training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pp.
2633–2650. USENIX Association, August 2021. ISBN
978-1-939133-24-3. URL https://www.usenix.
org/conference/usenixsecurity21/
presentation/carlini-extracting.

Chan, T.-H. H., Shi, E., and Song, D. Private and continual
release of statistics. ACM Trans. on Information Systems
Security, 14(3):26:1–26:24, November 2011.

Cooley, J. W. and Tukey, J. W. An algorithm for the ma-
chine calculation of complex fourier series. Mathematics
of computation, 19(90):297–301, 1965.

De, S., Berrada, L., Hayes, J., Smith, S. L., and
Balle, B. Unlocking high-accuracy differentially pri-
vate image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

de Hoog, F. A new algorithm for solving toeplitz
systems of equations. Linear Algebra and its Ap-
plications, 88-89:123–138, 1987. ISSN 0024-3795.
doi: https://doi.org/10.1016/0024-3795(87)90107-8.
URL https://www.sciencedirect.com/
science/article/pii/0024379587901078.

Denisov, S. private communication, 2023.

Denisov, S., McMahan, B., Rush, K., Smith, A., and
Thakurta, A. G. Improved differential privacy for sgd
via optimal private linear operators on adaptive streams,
2022. URL https://arxiv.org/abs/2202.
08312.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. Dif-
ferential privacy under continual observation. In Proc.
of the Forty-Second ACM Symp. on Theory of Comput-
ing (STOC’10), pp. 715–724, 2010.

Edmonds, A., Nikolov, A., and Ullman, J. The Power
of Factorization Mechanisms in Local and Central
Differential Privacy, pp. 425–438. Association for
Computing Machinery, New York, NY, USA, 2020.
ISBN 9781450369794. URL https://doi.org/
10.1145/3357713.3384297.

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A.,
Talwar, K., and Thakurta, A. Amplification by shuffling:
From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 2468–2479. SIAM,
2019.

Fawaz, N., Muthukrishnan, S., and Nikolov, A. Nearly op-
timal private convolution. In European Symposium on
Algorithms, pp. 445–456. Springer, 2013.

Feldman, V., McMillan, A., and Talwar, K. Hiding among
the clones: A simple and nearly optimal analysis of pri-
vacy amplification by shuffling. In 2021 IEEE 62nd An-
nual Symposium on Foundations of Computer Science
(FOCS), pp. 954–964. IEEE, 2022.

Fichtenberger, H., Henzinger, M., and Upadhyay, J. Con-
stant matters: Fine-grained complexity of differentially
private continual observation, 2022. URL https://
arxiv.org/abs/2202.11205.

10

http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.sciencedirect.com/science/article/pii/0024379587901078
https://www.sciencedirect.com/science/article/pii/0024379587901078
https://arxiv.org/abs/2202.08312
https://arxiv.org/abs/2202.08312
https://doi.org/10.1145/3357713.3384297
https://doi.org/10.1145/3357713.3384297
https://arxiv.org/abs/2202.11205
https://arxiv.org/abs/2202.11205

Multi-Epoch Matrix Factorization

Gray, R. M. Toeplitz and circulant matrices: A review.
2006.

Grothendieck, A. Resume de la theorie metrique des
produits tensoriels topologiques. éditeur non iden-
tifié, 1956. URL https://books.google.com/
books?id=N7COGwAACAAJ.

Hardt, M. and Talwar, K. On the geometry of differential
privacy. In STOC, 2010.

Henzinger, M., Upadhyay, J., and Upadhyay, S. Al-
most tight error bounds on differentially private contin-
ual counting. Personal communication, 2022.

Honaker, J. Efficient use of differentially private bi-
nary trees. Theory and Practice of Differential Privacy
(TPDP 2015), London, UK, 2015.

Kairouz, P., Oh, S., and Viswanath, P. Extremal mecha-
nisms for local differential privacy. Journal of Machine
Learning Research, 17(17):1–51, 2016. URL http:
//jmlr.org/papers/v17/15-135.html.

Kairouz, P., McMahan, B., Song, S., Thakkar, O.,
Thakurta, A., and Xu, Z. Practical and private (deep)
learning without sampling or shuffling. In ICML, 2021.

Khot, S. and Naor, A. Grothendieck-type inequalities in
combinatorial optimization, 2011.

Krizhevsky, A. Learning multiple layers of features from
tiny images, 2009.

Li, C., Miklau, G., Hay, M., Mcgregor, A., and Rastogi,
V. The matrix mechanism: optimizing linear counting
queries under differential privacy. The VLDB Journal,
24:757–781, 2015.

Lindenstrauss, J., P. A. Absolutely summing operators in
Lp-spaces and their applications. Studia Mathematica,
29(3):275–326, 1968. URL http://eudml.org/
doc/217232.

McKenna, R., Miklau, G., Hay, M., and Machanava-
jjhala, A. Optimizing error of high-dimensional sta-
tistical queries under differential privacy. Proc. VLDB
Endow., 11(10):1206–1219, jun 2018. ISSN 2150-
8097. doi: 10.14778/3231751.3231769. URL https:
//doi.org/10.14778/3231751.3231769.

McMahan, B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language mod-
els. In International Conference on Learning Represen-
tations (ICLR), 2018. URL https://openreview.
net/pdf?id=BJ0hF1Z0b.

McMahan, H. B. and Thakurta, A. Feder-
ated learning with formal differential privacy
guarantees. Google AI Blog, 2022. URL
https://ai.googleblog.com/2022/02/
federated-learning-with-formal.html.

Nussbaumer, H. J. The fast fourier transform. In Fast
Fourier Transform and Convolution Algorithms, pp. 80–
111. Springer, 1981.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. CoRR, abs/2003.00295, 2020.
URL https://arxiv.org/abs/2003.00295.

Song, C. and Shmatikov, V. Auditing data provenance in
text-generation models. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 196–206, 2019.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic
gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Informa-
tion Processing, pp. 245–248. IEEE, 2013.

Tropp, J. Topics in Sparse Approximation. PhD thesis, The
University of Texas at Austin, 2004.

Wang, Y., Balle, B., and Kasiviswanathan, S. P. Subsam-
pled renyi differential privacy and analytical moments
accountant. In The 22nd International Conference on
Artificial Intelligence and Statistics, AISTATS 2019, 16-
18 April 2019, Naha, Okinawa, Japan, pp. 1226–1235,
2019.

Yuan, G., Yang, Y., Zhang, Z., and Hao, Z. Optimal lin-
ear aggregate query processing under approximate dif-
ferential privacy. CoRR, abs/1602.04302, 2016. URL
http://arxiv.org/abs/1602.04302.

Zhu, Y. and Wang, Y.-X. Poisson subsampled rényi differ-
ential privacy. In International Conference on Machine
Learning, pp. 7634–7642. PMLR, 2019.

11

https://books.google.com/books?id=N7COGwAACAAJ
https://books.google.com/books?id=N7COGwAACAAJ
http://jmlr.org/papers/v17/15-135.html
http://jmlr.org/papers/v17/15-135.html
http://eudml.org/doc/217232
http://eudml.org/doc/217232
https://doi.org/10.14778/3231751.3231769
https://doi.org/10.14778/3231751.3231769
https://openreview.net/pdf?id=BJ0hF1Z0b
https://openreview.net/pdf?id=BJ0hF1Z0b
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://arxiv.org/abs/2003.00295
http://arxiv.org/abs/1602.04302

Multi-Epoch Matrix Factorization

A. Summary of notation and terminology
The following table summarizes the notation used throughout the paper:

n Number of steps of the streaming linear query (SGD steps or FL rounds)

d Dimension of per-step user contributions.

xi ∈ R or Rd Sum of per-example gradients (or per-user model updates) on step i.

x ∈ Rn×d Stream of inputs xi, equiv. matrix with rows xi (so xi = x[i,:]).

ζ Clipping norm that limits the size of per-example contributions to xi.

π Participation pattern, the set of steps that an example could participation in.

Π Participation schema, set of sets of steps (set of all π) an example could participate in.

D = {x− x̃ | (x, x̃) ∈ N}, the set of deltas between neighboring input streams x, x̃.

D Corners of D when assumed to be a polytope, D = conv(D).

(k, b)-participation participation schema Π with at most k participations, separated by exactly b.

A ∈ Rn×n Lower-triangular linear query matrix to be factorized as A = BC.

T ∈ Rn×n T := A>A for convenience.

λmin(A), λmax(A). Smallest and largest eigenvalues of real matrix A.

A∗ Conjugate (Hermitian) transpose of A.

X? A matrix X that is “optimal” in a context-dependent sense.

A† Moore-Penrose pseudoinverse of matrix A.

A[i,j] The (i, j)th entry of matrix A.

A[i,:] and A[:,j] The ith row and jth column.

s Number of encoder C replications (stamps) into a block-diagonal matrix.

conv (S) Convex hull of the set S.

[n] = {1, . . . , n}
‖X‖F The Frobenius norm of a matrix X.

We utilize terminology from federated learning as well as standard centralized training, which generally map as follows:

Centralized Federated

example user or client

batch size clients-per-round

DP-SGD DP-FedAvg

step or iteration (communication) round

gradient model update

B. Generalized sensitivity as an operator norm
Eq. (2) shows that our generalized notion of sensitivity can be viewed directly as a particular operator norm. To see this,
view C : V1 → V2 as a linear operator from vector space V1 to V2. Then with ‖·‖(1) the vector norm on V1 and similarly

12

Multi-Epoch Matrix Factorization

for V2, an operator norm is defined as

‖C‖(1),(2)= max
u∈V1:‖u‖(1)≤1

‖Cu‖(2).

Because we use the Gaussian mechanism and thus are interested in the `2 sensitivity, ‖·‖(2)= ‖·‖2, and we define the norm

‖u‖(1)= ‖u‖D:= inf
{
r > 0 :

u

r
∈ D

}
,

the vector norm induced by D (the fact that D is a closed, convex, symmetric set ensures this is a norm). Note u ∈ D ⇔
‖u‖D≤ 1. Thus, we have

sensD(C) = ‖C‖D,2. (9)

C. The FFT Mechanisms and Reducing Computation

Algorithm 1 DP-Prefix Sum Computation via FFT (with d = 1)

Inputs: Data vector x ∈ Rn (with each |xi|≤ ζ) and zCDP parameter ρ.

vDFT ∈ C2n ← the DFT of v (defined in Eq. (37)). Let vDFT
[:n] be the first n coordinates.

