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Abstract

Vision Transformers (ViTs) have demonstrated impressive performance across
a range of applications, including many safety-critical tasks. Many previous
studies have observed that adversarial examples crafted on ViTs exhibit higher
transferability than those crafted on CNNs, indicating that ViTs contain structural
characteristics favorable for transferable attacks. In this work, we take a further step
to deeply investigate the role of computational redundancy brought by its unique
characteristics in ViTs and its impact on adversarial transferability. Specifically, we
identify two forms of redundancy, including the data-level and model-level, that can
be harnessed to amplify attack effectiveness. Building on this insight, we design
a suite of techniques, including attention sparsity manipulation, attention head
permutation, clean token regularization, ghost MoE diversification, and learning to
robustify before the attack. A dynamic online learning strategy is also proposed to
fully leverage these operations to enhance the adversarial transferability. Extensive
experiments on the ImageNet-1k dataset validate the effectiveness of our approach,
showing that our methods significantly outperform existing baselines in both
transferability and generality across diverse model architectures, including different
variants of ViTs and mainstream Vision Large Language Models (VLLMs).

1 Introduction

Vision Transformers (ViTs), empowered by self-attention, have achieved state-of-the-art performance
in various domains, including face forgery detection [Zhuang et al.,|2022]], 3D semantic segmentation
for autonomous driving [[Ando et al., [2023]], and disease progression monitoring [Mbakwe et al.|
2023|], many of which are safety-critical. While deep neural networks (DNNs) are known to be
vulnerable to imperceptible adversarial perturbations [Szegedy et al., 2013]], most existing work
focuses on general-purpose attacks and defenses, often tailored to convolutional architectures [Zhu
et al.,|2024al |Wang and Farnia) 2023} |Wang et al.l 2020, [2021a, |Carlini and Wagner, 2017]. However,
ViTs differ fundamentally from CNNs in representation and structure [Naseer et al., {2021} Raghu
et al.| 2021]], leaving a gap in understanding their unique vulnerabilities. Designing attack strategies
that leverage the distinctive properties of ViTs is essential for both exposing their weaknesses and
building more robust models for real-world deployment.

Although adversarial perturbations can be crafted using a white-box model (i.e., a surrogate model),
numerous studies have demonstrated their threat to black-box models (i.e., victim models) due to a
phenomenon known as adversarial transferability [Zhou et al.| | 2018| [Li et al.,|2020]]. Compared to
white-box attacks, black-box adversarial attacks, some of which leverage transferability, typically
show lower performance but offer greater practicality in real-world applications [Huang et al., [2024,
Wang et al., [2019]]. Recent research has primarily focused on designing more efficient black-box
adversarial attacks, including gradient-based [Dong et al.,| 2018, Wang et al.}|2021b]], model-based [Li
et al., 2020} 2023|, input transformation-based [Xie et al., 2021} Zhu et al.,|[2021]], among others.
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While both CNNs and ViTs can serve as surrogate models, existing studies [Wang et al.,[2023a} [Zhu
et al.| 2024a] have found that adversarial examples crafted on ViTs tend to transfer more effectively,
whereas attacking ViTs using examples crafted on CNNs remains notably challenging. Unlike
CNN:ss, ViTs incorporate a tokenization mechanism and a sequence of shape-invariant blocks. These
unique characteristics, such as tokens, attention mechanisms, and the chain of blocks, have motivated
numerous studies to design adversarial attacks specifically tailored for ViTs [Zhang et al., 2023 |Zhu
et al.,[2024b, |Ren et al., 2025a]]. We argue that the success of these methods is closely related to the
computational redundancy inherent in ViTs.

In this paper, we thoroughly investigate the relationship between computational redundancy and
adversarial transferability. While prior studies have shown that reducing computation in ViTs does
not significantly degrade performance, we instead aim to leverage this redundancy to enhance the
adversarial transferability of crafted perturbations. Based on a detailed analysis of computational
redundancy in ViTs, we propose a collection of efficient techniques that exploit this property to
improve adversarial transferability. An overview of our proposed methods is shown in fig.[I}

Our contributions can be summarized as follows:

1. We analyze the computational redundancy in ViTs and demonstrate how it can be effectively
leveraged to boost adversarial transferability.

