
Fast Approximate Dynamic Programming for
Infinite-Horizon Markov Decision Processes

M. A. S. Kolarijani
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

M.A.SharifiKolarijani@tudelft.nl

G. F. Max
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

G.F.Max@tudelft.nl

P. Mohajerin Esfahani
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

P.MohajerinEsfahani@tudelft.nl

Abstract

In this study, we consider the infinite-horizon, discounted cost, optimal control
of stochastic nonlinear systems with separable cost and constraints in the state
and input variables. Using the linear-time Legendre transform, we propose a
novel numerical scheme for implementation of the corresponding value iteration
(VI) algorithm in the conjugate domain. Detailed analyses of the convergence,
time complexity, and error of the proposed algorithm are provided. In particular,
with a discretization of size X and U for the state and input spaces, respectively,
the proposed approach reduces the time complexity of each iteration in the VI
algorithm from O(XU) to O(X + U), by replacing the minimization operation in
the primal domain with a simple addition in the conjugate domain.

1 Introduction

Value iteration (VI) is one of the most basic and wide-spread algorithms employed for tackling
problems in reinforcement learning (RL) and optimal control [9, 28] formulated as Markov decision
processes (MDPs). The VI algorithm simply involves the consecutive applications of the dynamic
programming (DP) operator

T J(xt) = min
ut

{
C(xt, ut) + γEJ(xt+1)

}
,

where C(xt, ut) is the cost of taking the control action ut at the state xt. This fixed point iteration
is known to converge to the optimal value function for discount factors γ ∈ (0, 1). However, this
algorithm suffers from a high computational cost for large-scale finite state spaces. For problems with
a continuous state space, the DP operation becomes an infinite-dimensional optimization problem,
rendering the exact implementation of VI impossible in most cases. A common solution is to
incorporate function approximation techniques and compute the output of the DP operator for a
finite sample (i.e., a discretization) of the underlying continuous state space. This approximation
again suffers from a high computational cost for fine discretizations of the state space, particularly in
high-dimensional problems. We refer the reader to [9, 26] for various approximations of VI.

For some problems, however, it is possible to partially address this issue by using duality theory,
i.e., approaching the minimization problem in the conjugate domain. In particular, as we will see

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

in Section 3, the minimization in the primal domain in DP can be transformed to a simple addition
in the dual domain, at the expense of three conjugate transforms. However, proper application of
this transformation relies on efficient numerical algorithms for conjugation. Fortunately, such an
algorithm, known as linear-time Legendre transform (LLT), has been developed in late 90s [23].
Other than the classical application of LLT (and other fast algorithms for conjugate transform) in
solving Hamilton-Jacobi equation [1, 13, 14], these algorithms are used in image processing [24],
thermodynamics [12], and optimal transport [17].

The application of conjugate duality for the DP problem is not new and actually goes back to
Bellman [4]. Further applications of this idea for reducing the computational complexity were
later explored in [15, 18]. However, surprisingly, the application of LLT for solving discrete-time
optimal control problems, has been limited. In particular, in [11], the authors propose the “fast
value iteration” algorithm (without a rigorous analysis of the complexity and error of the proposed
algorithm) for a particular class of infinite-horizon optimal control problems with state-independent
stage cost C(x, u) = C(u) and deterministic linear dynamics xt+1 = Axt + But, where A is a
non-negative, monotone, invertible matrix. More recently, in [20], we also considered the application
of LLT for solving the DP operation in finite-horizon, optimal control of input-affine dynamics
xt+1 = fs(xt) + But with separable cost C(x, u) = Cs(x) + Ci(u). In particular, we introduced
the “discrete conjugate DP” (d-CDP) operator, and provided a detailed analysis of its complexity
and error. As we will discuss shortly, the current study is an extension of the corresponding d-CDP
algorithm that, among other things, considers infinite horizon, discounted cost problems. We note
that the algorithms developed in [16, 24] for distance transform can also potentially tackle the optimal
control problems similar to the ones of interest in the current study. In particular, these algorithms
require the stage cost to be reformulated as a convex function of the “distance” between the current
and next states. While this property might arise naturally, it can generally be restrictive, as it is in the
problem class considered in this study. Another line of work that is closely related to ours invloves
utilizing max-plus algebra in solving deterministic, continuous-state, continuous-time, optimal control
problems; see, e.g., [2, 25]. These works exploit the compatibility of the DP operation with max-
plus operations, and approximate the value function as a max-plus linear combination. Recently,
in [3, 5], the authors used this idea to propose an approximate VI algorithm for continuous-state,
deterministic MDPs. In this regard, we note that the proposed approach in the current study also
involves approximating the value function as a max-plus linear combination, namely, the maximum
of affine functions. The key difference is however that by choosing a grid-like (factorized) set of
slopes for the linear terms (i.e., the basis of the max-plus linear combination), we take advantage of
linear time complexity of LLT in computing the constant terms (i.e., the coefficients of the max-plus
linear combination).

Main contribution. In this study, we focus on an approximate implementation of VI involving
discretization of the state and input spaces for solving the optimal control problem of discrete-time
systems, with continuous state-input space. Building upon our earlier work [20], we employ conjugate
duality to speed-up VI for problems with separable stage cost (in state and input) and input-affine
dynamics. We propose the conjugate VI (ConjVI) algorithm based on a modified version of the
d-CDP operator introduced in [20], and extend the existing results in three directions: We consider
infinite-horizon, discounted cost problems with stochastic dynamics, while incorporating a numerical
scheme for approximation of the conjugate of input cost. The main contributions of this paper are then
as follows: (i) we provide sufficient conditions for the convergence of ConjVI (Theorem 3.9); (ii) we
show that ConjVI can achieve a linear time complexity of O(X+U) in each iteration (Theorem 3.10),
compared to the quadratic time complexity of O(XU) of the standard VI, where X and U are the
cardinalities of the discrete state and input spaces, respectively; (iii) we analyze the error of ConjVI
(Theorem 3.11), and use that result to provide specific guidelines on the construction of the discrete
dual domain (Section 3.4); (iv) we provide a MATLAB package for the implementation of the
proposed ConjVI algorithm.

