
Harnessing the Computation Redundancy in ViTs to Boost Adversarial Transferability

Jiani Liu^{1*} Zhiyuan Wang^{2*} [†]Zeliang Zhang^{1*} Chao Huang¹ Susan Liang¹

Yunlong Tang¹ Chenliang Xu¹

¹University of Rochester ²University of California, Santa Barbara

*Equal contribution listed alphabetically [†]Project lead (✉: hust0426@gmail.com)

Abstract

Vision Transformers (ViTs) have demonstrated impressive performance across a range of applications, including many safety-critical tasks. Many previous studies have observed that adversarial examples crafted on ViTs exhibit higher transferability than those crafted on CNNs, indicating that ViTs contain structural characteristics favorable for transferable attacks. In this work, we take a further step to deeply investigate the role of computational redundancy brought by its unique characteristics in ViTs and its impact on adversarial transferability. Specifically, we identify two forms of redundancy, including the data-level and model-level, that can be harnessed to amplify attack effectiveness. Building on this insight, we design a suite of techniques, including attention sparsity manipulation, attention head permutation, clean token regularization, ghost MoE diversification, and learning to robustify before the attack. A dynamic online learning strategy is also proposed to fully leverage these operations to enhance the adversarial transferability. Extensive experiments on the ImageNet-1k dataset validate the effectiveness of our approach, showing that our methods significantly outperform existing baselines in both transferability and generality across diverse model architectures, including different variants of ViTs and mainstream Vision Large Language Models (VLLMs). Our code¹ is publicly released at <https://github.com/Trustworthy-AI-Group/TransferAttack> under the name **LL2S**.

1 Introduction

Vision Transformers (ViTs), empowered by self-attention, have achieved state-of-the-art performance in various domains, including face forgery detection [Zhuang et al., 2022], 3D semantic segmentation for autonomous driving [Ando et al., 2023], and disease progression monitoring [Mbakwe et al., 2023], many of which are safety-critical. While deep neural networks (DNNs) are known to be vulnerable to imperceptible adversarial perturbations [Szegedy et al., 2013], most existing work focuses on general-purpose attacks and defenses, often tailored to convolutional architectures [Zhu et al., 2024a, Wang and Farnia, 2023, Wang et al., 2020, 2021a, Carlini and Wagner, 2017]. However, ViTs differ fundamentally from CNNs in representation and structure [Naseer et al., 2021, Raghu et al., 2021], leaving a gap in understanding their unique vulnerabilities. Designing attack strategies that leverage the distinctive properties of ViTs is essential for both exposing their weaknesses and building more robust models for real-world deployment [Song et al., 2025a].

Although adversarial perturbations can be crafted using a white-box model (*i.e.*, a surrogate model), numerous studies have demonstrated their threat to black-box models (*i.e.*, victim models) due to a phenomenon known as adversarial transferability [Zhou et al., 2018, Li et al., 2020]. Compared to white-box attacks, black-box adversarial attacks, some of which leverage transferability, typically show lower performance but offer greater practicality in real-world applications [Huang et al., 2024,

¹The development version is available at <https://github.com/JennnyL/RedunAttack-ViT>.

Wang et al., 2019]. Recent research has primarily focused on designing more efficient black-box adversarial attacks, including gradient-based [Dong et al., 2018, Wang et al., 2021b], model-based [Li et al., 2020, 2023], input transformation-based [Xie et al., 2021, Zhu et al., 2021], among others.

While both CNNs and ViTs can serve as surrogate models, existing studies [Wang et al., 2023a, Zhu et al., 2024a] have found that adversarial examples crafted on ViTs tend to transfer more effectively, whereas attacking ViTs using examples crafted on CNNs remains notably challenging. Unlike CNNs, ViTs incorporate a tokenization mechanism and a sequence of shape-invariant blocks. These unique characteristics, such as tokens, attention mechanisms, and the chain of blocks, have motivated numerous studies to design adversarial attacks specifically tailored for ViTs [Zhang et al., 2023, Zhu et al., 2024b, Ren et al., 2025a]. We argue that the success of these methods is closely related to the computational redundancy inherent in ViTs.