2. We propose a suite of effective methods that exploit computational redundancy to enhance trans-
ferability, including amplifying attention sparsity, permuting attention weights, introducing clean
tokens for regularization, diversifying the feed-forward network via ghost MoE, and learning to
robustify before the attack to improve the theoretical bound of adversarial transferability.

3. We propose an online learning strategy that leverages the proposed operations to learn redundan-
tization, thereby boosting adversarial transferability and generalization.

4. We conduct extensive experiments on the ImageNet-1k dataset to validate the effectiveness of
our approach. The results show that our methods outperform existing baselines by a clear margin
across various models, demonstrating both their superiority and generality.

2 Related work

Adversarial Transferability. The vulnerability of deep neural networks (DNNs) to adversarial
perturbations, first revealed by Szegedy et al.|[2013]], has triggered extensive research on both attack
and defense strategies. Adversarial attacks are broadly categorized based on the attacker’s access to
the model into white-box and black-box attacks.

White-box attacks assume full access to the model architecture and gradients. Canonical examples
include FGSM [Goodfellow et al., [2015]], DeepFool [Moosavi-Dezfooli et al.l 2016], and the Carlini
& Wagner (C&W) attack [Carlini and Wagner, 2017]). In contrast, black-box attacks operate without
such access and include score-based attacks [|[Andriushchenko et al., [2020) |Yatsura et al., [2021]],
decision-based attacks [[Chen et al., [2020| [Li et al.| 2022, |Wang et al.l 2022b]], and transfer-based
attacks [Dong et al.| |2018] [Lin et al., 2020, Wang et al.| 2021a]]. Transfer-based attacks are particularly
appealing due to their query-free nature and strong cross-model performance. Our work focuses on
enhancing this category. Existing methods to improve adversarial transferability can be grouped into
three categories:

Gradient-based Strategies. These methods refine the optimization path to stabilize and generalize
perturbations. Momentum-based attacks such as MI-FGSM [Dong et al., 2018]] and NI-FGSM [Lin
et al.,[2020] enhance convergence stability, while PI-FGSM [Gao et al.|[2020] and VMI-FGSM [Wang
and He| |2021] introduce spatial and variance smoothing. EMI-FGSM [Wang et al.| 2021b] averages
gradients over multiple directions, and GIMI-FGSM [Wang et al.| |2022a] initializes momentum from
pre-converged gradients to boost transferability.

Input Transformation Techniques. These approaches modify the input space to produce more
robust adversarial examples. DIM [Xie et al.,2019] applies random resizing and padding, TIM [Dong
et al.,|2019] uses gradient smoothing over translated inputs, and SIM [Lin et al., 2020] aggregates
multi-scale gradients. Admix [Wang et al., 2021al] blends samples from different categories, while
SSA [Long et al.,|2022] perturbs images in the frequency domain.
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Figure 1: Overview of the proposed attack strategy integrated into Vision Transformers (ViTs). Our
method adopts a policy gradient-based framework to selectively apply different operations from
an operation pool to each transformer block. These operations include permuting attention heads,
sparsifying them, clean token regularization, and activating auxiliary Ghost MoE branches to exploit
the computational redundancy within ViTs. Robust tokens are learned at test time to further enhance
adversarial transferability.

Model-Centric Approaches. These methods diversify the surrogate model to reduce overfitting of
adversarial perturbations. [Liu et al.|[2017] demonstrate that ensemble attacks increase transferability.
Ghost networks [Li et al.l |2020] simulate model variation using dropout, while stochastic weight
averaging [Xiong et al.,|2022]] and high-learning-rate snapshots [Gubri et al., 2022] offer temporal
diversity through model evolution.