F← DFT matrix in 2n-dimensions, where the k-th row of F is given by

F[k,:] =
1√
2n

[
exp

(
−j2πka

2n

)
: a ∈ {0, . . . , 2n− 1}

]
.

(Σ,w)← (diag(vDFT), standard complex Normal in 2n-dimensions).

(s, z̃)←
([

x0,x0 + x1, . . . ,
n−1∑
a=0

xa

]
,
√

κ2‖vDFT‖1
4nρ

(
F∗Σ1/2 ·w

))
.

Output s + z̃.real[0, . . . , n− 1].

We propose two FFT mechanisms. First, we propose the FFT mechanism which is described in Algorithm 1. This mech-
anism has the same computation complexity—no optimization costs and O(nd log n) noise generation—as the Honaker
method used in Kairouz et al. (2021) but at a better privacy-utility tradeoff, as shown in Fig. 9. The privacy and utility
analysis can be found in App. J.

The FFT Optimal Decoder (FFT Opt Dec) mechanism presented in Sec. 4 represents taking (a real-valued translation of)
the encoder C from Algorithm 1 and using the optimal decoder, defined in terms of the Moore-Penrose pseudoinverse of
C. Similarly to Algorithm 1, there is no need to construct a literal matrix to multiply by in the case of noise defined by
the optimal decoder; noise generation time of the mechanism, however, increases by a logarithmic factor to O(nd log2 n)
(as discussed in App. K). This complexity is still feasible for many steps (which we will discuss below) and comes with
significant utility benefits (see Fig. 1).

All the mechanisms we study scale as either O(n2) or O(n · polylog(n)). For our n = 2000 step environments, and even
far beyond to n ≈ 10, 000, our algorithms can be efficiently realized on GPUs with runtime on the order of seconds per
step (including computing and applying gradients and noise). The main challenge in these cases are storing the n2 + nd
coordinates in GPU memory (the former for the decoder matrix, the latter for the noise samples). Given that each of the d
coordinates of noise can be sampled independently, this algorithm is straightforwardly parallelizable and so work may be
partitioned across many processors when needed. Noises could instead be pre-generated in an entirely separate process,
and stored on disk, to be loaded into memory row-by-row concurrently with training.

Outside of computation, both our FFT mechanisms takeO(nd) space as all noises for the x ∈ Rn×d must be pre-generated.
This is in contrast to all prior work, and even our optimal factorizations, which require only O(d) space to generate the
noise at the current step. Again, we note that space is ofter much cheaper so this is typically not the limiting factor.

13

Multi-Epoch Matrix Factorization

D. Mechanisms under consideration: baselines, subtleties, and losses.
D.1. Baselines

Kairouz et al. (2021) and Denisov et al. (2022) both present approaches for ML model training which can be understood as
instances of the matrix mechanism–the former grounded in the binary-tree mechanism as refined by Honaker (2015), and
the latter explicitly optimizing a factorization under single participation. These two works yield two natural baselines:

• Kairouz et al. (2021) explores ‘tree restarts’ (generalized as our notion of ‘stamps’, s, in Sec. 5) and the so-called ‘tree-
completion trick’ for the Honaker estimator-from-below variant of the binary tree method for computing differentially
private prefix sums; the matrix-factorization perspective on this estimator allows us to implement slightly optimized
versions of these methods; see Appendices D.3 and D.4.

• Denisov et al. (2022) computes optimal factorizations of various optimization-related matrices, though only for a
single epoch. For these matrices, we leverage the results in Sec. 2 to directly compute the sensitivity of the encoder
matrices for multiple participations.

These two papers can be combined in other ways as well; e.g., the results of Denisov et al. (2022) show that the ‘fully
efficient estimator’ of Honaker (2015) may be used as a drop-in replacement for the estimator from below in Kairouz et al.
(2021). We focus on the two mechanisms specified above as the natural baselines for the present work.

D.2. Privacy Accounting

The matrix mechanism Eq. (1) conceptually adds isotropic Gaussian noise in some encoded space. In our case, we encode a
matrix of gradients (clipped to `2 norm ζ) computed over the course of training, denoted by G, with the matrix C, and add
Gaussian noise to each entry in the matrix CG. Under the assumption that the matrix factorization has been appropriately
scaled so C has sensitivity 1, this Gaussian noise will have standard deviation σ = ζz in each coordinate, where z is the
‘noise multiplier’ parameter determining the privacy level of the mechanism (see Table 3 for example).

Privacy costs are computed as a single application of the Gaussian mechanism to GC using the PLDAccountant pro-
vided by the Google DP Library4. We also use this accountant to analyze DP-(S)GD baselines (which require more
complex accounting), yielding a small improvements in ε over the Renyi-DP accounting used in prior works.

D.3. Improvements to ‘Tree completion’ By Removing Noise from Virtual Steps

The “tree completion” trick of Kairouz et al. (2021) is used on the last step of any restart (in ours, stamp) to reduce the
noise added on this step. This is achieved by adding virtual steps (with 0 inputs) until the final step of that level in the tree,
because this noise will be the lowest in that level. In this section, we show how to further improve on this trick and that our
matrix mechanisms make analyzing such tricks easier. Our implementations of the binary-tree baslines Honaker (2015);
Kairouz et al. (2021) utilize these improvements.

For the online Honaker estimate, Honaker (2015) obtain a DP estimate for the release node i ∈ [n] (representing the prefix
sum until i) but summing the corresponding subtrees prior to this node. These are exactly the subtrees corresponding to the
binary representation of this node (Honaker, 2015). Then, the variance required to release node i, with subtrees of height
0, 1, ..., li − 1, is li−1∑

j=0

c2j · 2j
 · σ2 =

1

2 · (1− 2−µ)
· σ2 where cj =

1/2j

l1−1∑
j=0

(1/2j)

.

Notice that reaching a new height in the tree decreases the variance needed. In Kairouz et al. (2021) and just before
terminating on some non-power-of-two step n′ < n, they run n − n′ virtual steps on zero gradients. This enables their
mechanism to use the minimal noise for the power-of-two-step for the final real step.

However, notice that in both these cases, the methods assume that these virtual steps must be privatized. Indeed, they
do not need to be because we know apriori that these steps are virtual, i.e., not corresponding to real gradients. Thus, in

4https://github.com/google/differential-privacy

14

https://github.com/google/differential-privacy

Multi-Epoch Matrix Factorization

our methods we account for this in our mechanism and reduce the noise of the final step accordingly. Importantly, this
can be computed without altering the asymptotic runtime and storage complexity of the algorithm: on the last step, the
contributions of the virtual steps to the power-of-two noise can be calculated using, e.g., a second binary tree, and removed.
This leads to a significant benefit in the loss as we observed in Table 1 in App. D.5.

We believe this oversight of prior works showcases the power of our matrix mechanism approach. Indeed, let Ctree be
a matrix representing the (complete) binary tree used in the mechanisms of Honaker (2015); Kairouz et al. (2021) with
2dlog2(n)e leaves; for the sake of concreteness, assume this is the matrix constructed in Appendix C of Denisov et al. (2022).
Let BHon represent the Honaker estimator-from-below; in our language, the decoder used by (Kairouz et al., 2021).

The tree completion trick of (Kairouz et al., 2016) can be understood as follows. The matrix BHonCtree is of size 2dlog2(n)e×
2dlog2(n)e. In the case that n is not a power of two, the penultimate rows and columns of this matrix will go unused.
However, for this factorization, the variance added by BHonon the final row will be quite small, due to the binary tree’s
redundancy in encoding estimates of this sum. The matrix we wish to factorize is a prefix-sum matrix S of size n× n; this
matrix can be expressed as any one of a family of transformations of the (potentially larger) product BHonCtree:

S = PjBHonCtreeE,

where E embeds a n-dimensional vector into 2dlog2(n)e dimensions by padding with zeros, and Pj projects back down
to n dimensions in a similarly axis-aligned way, taking the first n − 1 rows of its right-hand matrix argument, and only
one, but any of the jth rows for n ≤ j ≤ 2dlog2(n)e. To minimize the Frobenius norm of the constructed decoder in the
factorization of S, we may simply pick the row with the lowest `2 norm; in the case of BHon, this is the final row.

One more optimization becomes clear when tree completion is formulated in this manner. Similar to our optimal decoder of
Sec. 4, any decoder can be used without changing the sensitivity of the encoder. Noting that nonzero entries in the decoder
increase our loss of Eq. (4), we can simply zero out the columns of the decoder corresponding to these virtual steps—this
decreases the loss, preserves the same error in the DP estimate of the prefix sum (the inputs are 0), and maintains the same
DP guarantee. In other words, we need not account for the noise, or the error it introduces, of virtual steps. We now provide
a more rigorous explanation.

The image of CtreeE can be contained in an axis-aligned subspace; effectively, the subspace corresponding to elements that
may be nonzero in the binary tree when run for n steps. In other words, the columns of the decoder corresponding to rows
of the encoder that are removed via the projection need not be included: because the input is not processed. Therefore,
denoting the projection onto this subspace by Π, we may write:

S = PjBHonΠCtreeE = (PjBHonΠ) (ΠCtreeE) ,

further reducing the variance of the decoder (without increasing the sensitivity of the encoder) in this incomplete binary
tree case.

In our implementations of the online Honaker mechanism, we freely use these tricks, in addition to exact calculations of the
sensitivity of the mechanism enabled by noting that the encoder is all-nonnegative and the observations of Sec. 2, leading
to some improvements in these mechanisms over those in the existing literature. No changes to accounting are required, as
privacy is inherited from the matrix mechanism perspective.

D.4. Stamping: Repeated mechanisms in the matrix-factorization setting

In stamping, we define a new encoder matrix as the Kronecker product of some given encoder C with an s × s identity
matrix I, creating a new sn-dimensional linear DP query mechanism. Assuming C is of shape n×n, the resulting encoder
is an sn× sn block-diagonal encoder matrix, formed by ‘repeating’ the matrix C along the diagonal.

Kairouz et al. (2021) explored ‘restarting’ their binary-tree based prefix sum estimation mechanism, treating the number of
restarts used as a hyperparameter, and treating the result of a ‘completed’ application of the binary tree as fixed. For linear
operators A with constant columns below the diagonal, this approach may be used to construct a new factorization from
an existing one. This constant-columns property, or a block-based variant thereof, is required to simply treat the output
from a ‘completed’ application of the existing mechanism as fixed; for a general matrix A, there is no clear prefix property
which can be leveraged for this purpose.