In this paper, we thoroughly investigate the relationship between computational redundancy and adversarial transferability. While prior studies have shown that reducing computation in ViTs does not significantly degrade performance, we instead aim to leverage this redundancy to enhance the adversarial transferability of crafted perturbations. Based on a detailed analysis of computational redundancy in ViTs, we propose a collection of efficient techniques that exploit this property to improve adversarial transferability. An overview of our proposed methods is shown in fig. 1.

Our contributions can be summarized as follows:

1. We analyze the computational redundancy in ViTs and demonstrate how it can be effectively leveraged to boost adversarial transferability.
2. We propose a suite of effective methods that exploit computational redundancy to enhance transferability, including amplifying attention sparsity, permuting attention weights, introducing clean tokens for regularization, diversifying the feed-forward network via ghost MoE, and learning to robustify before the attack to improve the theoretical bound of adversarial transferability.
3. We propose an online learning strategy that leverages the proposed operations to learn redundantization, thereby boosting adversarial transferability and generalization.
4. We conduct extensive experiments on the ImageNet-1k dataset to validate the effectiveness of our approach. The results show that our methods outperform existing baselines by a clear margin across various models, demonstrating both their superiority and generality.

2 Related work

Adversarial Transferability. The vulnerability of deep neural networks (DNNs) [Min et al., 2024, Song et al., 2025b] to adversarial perturbations, first revealed by Szegedy et al. [2013], has triggered extensive research on both attack and defense strategies. Adversarial attacks are broadly categorized based on the attacker’s access to the model into white-box and black-box attacks.

White-box attacks assume full access to the model architecture and gradients. Canonical examples include FGSM [Goodfellow et al., 2015], DeepFool [Moosavi-Dezfooli et al., 2016], and the Carlini & Wagner (C&W) attack [Carlini and Wagner, 2017]. In contrast, *black-box attacks* operate without such access and include *score-based attacks* [Andriushchenko et al., 2020, Yatsura et al., 2021], *decision-based attacks* [Chen et al., 2020, Li et al., 2022, Wang et al., 2022b], and *transfer-based attacks* [Dong et al., 2018, Lin et al., 2020, Wang et al., 2021a]. Transfer-based attacks are particularly appealing due to their query-free nature and strong cross-model performance. Our work focuses on enhancing this category. Existing methods to improve adversarial transferability can be grouped into three categories:

Gradient-based Strategies. These methods refine the optimization path to stabilize and generalize perturbations. Momentum-based attacks such as MI-FGSM [Dong et al., 2018] and NI-FGSM [Lin et al., 2020] enhance convergence stability, while PI-FGSM [Gao et al., 2020] and VMI-FGSM [Wang and He, 2021] introduce spatial and variance smoothing. EMI-FGSM [Wang et al., 2021b] averages gradients over multiple directions, and GIMI-FGSM [Wang et al., 2022a] initializes momentum from pre-converged gradients to boost transferability.

Input Transformation Techniques. These approaches modify the input space to produce more robust adversarial examples. DIM [Xie et al., 2019] applies random resizing and padding, TIM [Dong et al., 2019] uses gradient smoothing over translated inputs, and SIM [Lin et al., 2020] aggregates