3 From Computational Redundancy to Strong Adversarial Transferability

3.1 Preliminaries

Vision transformer. Given an input image x € R7*WXC the Vision Transformer first splits the
image into a sequence of IV patches, each of size P x P. These patches are then flattened and projected
into a latent embedding space using a learnable linear projection, i.e., z* = E - Flatten(x;), i =
1,...,N, where E ¢ R(” *O)xD g the patch embedding matrix and D is the hidden dimension.
A learnable class token z['8] is prepended to the sequence, and positional embeddings p; are
added, i.e., z = [z} z! + py,...,z" + py]. This token sequence is then passed through L
Transformer encoder layers. Each layer consists of a multi-head self-attention (MHA) mechanism
and a feed-forward network (FFN), both wrapped with residual connections and layer normalization.
The update for the /-th layer can be formulated as:

z; = FFN(LN(MHA(LN(z,_1))) + z¢—1) + MHA(LN(z,_1)), 1)
where LN(+) denotes layer normalization. MHA and FFN are defined as:
Z‘A]Q?(Z‘pr()T

Vg
where we denote Wy, W g, and Wy, as projection matrices for queries, keys, and values, W1, W

as the weights of the two-layer feed-forward network, and by, by as the biases. Last, only the z 5]
will be used for classification by a linear projection layer.

MHA(z) = softmax ( ) zWy, FFN(z) = GELU(zW; + b;)W3 + ba, (2)

Adversarial attacks. The iterative generation of adversarial examples can be formulated as:
adv adv

239, = clip, (23" + o - sign(4;)) , (3)
where clip, () ensures that the perturbation remains within an £,-norm ball of radius € centered at
the clean input x, and « is the step size. The update 9; varies depending on the attack method.



3.2 Analysis of computational redundancy in ViTs

Computational redundancy in Vision Transformers (ViTs) exists at two main levels: data-level
redundancy and model-level redundancy.

* Data-level redundancy has been extensively studied, particularly through token pruning techniques.
Due to overlapping visual representations, many tokens carry similar information and can be
selectively pruned at various stages of the ViT’s processing pipeline. This allows for a more
focused use of computation without affecting task performance.

* Model-level redundancy arises from over-parameterization and certain training strategies, such as
neuron dropout in FFN modules and layer dropout across entire transformer blocks. Additionally,
research has shown that not all attention heads in the MHA module contribute equally to perfor-
mance. These findings suggest that parts of the model can be selectively deactivated or repurposed
while maintaining accuracy.

These forms of redundancy present an opportunity to reallocate computational effort toward improving
adversarial transferability, without altering the overall computational workload. We provide a
verification study on these redundancies in appendix [A]

To better understand the relationship between

computational redundancy and adversarial trans- — ResNetS0  —— Inception-v3 Visformer-s
ferability in ViTs, we conduct a series of ex- VGG-16 —— ViT-B/16 —— SwinT
periments to validate our hypothesis. We ran- — MobileNetv2  — PITB 7 Average Accuracy
domly sample 1,000 images from the ImageNet- 100
1K dataset as our evaluation set. Eight mod-
els are used as both surrogate and victim
models, including (1) four Convolutional Neu-
ral Networks (CNNs): ResNet-50 [He et al.,
2016f], VGG-16 [Simonyan and Zisserman)
2015[], MobileNetV2 [Sandler et al., 2018],
Inception-v3 [Szegedy et al) 2016] and (2)
four Transformer-based models: ViT [Doso+ | | | | | | | | ;
vitskiy et al [2020], PiT [Heo et al., 2021], 0.1 02 03 04 05 06 0.7 0.8 0.9
Visformer [Liu et al| [2021] and Swin Trans- Sampling ratio

former [Liu et al.,[2021]]. Adversarial examples
are generated using ViT as the surrogate model,
and their transferability is evaluated on the re-
maining models. We benchmark the performance by MI-FGSM, and our proposed strategies are
integrated into MI-fﬁGSM. Following standard settings in prior work, set the maximum perturbation

magnitude to € = 5= with the momentum decay factor as 1 and use 10 attack steps for all methods.
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Figure 2: Study on the effectiveness of randomly
dropping attention weights.

3.3 Practical exploitation of redundancy for adversarial transferability

 On the role of attention sparsity in adversarial transferability. Prior studies have shown that
Vision Transformers can maintain performance even when a subset of tokens is dropped at various
layers. This implicitly alters the attention patterns and indicates that redundancy exists within
the attention mechanism itself, which can potentially be repurposed for other objectives. These
observations naturally raise the question: can adversarial transferability be improved by actively
manipulating attention sparsity?

