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Abstract

Learned database query optimizers typically optimize over a
set of configurations, which limits the attainable plan space.
OPTIMUS expands the action space itself by mining novel
execution plan rewrites and learns to select among these ac-
tions online. Optimus utilizes graph-based inductive matrix
completion and a multilayer perceptron with the objective
of minimizing latency. Crucially, the system is deployable
by design: it requires no engine modifications and its rules
include guard-checked compilation. On the extended JOB
benchmark, Optimus yields a speedup of 1.16x over vanilla
PostgreSQL solely using novel rewrites.

Introduction

Modern data systems transform SQL queries into repre-
sentations called query plans, which dictate how data is
retrieved. The component responsible for generating these
query plans is known as the query optimizer, which typi-
cally rely on heuristics and cost models to make decisions
(Selinger et al. 1979; Leis et al. 2015). Recent research ex-
plores learned query optimizers—systems that apply ma-
chine learning techniques to help guide the database’s built-
in query optimizer (Pavlo et al. 2017; Marcus et al. 2019,
2021; Trummer et al. 2019; Khan et al. 2023). In produc-
tion, these query optimizers must be deployable; they must
deliver plan quality alongside safe application, operator con-
trol, and auditable behavior.

These learned systems guide the query optimizer by sug-
gesting query rewrites in the form of hints—statements
embedded into an SQL query that tune exposed configura-
tion parameters (knobs, join orders, indexing strategies, and
more) (pgh 2025). By tuning these parameters, query plans
can process data more efficiently, resulting in reduced SQL
query latency, or the time taken to run a SQL query within
the database (Marcus et al. 2019, 2021; Zhang et al. 2018,
2019, 2024; Yi et al. 2024; Khan et al. 2023; Wilson et al.
2024; Lyndall et al. 2025; Aziz et al. 2024).

This creates a deployability problem: because interven-
tions are restricted to global parameters, operators cannot
apply or roll back changes at the granularity of individual
plans. Furthermore, the lack of explicit, guardable rewrites
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prevents fine-grained control. This makes it difficult to revert
optimizer decisions when service-level objectives (SLOs)
degrade.

Concretely, the absence of a novel rewrite surface yields
three deployability gaps that practitioners care about:

* (D1) Object-level scope: beyond per-query decisions,
operators need actions scoped to specific plan decisions
to reduce latency.

* (D2) Safety: without guard-checked, human-readable
rewrites, operators cannot review, whitelist/blacklist, or
prove applicability.

* (D3) Integration without engine changes: query
rewrites often require touching optimizer internals in-
stead of emitting engine-native hints from the SQL layer.

To address the query optimization root cause and its
deployability fallout (D1-D3), OPTIMUS is presented: a
learned system that mines novel, structural plan rewrites.
Rewrites are encoded in a small, human-readable domain-
specific language (DSL). They are admitted only if they
compile to engine-native pg_hint_plan (pgh 2025) hints
under explicit guards. Operating entirely at the SQL layer
(no engine modifications), Optimus restores per-query con-
trol (addresses D1), provides guard-checked rules (addresses
D2), and integrates via engine-native hints (addresses D3).

System overview. Optimus operates within a two-stage
pipeline geared towards real-world deployment:

* Mining: Optimus uses heuristics and an instruction-
tuned large language model (LLM) to generate novel
plan rewrites based on observed plans and runtimes.
These rewrites are encoded in a DSL in order to provide
safety.

* Prescription/Inference: Optimus  represents
query—rewrite pairs in a joint space using inductive
graph matrix completion (IGMC) (Zhang and Chen
2020) and a multilayer perceptron (MLP), allowing it to
predict which candidate rewrites are likely to improve
latency.

In preliminary experiments, Optimus achieves perfor-
mance exceeding that of PostgreSQL baselines while solely
relying on actionable configurations that existing research
has yet to cover.

The contributions are as follows:
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Figure 1: This figure demonstrates Optimus’ overall online pipeline upon receiving an SQL query.