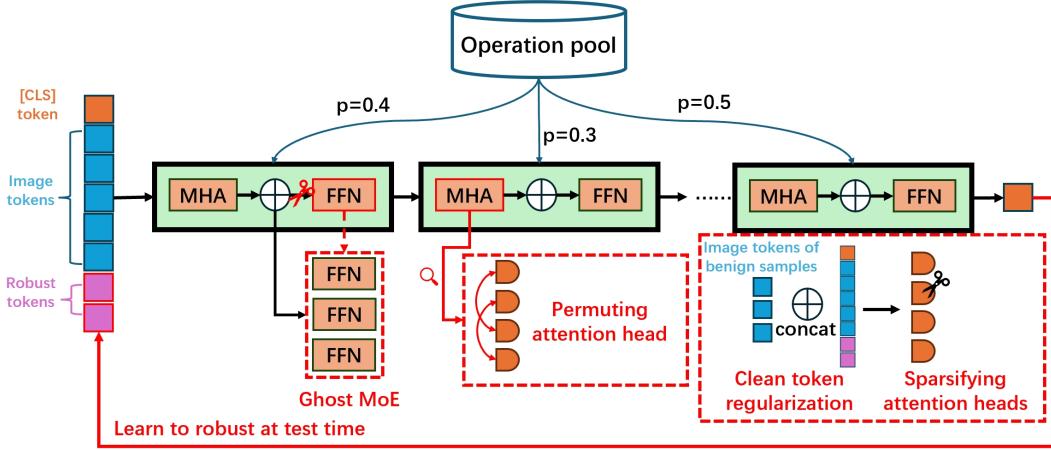


Figure 1: Overview of the proposed attack strategy integrated into Vision Transformers (ViTs). Our method adopts a policy gradient-based framework to selectively apply different operations from an operation pool to each transformer block. These operations include permuting attention heads, sparsifying them, clean token regularization, and activating auxiliary Ghost MoE branches to exploit the computational redundancy within ViTs. Robust tokens are learned at test time to further enhance adversarial transferability.

multi-scale gradients. Admix [Wang et al., 2021a] blends samples from different categories, while SSA [Long et al., 2022] perturbs images in the frequency domain.

Model-Centric Approaches. These methods diversify the surrogate model to reduce overfitting of adversarial perturbations. Liu et al. [2017] demonstrate that ensemble attacks increase transferability. Ghost networks [Li et al., 2020] simulate model variation using dropout, while stochastic weight averaging [Xiong et al., 2022] and high-learning-rate snapshots [Gubri et al., 2022] offer temporal diversity through model evolution.

3 From Computational Redundancy to Strong Adversarial Transferability

3.1 Preliminaries

Vision transformer. Given an input image $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$, the Vision Transformer first splits the image into a sequence of N patches, each of size $P \times P$. These patches are then flattened and projected into a latent embedding space using a learnable linear projection, *i.e.*, $\mathbf{z}^i = \mathbf{E} \cdot \text{Flatten}(\mathbf{x}_i)$, $i = 1, \dots, N$, where $\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}$ is the patch embedding matrix and D is the hidden dimension. A learnable class token $\mathbf{z}^{[\text{CLS}]}$ is prepended to the sequence, and positional embeddings \mathbf{p}_i are added, *i.e.*, $\mathbf{z} = [\mathbf{z}^{[\text{CLS}]}, \mathbf{z}^1 + \mathbf{p}_1, \dots, \mathbf{z}^N + \mathbf{p}_N]$. This token sequence is then passed through L Transformer encoder layers. Each layer consists of a multi-head self-attention (MHA) mechanism and a feed-forward network (FFN), both wrapped with residual connections and layer normalization. The update for the ℓ -th layer can be formulated as:

$$\mathbf{z}_\ell = \text{FFN}(\text{LN}(\text{MHA}(\text{LN}(\mathbf{z}_{\ell-1}))) + \mathbf{z}_{\ell-1}) + \text{MHA}(\text{LN}(\mathbf{z}_{\ell-1})), \quad (1)$$

where $\text{LN}(\cdot)$ denotes layer normalization. MHA and FFN are defined as:

$$\text{MHA}(\mathbf{z}) = \text{softmax} \left(\frac{\mathbf{z} \mathbf{W}_Q (\mathbf{z} \mathbf{W}_K)^\top}{\sqrt{d_k}} \right) \mathbf{z} \mathbf{W}_V, \quad \text{FFN}(\mathbf{z}) = \text{GELU}(\mathbf{z} \mathbf{W}_1 + \mathbf{b}_1) \mathbf{W}_2 + \mathbf{b}_2, \quad (2)$$

where we denote \mathbf{W}_Q , \mathbf{W}_K , and \mathbf{W}_V as projection matrices for queries, keys, and values, \mathbf{W}_1 , \mathbf{W}_2 as the weights of the two-layer feed-forward network, and \mathbf{b}_1 , \mathbf{b}_2 as the biases. Last, only the $\mathbf{z}^{[\text{CLS}]}$ will be used for classification by a linear projection layer.

Adversarial attacks. The iterative generation of adversarial examples can be formulated as:

$$x_{i+1}^{\text{adv}} = \text{clip}_\epsilon(x_i^{\text{adv}} + \alpha \cdot \text{sign}(\delta_i)), \quad (3)$$

where $\text{clip}_\epsilon(\cdot)$ ensures that the perturbation remains within an ℓ_∞ -norm ball of radius ϵ centered at the clean input x , and α is the step size. The update δ_i varies depending on the attack method.