To exploit this, different from [Ren et al.| [2025a]] which study the adversarial transferability by
dropping attention blocks, we propose to diversify the attention maps by directly randomly dropping
attention weights with a predefined ratio . Specifically, we apply a binary mask M to the attention
logits before the softmax operation in eq. (), formulated as:

ZWq(zWg)T
Vi,

where M € {0, 1}V is a randomly sampled binary mask with a drop ratio r, and ® denotes
element-wise multiplication.

MHA (z) = softmax (( > ® M) zWy, 4)



Aln Results. As shown in fig. , we vary the sampling ratio r from 0.1 to 0.9 to investigate the
transferability of adversarial samples generated on ViT across various target models. As the sampling
ratio increases up to 0.4, the white-box attack success rate remains consistently high, revealing that
ViTs exhibit a notable degree of redundancy. Beyond this point, however, the white-box attack success
rate begins to decline. In contrast, black-box attack success rates follow a rise-then-fall pattern, with
peak transferability occurring at different sampling ratios depending on the target model. These
results suggest that moderate sparsification allows adversarial attacks to exploit attention redundancy
in ViTs, enhancing perturbation transferability by focusing on fewer but more transferable features.
However, excessive sparsification harms both
white-box and black-box performance, reveal-
ing a trade-off between leveraging redundancy
and preserving representational capacity. These
findings align with those of |Ren et al.|[2025a],
who drop attention blocks to study similar ef-
fects, whereas our approach directly controls
sparsity at the element-wise level.
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 Permuting attention heads to capture more
generalizable features. The multi-head atten-
tion mechanism enhances model capacity by
allowing each attention head to focus on differ-
ent subspaces of the input. However, in practice,
many heads exhibit similar attention patterns,
often attending to overlapping regions. This
redundancy suggests the presence of invariant Figure 3: Study on the effectiveness of shuffling
features that may be beneficial for adversarial attention heads.

transferability.
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To better exploit this invariance, we propose to introduce randomness into the attention mechanism
by permuting the attention weights among different heads. Specifically, during each attack iteration,
we apply a random permutation to the attention heads (the group of QK layers). This encourages
attention heads to explore diverse focus patterns while keeping the value projections unchanged.
Rewriting the multi-head attention module in eq. (2, and incorporating the permutation operation,
we obtain:

K| KJ K},
MHA(z) = Concat (softmax <7r (Ql L Q:K, s, Qu H)) V1,V ...,VH]T> , 9
Vi Vdy Vi
where Q;, = ng, K;, = zW/;, and V), = zZW?, denote the query, key, and value projections for

the h-th head, respectively. 7(-) represents a random permutation applied to the attention weights of
each head, and is resampled at each iteration to promote diversity in attention patterns.

A/A Results. In our validation experiments, we study two factors, namely inter-layer and intra-layer
randomness. Specifically, each layer has a probability p of being selected for attention head shuffling,
and a ratio r of attention heads are randomly permuted within the selected layers. The results
are shown in fig.[3] On the one hand, we observe that larger values of p and r generally lead to
stronger adversarial transferability, while excessive disorder, such as p = 0.5, = 1.0, can result in
performance degradation. This experiment also validates our hypothesis that different attention heads
learn similar visually robust regions of interest, which benefits the crafting of highly transferable
adversarial examples. This suggests that adversarial perturbations do not rely on specific heads, but
rather exploit shared information across redundant attention heads to enable transferable attacks.

7 Introducing clean tokens to regularize adversarial representations. Recall that only the 7S]

token is used for classification, while the remaining patch tokens are typically discarded after the final
transformer layer. Prior work [Wang et al., 2023b]] on attacking CNNs has shown that incorporating
clean features into the forward pass can act as a strong regularization signal, significantly improving
adversarial transferability. Inspired by this, we propose a strategy tailored to ViTs: at each transformer
block, we append a small number of clean tokens from the benign samples alongside the adversarial
ones. These clean tokens serve as a stabilizing anchor that helps regularize the evolving adversarial
representations throughout the network, encouraging the model to preserve more transferable patterns.