15

Multi-Epoch Matrix Factorization

Taking the matrix view, one may construct a similar encoder/decoder pair for the prefix-sum matrix by reusing the initial
decoder B on the block-diagonal and fixing the columns to simply repeat the final row of this decoder below the block-
diagonal; notice that the constant-column property of the prefix sum matrix guarantees that this construction appropriately
factorizes A. The noise that the matrix mechanism thus constructed adds can be implemented as a ‘restarted’ tree mecha-
nism; however, since we compute sensitivities exactly for decoders of this structure as in Sec. 2, the privacy properties of
these mechanisms we construct to replicate the ‘restarts’ of (Kairouz et al., 2021) may not be identical to those presented
there, where accounting is performed by composition.

The matrix-mechanism perspective additionally allows one to apply the ‘stamping’ construction to any linear operator A
(e.g. the momentum matrix), where a reuse of fixed previous outputs is not possible. A ‘stamped’ factorization of any A

may be obtained, for example, by matrix pseudoinversion: letting B = A (C⊗ I)
†. This defines a legitimate factorization

of any A requiring only suitable non-degeneracy assumptions on C, and indeed represents the optimal decoder for the
stamped encoder.

The pseudoinverse-based construction can, even in the prefix-sum case, be quite different from a construction designed to
replicate ‘restarted’ mechanisms. For example, if C is a matrix representation of the binary-tree encoder and I = 1, then
the resulting decoder matrix represents the full, rather than online, Honaker decoder (Honaker, 2015); the validity of this
mechanism in the adaptive streaming setting was only shown quite recently by Denisov et al. (2022).

For comparability with existing literature (and to preserve potential for an efficient implementation), however, all of the
tree-based mechanisms we explore in the main body have decoders which replicate the setting of composition5. All other
stamped mechanisms used the optimal decoder.

Optimizing over s Considering instantiation enables us to directly analyze and minimize (over s) the stamped mech-
anism’s multi-epoch loss Eq. (4) without running compute intensive ML experiments. Indeed, we observe in Table 1 of
App. D.5 that for mechanisms which were not explicitly optimized for the (k, b)participation setting, there exist stamped
mechanisms (s > 1) with much lower loss that correspondingly led to much more performant ML models (e.g., Figures 7
and 8 of App. D).

Interestingly, with our capacity to measure mechanisms at a single shot in the multi-epoch setting, we see a similar trend as
was observed for restarts in Kairouz et al. (2021): that ‘stamped’ mechanisms have lower total loss than their non-stamped
full-tree counterparts in the 20-epoch, 100 steps / epoch setting (see Table 1); training performance of these ‘stamped’
mechanisms on CIFAR10 can be found in Fig. 7. However, there is a significant improvement in our approach in that we
can now directly tune this hyperparameter without the need to actually run ML training. This lets us reduce computation
by only analyzing the loss of the generated matrices and then running the mechanism with the lowest loss.

D.5. Factorization losses and per-iterate variance

As a first measure of the privacy-utility tradeoff, we compare the losses of each mechanism from Eq. (4) for factorizations
of the matrices under consideration.

We compare measured losses of several factorizations of the prefix-sum matrix for the (k, b) = (20, 100) setting of the
CIFAR experiments in Table 1. We plot the per-iterate variance of the mechanisms in Fig. 1, along with several variations,
in Fig. 4. In Fig. 5, we plot the per-iterate variance distribution of factorizations of the momentum and cooldown matrix
(described in Sec. 5) at a fixed variance level, and with various privacies, computed for the (k, b) = (6, 342) participation
setting.

Figs. 4 and 5 both demonstrate the effect of (k, b)-participations on the optimization problem. Particularly interesting to
consider are the optimally-factorized matrices; in both cases, the epoch structure is clearly visible in the manner in which
the mechanisms distribute variance. We see also the effect of ‘stamps’ s in the variance distribution, effectively a proxy for
the epoch structure directly accounted for by the optimal mechanisms.

5We show how the optimal binary-tree decoder differs from the online, composition-based decoder in Fig. 6

16

Multi-Epoch Matrix Factorization

Figure 4: Per-iterate variance for prefix-sum factorizations. All mechanisms above yield the same privacy ((ε, δ) =
(4.38, 10−5) in the (k, b) = (20, 100) setting), but have different total variances (the integral of the curves above).

17

Multi-Epoch Matrix Factorization

Mechanism
(k, b) = (20, 100)
Prefix Sum Loss Computation for n Steps, d = 1

(Online) Honaker(n = 2000) 5.8e6 O(n log n) Noise Generation
(Online) Honaker(n = 1000)×2 3.3e6
(Online) Honaker(n = 400)×5 2.1e6
(Online) Honaker(n = 200)×10 2.0e6
(Online) Honaker(n = 100)×20 2.1e6

Optimal Decoder Honaker(n = 2000) 2.4e6 O(n2) Noise Generation
Optimal Decoder Honaker(n = 1000)×2 1.6e6
Optimal Decoder Honaker(n = 400)×5 1.2e6
Optimal Decoder Honaker(n = 200)×10 1.4e6
Optimal Decoder Honaker(n = 100)×20 1.8e6

MF(k = 20,n = 2000) 6.5e5 O(n3) Optimization +
O(n2) Noise Generation

MF(k = 10, n = 1000)×2 8.8e5
MF(k = 5, n = 500)×4 1.2e6
MF(k = 1, n = 100)×20 2.5e6
MF(k = 1, n = 2000) 1.6e6
MF(k = 1,n = 1000)×2 1.37e6
MF(k = 1, n = 500)×4 1.4e6
MF(k = 1, n = 400)×5 1.5e6
MF(k = 1, n = 200)×10 1.8e6
MF(k = 1, n = 100)×20 2.5e6

FFT(n = 2000) 2.3e6 O(n log n) Noise Generation
FFT(n = 1000)×2 1.8e6
FFT(n = 400)×5 1.6e6
FFT(n = 200)×10 1.9e6
FFT(n = 100)×20 2.5e6

FFT Optimal Decoder(n = 2000) 2.2e6 O(n log2 n) Noise Generation
FFT Optimal Decoder(n = 1000)×2 1.5e6
FFT Optimal Decoder(n = 400)×5 1.1e6
FFT Optimal Decoder(n = 200)×10 1.2e6
FFT Optimal Decoder(n = 100)×20 1.7e6

Table 1: Loss for various prefix-sum factorizations, computed via Eq. (4), in multiple-participation setting for 20 epochs
with 100 steps per epoch. Lowest-loss mechanism in each class bolded. Note that ‘(Online) Honaker’ corresponds to
the restarted decoder. By evaluating the dual problem (Sec. 3), 6.53e5 represents a lower bound on the optimal loss; the
optimal matrix factorization is within 0.2% of this optimal value. Though up to On2 noise generation can be tolerated
practically for large ML training runs, we find that the stamped FFT optimal decoder obtains the best privacy-utility
tradeoffs while requiring only O(n log2 (n)) time. Sensitivity is calculated exhaustively with contributions constrained to
+1 for all matrices except FFT ones, where sensitivity is calculated using Theorem 2.1.

18

Multi-Epoch Matrix Factorization

Figure 5: Per-iterate variance for momentum + cooldown matrix factorizations. Privacy measured in the (k, b) = (6, 342)
setting.

E. Details and additional experiments for CIFAR10.
We train image-classification models using the CIFAR10 dataset as hosted in tensorflow-datasets, containing
50,000 training and 10,000 test examples. We evaluate and compute test accuracies on the entire test set, following
the open-sourced code of Kairouz et al. (2021). We reuse the network architecture, dataset processing and initialization
strategies presented in Kairouz et al. (2021); in particular, the architecture we use can be found in their Table 2 (b).

Optimization setup and hyperparameters We train all mechanisms for 20 epochs with batch size of 500, yielding 100
steps per epoch and 2000 total. After performing some small initial grid searches, we settled on using linear learning rate
cooldown to 0.05× the initial learning rate over the last 500 steps of training. We found this consistently improved utility
for all mechanisms and privacy levels.

As mentioned in Sec. 5, for this 20-epoch training setup, we only compare factorizations of the prefix-sum matrix, and
do not include any factorizations of matrices which incorporate momentum of learning rate cooldown directly in the
mechanism itself (Denisov et al., 2022). We sweep over learning rates of values (1×10i, 2×10i, 5×10i) for i in {−2,−1};
for all mechanisms and noise levels, optimal values were in the interior of this sweep. We sweep over momentum values
of 0, 0.85, 0.9, 0.95 though find nonzero momentum works best for all matrix mechanisms, and no momentum works best
for DP-SGD at our scale as found previously by Kairouz et al. (2021).

For Honaker and FFT-based factorizations, there is no known a-priori way to choose the optimal number of s for a given
(k, b) setting. Therefore we treat the value s as a hyperparameter, and sweep across it, for s ∈ {1, 2, 5, 10, 20}. As can be
seen in Table 1, the optimal s for both of these factorizations was in the interior of this sweep. As shown, e.g., in Fig. 7, the

19

Multi-Epoch Matrix Factorization

Figure 6: Comparing the optimal decoder, i.e., OptDecoderHonaker, with the standard stamping decoder (including
fixing the output of each block), i.e., Online Honaker, with the optimal factorization.

training-time performance of these mechanisms matched the expected order for computed loss. This value s represents an
extra hyperarameter which must be set for the Honaker and FFT mechanisms; to the best of our knowledge, computing the
loss for various instantiations of these mechanisms via Eq. (4) represents the only known method for setting this parameter
other than simply training models.

We also apply our sensitivity analysis of Sec. 2 to the matrices of Denisov et al. (2022) which are optimized for k = 1. In
doing so, we can also optimize the number of stamps which we do. We report the best results as identified by the losses in
Table 1.

Figure 7: DP-FTRL-Honaker baseline ablation with respect to number of ‘stamps’ s.

20

Multi-Epoch Matrix Factorization

Figure 8: Ablation of prefix-sum factorizations, optimized for different number of epochs, and ‘stamped’ as appropriate.
Performance improves as the geometry used for computing the factorization approaches that used for training.

2 4 6 8 10 12 14 16 18
Privacy Budget,

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y

= , Nonprivate Baseline

CIFAR10 Privacy versus Accuracy Tradeoff

MF(k=20,n=2000)x1 (Ours)
FFT_Opt_Dec(n=400)x5 (Ours)
MF(k=1,n=100) (Denisov et al.)