3.2 Analysis of computational redundancy in ViTs

Computational redundancy in Vision Transformers (ViTs) exists at two main levels: data-level redundancy and model-level redundancy.

- *Data-level redundancy* has been extensively studied, particularly through token pruning techniques. Due to overlapping visual representations, many tokens carry similar information and can be selectively pruned at various stages of the ViT’s processing pipeline. This allows for a more focused use of computation without affecting task performance.
- *Model-level redundancy* arises from over-parameterization and certain training strategies, such as neuron dropout in FFN modules and layer dropout across entire transformer blocks. Additionally, research has shown that not all attention heads in the MHA module contribute equally to performance. These findings suggest that parts of the model can be selectively deactivated or repurposed while maintaining accuracy.

These forms of redundancy present an opportunity to reallocate computational effort toward improving adversarial transferability, without altering the overall computational workload. We provide a verification study on these redundancies in appendix A.

To better understand the relationship between computational redundancy and adversarial transferability in ViTs, we conduct a series of experiments to validate our hypothesis. We randomly sample 1,000 images from the ImageNet-1K dataset as our evaluation set. Eight models are used as both surrogate and victim models, including (1) four Convolutional Neural Networks (CNNs): ResNet-50 [He et al., 2016], VGG-16 [Simonyan and Zisserman, 2015], MobileNetV2 [Sandler et al., 2018], Inception-v3 [Szegedy et al., 2016] and (2) four Transformer-based models: ViT [Dosovitskiy et al., 2020], PiT [Heo et al., 2021], Visformer [Liu et al., 2021] and Swin Transformer [Liu et al., 2021]. Adversarial examples are generated using ViT as the surrogate model, and their transferability is evaluated on the remaining models. We benchmark the performance by MI-FGSM, and our proposed strategies are integrated into MI-FGSM. Following standard settings in prior work, set the maximum perturbation magnitude to $\epsilon = \frac{16}{255}$ with the momentum decay factor as 1 and use 10 attack steps for all methods.

3.3 Practical exploitation of redundancy for adversarial transferability

 On the role of attention sparsity in adversarial transferability. Prior studies have shown that Vision Transformers can maintain performance even when a subset of tokens is dropped at various layers. This implicitly alters the attention patterns and indicates that redundancy exists within the attention mechanism itself, which can potentially be repurposed for other objectives. These observations naturally raise the question: *can adversarial transferability be improved by actively manipulating attention sparsity?*

To exploit this, different from Ren et al. [2025a] which study the adversarial transferability by dropping attention blocks, we propose to diversify the attention maps by directly randomly dropping attention weights with a predefined ratio r . Specifically, we apply a binary mask \mathbf{M} to the attention logits before the softmax operation in eq. (2), formulated as:

$$\text{MHA}(\mathbf{z}) = \text{softmax} \left(\left(\frac{\mathbf{z} \mathbf{W}_Q (\mathbf{z} \mathbf{W}_K)^\top}{\sqrt{d_k}} \right) \odot \mathbf{M} \right) \mathbf{z} \mathbf{W}_V, \quad (4)$$

where $\mathbf{M} \in \{0, 1\}^{N \times N}$ is a randomly sampled binary mask with a drop ratio r , and \odot denotes element-wise multiplication.

⚖️ Results. As shown in fig. 2, we vary the sampling ratio r from 0.1 to 0.9 to investigate the transferability of adversarial samples generated on ViT across various target models. As the sampling ratio increases up to 0.4, the white-box attack success rate remains consistently high, revealing that ViTs exhibit a notable degree of redundancy. Beyond this point, however, the white-box attack success rate begins to decline. In contrast, black-box attack success rates follow a rise-then-fall pattern, with peak transferability occurring at different sampling ratios depending on the target model. These results suggest that *moderate sparsification allows adversarial attacks to exploit attention redundancy in ViTs, enhancing perturbation transferability by focusing on fewer but more transferable features*. However, excessive sparsification harms both white-box and black-box performance, revealing a trade-off between leveraging redundancy and preserving representational capacity. These findings align with those of Ren et al. [2025a], who drop attention blocks to study similar effects, whereas our approach directly controls sparsity at the element-wise level.