Notations. The standard inner product in Rn and the corresponding induced 2-norm are denoted
by ⟨·, ·⟩ and ∥·∥2, respectively. ∥·∥∞ denotes the infinity norm. We use the superscript d to denote
finite (discrete) sets (as in Xd) and discrete functions (as in hd : Xd → R). We use the superscript g
to denote grid-like finite sets (as in Xg = Πn

i=1X
g
i where Xg

i ⊂ R). We also use Xg
sub to denote the

sub-grid of Xg derived by omitting the smallest and the largest elements of Xg in each dimension. The
cardinality of the finite set Xd or Xg is denoted by X . We use h̃d : Rn → R = R ∪ {∞} to denote a
generic extension of a discrete function hd, and hd : Rn → R to denote multilinear interpolation

2

and extrapolation (LERP) extension of a discrete function with a grid-like domain. Let X,Y be
two arbitrary sets in Rn. co(X) is the convex hull of X. We use d(X,Y) := infx∈X,y∈Y ∥x− y∥2
to denote the distance between X and Y. The one-sided Hausdorff distance from X to Y is defined
as dH(X,Y) := supx∈X infy∈Y ∥x− y∥2. Let h : Rn → R be an extended real-valued function
with a non-empty effective domain dom(h) = X := {x ∈ Rn : h(x) < ∞}. The range of h is
denoted by rng(h) := maxx∈X h(x)−minx∈X h(x), and the subdifferential of h at a point x ∈ X
is defined as ∂h(x) :=

{
y ∈ Rn : h(x̃) ≥ h(x) + ⟨y, x̃− x⟩ ,∀x̃ ∈ X

}
. We define L(h) :=

Πn
i=1

[
L−
i (h),L

+
i (h)

]
, where L+

i (h) (resp. L−
i (h)) is the maximum (resp. minimum) slope of

the function h along the i-th dimension. Note that ∂h(x) ⊆ L(h) for all x ∈ X. We report the
complexities using the standard big-O notations O and Õ, where the latter hides the logarithmic
factors. In this study, we are mainly concerned with the dependence of the computational complexities
on the size of the finite sets involved (discretization of the primal and dual domains). In particular, we
ignore the possible dependence of the computational complexities on the dimension of the variables,
unless they appear in the power of the size of those discrete sets.

We note that the extended version of this article, including the technical proofs, is available in the
supplementary material.

2 VI in primal domain

We are concerned with the infinite-horizon, discounted cost, optimal control problems of the form

J⋆(x) =min Ewt

[∞∑
t=0

γtC(xt, ut)

∣∣∣∣x0 = x

]
s.t. xt+1 = g(xt, ut, wt), xt ∈ X, ut ∈ U, wt ∼ P(W), ∀t ∈ {0, 1, . . .},

where xt ∈ Rn, ut ∈ Rm, and wt ∈ Rl are the state, input and disturbance variables at time t,
respectively; γ ∈ (0, 1) is the discount factor; C : X × U → R is the stage cost; g : Rn × Rm ×
Rl → Rn describes the dynamics; X ⊂ Rn and U ⊂ Rm describe the state and input constraints,
respectively; and, P(·) is the distribution of the disturbance over the support W ⊂ Rl. Assuming the
stage cost C is bounded, the optimal value function solves the equation J⋆ = T J⋆, where T is the
DP operator (C and J are extended to infinity outside their effective domains) [7, Prop. 1.2.2]

T J(x) := min
u

{
C(x, u) + γ · EwJ

(
g(x, u, w)

)}
, ∀x ∈ X. (1)

Indeed, T is γ-contractive in the infinity-norm [7, Prop. 1.2.4]. This property then gives rise to the VI
algorithm Jk+1 = T Jk, which converges to J⋆ as k → ∞, for arbitrary initialization J0. Moreover,
assuming that the composition J ◦ g (for each w) and the cost C are jointly convex in the state and
input variables, T also preserves convexity [8, Prop. 3.3.1].

For numerical implementation of VI, we need to address three issues. First, we need to compute
the expectation in (1). In order to simplify the exposition and include the computational cost of this
operation explicitly, we consider disturbances with finite support in this study:
Assumption 2.1 (Disturbance with finite support). The disturbance w has a finite support Wd ⊂ Rl

with a given probability mass function (p.m.f.) p : Wd → [0, 1].

Under the preceding assumption, we have EwJ
(
g(x, u, w)

)
=

∑
w∈Wd p(w) · J

(
g(x, u, w)

)
. The

second and more important issue is that the optimization problem (1) is infinite-dimensional for
the continuous state space X. This renders the exact implementation of VI impossible, except for
a few cases with available closed-form solutions. A common solution to this problem is to deploy
a sample-based approach, accompanied by a function approximation scheme. To be precise, for a
finite subset Xd of X, at each iteration k = 0, 1, . . ., we take the discrete function Jd

k : Xd → R
as the input, and compute the discrete function Jd

k+1 =
[
T J̃d

k

]d
: Xd → R, where J̃d

k : X → R
is an extension of Jd

k . Finally, for each x ∈ Xd, we have to solve the minimization problem in (1)
over the control input. Since this minimization problem is often a difficult, non-convex problem, a
common approximation involves enumeration over a discretization Ud ⊂ U. Incorporating these
approximations, we end up with the approximate VI algorithm Jd

k+1 = T dJd
k , characterized by the

discrete DP (d-DP) operator

T dJd(x) := min
u∈Ud

{
C(x, u) + γ ·

∑
w∈Wd p(w) · J̃d

(
g(x, u, w)

)}
, ∀x ∈ Xd. (2)

3

The convergence of approximate VI described above depends on the properties of the extension
operation [̃·]. In particular, if the extension operation is non-expansive (in the infinity-norm), then T d

is also γ-contractive. The error of this approximation also depends on the extension operation and
its representative power. We refer the interested reader to [7, 10, 26] for detailed discussions on the
convergence and error of different approximation schemes for VI.