Honaker(n=200)x10 (Kairouz'21)
DP-SGD + Amplification
MF(k=1,n=1000)x2 (Ours)

Figure 9: Our optimal multi-epoch matrix and FFT-based mechanisms outperform all others, including DP-SGD
with amplification, as low as ε ≈ 4. Using our sensitivity calculation of Thm. 2.1 and stamping (Sec. 5), we optimize
a single pass (k = 1) matrix of Denisov et al. (2022) but apply it here with > 1 pass. We use an online Honaker-based
decoder equivalent to that of Kairouz et al. (2021) except for a significant improvement to tree-completion in App. D.3.
Models trained for 20 epochs on CIFAR10 with a batch size of 500. We repeat each setting 12 times and show 95%
bootstrapped confidence intervals. Empirical setup is in Sec. 5.2.

21

Multi-Epoch Matrix Factorization

F. Additional StackOverflow Details
F.1. Privacy and Language Modelling

Language models trained on user data are an important real-world application of DP training, as these models can memorize
their training data if appropriate mitigations are not applied (Carlini et al., 2019; Song & Shmatikov, 2019; Carlini et al.,
2021). Since one user might contribute 1000s of tokens (training examples) to a dataset, it is particularly important to
consider user-level guarantees (McMahan et al., 2018). Building on the approach of Kairouz et al. (2021), Google recently
announced the first-ever launch of a language model trained on user data with a formal user-level DP guarantee (ρ = 0.81
zCDP), further demonstrating the importance of this application (McMahan & Thakurta, 2022).

The StackOverflow next-word prediction task, introduced in (Reddi et al., 2020), has become a benchmark problem for DP
training, and our experimental setup here fixes the same model and adapts hyperparmaeters from previous work including
Kairouz et al. (2021); Denisov et al. (2022).

F.2. Hyperparameter tuning and initial experiments

All runs use server momentum 0.95, a client learning rate of 1.0, and a server learning-rate cooldown schedule for the last
25% of rounds. The clipping norm was fixed at ζ = 1. Zeroing outlier updates and using 1000 clients/round (6 epoch runs)
allows the use of the higher server learning rates. MF1,1e replicates the result of single-epoch training from Denisov et al.
(2022); note that with 167 clients/round and this mechanism, the higher learning rate does not appear to help. Fig. 10 gives
preliminary experimental results which informed the main experiments used in the paper. Note that the y-axis range (Test
set accuracy) is highly compressed, and so the primary point of comparison is on epsilons. For example, Denisov et al.
(2022) shows that cross-run variation of 0.002 or more is typical.

The 6 horizontal lines give test-set accuracy for various non-private training mechanisms. The “Unnoised MF” runs
correspond to the same code path used for privacy, but without any noise addition. In particular, these use momentum with
learning rate cooldown; the other unnoised runs use a standard FL implementation with momentum but a fixed learning
rate schedule; “cpr=167“ corresponds to one epoch of training (167 clients/round), and “cpr=50” is 50 clients/rounds (only
about 1/3 of an epoch). This last non-private baseline uses the best hyperparameters for FedAvgM from Reddi et al. (2020).

The two “Unnoised MF” runs with accuracies between 0.246 and 0.248 are functionally identical, and the line near 0.248
accuracy is the same except it does not use learning-rate cooldown. Thus, for the given learning rates, we see the higher-
epsilon private runs are adding sufficiently small noise that the accuracy is essentially equivalent to unnoised baselines
with the same hyperparameters. However, using larger learning rates can achieve accuracy over 25%, even with privacy as
in the case of the MF-6-6 run, hence motivating the inclusion of larger learning rates in the main experiments.

The MF (Matrix Factorization) runs with “prefix” in the name correspond to computing an optimal factorization of the
prefix-sum matrix (lower triangular matrix of ones) and then applying momentum (and possibly learning rate cooldown)
as post-processing. The other MF runs directly factor the momentum or momentum+cooldown matrix.

F.3. Impact of zeroing-out large-norm updates

We observed that zeroing out updates with an `∞ norm greater than 100ζ = 100 greatly stabilized training, allowing
larger learning rates, particularly for MF6,6e. We conducted ablation experiments where we turned off this zeroing, which
produced a large fraction of unconverged runs as detailed in Table 2. The number of updates zeroed increases significantly
with larger amounts of noise and larger learning rates, as shown in Fig. 11.

22

Multi-Epoch Matrix Factorization

Figure 10: Preliminary experimental results and non-private (unnoised) baselines. The notation sX, cY indicates a server
learning rate X and client learning rate Y .

Unconverged runs with

Mechanism ε Zeroing No Zeroing

DP-SGDM,6e, ηs = 0.5 2 0 of 3 1 of 2

DP-SGDM,6e, ηs = 0.5 9 0 of 3 0 of 2

MF6,6e, ηs = 0.5 2 0 of 3 3 of 4

MF6,6e, ηs = 1.0 9 0 of 3 3 of 4

Table 2: Number of divergent training runs with and without zeroing of user updates with `∞ norm greater than 100; ηs
gives the server learning rate.

F.4. Complete results

In this section we give additional details on our main grid of experiments. Fig. 12 uses the same data as Fig. 3, but shows
results for each learning rate individually. Tables 4 and 5 give the mean, minimum, maximum, and standard deviation of
test-set accuracy corresponding to Fig. 12, as well as the number of replicated experiments (‘count’).

Table 3 gives the noise multipliers to achieve our various privacy targets ε. Due to a change in the accountant used, we have
slightly different ε targets around 8.8 for the different methods. Note the noise multipliers here are incomparable between
the MF and (S)GD mechanisms in terms of the total noise introduced. For matrix factorization, we sample Z ∼ N (0, ζ2z2)
for noise multiplier z; this noise is applied after mapping the raw gradients/updates x through the linear map C which is
normalized so the total sensitivity is ζ. For the (S)GD mechanisms, we add noiseN (0, ζ2z2) independently to each model
update. In all cases, noise is added to the sum of per-user updates, so the effective noise in the average update scales down

23

Multi-Epoch Matrix Factorization

Figure 11: Number of large-magnitude updates zeroed per training round.

Figure 12: Complete data used in Fig. 3 showing results for server learning rates ηs = 0.5 and 1.0, as well as 0.25 when
ε=2. All algorithms use momentum 0.95 and a client learning rate of 1.0. For the 1 and 6 epoch runs, we observe MF
generally tolerates larger learning rates, though lower learning rates perform better for all algorithms at ε=2.

with the number of clients per round.

Noise multiplier z
target ε MF DP-SGD (6e) GD (2052e)

17.648 0.341 0.402 15.518
8.841 0.600 - -
8.824 - 0.491 27.493
2.000 2.231 0.757 106.023

Table 3: Noise multiplier parameters for the StackOverflow experiments to achieve various εs at δ = 10−6. Privacy was
computed using the PLD accountant, see App. D.2.

24

Multi-Epoch Matrix Factorization

Test set accuracy
clients/round ε ηs mean std min max count

1000 2.00 0.25 0.22654 0.00009 0.22648 0.22660 2
0.50 0.22592 0.00013 0.22581 0.22606 3
1.00 0.21869 0.21869 0.21869 1

8.82 0.25 0.23154 0.00015 0.23143 0.23164 2
0.50 0.23447 0.00033 0.23419 0.23495 4
1.00 0.23135 0.00041 0.23106 0.23164 2

17.65 0.25 0.23290 0.00002 0.23289 0.23291 2
0.50 0.23728 0.00014 0.23710 0.23741 4
1.00 0.23571 0.00019 0.23558 0.23585 2

342477 2.00 0.50 0.24074 0.24074 0.24074 1
1.00 0.24056 0.00097 0.23886 0.24125 5

8.82 0.50 0.24640 0.00011 0.24632 0.24647 2
1.00 0.25279 0.00019 0.25261 0.25306 4

17.65 0.50 0.24686 0.00025 0.24668 0.24704 2
1.00 0.25370 0.00039 0.25312 0.25394 4

Table 4: Test set accuracy statistics for DP-SGDM,6e (1000 clients/round) and DP-GDM,2052e (342,477 clients/round).
Accuracy for DP-GDM,2052e was estimated with 1000 clients/round with an appropriately scaled noise multiplier. The
count columns gives the number of repeated trials of the given configuration, with ηs indicating the server learning rate.

Test set accuracy
ε ηs mean std min max count

Honaker, 6e (Kairouz’21) 2.00 0.25 0.20951 0.00134 0.20857 0.21046 2
0.50 0.19535 0.00114 0.19429 0.19655 3
1.00 0.00011 0.00011 0.00011 1

8.84 0.50 0.23952 0.00101 0.23881 0.24023 2
1.00 0.23799 0.00212 0.23649 0.23949 2

17.65 0.50 0.24422 0.00037 0.24383 0.24456 3
1.00 0.24675 0.00128 0.24540 0.24810 5

MF1, 1e (Denisov’22) 2.00 0.25 0.19674 0.00057 0.19633 0.19715 2
0.50 0.00093 0.00108 0.00017 0.00169 2

8.84 0.25 0.23500 0.00009 0.23493 0.23506 2
0.50 0.24105 0.00083 0.24019 0.24190 4
1.00 0.23909 0.00196 0.23767 0.24132 3

17.65 0.25 0.23576 0.00019 0.23562 0.23590 2
0.50 0.24503 0.00056 0.24408 0.24565 6
1.00 0.24522 0.00102 0.24424 0.24628 3

MF1, 6e (Ours) 2.00 0.25 0.22953 0.00046 0.22921 0.22985 2
0.50 0.22324 0.00017 0.22308 0.22341 3
1.00 0.00010 0.00010 0.00010 1

8.84 0.50 0.24516 0.24516 0.24516 1
1.00 0.24676 0.00044 0.24628 0.24714 3

17.65 0.50 0.24628 0.24628 0.24628 1
1.00 0.25194 0.00085 0.25124 0.25288 3

MF6, 6e (Ours) 2.00 0.25 0.22978 0.00038 0.22939 0.23014 3
0.50 0.23237 0.00078 0.23147 0.23286 3
1.00 0.22413 0.00055 0.22365 0.22472 3

8.84 0.50 0.24509 0.00010 0.24497 0.24515 3
1.00 0.24897 0.00081 0.24804 0.24955 3

17.65 0.50 0.24632 0.00015 0.24618 0.24648 3
1.00 0.25265 0.00025 0.25240 0.25291 3

Table 5: Test set accuracy for matrix-factorization based mechanisms. Note: Some 6 epoch runs were conducted with
shuffling between epochs, and some were conducted using a fixed order for all epochs (as required by our DP analysis).
We saw no impact of reshuffling on the final test set accuracy, and so include all runs in these results regardless of the
shuffling setting.