Aln Results. We scale the sampling ratio r from 0.1 to 0.8, and present the results in fig.



As observed, incorporating clean tokens leads to — ResNet:50  —— Inceptionv3 Visformer-s
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of-Experts. Due to the use of dropout during

training, neurons in the FFNs of exhibit a degree of functional redundancy and robustness, enabling
alternative inference paths without significant performance degradation. To introduce additional
computational redundancy that can be exploited for enhancing adversarial transferability, we propose
a ghost Mixture-of-Experts (MoE) design. In this framework, each expert is instantiated by applying
a distinct dropout mask to the original FFN, effectively creating multiple sparse subnetworks that
share parameters but activate different neuron subsets. The inference process under this ghost MoE
design is defined as:

q
MoE(z) = é ZFFNQE (z), q~U(1,E) (6)
e=1

where E denotes the maximum number of experts, and 6. represents the e-th randomly perturbed
configuration of the original FFN weights induced by a randomly sampled dropout mask. All experts
share the same underlying parameters but differ in their active neurons due to stochastic masking.

A/A Results. We scale the maximum number of experts F from 1 to 5 and vary the neuron drop rate
from 0.1 to 0.5. The results in fig. [5|show that increasing £ consistently improves performance, with
the best results achieved at a drop rate of 0.3 for all configurations of the number of experts. Higher
drop rates require more experts to offset the performance loss caused by representation collapse.
This highlights the benefit of moderate sparsification
and expert diversity in enhancing adversarial transfer-
ability. However, excessive dropout (e.g., 0.5) leads
to degradation, indicating a trade-off between diver-
sity and feature preservation.

7\ Robustifying the ViT before attacking for better
transferability. As observed by Bose et al.| [2020],
given an input x with label y, the transferability of
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where J denotes the adversarial perturbation and £ Figure 5: Study on the effectiveness of diver-
is the classification loss. Motivated by this, a natural  sifying the FFN.

idea is to adversarially train a surrogate ViT model to enhance its robustness (minimizing the inner
loss), and then use it to generate perturbations (maximizing the outer loss) that transfer effectively to
other models. However, adversarially training a full ViT is computationally expensive due to its large
number of parameters.

To address this challenge, we introduce a test-time adversarial training strategy by introducing a small
number of optimizable tokens to robustify the ViT, thereby improving its effectiveness in transferable
attacks with significantly reduced cost.



Table 1: Study on the number of robust tokens. The values in the table represent the average attack
success rates of the models.
# Tokens 1 10 20 50 100 200 400
MI-FGSM 54.09

+ Dynamic Robust Tokens  52.89 5845 60.09 62.68 63.29 66.68 68.33
+ Global Robust Tokens ~ 28.45 21.88 22.09 27.03 50.58 66.40 69.76

Concretely, after obtaining the patch embeddings of the input x, we append NV, robustification tokens

initialized randomly, resulting in the embedding sequence, i.e., z = [z[°"S) z! + py,... 2" +
PN, Z), ..., z2"], where z, = {2z}, are the trainable robustification tokens. In each iteration, we

first generate an adversarial example of x and update z,. through adversarial training. Once trained,
z,- is used to enhance the ViT’s robustness, and standard attacks are applied to generate transferable
adversarial perturbations. The overall objective is:

min max £(f(z + 6;2r), y). 8)
However, the above instance-specific online test-time training remains computationally demanding.
To further reduce the overhead, we propose an offline strategy that learns a universal set of robustifi-
cation tokens z, on a small calibration dataset D. This offline-learned z, can then be appended to
any input’s token sequence, providing a generic robustness enhancement without per-instance opti-
mization. By precomputing these tokens, we significantly reduce the cost of generating transferable
adversarial examples while maintaining strong attack performance.

A/A Results. As shown in table , we conduct experiments to evaluate the impact of robust tokens on
adversarial transferability. Both dynamic and global robust tokens can enhance the attack success
rates by up to 14%. Specifically, using just 10 dynamic robust tokens already leads to an improvement
of over 4% in attack success rates. As the number of tokens increases, a consistent improvement is
observed, reaching up to 14.24%. In contrast, the offline-learned global robust tokens only begin
to take effect with 200 tokens, but ultimately achieve better performance, surpassing the dynamic
approach by 1.43% with 400 tokens. These results suggest that there exists a trade-off between attack
efficiency, including computational overhead, memory consumption, and adversarial transferability,
which should be carefully considered in real-world applications.