The d-DP operator and the corresponding VI algorithm will be our benchmark for evaluating the
performance of the alternative algorithm developed in this study. To this end, we finish this section
with some remarks on the time complexity of the d-DP operation. Let the time complexity of a single
evaluation of the extension operator [̃·] in (2) be of O(E). Then, the time complexity of the d-DP
operation (2) is of O

(
XUWE

)
. In this regard, note that the scheme described above essentially

involves approximating a continuous-state/action MDP with a finite-state/action MDP, and then
applying the VI algorithm. This, in turn, implies the lower bound Ω(XU) for the time complexity
(corresponding to enumeration over u ∈ Ud for each x ∈ Xd). This lower bound is also compatible
with the best existing time complexities in the literature for VI for finite MDPs; see, e.g., [3, 27].
However, as we will see in the next section, for a particular class of problems, it is possible to exploit
the structure of the underlying continuous system in order to achieve a better time complexity in the
corresponding discretized problem.

3 Reducing complexity via conjugate duality

In this section, we present the class of problems that allows us to employ conjugate duality and
propose an alternative path for solving the corresponding DP operator. We also present the numerical
scheme for implementing the proposed alternative path, and analyze its convergence, complexity,
and error. We note that the proposed algorithm and its analysis are based on the d-CDP algorithm
presented in [20, Sec. 5] for finite-horizon, optimal control of deterministic systems. Here, we extend
those results for infinite-horizon, discounted cost, optimal control of stochastic systems. Moreover,
unlike [20], our analysis includes the case where the conjugate of input cost is not analytically
available and has to be computed numerically; see [20, Assump. 5.1] for more details.

3.1 VI in conjugate domain

Throughout this section, we assume that the problem data satisfy the following conditions.
Assumption 3.1 (Problem class). The problem data has the following properties: (i) The dynamics
is of the form g(x, u, w) = f(x, u) + w = fs(x) + Bu + w, with additive disturbance, where
fs : Rn → Rn is a Lipschitz continuous, possibly nonlinear map, and B ∈ Rn×m. (ii) The stage
cost C is separable in state and input; that is, C(x, u) = Cs(x) + Ci(u), where the state cost
Cs : X → R and the input cost Ci : U → R are Lipschitz continuous. (iii) The constraint sets
X ⊂ Rn and U ⊂ Rm are compact. Moreover, for each x ∈ X, the set of admissible inputs
U(x) := {u ∈ U : g(x, u, w) ∈ X, ∀w ∈ Wd} is nonempty.

Some remarks are in order regarding the preceding assumptions. We first note that the setting of
Assumption 3.1 goes beyond the classical LQR. In particular, it includes nonlinear dynamics, state
and input constraints, and non-quadratic stage costs. Second, the properties laid out in Assumption 3.1
imply that the set of admissible inputs U(x) is a compact set for each x ∈ X. This, in turn, implies
that the optimal value in (1) is achieved if J : X → R is also assumed to be lower semi-continuous.

For the problem class of Assumption (3.1), we can use duality theory to present an alternative path
for computing the output of the DP operator. This path forms the basis for the algorithm proposed in
this study. Fix x ∈ X and consider the following reformulation of the optimization problem (1)

T J(x) =Cs(x) + min
u,z

{Ci(u) + γ · EwJ(z + w) : z = f(x, u)} ,

where we used additivity of disturbance and separability of stage cost. The corresponding dual
problem then reads as

T̂ J(x) := Cs(x) + max
y

min
u,z

{Ci(u) + γ · EwJ(z + w) + ⟨y, f(x, u)− z⟩} , (3)

where y ∈ Rn is the dual variable corresponding to the equality constraint. For the deterministic
dynamics of Assumption 3.1-(i), we can obtain the following representation for the dual problem.

4

Proposition 3.2 (CDP operator). The dual problem (3) equivalently reads as

ϵ(x) := γ · EwJ(x+ w), x ∈ X, (4a)

ϕ(y) := C∗
i (−B⊤y) + ϵ∗(y), y ∈ Rn, (4b)

T̂ J(x) = Cs(x) + ϕ∗(fs(x)), x ∈ X, (4c)

where [·]∗ denotes the conjugate operation.

Following [20], we call the operator T̂ in (4) the conjugate DP (CDP) operator. We next provide an
alternative representation of the CDP operator that captures the essence of this operation.

Proposition 3.3 (CDP reformulation). The CDP operator T̂ equivalently reads as

T̂ J(x) = Cs(x) + min
u

{
C∗∗

i (u) + γ · [EwJ(·+ w)]∗∗
(
f(x, u)

)}
, (5)

where [·]∗∗ denotes the biconjugate operation.

The preceding result implies that the indirect path through the conjugate domain essentially involves
substituting the input cost and (expectation of the) value function by their biconjugates. In particular,
it points to a sufficient condition for zero duality gap.

Corollary 3.4 (Equivalence of T and T̂). T̂ J = T J if Ci : U → R and J : X → R are convex.

Hence, T̂ has the same properties as T if Ci and J are convex. More importantly, if T and T̂ preserve
convexity, then the conjugate VI (ConjVI) algorithm Jk+1 = T̂ Jk, also converges to the optimal
value function J⋆, with arbitrary convex initialization J0. For convexity to be preserved, however,
we need two more additional assumptions. First, the state cost Cs : X → R needs to be also convex.
Then, for T̂ J to be convex, a sufficient condition is the convexity of J ◦ f (jointly in x and u), given
that J is convex. The following assumption summarizes the sufficient conditions for equivalence of
VI and ConjVI algorithms.
Assumption 3.5 (Convexity). Consider the following properties for the constraints, costs, and
dynamics: (i) The sets X ⊂ Rn and U ⊂ Rm are convex. (ii) The costs Cs : X → R and Ci : U → R
are convex. (iii) The deterministic dynamics f : Rn × Rm → Rn is such that given a convex
function J : X → R, the composition J ◦ f is jointly convex in the state and input variables.