25

Multi-Epoch Matrix Factorization

Figure 13: A more detailed view of the matrices shown in Fig. 2.

F.5. Optimal matrix mechanisms

G. Limitations and Ethical Considerations
The major limitation of our approach is the computation required to generate the optimal matrices. Though our optimal
FFT decoder bridges the gap between the mechanisms without optimizer costs and our optimal mechanism, it still leaves
some room for improvement in the privacy-utility tradeoff. We believe this is an important area for future work.

Our work aims to enable privacy-preserving ML with rigorous DP guarantees in broader settings via improved (state-of-
the-art) privacy-utility tradeoffs. Though DP is the gold-standard in this area, it is currently impossible to train high-utility
ML models with tight DP guarantees < 1 in many, if not all, real-world settings without large amounts of public data. In
this regime, it is not well-understood what privacy leakage may occur.

H. Analysis for Sec. 2
H.1. From scalar to vector contributions

Theorem H.1. Let C ∈ Rn×k which satisfies

‖Cu‖2≤ 1 ∀u ∈ {−1, 1}k,

26

Multi-Epoch Matrix Factorization

and let G ∈ Rk×d such that each row G[i,:] for i ∈ [k] satisfies ‖G[i,:]‖2≤ 1. Suppose at least one of the following
conditions hold:

1. We have k = 1 or k = 2 participations.

2. All the entries of C>C are non-negative.

3. The rows of G are all co-linear, G[i,:] = ui ·G[1,:] for ui ∈ {−1, 1}, i > 1.

4. The rows of G are all orthogonal, 〈G[i,:],G[j,:]〉 = 0, ∀i 6= j, i, j ∈ [k].

Then,
‖CG‖F ≤ 1. (10)

Furthermore, the following statements are also true without assuming conditions (1)-(3) above.

• ‖CG‖F ≤
π
2 .

• If we replace the condition on G to ∀i ∈ [k], ‖G[i,:]‖1≤ 1, then ‖CG‖F ≤ 1.

Note Thm. H.1 is generally applied to C[:,π], the sub-matrix of some C ∈ Rn×n formed by keeping only columns
selected by a particular participation pattern π.

Proof Thm. H.1. Let C =
[
c1 c2 · · · ck

]
with each ci ∈ Rn being a column vector. Also let we write g[i,j] for the

(i, j)-th entry of G. It will also be useful to note

‖CG‖2F = tr(CG(CG)>) = tr(C>CGG>). (11)

In the following we prove each of the individual cases of Theorem H.1.

When k = 1 or k = 2: For k = 1, we have

‖CG‖2F = ‖c1‖22

 d∑
j=1

g[1,j]

2

≤ ‖c1‖22 = max
u∈{±1}

‖u · c1‖22 .

An equivalent argument is used in Denisov et al. (2022, Thm. 3.1).

For k = 2, we have the following:

‖CG‖2F =

2∑
i=1

‖ci‖22 ·

 d∑
j=1

g2
[i,j]

+
(
2g[1,1]g[2,1]〈c1, c2〉

)
+ · · ·+

(
2g[1,d]g[2,d]〈c1, c2〉

)
≤

2∑
i=1

‖ci‖22 +
(
2|g[1,1]|·|g[2,1]||〈c1, c2〉|

)
+ · · ·+

(
2|g[1,d]|·|g[2,d]||〈c1, c2〉|

)
≤

2∑
i=1

‖ci‖22 +
(
g2

[1,1] + g2
[2,1]

)
|〈c1, c2〉|+ · · ·+

(
g2

[1,d] + g2
[2,d]

)
|〈c1, c2〉| (12)

= ‖c1‖22 + ‖c2‖22 + 2|〈c1, c2〉|= max
{

(c1 + c2)
2
, (c1 − c2)

2
}

≤ max
u∈{±1}2

‖Cu‖22 ≤ 1,

where Eq. (12) follows from the standard A.M. ≥ G.M. inequality.

27

Multi-Epoch Matrix Factorization

All the entries of C>C are non-negative: Let X = C>C and Ĝ = GG>. Observe Ĝ[i,j] ∈ [−1, 1], and using
Eq. (11), when X is elementwise non-negative, tr(XĜ) is maximized when Ĝ = 1k×k = ûû> by choosing û = 1k.
Hence,

‖CG‖F ≤ tr(C>Cûû>) = ‖Cû‖2 ≤ max
u∈{±1}k

‖Cu‖22 . (13)

Eq. (13) completes the proof.

The rows of G are co-linear: By the convexity of ‖CG‖2F with respect to the matrix G, we may assume the rows of
G are of `2 norm 1. Under the colinearity assumption, this translates to G[i,:] = uiG[1,:], with each ui ∈ {±1}. Let
u = [u1, . . . , uk] ∈ {−1, 1}k. Then for the matrix GG> we have the following:

[GG>][i,j] = 〈G[i,:],G[j,:]〉 = uiuj〈G[1,:],G[1,:]〉 = uiuj .

which implies
GG> = uu>. (14)

Using Eq. (14) with Eq. (11), we have

‖CG‖2F = tr(CG(CG)>) = tr(C>Cuu>) ≤ max
u∈{±1}k

‖Cu‖22 ≤ 1.

The rows of G are all orthogonal This condition implies Ĝ = GG> is a diagonal matrix with diagonal entries in [0, 1],
and so Eq. (11) implies ‖CG‖2F ≤ tr(X). It is thus sufficient to show

tr(X) ≤ max
u∈{−1,1}k

tr(Xuu>).

We give a construction for a u that shows this. Observe

tr(Xuu>) = tr(X) + 2

k∑
i=1

ui

i−1∑
j=1

ujX[i,j]︸ ︷︷ ︸
bi

.

Observe we can choose u1 = 1 and then ui = sign(bi) since bi depends only on C and the previously fixed uj for j < i,
ensuring the double sum on the right is non-negative, completing the proof.

‖CG‖F ≤ π/2 without assuming conditions (1)-(4): This argument is essentially due to (Denisov, 2023); we inline
here for completeness.

We begin by noting that the conditions on C imply that X := C>C has `∞-to-`1 operator norm 1. This follows from
duality. Denote by ‖·‖p,q the norm of a matrix as an operator on vectors from `p to `q . By assumption,

sup
u:‖u‖∞≤1

‖Cu‖22≤ 1,

which is to say that ‖C‖∞,2≤ 1. Duality, therefore, implies that ‖C>‖2,1≤ 1, and ‖X‖∞,1≤ 1.

Now, for X = (xij) ,

‖CG‖F= tr
(
XGG>

)
=

k∑
i,j=1

xij〈gj ,gi〉. (15)

Bounding equation Eq. (15) in terms of the `∞-to-`1 operator norm of X is the subject of a famous result of
Grothendieck (Grothendieck, 1956); e.g., as stated in (Lindenstrauss, 1968), Grothendieck’s inequality may be states
precisely as:

k∑
i,j=1

xij〈gj ,gi〉 ≤ K‖X‖∞,1, (16)

28

Multi-Epoch Matrix Factorization

where K (known as the Grothendieck constant) is independent of d, but not known exactly in general.

However, in our case, our matrix X is symmetric by construction; in the case of symmetric X the constant K may be
replaced by π/2 (see Eq. 43 of (Khot & Naor, 2011)), and this constant is known to be sharp (IE, the best constant which
holds for all symmetric matrices X and in all dimensions d).

Replacing the condition on G to ∀i ∈ [k], ‖G[i,:]‖1≤ 1, then ‖CG‖F ≤ 1: First notice that since ‖CG‖2F is a convex
function, the maximum happens at the extreme points of the constraint set G = {G | ∀i ∈ [k], ‖G[i,:]‖1= 1}. We use
Claim H.1 to identify the extreme points of G.

Claim H.1 (Theorem 1 in Cao et al. (2022)). The set of extreme points of the set of k × d row-stochastic matrices are
precisely the set of row permutation matrices, i.e., set of the matrices with entries in {0, 1}k×d and each row has exactly
one non-zero entry.

Notice that the constraint on any matrix G ∈ G is oblivious to the sign, meaning, we can flip the sign of any set of entries
in G and the new matrix will still be in G. This along with Claim H.1 immediately implies that the set H = {H ∈
{−1, 0, 1}k×d : ∀i ∈ [k], ‖H[i,:]‖0=

∥∥H[i,:]

∥∥
∞ = 1} is the set of extreme points of the set G. (If the set of extreme

points of G is larger than H, then the signs of any such extreme point can be flipped to create a new extreme point of
row-stochastic matrices, which would violate Claim H.1.)

It is not hard to observe that for any H ∈ H, there exists an uH{±1}k s.t. ‖CH‖F = ‖CuH‖2. Since, ‖CuH‖2 ≤
max

u∈{±1}k
‖Cu‖2 for any choice of uH, and the fact that max

G
‖CG‖F is reached at one of the matrices in H, the claim in

Theorem H.1 follows.

H.2. A counterexample for general C

Theorem H.1 indicates the possibility of the following conjecture being true, because of it being true in so many special
cases: If max

u∈{±1}k
‖Cu‖2 ≤ 1, then ‖CG‖F ≤ 1 for all G with row `2-norm at most one. Unfortunately, we show that the

conjecture is not true when k > 2, as shown by the following counterexample with n = k = 3 and d = 2:

C =
1√
24

2 1 1
1 2 −1
1 −1 2

 and G =
1√
5

2 1
2 −1
1 2


Direct calculation shows maxu∈{±1}k ‖Cu‖2 = 1, but ‖CG‖F =

√
1.1 ≈ 1.049.

H.3. Proof of Cor. 2.1

Cor. 2.1 Restated. When per-step contributions are bounded by ζ = 1, for any participation pattern Π and dimensionality
d ≥ 1, when C>C ≥ 0 elementwise, we have

sensDd
Π

(C) = sensD1
Π

(C).