* A novel LLM-guided pipeline that discovers query
rewrites beyond the reach of conventional parameter tun-
ing methods, with a DSL that encodes guards/bindings
for auditable application.

* A learned query optimization method that lever-
ages inductive matrix completion in combination with
a multilayer perceptron to prioritize beneficial structural
rewrites.

* A deployability contract: guard-checked compilation,
enabling operator control with little engine modifica-
tions.

Optimus: System Overview

Optimus runs on PostgreSQL via inline pg_hint_plan
hints—no engine modifications (addresses D3)—and exe-
cutes only guard-checked rewrites (addresses D2). These
hints operate at the plan-subtree level rather than toggling
global parameters, enabling per-plan control (addresses D1).
For deployability, Optimus runs entirely at the SQL layer
and emits only engine-native hints, meaning it can integrate
without touching optimizer internals (addresses D3). Crit-
ically, each rewrite is encoded in a small, human-readable
DSL with per-rule toggles, making rewrites at the granular-
ity operators actually need.

Upon receiving a raw SQL query (1), Optimus follows
the flow in Fig. 1. It extracts a baseline plan and encodes it
(2) using WL-48 and TOK-128 descriptors. An IGMC prior,
trained offline on query-hint relations, is approximated via
a lightweight ridge projection from the plan features (3—4),
avoiding a GNN at inference time. The projected prior is
concatenated with the plan descriptors to form z;, which
feeds the Fusion—Rules MLP scorer (5) to rank candidate
rewrites mined offline. The top admissible rule is resolved
into executable pg_hint_plan hints (6). The query is ex-
ecuted on the database server (7). The following sections
elaborate on each component.

Notation.  Let () be the number of queries and H the
number of traditional hints (knobs). Let Q C {1,...,Q} x
{1,..., H} be the set of observed query, hint pairs.

Plan encoders

The encoder module derives query representations from
PostgreSQL plans using two complementary features:

WL-48 Sketch: a 48-dimensional Weisfeiler—-Lehman
graph sketch over the plan’s directed acyclic graph (DAG),
capturing structural neighborhoods of plan operators (Sher-
vashidze et al. 2011).

TOK-128 bag: a 128-dimensional hashed bag-of-tokens
that summarizes key plan components (Akioyamen, Yi, and
Marcus 2024).

Both embeddings are concatenated into z, € R'76, form-
ing the embeddings used in inference. Because encoders op-
erate on planner metadata rather than raw tuples, Optimus
avoids data egress and is compatible with restricted environ-
ments (addresses D2).

Stage A — Per-hint predictor (Fusion—Residual)

Training data is drawn from the DSB workload (Ding et al.
2021) with measured latencies under traditional hints—
standard knobs rather than novel rewrites. A sparse obser-
vations matrix Y € R®*H ig constructed, where queries
index rows and hints index columns. Each observed query-
hint pair (¢, h) € € shares query features x, and target y, .
x4 is standardized using training-set statistics and projected
to a d-dimensional latent ug R ¢ R4, Furthermore, each hint

h has embedding e;, € R? and bias b, € R. Using this in-
formation, a bilinear score models interactions, followed by
a residual MLP that predicts a correction A, ; and a log-

. 2 .
variance term log oy

dgn = (ug", en) + bp,

Ygn = dgn+ Dgn. (1)
Training. A convex combination of Mean Squared Er-
ror on the bilinear score d,; and Gaussian negative log-
likelihood (NLL) on the full prediction g, j is optimized
(Kendall and Gal 2017):
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Here y, j, are observed log-latencies, a € [0, 1] trades off
the two terms, and o 5, >0 is the implied standard deviation
(log 02, ,, 1s parameterized for stability). After training, pa-
rameters are frozen. Given a new query g, the output is the
per-hint vector yo™ = [jy1,...,94,1] € R, capturing
query specific sensitivity to standard knobs.