4 Learning to Redundantize for Improved Adversarial Transferability

As aforementioned analysis, the computational redundancy in attention and FFN modules can be
amplified by different operations to boost adversarial transferability. To fully leverage these operations
to enhance the adversarial transferability, we propose to learn to redundantize the ViT on fine-grained
transformer blocks. Specifically, we train a stochastic transformation policy that dynamically selects
operations to diversify intermediate representations, thereby improving transferability.

We randomly initialize a sampling matrix M € RX*©, where L is the number of transformer blocks
and O is the number of possible operations ¢,(-). Each entry M, , denotes the probability of selecting
operation ¢, at the [-th block. During each attack iteration, we sample s < O operations per block
based on M and apply the selected operation set {¢} (+), ..., #.(-)} to the surrogate ViT.

To optimize the distribution M, we treat it as a categorical policy and update it via the REINFORCE
estimator. Our objective is to maximize the expected adversarial loss:

max By [£(f (@ +6(8)), 1) ©
and the gradient for each entry M, , is computed as:

sz,o‘C = _E¢NM [ﬁ(f(l‘ + 6(¢))7y) : Vszo IOg P(d)l = o | Ml)] . (10)

Since ¢' is drawn from a categorical distribution, we haveVy, , log P(¢! = ¢,) = M1; 1B = o).
Through this gradient-based update, the model learns to emphasize transformations that most improve

adversarial transferability in an online and block-specific manner.




Table 2: Our method achieves state-of-the-art performance in attacking diverse models using ViT
variants (ViT-B/16, PiT-B, Swin-T) as surrogates. ViT-specific attacks such as TGR, GNS, and FPR
are excluded for Swin-T due to unavailable implementations.

Surrogate | Method | RN-50 VGG-16 MN-V2 Inc-v3 ViT-B/16 PiT-B  Vis-S  Swin-T | Avg.
MI- 394 584 57.9 422 97.4 404 420 55.0 54.1
NI- 40.3 59.2 58.3 442 96.8 41.1 443 57.4 55.2
EMI- 57.7 69.7 69.2 60.8 99.3 60.8 655 75.4 69.8
VMI- 50.3 63.6 63.2 52.7 98.3 557 574 68.1 63.7
VITB/16 PGN 68.9 75.7 76.3 72.4 97.6 75.6 155 80.0 71.8
DTA 435 65.5 64.1 48.0 99.9 463 494 62.1 59.8
TGR 53.4 72.5 724 55.5 97.7 592 618 74.5 68.4
GNS 475 68.2 68.2 49.6 91.5 50.1 548 65.4 61.9
FPR 52.3 66.6 68.4 52.4 97.5 562 60.7 71.0 65.6
| Ours | 777 90.6 911 799 997 ~ 789 835 935 | 869
MI- 394 58.9 56.0 387 26.6 954 446 48.0 44.6
NI- 39.7 60.4 58.4 37.3 26.0 942 4538 494 453
EMI- 58.2 71.6 722 57.4 46.0 98.7  66.1 69.6 63.0
VMI- 54.2 66.7 66.9 55.1 47.2 95.6 615 63.2 59.2
PiT-B PGN 71.4 71.5 78.4 73.0 69.4 939 711 79.0 75.1
DTA 48.6 67.8 67.5 46.4 347 99.9 549 584 54.0
TGR 59.6 78.2 78.8 57.6 49.5 982 687 71.6 70.3
GNS 58.9 78.8 77.8 58.8 46.1 98.6 689 71.3 69.9
FPR 583 71.5 75.1 67.8 46.1 964 644 68.6 69.3
| Ours | 860 917 936 810 741 ~ 997 91.7 934 | 874
MI- 28.8 48.1 52.8 28.8 213 27.0 341 95.7 42.1
NI- 30.5 49.5 53.9 28.6 19.8 28.0 3438 96.4 42.7
EMI- 422 62.4 67.8 423 324 429 522 99.7 55.2
Swin-T VMI- 49.9 61.3 68.1 48.8 46.3 54.1 60.2 97.7 60.8
PGN 78.5 86.8 87.8 81.8 71.7 834 869 99.3 85.3
DTA 31.7 53.0 57.8 29.7 20.6 274 351 99.5 44.3
[ Ours | 852 901 ~ 915 89.6 854 883 924 ~ 982 | 889