Proof. To see sensDd
Π

(C) ≥ sensD1
Π

(C), suppose u? = arg maxu∈D1
Π
‖Cu‖2, and observe we can construct a G such

that ‖CG‖F = ‖Cu?‖2 by taking rows G[i,:] = (u?i , 0, . . . , 0) ∈ Rd for i ∈ [n].

For the other direction, for each π ∈ Π, we apply Thm. H.1 to the matrix Cπ = C[:,π], and observe C>C ≥ 0 is sufficient
to imply C>πCπ ≥ 0.

Note The condition C>C ≥ 0 is sufficient but not in fact necessary for Cor. 2.1 to hold. In particular, for (k, b)-
participation Π, the sub-matrices C>πCπ for π ∈ Π “touch” only k2b entries of the n2 = k2b2 entries of C>C; the other
entries of C>C could in fact be negative. However, we did not need to use this observation for any of the matrices in our
experiments.

29

Multi-Epoch Matrix Factorization

H.4. Proof of Thm. 2.1

Thm. 2.1 Restated. Let C ∈ Rn×n, and take some participation pattern Π, with k = maxπ∈Π|π| the maximum number
of participations. With C[:,π] representing to selecting the columns of the matrix C indexed by π and ‖·‖2 the spectral
matrix norm, let λ = max

π∈Π

∥∥C[:,π]

∥∥
2
. Then

sensD1
Π

(C) ≤ λ
√
k.

Proof. By assumption we have ‖u‖≤
√
k, and so

max
u∈D
‖Cu‖2 ≤ max

π∈Π
max
u∈D
‖C[:, π]‖2 ‖u‖2 ≤ λ

√
k.

I. Analysis for Sec. 3
I.1. Proof of Thm. 3.1

Thm. 3.1 Restated. Let a finite D = {ui}ki=1 be given, and assume that the vectors {ui}ki=1 span Rn. Assume that A is
full-rank, and for v ∈ Rk define

Hv = [u1, . . . ,uk] diag(v)1/2, U = HvH>v .

Then, for Lagrange multipliers v such that the U is full-rank, the Lagrange dual function g can be expressed in closed
form in terms of the Lagrange multipliers:

g(v) := inf
X is PD

L(X,v) = 2 tr
(

(U
1
2 A>AU

1
2)

1
2

)
−
∑
u∈D

vu (17)

Proof. Since there is some finite set of vectors u ∈ Rn specifying D, the supremum in Eq. (5) may be reduced to a
maximum over these elements.

Our problem then takes the form:

inf
X is PD

tr(A>AX−1)

s.t. u>Xu ≤ 1, ∀u ∈ D. (18)

Recall that we have defined Hv = [u1, . . . ,uk] diag(v)
1
2 , and U = HvH>v . Now, note:

U =
∑
u

vuuu> = H diag(v)H> = HvH>v . (19)

Introducing Lagrange multipliers vu ≥ 0, for the problem Eq. (18) we form the Lagrangian for positive-definite X:

L(X,v) = tr(A>AX−1) +
∑
u

vu

(
u>Xu− 1

)
(20)

= tr(A>AX−1) + tr

((∑
u

vuuu>
)
X

)
−
∑
u

vu (21)

= tr(A>AX−1) + tr (UX)−
∑
u

vu. (22)

For fixed v, any finite minimizer of L for positive-definite X must correspond to a zero of this Lagrangian’s gradient. We
then compute the gradient

∂L

∂X
= −X−1A>AX−1 + U. (23)

30

Multi-Epoch Matrix Factorization

U and A are full-rank by assumption; therefore Lem. I.2 is applicable, and Eq. (23) has a unique positive-definite zero
(and indeed, the infimum in Eq. (18) becomes a minimum):

X = U−
1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2 . (24)

Note that Eq. (23) also immediately implies that if U is not full-rank, then there is no finite positive-definite minimizer of
L in X. Letting g(v) = minX L(X,v) be the Lagrange dual function and plugging back into Eq. (22), we have

g(v) = min
Xis PD

tr(A>AX−1) + tr (UX)−
∑
u

vu

= min
Xis PD

tr(XU) + tr (UX)−
∑
u

vu using Eq. (23)

= min
Xis PD

2 tr (UX)−
∑
u

vu

= 2 tr
(
UU−

1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2

)
−
∑
u

vu using Eq. (24)

= 2 tr
(

(U
1
2 A>AU

1
2)

1
2

)
−
∑
u

vu.

I.1.1. PROOF OF COR. 3.1

Cor. 3.1 Restated. In the same setup as Thm. 3.1, a maximizer of the dual v? must satisfy:

v? = diagpart
(

(H>v?A>AHv?)
1
2

)
. (25)

Moreover, the optimal value of the problem defined in 6 is tr (v?).

Proof. As noted in the remark after Thm. 3.1, any optimal setting of the dual variables must be in the interior of a
neighborhood in which the representation Eq. (7) is valid. It is therefore permissible to differentiate this representation.

Differentiating, we find:

∂

∂vi
tr
(

(U
1
2 A>AU

1
2)

1
2

)
=

1

2
tr
(
A>AU

1
2 (U

1
2 A>AU

1
2)−

1
2 U−

1
2 uiu

>
i

)
=

1

2
tr
(
U−

1
2 (U

1
2 A>AU

1
2)(U

1
2 A>AU

1
2)−

1
2 U−

1
2 uiu

>
i

)
=

1

2
tr
(
U−

1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2 uiu

>
i

)
=

1

2
tr
(
u>i U−

1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2 ui

)
=

1

2
u>i Xui,

by defining X = U−
1
2 (U

1
2 A>AU

1
2)

1
2 U−

1
2 (recalling the usage of the symbol X in Eq. (24)).

Therefore
∂g(v)

∂vi
= u>i Xui − 1,

and we have the stated expression for the gradient of the dual function.

31

Multi-Epoch Matrix Factorization

Now, at a maximizer of the dual function, this derivative must vanish. An equivalent condition is diagpart(H>XH) = ~1,
and hence

tr(UX) = tr(H diag(v)H>X) = tr(diag(v)H>XH) =
∑
u

vu, (26)

so at the optimum v? in fact g(v?) =
∑

u v?u, establishing the second claim of our result.

Again using the observation that diagpart(H>v XHv) = ~1 and so

diagpart(H>v XHv) = diagpart(diag(v)H>XH) = v.

Further, using the second claim of Cor. I.1, we can take

X = H−>v (H>v A>AHv)
1
2 H−1

v ,

and multiplying this by H>v and Hv on the left and right respectively yields

H>v XHv = H>v H−>v (H>v A>AHv)
1
2 H−1

v Hv = (H>v VHv)
1
2

and so we conclude for the optimal Lagrange multiplier v?,

v? = diagpart
(

(H>v?A>AHv?)
1
2

)
. (27)

I.2. Lemmas and Corollaries

Lemma I.1. The set of positive-definite X such that supu∈D u>Xu ≤ 1 is bounded as a subset of Rn×n if and only if
D = {u} spans Rn.

Proof. Suppose that D spans Rn. For a PSD matrix, a bound on the trace implies a bound on the elements; therefore it is
sufficient to show that supu∈D u>Xu ≤ 1 implies that the maximum eigenvalue of X is uniformly bounded for X PSD.

Take some set of vectors {ui}ni=1 ∈ D which span Rn. Fix some representation

ei =

n∑
j=1

αijuj ,

where ei is the ith standard basis vector.

Take y of `2 norm 1, and express:

y =

n∑
i=1

γiei.

Then for X satisfying our assumptions,

∣∣y>Xy
∣∣ =

∣∣∣∣∣∣
n∑

i,j=1

γiγje
>
i Xej

∣∣∣∣∣∣ =≤ n2 max
1≤i,j≤n

|γiγj |
∣∣e>i Xej

∣∣ . (28)

Similarly,

∣∣e>i Xej
∣∣ =

∣∣∣∣∣∣
n∑

k,l=1

αikαjlu
>
k Xul

∣∣∣∣∣∣ ≤ n2 max
1≤k,l≤n

|αikαjl|
∣∣u>k Xul

∣∣ ≤ n2 max
1≤k,l≤n

|αikαjl|, (29)

32

Multi-Epoch Matrix Factorization

where the final inequality follows by the assumptions on X.

Now, since the `2 norm of y is 1, the orthogonality of the ei imply that each |γiγj | is at most 1. Therefore:

∣∣y>Xy
∣∣ ≤ n4 max

1≤i,j,k,l≤n
|αikαjl|, (30)

and we have sufficiency of D spanning Rn.

For necessity, suppose D does not span Rn. Then there is some vector y ∈ span (D)
⊥ of norm 1. Take any X such that

supu∈D u>Xu ≤ 1. Then, since y>u = 0 for all u ∈ D, Y := X + αy satisfies the same set of inequalities for any
α.

Lemma I.2. Let U,V ∈ Sn++. Let U = ULUR be a factorization of U such that URVUL is PSD, and the following
equation defines a positive-definite matrix X:

X = U†R(URVUL)
1
2 U†L. (31)

Then, this X solves the equation

XUX = V or equivalently U = X−1VX−1.

Moreover, this positive-definite solution X is unique.

Proof. We will begin by showing that X as defined by Eq. (31) solves the equation XUX = V; then we will show that
any two positive-definite representations of the form Eq. (31) are in fact identical.

Notice that the representation U = ULUR implies that rank(UL) ≥ n and rank(UR) ≥ n. Therefore ULU†L = I =

U†RUR, as implied by the Moore definition of the Moore-Penrose pseudoinverse. So:

XUX = XULURX

=
(
U†R(URVUL)

1
2 U†L

)
ULUR

(
U†R(URVUL)

1
2 U†L

)
= U†R(URVUL)

1
2 PR(U†L)PR(UR)(URVUL)

1
2 U†L

We claim that (URVUL)
1
2 PR(U†L) = PR(UR)(URVUL)

1
2 = (URVUL)

1
2 . In both cases, this can be seen by multiply-

ing on the left or right as appropriate by (URVUL)
1
2 , and noting PR(UR)UR = UR, ULPR(U†L) = UL. Since all the

terms here are symmetric, the appropriate equality follows by uniqueness of the symmetric matrix square root. Therefore:

XUX = U†RURVULU†L
= V.

The uniqueness of a positive-definite X solving XUX = V follows from the uniqueness of the usual matrix square root.
Indeed, assume Y positive-definite satisfies YUY = V. Then:

(
U1/2YU1/2

)2

= U1/2VU1/2

Since the positive-definite square root is uniquely determined, U1/2YU1/2 is uniquely determined. Since U is invertible,
Y is uniquely determined as well, and we have Y = X.