Stage B — Mining and representing rewrite rules

Query rewrites are obtained offline from heuristic miners
and an LLM (Gemma 3n) (Gemma Team 2025). These
processes emit novel rules that introduce changes not cap-
tured by existing parameter tuning. Here, novel rules refer to
rewrites that target a particular plan subtree rather than ap-
plying a global toggle (addresses D1). To mine such rules, a
sweep across the JOB workload (Leis et al. 2015) yields plan
JSONSs that the pipeline parses to extract candidate rules.
Mining rules offline localizes risk: rewrites are auditable ar-
tifacts, making them easier to review (addresses D2).

Heuristic miners. Several heuristics, based on common
wisdom within the database community, capture recurring
performance pains: (i) remove a redundant Sort feeding a
Merge Join; (ii) replace very large HashAggregate with a
GroupAggregate, and more. These patterns are matched on
baseline plans with explicit guards.

These heuristics are human-interpretable and map to con-
crete plan edits, so operators can whitelist/blacklist indi-
vidual rules and attach guardrails (e.g. table/size thresh-
olds), providing operator control (addresses D2). This makes
changes debuggable in production and compatible with
internal change-management policies. Furthermore, these
guards ensure that transformations generally apply under
explicit preconditions, which simplifies production gover-
nance.

LLM augmentation. A summary of the hot plan regions
is passed to an instruction-tuned LLM, which proposes
canonical actions. Feasibility checks ensure only imple-
mentable candidates enter the feasible rule set, ensuring the
novelty of the rewrite rules.

To enable downstream selection, each rule ¢ is associated
with a descriptor g, and an embedding v, used by the scorer.
Online, a candidate rewrite ¢ is admissible for query g only
if it (i) satisfies guards/bindings and (ii) compiles to valid
pg-hint_plan hints (addresses D2, D3). The set of all
such admissible ¢ defines the feasible set 7 (q).

Stage C — IGMC prior and Fusion—Rules MLP
scorer

IGMC prior (hint level). Trained on the DSB workload,
an IGMC model predicts log-latencies for traditional query-

hint pairs for each query q. It then yields a hint-ordered vec-

tor
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To expose this signal at inference without running the com-
putationally heavy GNN, a simple ridge projection is fit
from the baseline plan descriptors: 2, = [WLyg; TOKj2g]
to DIPMC_ At inference time, the IGMC block is recon-

structed as D, = Wz, + b and concatenated with z, to

form x), = [z ﬁq]. Exposing the prior via a ridge pro-
jection replaces an online GNN with a single matrix—vector
multiply, keeping inference overhead negligible under query
workloads.

Fusion—-Rules MLP (trained on deltas). For each
query-rule pair (g, t), the supervised target is the log—delta
against the baseline planner, y,, = logms(q,t) —
log mspase(q), 80 yq,+<0 indicates a speedup.

Then, queries and rules are embedded into ug,v; € R”
with compatibility d, ; = u;vt. The following feature bun-
dle is formed z4; = [dqﬁt, Ug,s Vt, Gt m;] Subsequently,
an MLP f, maps z,; to the predicted delta ¢, ;. Including
(g¢,v¢) in 24, preserves interpretability since the served rec-
ommendation can always be traced to a specific rule/feature
slice (addresses D2).

Training minimizes a regression objective with a within-
query ranking term:

m(gn ﬁ Z s (Yg,t — Ja,t)
(q,t)el

Huber loss on log—delta

F ke S max{o, —(Zq,tf—@,ﬁ)}, 3)

(t,t7)

pairwise ranking within each query

where ps is the Huber loss and Zq,t = Jg.t + logmspase(q)
is the induced absolute prediction.

Inference. Absolute latency is recovered by composing
the predicted delta with the measured baseline,

IOng(q,t) = logInSbasc(q) + gq,t;

and feasible rules from 7 (q) are ranked by the implied
speedup A(q,t) = exp(log mspase(q) — logms(q,t)). The
top candidate is executed.