5 Experiments

In our experiment, we fully evaluate the performance of our proposed attacks on different ViTs,
including the vanilla ViT, Swin, and PiT. We selected various advanced adversarial attack methods
as the baseline to compare, including MI- [Dong et al., |2018]], NI- [Lin et al.| 2020[], EMI- [Wang
and Hel 2021]], VMI-FGSM [Wang et al., [2021b], PGN [Ge et al.| 2023]], DTA [Yang et al., 2023,
TGR [Zhang et al.| 2023]], GNS [Zhu et al., 2024b]], and FPR [Ren et al., 2025b]]. For our method,
we integrate the learning strategy introduced in section ] into the MI-FGSM. Following the settings
in previous work [Dong et al.l 2018} |Zhou et al., 2018} |Chen et al., [2023]], on the ImageNet-1K
dataset, we generate 1,000 adversarial examples by attacking the surrogate model, and evaluate the
adversarial transferability by attacking other models.

ViT as the surrogate model, attack others. As shown in table 2] our proposed method significantly
outperforms all baseline attack methods across all target models, demonstrating superior adversarial
transferability. Specifically, our attack achieves an average fooling rate of 86.9%, substantially
surpassing the second-best performing method, PGN, which yields an average fooling rate of 77.8%.
This highlights the effectiveness of our approach in generating transferable adversarial examples that
generalize well across both convolutional and transformer-based architectures.

Notably, the improvement is consistent across a diverse set of models, including both traditional CNNs,
e.g., ResNet-50, VGG-16, MobileNetV2, and recent ViT-based architectures e.g., ViT-B/16, PiT-B,
Swin-T, and Visformer-S. For instance, on ResNet-50 and VGG-16, our method achieves a fooling
rate of 77.7% and 90.6%, respectively, indicating a remarkable gain of over 8 percentage points
compared to PGN. Moreover, the attack remains highly effective on vision transformers, achieving
near-perfect success rates, e.g., 99.7% on ViT-B/16 and 93.5% on Swin-T, further emphasizing its
robustness in the black-box transfer setting.

PiT as the surrogate model, attack others. We also evaluate the performance of our proposed attack
when using PiT-B as the surrogate model. PiT differs from standard ViT by introducing pooling
layers between stages, which reduces computational cost while maintaining competitive performance.
Unlike in ViT, where robust tokens are appended to the end of the input sequence, tokens in PiT
are arranged in a 2D square matrix. To simplify implementation and preserve the original spatial
alignment of the token matrix at its top-left corner, we pad robust tokens only along the right and
bottom edges of the matrix. These tokens are then optimized via gradient ascent, following our
test-time objective defined in eq. (8).



As shown in table[2] our method again achieves state-of-the-art results across all target models. Com-
pared with PGN, which already performs competitively, our method achieves a further improvement
of over 12 percentage points in average fooling rate (87.4% vs. 75.1%). This margin is even more
pronounced on lightweight convolutional networks, such as MobileNetV2 (93.6% v.s. 78.4%) and
VGG-16 (91.7% v.s. 77.5%), demonstrating the effectiveness of our optimization approach under
constrained surrogate architectures. The performance on transformer-based targets remains high as
well, with 99.7% on PiT-B and 93.4% on Swin-T, indicating that the learned perturbations are not
only strong but also generalizable across different transformer designs.

Swin as the Surrogate Model, Attacking Others. Unlike ViT and PiT, the Swin Transformer
does not rely on a dedicated classification token. Instead, it generates predictions by aggregating
outputs from all tokens in the final transformer stage. Moreover, the fixed input resolution and
architectural constraints of Swin Transformer present challenges for integrating a flexible number
of robust tokens at the beginning of the input. To overcome this, we adopt a modified strategy by
inserting the randomly initialized token embeddings directly into the attention layer and optimizing
them via gradient ascent following our test-time objective in eq. ().