🔀 Permuting attention heads to capture more generalizable features. The multi-head attention mechanism enhances model capacity by allowing each attention head to focus on different subspaces of the input. However, in practice, many heads exhibit similar attention patterns, often attending to overlapping regions. This redundancy suggests the presence of invariant features that may be beneficial for adversarial transferability.

To better exploit this invariance, we propose to introduce randomness into the attention mechanism by permuting the attention weights among different heads. Specifically, during each attack iteration, we apply a random permutation to the attention heads (the group of QK layers). This encourages attention heads to explore diverse focus patterns while keeping the value projections unchanged. Rewriting the multi-head attention module in eq. (2), and incorporating the permutation operation, we obtain:

$$\text{MHA}(\mathbf{z}) = \text{Concat} \left(\text{softmax} \left(\pi \left(\frac{\mathbf{Q}_1 \mathbf{K}_1^\top}{\sqrt{d_k}}, \frac{\mathbf{Q}_2 \mathbf{K}_2^\top}{\sqrt{d_k}}, \dots, \frac{\mathbf{Q}_H \mathbf{K}_H^\top}{\sqrt{d_k}} \right) \right) [\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_H]^T \right), \quad (5)$$

where $\mathbf{Q}_h = \mathbf{z} \mathbf{W}_Q^h$, $\mathbf{K}_h = \mathbf{z} \mathbf{W}_K^h$, and $\mathbf{V}_h = \mathbf{z} \mathbf{W}_V^h$ denote the query, key, and value projections for the h -th head, respectively. $\pi(\cdot)$ represents a random permutation applied to the attention weights of each head, and is resampled at each iteration to promote diversity in attention patterns.

⚖️ Results. In our validation experiments, we study two factors, namely inter-layer and intra-layer randomness. Specifically, each layer has a probability p of being selected for attention head shuffling, and a ratio r of attention heads are randomly permuted within the selected layers. The results are shown in fig. 3. On the one hand, we observe that larger values of p and r generally lead to stronger adversarial transferability, while excessive disorder, such as $p = 0.5, r = 1.0$, can result in performance degradation. This experiment also validates our hypothesis that different attention heads learn similar visually robust regions of interest, which benefits the crafting of highly transferable adversarial examples. This suggests that *adversarial perturbations do not rely on specific heads, but rather exploit shared information across redundant attention heads to enable transferable attacks*.

🔀 Introducing clean tokens to regularize adversarial representations. Recall that only the $\mathbf{z}^{[\text{CLS}]}$ token is used for classification, while the remaining patch tokens are typically discarded after the final transformer layer. Prior work [Wang et al., 2023b] on attacking CNNs has shown that incorporating clean features into the forward pass can act as a strong regularization signal, significantly improving adversarial transferability. Inspired by this, we propose a strategy tailored to ViTs: at each transformer block, we append a small number of clean tokens from the benign samples alongside the adversarial ones. These clean tokens serve as a stabilizing anchor that helps regularize the evolving adversarial representations throughout the network, encouraging the model to preserve more transferable patterns.

⚖️ Results. We scale the sampling ratio r from 0.1 to 0.8, and present the results in fig. 4. As observed, incorporating clean tokens leads to a consistent improvement in attack success rate across most target models, particularly at moderate sampling ratios (e.g., $r = 0.3$ to 0.5). This confirms the effectiveness of clean token injection as a form of regularization that strengthens adversarial transferability. However, we also note that excessive inclusion of clean tokens (e.g., $r > 0.4$) results in diminishing returns or slight degradation in performance. This suggests a trade-off between regularization and distortion of the adversarial signal. Overall, the results highlight that a small proportion of clean context is sufficient to guide the adversarial optimization towards transferable perturbations.

❖ Diversifying the FFN via a ghost Mixture-of-Experts. Due to the use of dropout during training, neurons in the FFNs exhibit a degree of functional redundancy and robustness, enabling alternative inference paths without significant performance degradation. To introduce additional computational redundancy that can be exploited for enhancing adversarial transferability, we propose a ghost Mixture-of-Experts (MoE) design. In this framework, each expert is instantiated by applying a distinct dropout mask to the original FFN, effectively creating multiple sparse subnetworks that share parameters but activate different neuron subsets. The inference process under this ghost MoE design is defined as:

$$\text{MoE}(\mathbf{z}) = \frac{1}{q} \sum_{e=1}^q \text{FFN}_{\theta_e}(\mathbf{z}), \quad q \sim \mathcal{U}(1, E) \quad (6)$$

where E denotes the maximum number of experts, and θ_e represents the e -th randomly perturbed configuration of the original FFN weights induced by a randomly sampled dropout mask. All experts share the same underlying parameters but differ in their active neurons due to stochastic masking.