We note that the last condition in the preceding assumption usually does not hold for nonlinear
dynamics; however, for fs(x) = Ax with A ∈ Rn×n, this is indeed the case for problems satisfying
Assumptions 3.1 and 3.5 [6]. Note that, if convexity is not preserved, then the alternative path suffers
from duality gap in the sense that in each iteration it uses the convex envelop of (the expectation of)
the output of the previous iteration.

3.2 ConjVI algorithm

The approximate ConjVI algorithm involves consecutive applications of an approximate implementa-
tion of the CDP operator (4) until some termination condition is satisfied. Algorithm 1 provides the
pseudo-code of this procedure. In particular, we consider solving (4) for a finite set Xd ⊂ X, and
terminate the iterations when the difference between two consecutive discrete value functions (in the
infinity-norm) is less than a given constant et > 0. Since we are working with a finite subset of the
state space, we can restrict the feasibility condition of Assumption 3.1-(iii) to all x ∈ Xd:
Assumption 3.6 (Feasibile discretization). We have U(x) ̸= ∅ for all x ∈ Xd.

In what follows, we describe the main steps within the initialization and iterations of Algorithm 1.
In particular, the conjugate operations in (4) are handled numerically via the linear-time Legendre
transform (LLT) algorithm [23]. LLT is an efficient algorithm for computing the discrete conjugate
function over a finite grid-like dual domain. Precisely, to compute the conjugate of the function h :
X → R, LLT takes its discretization hd : Xd → R as an input, and outputs hd∗d : Yg → R, for the
grid-like dual domain Yg. We refer the reader to [23] for a detailed description of LLT.

The main steps of the proposed approximate implementation of the CDP operator (4) are as fol-
lows: (i) For the expectation operation in (4a), by Assumption 2.1, we again have EwJ(· + w) =

5

Algorithm 1 ConjVI: Approximate VI in conjugate domain

Input: dynamics fs : Rn → Rn, B ∈ Rn×m; finite state space Xd ⊂ X; finite input space Ud ⊂ U; state
cost function Cd

s : Xd → R; input cost function Cd
i : Ud → R; finite disturbance space Wd and its

p.m.f. p : Wd → [0, 1]; discount factor γ; termination bound et.
Output: discrete value function Ĵd : Xd → R.

initialization:
1: construct the grids Vg, Zg, and Yg;
2: use LLT to compute Cd∗d

i : Vg → R from Cd
i : Ud → R;

3: Jd(x)← 0 and Jd
+(x)← Cd

s (x)−minCd
i for x ∈ Xd;

iteration:
4: while

∥∥Jd
+ − Jd

∥∥
∞ ≥ et do

5: Jd ← Jd
+;

6: Jd
+ ← T̂ dJd : Xd → R according to (6) [Cd∗d

i in (6c) is already computed in line 2];
7: end while
8: output Ĵd ← Jd

+.

∑
w∈Wd p(w) · J(· + w). Hence, we need to pass the value function Jd : Xd → R through the

“scaled expection filter” to obtain εd : Xd → R in (6a) as an approximation of ϵ in (4a). Notice that
here we are using an extension J̃d : X → R of Jd (recall that we only have access to the discrete
value function Jd). (ii) In order to compute ϕ in (4b), we need access to two conjugate functions.
First, for ϵ∗, we use the approximation εd∗d : Yg → R in (6b), by applying LLT to the data points
εd : Xd → R for a properly chosen state dual grid Yg ⊂ Rn. We also need the conjugate C∗

i of the
input cost. If this function is not analytically available, we approximate it as follows: For a properly
chosen input dual grid Vg ⊂ Rm, we employ LLT to compute Cd∗d

i : Vg → R in (6c), using the
data points Cd

i : Ud → R, where Ud is a finite subset of U. With these conjugate functions at hand,
we can now compute φd : Yg → R in (6d), as an approximation of ϕ in (4b). In particular, notice
that we use the LERP extension Cd∗d

i of Cd∗d
i to approximate Cd∗

i at the required point −B⊤y for
each y ∈ Yg. (iii) To be able to compute the output according to (4c), we need to perform another
conjugate transform. In particular, we need the value of ϕ∗ at fs(x) for x ∈ Xd. Here, we use the
approximation φd∗d : Zg → R in (6e), by applying LLT to the data points φd : Yg → R for a
properly chosen grid Zg ⊂ Rn. Finally, we use the LERP extension φd∗d of φd∗d to approximate
φd∗ at the required point fs(x) for each x ∈ Xd, and compute T̂ dJd in (6f) as an approximation of
T̂ J in (4c). With these approximations, we introduce the discrete CDP (d-CDP) operator as follows

εd(x) := γ ·
∑

w∈Wd

p(w) · J̃d(x+ w), x ∈ Xd, (6a)

εd∗d(y) = max
x∈Xd

{
⟨x, y⟩ − εd(x)

}
, y ∈ Yg, (6b)

Cd∗d
i (v) = max

u∈Ud

{
⟨u, v⟩ − Cd

i (u)
}
, v ∈ Vg, (6c)

φd(y) := Cd∗d
i (−B⊤y) + εd∗d(y), y ∈ Yg, (6d)

φd∗d(z) = max
y∈Yg

{
⟨y, z⟩ − φd(y)

}
, z ∈ Zg, (6e)

T̂ dJd(x) := Cs(x) + φd∗d
(
fs(x)

)
, x ∈ Xd. (6f)

The proper construction of the grids Yg, Vg, and Zg will be discussed in Section 3.4.