33

Multi-Epoch Matrix Factorization

Corollary I.1. Two particular instantiations of Lem. I.2 are of interest. X as the matrix geometric mean of U−1 and V
(taking UL = UR =

√
U):

X = U−
1
2 (U

1
2 VU

1
2)

1
2 U−

1
2 , (32)

and assuming the representation U = HvH>v :

X = H†>v (H>v VHv)
1
2 H†v. (33)

Proof. By positive-definiteness of U and V, Eq. (32) is clearly positive definite; Eq. (33) may be seen to be positive
definite via the SVD of the pseudoinverses involved. Symmetry is again clear. Therefore both representations satisfy the
assumptions of Lem. I.2.

I.3. Impact of non-negativity constraints

We consider three variations of the constraints in Eq. (6). In the first, we have the default constraints

max
u∈D1

Π

u>Xu ≤ 1. (34)

This requires enumerating the b2k corners of D1
Π, which is tractable for the small problems we consider here. Next, we

consider the approach used for our experiments:

max
u∈D1

Π,u≥0
u>Xu ≤ 1 and X ≥ 0. (35)

Note here we only have b non-negative vectors u, and so only b+ n2 constraints.

Finally, we consider and “in between” set of constraints. This is the minimal set of constraints that allows us to apply claim
2 of Thm. H.1. In order to define these constraints, let Π̂ = {(i, j)|(i, j) ∈ π, i 6= j, π ∈ Π}, the set of pairs of distinct
iterations in which the same user could possibly participate. For Claim 2 of Thm. H.1, because we apply the theorem to
sub-matrices C[:,π], a sufficient condition is X[i,j] ≥ 0 for all (i, j) ∈ Π̂. Then, the constraints become:

max
u∈D1

Π,u≥0
u>Xu ≤ 1 and ∀(i, j) ∈ Π̂, X[i,j] ≥ 0. (36)

Since |Π̂|= bk(k − 1), we have b+ bk(k − 1) < b+ n2 constraints.

In Table 6 we show results for a tiny problem: n = 6, k = 3, and b = 2. However, we have run additional experiments
that align with the conclusions reported here for moderately larger problems (noting the full approach quickly becomes
prohibitively expensive). For the prefix-sum workload, the choice of additional constraints does not impact the total error,
as in all cases X ≥ 0. However, for the momentum workload (with momentum 0.95), we see small gaps, indicating
that imposing the additional constraints does come at at a small (from 16.115 to 16.134) impact on the total error for this
workload.

workload A constraints mini,j∈[n] X[i,j] mini,j∈Π̂ X[i,j] Error

prefix-sum Eq. (34) 0.000 0.000 6.461

prefix-sum Eq. (36) 0.000 0.000 6.461

prefix-sum Eq. (35) 0.000 0.000 6.461

momentum Eq. (34) −0.031 −0.031 16.114

momentum Eq. (36) −0.015 0.000 16.131

momentum Eq. (35) 0.000 0.000 16.134

Table 6: Comparison of matrix mechanisms for n = 6, k = 3, and b = 2; the momentum workload uses momentum 0.95.
Error is the root-total-squared-error, the square root of L(B,C) defined in Eq. (4).

34

Multi-Epoch Matrix Factorization

J. Analysis for Sec. 4
J.1. Additional Details

Defining the circulant matrix We consider the special case where A is the prefix sum linear query matrix (lower-triangle
matrix of ones). Then, we define the corresponding circulant matrix

Acirc ,


v0 v2n−1 · · · v1

v1 v0 · · · v2

...
... · · ·

...
v2n−1 v2n−2 · · · v0

 where v , [1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

]. (37)

It is straightforward to verify Acirc[:n,:n] = A.

Defining the DFT

∀k ∈ [2n− 1] : vDFT[k] =

2n−1∑
a=0

v(a) exp

(
−j2πka

2n

)
(38)

Circulant matrices expressed using Fourier Transforms
Theorem J.1 (Adapted from (Gray, 2006)). Consider any circulant matrix Acirc ∈ R2n×2n. Let F ∈ C2n×2n, where the k-
th row of F is given by F[k, :] = 1√

2n

[
exp

(
− j2πka2n

)
: a ∈ {0, . . . , 2n− 1}

]
. Then, Acirc = F

∗
ΣF, where Σ ∈ C2n×2n

is a diagonal matrix with the diagonal being the DFT (defined in Equation 38) of the first column of Acirc. Here, ∗ is the
Hermimitian operation.

Privacy and utility guarantees In the following we provide the privacy guarantee and the main utility guarantee for the
FFT mechanism defined in Algorithm 1.

Theorem J.2 (DP-Prefix Sum via FFT Privacy Guarantee). Algorithm 1 is ρ-zCDP in the adaptive continuous release
model.

Next, we analyze the utility of Algorithm 1 and show that it is nearly optimal in terms of the mean squared error (MSE) in
the single-pass setting. First, we express the MSE in Theorem J.3 below.

Theorem J.3 (DP-Prefix Sum via DFT Utility). The MSE achieved by Algorithm 1 using the real and imaginary compo-
nents of z̃ is

E [MSE] =
κ2
∥∥vDFT

∥∥2

1

2ρn2
.

In the following, we will have an explict expression for
∥∥vDFT

∥∥
1

in terms of the problem parameters. Finally, we will
argue that Theorem J.3 is nearly optimal.

Corollary J.1. The expected mean squared error (MSE) is given by the following:

E [MSE] =
κ2

2ρn2

n+

b 2n−1
2 c∑

a=0

1

sin
(
π(2a+1)

2n

)
2

.

Near-optimal utility Here, we show that Theorem J.3 is near-optimal in utility for the single-participation setting. To
do this, we compare with a lower bound on the expected MSE of any factorization-based mechanism from Henzinger

et al. (2022, Theorem 2): 1
2ρπ2

(
2 + ln

(
2n+1

3

)
+ ln(2n+1)

2n

)2

. We find that the though our analytical upper bound in
Corollary J.1 is≈ 6x worse than the lower bound, the empirical noise added in Algorithm 1 closely tracks the lower bound
to within a factor of 1.2x—because it only adds the real part of the noise. Results are in Figure 14 of Appendix J.1.

Showing near-optimal utility via MSE experiments

35

Multi-Epoch Matrix Factorization

Figure 14: Algorithm 1 achieves near-optimal utility as measured by the analytic lower bound from Henzinger et al.
(2022, Theorem 2).

J.2. Proof of Thm. J.2

Thm. J.2 Restated. Algorithm 1 is ρ-zCDP in the adaptive continuous release model.

Proof. First, consider the non-adaptive setting and the following mechanism, with parameters as defined in Algorithm 1,[
Σ
(
Fxext + Σ−1z

)]
,

where z =

√
κ2 ‖vDFT‖1

4nρ

(√
Σ ·w

)
(39)

We claim that this satisfies
κ2‖vDFT‖

1

4nσ2 -zCDP. To see this, we proceed by bounding ρi for each coordinate i ∈ [2n] defined
in Equation 39. For brevity, let b = Fxext. Consider two neighboring data sets g and g′, correspondingly, (b,xext) and
(b′,x′ext). Then,

‖b− b′‖∞ = ‖F(xext − x′ext)‖∞ =
κ√
2n
. (40)

We will now prove zCDP guarantee independently for each of the 2n coordinates and then use standard zCDP composi-

tion (Bun & Steinke, 2016). For any coordinate a ∈ {0, . . . , 2n − 1}, adding noise
(

σ√
|vDFT[i]|

)
· Ncomplex (0, 1) to b[i]

satisfies ρi-zCDP with ρi = κ2|vDFT[i]|
4nσ2 . Then by composition, we have that

ρ =

2n−1∑
a=0

(ρi) =
κ2

4nσ2

2n−1∑
a=0

(∣∣vDFT[i]
∣∣) =

κ2
∥∥vDFT

∥∥
1

4nσ2
. (41)

Therefore, setting σ2 =
κ2‖vDFT‖

1

4nρ -satisfies a non-adaptive ρ-zCDP. Using the same σ, we prove the adaptive part using
the same σ. We have the following from Equation 39.

[F∗ (ΣFxext + z)] =

[
F∗√Σ

(√
ΣFxext +

1√
Σ
z

)]
=

F∗√Σ

√ΣFxext +

√
κ2 ‖vDFT‖1

4nρ
·w

 (42)

Since, w in Equation 42 is spherical Gaussian, and the original query matrix A is lower triangular, by Theorem 2.1
in Denisov et al. (2022), the adaptive privacy guarantee follows.

J.3. Proof of Thm. J.3

Thm. J.3 Restated. The MSE achieved by Algorithm 1 using the real and imaginary components of z̃ is

E [MSE] =
κ2
∥∥vDFT

∥∥2

1

2ρn2
.

36

Multi-Epoch Matrix Factorization

Proof. The MSE is given by the following:

E[MSE] =
1

n
E
[
‖z̃[0, . . . , n− 1]‖22

]
=
κ2
∥∥vDFT

∥∥
1

2n2ρ
· tr (|Σ[: n, : n]|) =

κ2
∥∥vDFT

∥∥2

1

2n2ρ
. (43)

In equation 43, Σ[: n, : n] refers to the top-left n× n submatrix of Σ.

J.4. Proof of Cor. J.1

Cor. J.1 Restated. Under the same setting as Theorem J.3, the MSE for Algorithm 1 is the following

E [MSE] =
κ2

2ρn2

n+

b 2n−1
2 c∑

a=0

1

sin
(
π(2a+1)

2n

)
2

.

Proof. Recall the definition of DFT from Equation 38 and of v in Equation 37. It is immediate that vDFT[0] = n. For any
k 6= 0, we have,

vDFT[k] =
1− exp

(
−j2πkn

2n

)
1− exp

(
−j2πk

2n

) =
1− exp (−jπk)

1− exp
(
−jπk
n

) . (44)

From Equation 44, we have that when k > 0 is even, vDFT[k] = 0. For k odd, we have

∣∣vDFT[k]
∣∣ =

∣∣∣∣∣∣ 2

1− exp
(
−jπk
n

)
∣∣∣∣∣∣ =

1

|sin(πk/(2n))|
=

1

sin(πk/(2n))
(45)

Combining these, the term
∥∥vDFT

∥∥
1

is

∥∥vDFT
∥∥

1
= n+

bn−1
2 c∑

a=0

1

sin(π(2a+ 1)/(2n))
(46)

J.5. Proof of Thm. 4.1

Thm. 4.1 Restated. Under k participation, Algorithm 1 satisfies (k2ρ)-zCDP.