⚖️ Results. We scale the maximum number of experts E from 1 to 5 and vary the neuron drop rate from 0.1 to 0.5. The results in fig. 5 show that increasing E consistently improves performance, with the best results achieved at a drop rate of 0.3 for all configurations of the number of experts. Higher drop rates require more experts to offset the performance loss caused by representation collapse. This highlights the benefit of moderate sparsification and expert diversity in enhancing adversarial transferability. However, excessive dropout (e.g., 0.5) leads to degradation, indicating a trade-off between diversity and feature preservation.

❖ Robustifying the ViT before attacking for better transferability. As observed by Bose et al. [2020], given an input x with label y , the transferability of adversarial examples can be improved by attacking a robust model $f \in \mathcal{F}$. This can be formulated as the following adversarial game:

$$\min_{f \in \mathcal{F}} \max_{\delta} \mathcal{L}(f(x + \delta), y), \quad (7)$$

where δ denotes the adversarial perturbation and \mathcal{L} is the classification loss. Motivated by this, a natural idea is to adversarially train a surrogate ViT model to enhance its robustness (minimizing the inner loss), and then use it to generate perturbations (maximizing the outer loss) that transfer effectively to other models. However, adversarially training a full ViT is computationally expensive due to its large number of parameters.

To address this challenge, we introduce a test-time adversarial training strategy by introducing a small number of optimizable tokens to robustify the ViT, thereby improving its effectiveness in transferable attacks with significantly reduced cost.

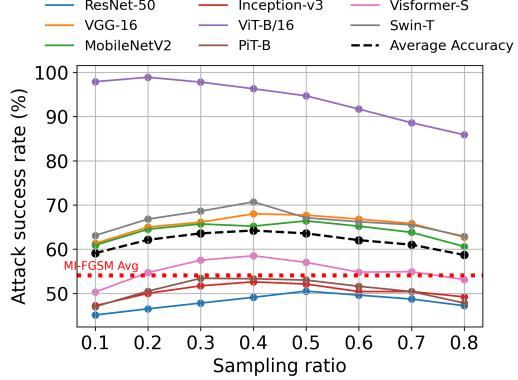


Figure 4: Study on the effectiveness of clean tokens in regularization.

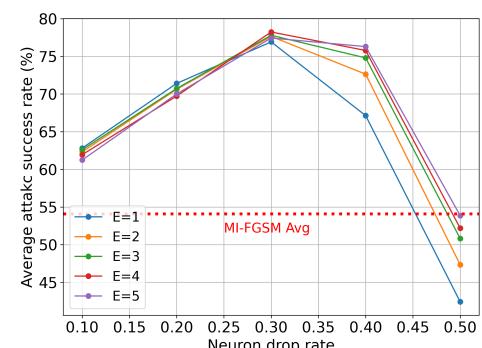


Figure 5: Study on the effectiveness of diversifying the FFN.

Table 1: Study on the number of robust tokens. The values in the table represent the average attack success rates of the models.

# Tokens	1	10	20	50	100	200	400
MI-FGSM				54.09			
+ Dynamic Robust Tokens	52.89	58.45	60.09	62.68	63.29	66.68	68.33
+ Global Robust Tokens	28.45	21.88	22.09	27.03	50.58	66.40	69.76

Concretely, after obtaining the patch embeddings of the input x , we append N_r robustification tokens initialized randomly, resulting in the embedding sequence, *i.e.*, $\mathbf{z} = [\mathbf{z}^{[\text{CLS}]}, \mathbf{z}^1 + \mathbf{p}_1, \dots, \mathbf{z}^N + \mathbf{p}_N, \mathbf{z}_r^1, \dots, \mathbf{z}_r^{N_r}]$, where $\mathbf{z}_r = \{\mathbf{z}_r^i\}_{i=1}^{N_r}$ are the trainable robustification tokens. In each iteration, we first generate an adversarial example of x and update \mathbf{z}_r through adversarial training. Once trained, \mathbf{z}_r is used to enhance the ViT’s robustness, and standard attacks are applied to generate transferable adversarial perturbations. The overall objective is:

$$\min_{\mathbf{z}_r} \max_{\delta} \mathcal{L}(f(x + \delta; \mathbf{z}_r), y). \quad (8)$$