3.3 Analysis of ConjVI algorithm

We now provide our main theoretical results concerning the convergence, complexity, and error of
the proposed algorithm. Let us begin with presenting the assumptions to be called in this subsection.

Assumption 3.7 (Grids). Consider the following properties for the grids in Algorithm 1 (consult the
Notations in Section 1): (i) The grid Vg is constructed such that co(Vg

sub) ⊇ L(Cd
i). (ii) The grid Zg

is constructed such that co(Zg) ⊇ fs
(
Xd

)
. (iii) The construction of Yg, Vg, and Zg requires at most

6

O(X + U) operations. The cardinality of the grids Yg and Zg (resp. Vg) in each dimension is the
same as that of Xd (resp. Ud) in that dimension so that Y,Z = X and V = U .

Assumption 3.8 (Extension operator). Consider the following properties for the operator [̃·] in (6a):
(i) The extension operator is non-expansive in the infinity norm; (ii) Given a function J : X → R and
its discretization Jd : Xd → R, we have ∥J − J̃d∥∞ ≤ ee for some constant ee ≥ 0.

Our first result concerns the contractiveness of the d-CDP operator.

Theorem 3.9 (Convergence). Let Assumptions 3.7-(ii) and 3.8-(i) hold. Then, the d-CDP operator (6)
is γ-contractive in the infinity-norm.

The preceding theorem implies that the approximate ConjVI Algorithm 1 is indeed convergent given
that the required conditions are satisfied. In particular, for deterministic dynamics, co(Zg) ⊇ fs

(
Xd

)
is sufficient for Algorithm 1 to be convergent. We next consider the complexity of our algorithm.

Theorem 3.10 (Complexity). Let Assumption 3.7-(iii) hold. Also assume that each evaluation of the
extension operator [̃·] in (6a) requires O(E) operations. Then, the time complexities of initialization
and each iteration in Algorithm 1 are of O(X + U) and Õ(XWE), respectively.

The requirements of Assumption 3.7-(iii) will be discussed in Section 3.4. Recall that each iteration
of VI (in primal domain) has a complexity of O(XUWE), where E denotes the complexity of the
extension operation used in (2). This observation points to a basic characteristic of the proposed
approach: ConjVI reduces the quadratic complexity of VI to a linear one by replacing the minimization
operation in the primal domain with a simple addition in the conjugate domain. Hence, for problem
class of Assumption 3.1, ConjVI is expected to lead to a reduction in the computational cost. We note
that ConjVI, like VI and other approximation schemes that utilize discretization/abstraction of the
continuous state and input spaces, still suffers from the so-called “curse of dimensionality.” This is
because the sizes X and U of the discretizations increase exponentially with the dimensions n and m
of the corresponding spaces. However, for ConjVI, this exponential increase is of rate max{m,n},
compared to the rate m+ n for VI.

Theorem 3.11 (Error). Let Assumptions 3.5, 3.7-(i,ii), and 3.8-(i) hold. Consider the true optimal
value function J⋆ = T J⋆ : X → R and its discretization Jd

⋆ : Xd → R, and let Assumption 3.8-(ii)
hold for J⋆. Also, let Ĵd : Xd → R be the output of Algorithm 1. Then, ∥Ĵd − Jd

⋆ ∥∞ ≤ γ(ee+et)+ed
1−γ ,

where ed = eu + ev + ex + ey + ez, and

eu = cu · dH(U,Ud), ev = cv · dH
(
co(Vg),Vg

)
, ex = cx · dH

(
X,Xd

)
,

ey = cy ·maxx∈Xd d
(
∂(J⋆ − Cs)(x),Yg

)
, ez = cz · dH

(
fs(Xd),Zg

)
,

(7)

with constants cu, cv, cx, cy, cz > 0 depending on the problem data.

Let us first note that Assumption 3.5 implies that the DP and CDP operators preserve convexity,
and they both have the true optimal value function J⋆ as their fixed point (i.e., the duality gap is
zero). Otherwise, the proposed scheme can suffer from large errors due to dualization. Moreover,
Assumptions 3.7-(i,ii) on the grids Vg and Zg are required for bounding the error of approximate
discrete conjugations using LERP in (6d) and (6f); see the proof of Lemmas A.5 and A.7 of the
supplementary material. The remaining sources of error in the proposed approximate implementation
of ConjVI are captured by the three main error terms: (i) ee is due to the approximation of the value
function using the extension operator [̃·]; (ii) et corresponds to the termination of the algorithm after
a finite number of iterations; (iii) ed captures the error due to the discretization of the primal and dual
state and input domains.

3.4 Construction of the grids

In this subsection, we provide specific guidelines for the construction of the grids Yg, Vg and Zg. We
note that these discrete sets must be grid-like since they form the dual grid for the three conjugate
transforms that are handled using LLT. The presented guidelines aim to minimize the error terms
in (7) while taking into account the properties laid out in Assumption 3.7. In particular, the schemes
described below satisfy the requirements of Assumption 3.7-(iii).