Proof. The proof goes exactly as Theorem J.2, except equation 40 gets replaced by the following:

‖b− b′‖∞ = ‖F(xext − x′ext)‖∞ =
kκ√
2n
. (47)

K. Two related FFT mechanisms.
The FFT mechanism presented in Sec. 4 can be understood as an application of a complex-valued matrix mechanism
factorizing the prefix-sum matrix as

B = PF∗
√

Σ,

C =
√

ΣFE,

where E and P are appropriate embedding and projection matrices, respectively embedding an n-dimensional vector in
the first n components of R2n, and projecting those same first n components back to Rn, and following this application by
‘chopping off’ the imaginary part of the noise. The entries of Σ may be computed exactly; they contain no purely negative

37

Multi-Epoch Matrix Factorization

entries, so specifying the principal branch of the square root resolves the implicit ambiguity in the formulation above. This
branch corresponds as well to the implementation of the complex square root in major software frameworks (e.g., NumPy).

All these operations are linear; and since everything begins and ends in the real domain, this mechanism can be expressed
as a real-valued mechanism. Therefore identical codepaths can be used for implementing experiments with the FFT, though
notably without some special implementation of the mechanism, realizing the potential computational savings will not be
immediate. In this small section, we translate this complex-valued mechanism into two real-valued mechanism which can
be integrated with the code backing the rest of the paper. These mechanisms differ in their decoding matrix B, and thus
achieve different levels of loss. Both have efficient implementations, though with asymptotics differing by a logarithmic
factor. We implement and experiment with both of these mechanisms, though we only report results from the mechanism
with lower loss in the main body.

These two mechanisms share an encoding matrix:

CF = F∗C,

which is real-valued by Lem. K.1. Note that the sensitivity of CF is identical to that of C for any notion of sensitivity
expressible as Defn. 1 due to the unitary of the Fourier transform. Since this matrix is of shape [2n, n], there is choice in
computing the decoder B such that BCF represents the prefix-sum matrix. The two decoders we present below correspond
to two subtly distinct mechanisms.

Mechanism 1: A real-valued version of the mechanism presented in Sec. 4 One natural translation of the analysis
in Sec. 4 (indeed, a real-valued version of the precise operation described in Algorithm 1) may be computed by inserting a
Fourier transform to match the inverse transform in CF:

BF = BF,

Clearly BFCF = BC, and BF real-valued by Lem. K.1.

Proposition K.1. For any D, the mechanism described in Sec. 4 is distributionally equivalent to an application of the
real-valued matrix mechanism with the factorization (BF,CF), and satisfies the same privacy guarantees.

Proof. To show this result, by noting that CF and C have the same sensitivity, it suffices to show that:

<[F∗
√

Σz] (for z a sample from an isotropic complex Gaussian) is distributionally equivalent to PF∗
√

ΣFb for b a
sample from a real (isotropic) Gaussian with the same variance.

This is a consequence of the distributional invariance of the Gaussian under unitary transformations:

<[F∗
√

Σz] ∼ <[F∗
√

ΣFz]

= F∗
√

ΣF<[z] (as F∗
√

ΣF is real)

∼ F∗
√

ΣFb,

where the variances are as desired.

Note that the efficiency of the mechanism described in Sec. 4 carries over immediately to this factorization (BF,CF);
indeed, the capacity to compute the noise BFb with complexity n log(n) may be reasoned to directly, in a similar manner.

This mechanism is not, however, the optimal one for the encoder CF, and this subtlety has difficult downstream effects
in integrating with real-valued factorization codepaths (e.g., see the discussion in App. D.4). We proceed to show that the
optimal decoder can be used directly, at only a moderate loss of efficiency with sufficiently careful implementation.

38

Multi-Epoch Matrix Factorization

Mechanism 2: A real-valued optimal decoder with complexity n log2(n) As noted in the literature (e.g. Section 3
of Denisov et al. (2022)), for a fixed encoder, the optimal decoder may always be computed in terms of an appropriate
pseudoinversion of the encoder. Therefore, we may compute the optimal decoder for the encoder CF, defining:

BFopt = SC†F,

where S is the prefix-sum matrix. Since CF is real, its pseudoinverse is as well, and BFopt is also real-valued. Since
BFopt can have no more variance than BF, all the utility analysis of the DFT mechanism in Sec. 4 carries through as an
upper bound for this factorization. Privacy of this mechanism is ensured by the fact that this mechanism reuses the encoder
CF. The major way in which these mechanisms operationally differ comes down to the cost of computing the noise vector
BFoptb, where b represents a sample from an isotropic Gaussian distribution. Though we do not know of a complexity
result which matches the decoder BF, we will show that the complexity cost which must be paid is only logarithmically
higher.

Proposition K.2. The mapping b 7→ BFoptb, where b ∈ Rn, may be evaluated in O(n log2(n)) time.

Proof. First, notice that the matrix CF is one-to-one; indeed, this is immediately implied by the factorization S = BFCF.
By Theorem 1.2.1 (P6) of (Campbell & Meyer, 1979), any one-to-one matrix T admits the following representation for its
pseudoinverse:

T† = (T∗T)
−1

T∗.

We compute:

C†F = (C∗FCF)
−1

C∗F

=
((

F∗
√

ΣFE
)∗

F∗
√

ΣFE
)−1 (

F∗
√

ΣFE
)∗

=
(
PF∗
√

Σ
∗
FF∗
√

ΣFE
)−1 (

F∗
√

ΣFE
)∗

= (PF∗|Σ|FE)
−1
(
F∗
√

ΣFE
)∗

Now, the matrix PF∗|Σ|FE is Toeplitz, since F∗|Σ|F is circulant, and P, E combine to select out the top-left n×n square
of F∗|Σ|F. Notice that PF∗|Σ|FE is not circulant, and cannot therefore be diagonalized by the n-dimensional Fourier
transform.

The development of Sec. 4 yield the representation:

S = PF∗ΣFE,

which implies that matrix-vector products with the matrix S may be computed in n log n time by the use of the FFT.

Similarly, matrix-vector products with
(
F∗
√

ΣFE
)∗

may be computed in n log n time.

Therefore the computational cost of computing the mapping b 7→ SC†Fb can be upper bounded by the maximum of n log n

and the cost of computing the mapping v 7→ (PF∗|Σ|FE)
−1

v.

The cost of computing this mapping is, in turn, bounded by the cost of inverting a general (full-rank) Toeplitz system,
since (PF∗|Σ|FE)

−1
v may be alternatively characterized as the solution x to the equation PF∗|Σ|FEx = v. The

computational cost of solving such a system is known to be n log2(n); see, e.g., (de Hoog, 1987).

Lemma K.1. For a real-valued vector v, let v̂ represent its discrete Fourier transform. If v̂ has no purely real, negative
entries, then letting

√
· denote the (pointwise) principal branch of the square root and F the matrix representation of the

Fourier transform, the matrix F∗
√

v̂F is real-valued.

39

Multi-Epoch Matrix Factorization

Proof. Conjugate symmetry of the DFT states that for a j-dimensional real-valued vector x, x̂[m] = x̂[j−m], and that the
converse also holds–that if x̂ has this symmetry, x is real-valued. This can be seen by examining the action of conjugation
of x on the Fourier transform x̂.

Now, by the assumptions on v̂ and the choice of the principal branch of the square root6, if v̂ has this conjugate symmetry,
so does

√
v̂. Therefore there is some real-valued vector y such that ŷ =

√
v̂. The matrix F∗

√
v̂F represents convolution

with y in the standard basis, and hence is real-valued.

Remark Lem. K.1 can be understood as a statement about the solvability of a certain repeated-convolution equation
over real-valued functions (the equation g ∗ g = f). We suspect that this fact has been observed in the harmonic analysis
literature as a general property of all Fourier transforms; we could find no reference. The symmetries discussed above take
a slightly different form in the continuous and noncompact case (IE, Fourier transform on real-valued function on Rd) and
the finite-dimensional Fourier transform here, so we choose to prove this statement in this limited setting.

6These assumptions can be avoided, though at the cost of taking care in choosing the square root of the negative elements of v̂ to
preserve the appropriate symmetry.

40

	Introduction
	Differential Privacy for Adaptive Streams with Multiple Participations
	Optimal Matrices for Multiple Epochs
	FFT-based Matrix Factorization
	Empirical Evaluation
	Applying our Matrix Mechanisms to ML
	Example-level DP for an Image Classification Task
	User-level DP for a Next Word Prediction Task

	Discussion and Conclusions
	Summary of notation and terminology
	Generalized sensitivity as an operator norm
	The FFT Mechanisms and Reducing Computation
	Mechanisms under consideration: baselines, subtleties, and losses.
	Baselines
	Privacy Accounting
	Improvements to `Tree completion' By Removing Noise from Virtual Steps
	Stamping: Repeated mechanisms in the matrix-factorization setting
	Factorization losses and per-iterate variance

	Details and additional experiments for CIFAR10.
	Additional StackOverflow Details
	Privacy and Language Modelling
	Hyperparameter tuning and initial experiments
	Impact of zeroing-out large-norm updates
	Complete results
	Optimal matrix mechanisms

	Limitations and Ethical Considerations
	Analysis for @tempd *@tempc sectionsec:sensitivity
	From scalar to vector contributions
	A counterexample for general C
	Proof of @tempd *@tempc subsectioncor:matrix_to_vector_sens
	Proof of @tempd *@tempc subsectionthm:eval_sens_ub

	Analysis for @tempd *@tempc sectionsec:optimizing_mechanisms
	Proof of @tempd *@tempc subsectionthm:dual_fn
	Proof of @tempd *@tempc subsubsectioncor:gen_fixed_point

	Lemmas and Corollaries
	Impact of non-negativity constraints

	Analysis for @tempd *@tempc sectionsec:fft
	Additional Details
	Proof of @tempd *@tempc subsectionthm:privFFT
	Proof of @tempd *@tempc subsectionthm:MSE
	Proof of @tempd *@tempc subsectioncor:mse
	Proof of @tempd *@tempc subsectionthm:multip

	Two related FFT mechanisms.