Thus, the system requires no engine modifications and
uses guard-checked, compilable rules (addresses D2). Be-
cause the inference path requires no database engine mod-
ifications, the system can be readily deployed in produc-
tion environments (addresses D3). Each stage of the pipeline
contributes to this deployability: the encoders avoid data
egress (addresses D2), the Fusion—Residual and IGMC mod-
els keep latency negligible, and the mining stage produces
auditable rules that can be controlled (addresses D1, D2).
Together, these choices make Optimus transparent to opera-
tors and compatible with existing PostgreSQL installations
(addresses D3).
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Figure 2: Default refers to vanilla PostgreSQL

Preliminary Results

The following research questions are addressed through the
preliminary experiments:

1. Can Optimus truly discover impactful query rewrites?

2. Which latency percentile does Optimus impact the most?
Does this impact deployability?

3. Is Optimus actually deployable—do the observed gains
arise without engine modifications?

Setup. The Extended JOB Benchmark (Marcus et al.
2019) is evaluated over the IMDb database (Leis et al.
2015). It is executed on PostgreSQL 17 (Pos 2025) with
pg-hint_plan (pgh 2025) enabled. The same server con-
figuration is used across all runs, and warm-cache steady
state is established for all queries. For each test query, the
vanilla PostgreSQL baseline is measured and the top-ranked
Optimus rewrite is executed. For fairness, one warm-up is
followed by two measured repetitions per variant. The me-
dian is reported.

Overall Latency Reductions. Figure 2(a) shows consis-
tent shifts across percentiles—P50 improves by 1.01x, P75
by 1.02x, and P95 by 1.21 x—and Figure 2(b) reports a
geometric-mean speedup of ~ 1.16x. These gains are ob-
tained solely from the novel generated query rewrites. The
results indicate that novel rules alone can yield meaning-
ful reductions to query runtime. Notably, the improvement
pattern favors long-tail queries, which can dominate overall
workload latency in production systems. This skew suggests
that the rule-based rewrites of Optimus are effective in ad-
dressing complex plans.

Deployability in Real Systems. A key feature of Opti-
mus is that its performance gains are achieved under con-
ditions that reflect production constraints. It requires no en-
gine modifications and applies only guard-checked rewrites
that target specific plan subtrees. Because the entire infer-
ence path runs at the SQL layer, Optimus can be integrated
into existing PostgreSQL deployments as an extension. The
model’s architecture ensures inference latency is negligible
relative to query execution time, maintaining throughput.
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timings while Fusion refers to OPTIMUS.

Therefore, Optimus addresses the three deployability gaps
while adhering to general deployability constraints. How-
ever, it is vital to note that Optimus has not yet been de-
ployed in live production systems, meaning its robustness
under concurrent, mixed-query workloads remains to be val-
idated in future work.

Comparison with State-of-the-Art. Although recent
learned optimizers often report larger end-to-end gains
(Zhang et al. 2024; Yi et al. 2024), it is important to note that
Optimus achieves 1.16x end-to-end improvements without
additional indexes or prior training specific to the tested
benchmark. The gains stem purely from structural rewrites.
This highlights that there exists an undiscovered set of query
rewrites that can yield reliable reductions in latency. Fur-
thermore, unlike many existing systems that modify the
query optimizer’s internals, Optimus operates as a drop-in
layer, which demonstrates that learned reasoning over veri-
fied rewrites can produce tangible benefits.

Conclusions and Future Work

Optimus mines guard-checked, executable plan-rewrite
rules and ranks them using a fusion of per-hint responses
and an IGMC prior. The empirical results indicate that struc-
tural rewrites alone can reduce total query latency, with
the largest benefits concentrated in the high-latency tail.
Since Optimus requires no engine modifications and uses
a lightweight serve-time path, it fits the constraints of de-
ployable Al. Some exciting future directions for this work
include:

* Machine Learning for Rule Discovery. A learned model
that can mine rules by observing database telemetry
yields the potential to highly optimize queries. LLM-
based agents for query optimization are highly promising
as well, since they can synthesize new transformations.

* Hybrid tuning. Combining mined rules and existing con-
figurations holds potential to highly optimize queries.
Such hybrid approaches could balance the interpretabil-
ity of rule-based rewrites with parametric tuning.
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