However, the above instance-specific online test-time training remains computationally demanding. To further reduce the overhead, we propose an offline strategy that learns a universal set of robustification tokens \mathbf{z}_r on a small calibration dataset \mathcal{D} . This offline-learned \mathbf{z}_r can then be appended to any input’s token sequence, providing a generic robustness enhancement without per-instance optimization. By precomputing these tokens, we significantly reduce the cost of generating transferable adversarial examples while maintaining strong attack performance.

 Results. As shown in table 1, we conduct experiments to evaluate the impact of robust tokens on adversarial transferability. Both dynamic and global robust tokens can enhance the attack success rates by up to 14%. Specifically, using just 10 dynamic robust tokens already leads to an improvement of over 4% in attack success rates. As the number of tokens increases, a consistent improvement is observed, reaching up to 14.24%. In contrast, the offline-learned global robust tokens only begin to take effect with 200 tokens, but ultimately achieve better performance, surpassing the dynamic approach by 1.43% with 400 tokens. These results suggest that there exists a trade-off between attack efficiency, including computational overhead, memory consumption, and adversarial transferability, which should be carefully considered in real-world applications.

4 Learning to Redundantize for Improved Adversarial Transferability

As aforementioned analysis, the computational redundancy in attention and FFN modules can be amplified by different operations to boost adversarial transferability. To fully leverage these operations to enhance the adversarial transferability, we propose to *learn to redundantize* the ViT on fine-grained transformer blocks. Specifically, we train a stochastic transformation policy that dynamically selects operations to diversify intermediate representations, thereby improving transferability.

We randomly initialize a sampling matrix $\mathbf{M} \in \mathbb{R}^{L \times O}$, where L is the number of transformer blocks and O is the number of possible operations $\phi_o(\cdot)$. Each entry $\mathbf{M}_{l,o}$ denotes the probability of selecting operation ϕ_o at the l -th block. During each attack iteration, we sample $s < O$ operations per block based on \mathbf{M} and apply the selected operation set $\{\phi_1^l(\cdot), \dots, \phi_s^l(\cdot)\}$ to the surrogate ViT.

To optimize the distribution \mathbf{M} , we treat it as a categorical policy and update it via the REINFORCE estimator. Our objective is to maximize the expected adversarial loss:

$$\max_{\mathbf{M}} \mathbb{E}_{\phi \sim \mathbf{M}} [\mathcal{L}(f(x + \delta(\phi)), y)], \quad (9)$$

and the gradient for each entry $\mathbf{M}_{l,o}$ is computed as:

$$\nabla_{\mathbf{M}_{l,o}} \mathcal{L} = -\mathbb{E}_{\phi \sim \mathbf{M}} [\mathcal{L}(f(x + \delta(\phi)), y) \cdot \nabla_{\mathbf{M}_{l,o}} \log P(\phi^l = \phi_o \mid \mathbf{M}_l)]. \quad (10)$$

Since ϕ^l is drawn from a categorical distribution, we have $\nabla_{\mathbf{M}_{l,o}} \log P(\phi^l = \phi_o) = \frac{1}{\mathbf{M}_{l,o}} \cdot \mathbb{1}[\phi^l = \phi_o]$. Through this gradient-based update, the model learns to emphasize transformations that most improve adversarial transferability in an online and block-specific manner.

Table 2: Our method achieves state-of-the-art performance in attacking diverse models using ViT variants (ViT-B/16, PiT-B, Swin-T) as surrogates. ViT-specific attacks such as TGR, GNS, and FPR are excluded for Swin-T due to unavailable implementations.