As shown in table [2] our method achieves an average fooling rate of 88.9%, outperforming all
baselines, including PGN (85.3%). It shows strong effectiveness across both convolutional and
transformer-based targets, achieving 85.2% on ResNet-50, 90.1% on VGG-16, 85.4% on ViT-
B/16, and 98.2% on Swin-T itself. These results underscore the generalizability of our attack
strategy, even when launched from a structurally distinct and token-aggregative architecture like Swin.

AttaCk ViSion-Language Large = Ours FPR GNS NI-FGSM VMI-FGSM
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As shown in fig. [6] our method consistently outperforms all baseline approaches, with average
improvements of 2.2% against the runner-up method PGN. Notably, on Qwen and InternVL—the
two most robust VLLMs in the evaluation—our method surpasses the second-best method by 5.5%
and 2.6%, respectively. These results highlight that our method consistently generates adversarial
examples with high transferability across different VLLMs.

6 Conclusion

In this paper, we explore a novel perspective on adversarial attack generation by harnessing the
computational redundancy inherent in Vision Transformers (ViTs). Through both theoretical insights
and empirical analysis, we demonstrate that data-level and model-level redundancies, traditionally
considered inefficient, can be effectively exploited to boost adversarial transferability. We propose a
comprehensive framework that integrates multiple redundancy-driven techniques, including attention
sparsity manipulation, attention head permutation, clean token regularization, ghost MoE diversifica-
tion, and test-time adversarial training. Additionally, we introduce an online learning strategy that
dynamically adapts redundant operations across transformer layers to further enhance transferability.
SOTA performance shown in extensive experiments reveals the overlooked utility of redundancy in
ViTs and open new avenues for designing stronger and more transferable adversarial attacks.
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A Computational Redundancy in ViTs

We investigate the computational redundancy in Vision Transformers (ViTs) from two complementary
perspectives: data-level and model-level redundancy.

Data-level redundancy. We begin by evaluating the robustness of ViTs under partial observations
of the input. Specifically, we conduct two types of perturbations: (1) randomly dropping a proportion
of patch tokens before entering the transformer, and (2) randomly zeroing out elements in the attention
weight matrices during self-attention computation. In both cases, the [CLS] token is retained. As
shown in Figure[7] the top-1 accuracy on ImageNet remains remarkably stable even after removing up
to 50% of tokens or attention weights. This indicates that ViTs possess strong resilience to incomplete
or noisy visual evidence, likely due to the high degree of representational redundancy inherent in
dense token embeddings and global attention.

Model-level redundancy. We further explore the internal redundancy of ViTs by ablating key
components of the architecture at inference time. We consider: (1) randomly disabling a subset
of attention heads in each layer, and (2) randomly dropping a proportion of hidden units in the
intermediate layers of the feedforward network (FFN). As seen in Figure[7] both forms of perturbation
lead to graceful degradation in performance. Even with 30-50% of heads or FFN neurons removed,
the models still maintain high accuracy. This reinforces the observation that ViTs are significantly
overparameterized, and many internal computations can be suppressed without compromising the
final output.
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Figure 7: Top-1 accuracy of ViT under various types of token and structural drop perturbations. ViTs
exhibit strong robustness to both input-level and architecture-level degradation, suggesting substantial
redundancy in both data representation and model computation.

Related works on studying the computational redundancy of transformers and ViTs. There
have been many works that systematically study and leverage the redundancy within the ViT’s
architecture. For example, Bolya et al.|[2022], Yin et al.[[2022]],Shang et al.|[2024], Arif et al.|[2025]]
find that dropping unimportant visual tokens or merging similar tokens will accelerate the inference of
ViTs without harming the model performance. Jin et al.|[2024], Fu et al.|[2024]], |He et al.|[2024] find
that there exists similarity to some degree between different attention heads. Some works leverage
the computational redundancy to enhance the performance of model, e.g., the use of MoE [Lin et al.,
2024l /Chen et al., 2024al].
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