7

Construction of Vg. Assumption 3.7-(i) and the error term ev in (7) suggest that we find
the smallest input dual grid Vg such that co(Vg

sub) ⊇ L(Cd
i). This latter condition essen-

tially means that Vg must “more than cover the range of slope” of the function Cd
i ; recall that

L(Cd
i) = Πm

j=1

[
L−
j (C

d
i),L

−
j (C

d
i)
]
, where L−

j (C
d
i) (resp. L+

j (C
d
i)) is the minimum (resp. maxi-

mum) slope of Cd
i along the j-th dimension. Hence, we need to compute/approximate L±

j (C
d
i) for

j = 1, . . . ,m. A conservative approximation is L−
j (Ci) = min ∂Ci/∂uj and L+

j (Ci) = max ∂Ci/∂uj ,
assuming Ci is differentiable. Alternatively, we can directly use the discrete input cost Cd

i for com-
puting L±

j (C
d
i). In particular, if the domain Ud = Ug = Πm

j=1U
g
j of Cd

i is grid-like and Ci is convex,
we can take L−

j (C
d
i) (resp. L+

j (C
d
i)) to be the minimum first forward difference (resp. maximum last

backward difference) of Cd
i along the j-th dimension (this scheme requires O(U) operations). Having

L±
j (C

d
i) at our disposal, we can then construct Vg

sub = Πm
j=1V

g
subj

such that, in each dimension j,
Vg

subj
is uniform and has the same cardinality as Ug

j , and co(Vg
subj

) =
[
L−
j (C

d
i),L

+
j (C

d
i)
]
. Finally,

we construct Vg by extending Vg
sub uniformly in each dimension (by adding a smaller and a larger

element to Vg
sub in each dimension).

Construction of Zg. According to Assumption 3.7-(ii), the grid Zg must be constructed such that
co(Zg) ⊇ fs

(
Xd

)
. This can be simply done by finding the vertices of the smallest box that contains

the set fs
(
Xd

)
. Those vertices give the diameter of Zg in each dimension. We can then, for example,

take Zg to be the uniform grid with the same cardinality as Yg in each dimension (so that Z = Y).
This way, dH

(
fs(Xd),Zg

)
≤ dH

(
co(Zg),Zg

)
, and hence ez in (7) reduces by using finer grids Zg.

This construction has a time complexity of O(X).

Construction of Yg. Construction of the state dual grid Yg is more involved. According to
Theorem 3.11, we need to choose a grid that minimizes ey in (7). This can be done by choosing Yg

such that Yg ∩ ∂(J⋆ − Cs) ̸= ∅ for all x ∈ Xd so that ey = 0. Even if we had access to the optimal
value function J⋆, satisfying such a condition could lead to a dual grid Yg ⊂ Rn of size O(Xn).
Such a large size violates Assumption 3.7-(iii) on the size of Yg, and essentially renders the proposed
algorithm impractical for dimensions n ≥ 2. A more practical condition is co(Yg)∩ ∂(J⋆ −Cs) ̸= ∅
for all x ∈ Xd so that maxx∈Xd d

(
∂(J⋆ − Cs)(x),Yg

)
≤ dH

(
co(Yg),Yg

)
, and hence ey reduces

by using a finer grid Yg. The latter condition is satisfied if co(Yg) ⊇ L(J⋆ − Cs), i.e., if Yg “covers
the range of slops” of (J⋆−Cs). Hence, we need to approximate the range of slopes of (J⋆−Cs). To
this end, we first use the fact that J⋆ is the fixed point of DP operator (1) to approximate rng(J⋆−Cs)

by R =
rng(Cd

i)+γ·rng(Cd
s)

1−γ . We then construct the gird Yg = Πn
i=1Y

g
i such that, for each dimension i,

we have ±αR/∆i

Xd ∈ co(Yg
i), where ∆i

Xd denotes the diameter of the projection of Xd on the i-th
dimension, and α > 0 is a scaling factor mainly depending on the dimension of the state space. This
construction has a one-time computational cost of O(X + U).

Dynamic construction of Yg. Alternatively, we can construct Yg dynamically at each iteration
in order to minimize the corresponding error in each application of the d-CDP operator given by
ey = cy ·maxx∈Xd d

(
∂(T J−Cs)(x),Yg

)
; see Lemma A.6 and Proposition A.8 of the supplementary

material. This means that the construction of Yg in Algorithm 1 is moved from line 1 to inside the
iterations, after line 5. Similar to the static scheme described above, the aim here is to construct Yg

such that co(Yg) ⊇ L(T J − Cs). Since we do not have access to T J (it is the output of the current
iteration), we can again use the definition of the DP operator (1) to approximate rng(T J − Cs) by
R = rng(Cd

i) + γ · rng(Jd) where Jd is the output of the previous iteration. We then construct
the gird Yg = Πn

i=1Y
g
i such that, for each dimension i, we again have ±αR/∆i

Xd ∈ co(Yg
i). This

construction has a one-time computational cost of O(U) for computing rng(Cd
i) and a per iteration

computational cost of O(X) for computing rng(Jd). Notice, however, that under this dynamic
construction, the error bound of Theorem 3.11 does not hold true. More importantly, with a dynamic
grid Yg, there is no guarantee for ConjVI to converge.

4 Numerical simulations

We now showcase the application of the ConjVI algorithm through two numerical examples, and
compare its performance with the VI algorithm. The details of these simulations (and another
numerical example) are provided in Section 4 of the supplementary material. We also provide the

8

(a) Convergence (N = 41).

103 104 105
100

102

104

(b) Running time (c) Average cost (100 runs)

0 20 40 60 80
10-4

10-2

100

102

(d) Convergence (N = 25).

104 106 108
100

102

104

106

(e) Running time

104 106 108

20

30

40

(f) Average cost (100 runs)

Figure 1: VI vs. ConjVI (CVI): optimal control of inverted pendulum (top) and batch reactor (bottom). The
black dotted line in (a) corresponds to exponential convergence with rate γ = 0.95. CVI-d corresponds to
dynamic construction of the dual grid Yg in the ConjVI algorithm.

ConjVI MATLAB package [21] for the implementation of the proposed algorithm. The package also
includes the numerical simulations of this section. We note that multiple routines in the developed
package are borrowed from the d-CDP MATLAB package [22]. Also, for the discrete conjugation
(LLT), we used the MATLAB package (in particular, the LLTd routine) provided in [23].

Example 1. We use the setup of [20, App. C.2.2] for the optimal control of a noisy inverted pendulum
with two state variables and one input channel. In particular, we use nearest neighbor extension
(which is non-expansive) for the extension operators in (2) for VI and in (6a) for ConjVI. We also
consider the dynamic scheme for the construction of Yg in ConjVI (hereafter, referred to as ConjVI-d).
Moreover, in each implementation of VI and ConjVI(-d), all of the involved discrete sets are uniform
grids with the same size N in each dimension, i.e., X,Y, Z = N2 and U, V = N . We are particularly
interested in the performance of these algorithms, as the size of the discretizations increases. The
results of our numerical simulations are shown in the top panels of Figure 1. As shown in Figures 1a,
both VI and ConjVI algorithms are convergent with a rate ≤ γ = 0.95. In particular, ConjVI
terminates in 57 iterations, compared to 101 iterations required for VI to terminate. As expected, this
faster convergence, combined with the lower time complexity of ConjVI in each iteration, leads to
a significant reduction in the running time of this algorithm compared to VI; see Figure 1b. Since
we do not have access to the true optimal value function, in order to evaluate the performance of the
outputs of the these algorithms, we consider the performance of the greedy policy with respect to the
discrete value function Jd computed using these algorithms. Figure 1c reports the average cost of
100 random instances over T = 100 steps. As shown, the reduction in the running time in ConjVI
comes with an increase in the cost of the controlled trajectories, particularly for coarse discretizations
of the state-action space. On the other hand, using the dynamic scheme for construction of Yg, we
see that ConjVI-d, with a small increase in the running time compared to ConjVI, achieves almost
the same performance as VI concerning the quality of the greedy actions.

Example 2. We now consider the optimal control of an unstable deterministic batch reactor with four
states and two inputs. The setup is borrowed from [19, Sec. 6]. Once again, all of the involved discrete
sets are uniform grids with the same size N in each dimension, i.e., X,Y, Z = N4 and U, V = N2.
We note that we use multi-linear interpolation and extrapolation for the extension operator in (2)
for VI. Due to the extrapolation, the extension operator is no longer non-expansive, and hence the
convergence of VI is not guaranteed. On the other hand, since the dynamics is deterministic, there
is no need for extension in ConjVI (the scaled expectation in (6a) in ConjVI reduces to the simple
scaling εd = γ · Jd for deterministic dynamics), and hence the convergence of ConjVI only requires

9

co(Zg) ⊇ fs
(
Xg

)
. The results of simulations are shown in the bottom panels of Figure 1. Once again,

we see the trade-off between the time complexity and the greedy control performance in VI and
ConjVI. On the other hand, ConjVI-d has the same control performance as VI with an insignificant
increase in running time compared to ConjVI. Moreover, in Figure 1d, we observe the non-monotone
behavior of ConjVI-d. In this regard, recall that when the grid Yg is constructed dynamically and
varies at each iteration, the d-CDP operator is not necessarily contractive, which is here the case for
the first six iterations. The VI algorithm is also showing a non-monotone behavior, where for the
first nine iterations the d-DP operation is actually expansive. As we noted earlier, this is because the
multi-linear extrapolation operation used for extension is expansive.

5 Final remarks

In this paper, we proposed the ConjVI algorithm which reduces the time complexity of the VI
algorithm from O(XU) to O(X +U). This better time complexity however comes at the expense of
restricting the class of problem. In particular, there are two main conditions that must be satisfied
in order to be able to apply the ConjVI algorithm: The dynamics must be of the form x+ =
fs(x) +Bu+ w, and the stage cost C(x, u) = Cs(x) + Ci(u) must be separable. Moreover, since
ConjVI essentially solves the dual problem, for non-convex problems, it suffers from a non-zero
duality gap. Based on our simulation results, we also notice a trade-off between computational
complexity and control action quality: While ConjVI has a lower computational cost, VI generates
better control actions. However, the dynamic scheme for the construction of state dual grid Yg allows
us to achieve almost the same performance as VI when it comes to the quality of control actions, with
a small extra computational burden. In what follows, we provide our final remarks on the limitations
of the proposed ConjVI algorithm and its relation to existing approximate VI algorithms.

Relation to existing approximate VI algorithms. The basic idea for complexity reduction introduced
in this study can be potentially combined with and further improve the existing sample-based VI
algorithms. These sample-based algorithms solely focus on transforming the infinite-dimensional
optimization in DP problems into computationally tractable ones, and in general, they have a time
complexity of O(XU), depending on the product of the cardinalities of the discrete state and action
spaces. The proposed ConjVI algorithm, on the other hand, focuses on reducing this time complexity
to O(X + U), by avoiding the minimization over input in each iteration. Take, for example, the
aggregation technique in [26, Sec. 8.1] that leads to a piece-wise constant approximation of the value
function. It is straightforward to combine ConjVI with this type of state space aggregation. Indeed,
the first numerical example of Section 4 (optimal control of inverted pendulum) essentially uses such
an aggregation by approximating the value function via nearest neighbor extension.

Cost functions with a large Lipschitz constant. Recall that for the proposed ConjVI algorithm to
be computationally efficient, the size Y of the state dual grid Yg must be controlled by the size X of
the discrete state space Xd (Assumption 3.7-(iii)). Then, as the range of slope of the value function
J⋆ increases, the corresponding error ey in (7) due to discretization of the dual state space increases.
The proposed dynamic approach for construction of Yg partially addresses this issue by focusing on
the range of slope of Jd

k in each iteration in order to minimize the discretization error of the same
iteration k. However, when the cost function has a large Lipschitz constant, even this latter approach
can fail to provide a good approximation of the value function. (See the supplementary material for a
numerical example).

Gradient-based algorithms for solving the minimization over input. Let us first note that the
minimization over u in sample-based VI algorithms usually involves solving a difficult non-convex
problem. This is particularly due to that fact that the extension operation employed in these algorithms
for approximating the value function using the sample points does not lead to a convex function
in u (e.g., take kernel-based approximations or neural networks). This is why in MDP and RL
literature, it is actually quite common to consider a finite action space in the first place [10, 26].
Moreover, the minimization over u again must be solved for each sample point in each iteration, while
application of ConjVI avoids solving this minimization in each iteration. In this regard, let us note
that ConjVI actually uses a convex approximation of the value function, which allows for application
of a gradient-based algorithm for minimization over u within the ConjVI algorithm. However, such
an algorithm has a per iteration complexity of O(XY) = O(X2) , which is practically inefficient.

10

Acknowledgments

This research is part of a project that has received funding from the European Research Council
(ERC) under the grant TRUST-949796. The authors are also grateful to anonymous reviewers for
their comments concerning the three remarks in Section 5.

References
[1] Y. Achdou, F. Camilli, and L. Corrias. On numerical approximation of the Hamilton-Jacobi-transport

system arising in high frequency approximations. Discrete & Continuous Dynamical Systems-Series B,
19(3), 2014.

[2] M. Akian, S. Gaubert, and A. Lakhoua. The max-plus finite element method for solving deterministic
optimal control problems: Basic properties and convergence analysis. SIAM Journal on Control and
Optimization, 47(2):817–848, 2008.

[3] F. Bach. Max-plus matching pursuit for deterministic Markov decision processes. arXiv preprint
arXiv:1906.08524, 2019.

[4] R. Bellman and W. Karush. Mathematical programming and the maximum transform. Journal of the
Society for Industrial and Applied Mathematics, 10(3):550–567, 1962.

[5] E. Berthier and F. Bach. Max-plus linear approximations for deterministic continuous-state markov
decision processes. IEEE Control Systems Letters, pages 1–1, 2020.

[6] D. Bertsekas. Linear convex stochastic control problems over an infinite horizon. IEEE Transactions on
Automatic Control, 18(3):314–315, 1973.

[7] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena Scientific, Belmont, MA,
3rd edition, 2007.

[8] D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, Belmont, MA, 2009.

[9] D. P. Bertsekas. Reinforcement Learning and Optimal Control. Athena Scientific, Belmont, MA, 2019.

[10] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement learning and dynamic programming
using function approximators. CRC press, 2017.

[11] R. Carpio and T. Kamihigashi. Fast value iteration: an application of Legendre-Fenchel duality to a class
of deterministic dynamic programming problems in discrete time. Journal of Difference Equations and
Applications, 26(2):209–222, 2020.

[12] L. Contento, A. Ern, and R. Vermiglio. A linear-time approximate convex envelope algorithm using the
double Legendre–Fenchel transform with application to phase separation. Computational Optimization
and Applications, 60(1):231–261, 2015.

[13] L. Corrias. Fast Legendre-Fenchel transform and applications to Hamilton-Jacobi equations and conserva-
tion laws. SIAM Journal on Numerical Analysis, 33(4):1534–1558, 1996.

[14] G. Costeseque and J.-P. Lebacque. A variational formulation for higher order macroscopic traffic flow
models: Numerical investigation. Transportation Research Part B: Methodological, 70:112 – 133, 2014.

[15] A. O. Esogbue and C. W. Ahn. Computational experiments with a class of dynamic programming
algorithms of higher dimensions. Computers & Mathematics with Applications, 19(11):3 – 23, 1990.

[16] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Theory of computing,
8(1):415–428, 2012.

[17] M. Jacobs and F. Léger. A fast approach to optimal transport: The back-and-forth method. Numerische
Mathematik, 146(3):513–544, 2020.

[18] C. M. Klein and T. L. Morin. Conjugate duality and the curse of dimensionality. European Journal of
Operational Research, 50(2):220 – 228, 1991.

[19] A. S. Kolarijani, S. C. Bregman, P. Mohajerin Esfahani, and T. Keviczky. A decentralized event-based
approach for robust model predictive control. IEEE Transactions on Automatic Control, 65(8):3517–3529,
2020.

11

[20] M. A. S. Kolarijani and P. Mohajerin Esfahani. Fast approximate dynamic programming for input-affine
dynamics. preprint arXiv:2008.10362, 2021.

[21] M. A. S. Kolarijani and P. Mohajerin Esfahani. Conjugate value iteration (ConjVI) MATLAB package.
Licensed under the MIT License, available online at https://github.com/AminKolarijani/
ConjVI, 2021.

[22] M. A. S. Kolarijani and P. Mohajerin Esfahani. Discrete conjugate dynamic programming (d-CDP)
MATLAB package. Licensed under the MIT License, available online at https://github.com/
AminKolarijani/d-CDP, 2021.

[23] Y. Lucet. Faster than the fast Legendre transform, the linear-time Legendre transform. Numerical
Algorithms, 16(2):171–185, 1997.

[24] Y. Lucet. New sequential exact Euclidean distance transform algorithms based on convex analysis. Image
and Vision Computing, 27(1):37 – 44, 2009.

[25] W. M. McEneaney. Max-plus eigenvector representations for solution of nonlinear H∞ problems: basic
concepts. IEEE Transactions on Automatic Control, 48(7):1150–1163, 2003.

[26] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality. John Wiley &
Sons, Hoboken, NJ, 2nd edition, 2011.

[27] A. Sidford, M. Wang, X. Wu, and Y. Ye. Variance reduced value iteration and faster algorithms for
solving Markov decision processes. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 770–787. SIAM, 2018.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

12

https://github.com/AminKolarijani/ConjVI
https://github.com/AminKolarijani/ConjVI
https://github.com/AminKolarijani/d-CDP
https://github.com/AminKolarijani/d-CDP

	Introduction
	VI in primal domain
	Reducing complexity via conjugate duality
	VI in conjugate domain
	ConjVI algorithm
	Analysis of ConjVI algorithm
	Construction of the grids

	Numerical simulations
	Final remarks