Surrogate	Method	RN-50	VGG-16	MN-V2	Inc-v3	ViT-B/16	PiT-B	Vis-S	Swin-T	Avg.
ViT-B/16	MI-	39.4	58.4	57.9	42.2	97.4	40.4	42.0	55.0	54.1
	NI-	40.3	59.2	58.3	44.2	96.8	41.1	44.3	57.4	55.2
	EMI-	57.7	69.7	69.2	60.8	99.3	60.8	65.5	75.4	69.8
	VMI-	50.3	63.6	63.2	52.7	98.3	55.7	57.4	68.1	63.7
	PGN	68.9	75.7	76.3	72.4	97.6	75.6	75.5	80.0	77.8
	DTA	43.5	65.5	64.1	48.0	99.9	46.3	49.4	62.1	59.8
	TGR	53.4	72.5	72.4	55.5	97.7	59.2	61.8	74.5	68.4
	GNS	47.5	68.2	68.2	49.6	91.5	50.1	54.8	65.4	61.9
	FPR	52.3	66.6	68.4	52.4	97.5	56.2	60.7	71.0	65.6
	Ours	77.7	90.6	91.1	79.9	99.7	78.9	83.5	93.5	86.9
PiT-B	MI-	39.4	58.9	56.0	38.7	26.6	95.4	44.6	48.0	44.6
	NI-	39.7	60.4	58.4	37.3	26.0	94.2	45.8	49.4	45.3
	EMI-	58.2	71.6	72.2	57.4	46.0	98.7	66.1	69.6	63.0
	VMI-	54.2	66.7	66.9	55.1	47.2	95.6	61.5	63.2	59.2
	PGN	71.4	77.5	78.4	73.0	69.4	93.9	77.1	79.0	75.1
	DTA	48.6	67.8	67.5	46.4	34.7	99.9	54.9	58.4	54.0
	TGR	59.6	78.2	78.8	57.6	49.5	98.2	68.7	71.6	70.3
	GNS	58.9	78.8	77.8	58.8	46.1	98.6	68.9	71.3	69.9
	FPR	58.3	77.5	75.1	67.8	46.1	96.4	64.4	68.6	69.3
	Ours	86.0	91.7	93.6	81.0	74.1	99.7	91.7	93.4	87.4
Swin-T	MI-	28.8	48.1	52.8	28.8	21.3	27.0	34.1	95.7	42.1
	NI-	30.5	49.5	53.9	28.6	19.8	28.0	34.8	96.4	42.7
	EMI-	42.2	62.4	67.8	42.3	32.4	42.9	52.2	99.7	55.2
	VMI-	49.9	61.3	68.1	48.8	46.3	54.1	60.2	97.7	60.8
	PGN	78.5	86.8	87.8	81.8	77.7	83.4	86.9	99.3	85.3
	DTA	31.7	53.0	57.8	29.7	20.6	27.4	35.1	99.5	44.3
	Ours	85.2	90.1	91.5	89.6	85.4	88.3	92.4	98.2	88.9

5 Experiments

In our experiment, we fully evaluate the performance of our proposed attacks on different ViTs, including the vanilla ViT, Swin, and PiT. We selected various advanced adversarial attack methods as the baseline to compare, including MI- [Dong et al., 2018], NI- [Lin et al., 2020], EMI- [Wang and He, 2021], VMI-FGSM [Wang et al., 2021b], PGN [Ge et al., 2023], DTA [Yang et al., 2023], TGR [Zhang et al., 2023], GNS [Zhu et al., 2024b], and FPR [Ren et al., 2025b]. For our method, we integrate the learning strategy introduced in section 4 into the MI-FGSM. Following the settings in previous work [Dong et al., 2018, Zhou et al., 2018, Chen et al., 2023], on the ImageNet-1K dataset, we generate 1,000 adversarial examples by attacking the surrogate model, and evaluate the adversarial transferability by attacking other models.

ViT as the surrogate model, attack others. As shown in table 2, our proposed method significantly outperforms all baseline attack methods across all target models, demonstrating superior adversarial transferability. Specifically, our attack achieves an average fooling rate of 86.9%, substantially surpassing the second-best performing method, PGN, which yields an average fooling rate of 77.8%. This highlights the effectiveness of our approach in generating transferable adversarial examples that generalize well across both convolutional and transformer-based architectures.

Notably, the improvement is consistent across a diverse set of models, including both traditional CNNs, *e.g.*, ResNet-50, VGG-16, MobileNetV2, and recent ViT-based architectures *e.g.*, ViT-B/16, PiT-B, Swin-T, and Visformer-S. For instance, on ResNet-50 and VGG-16, our method achieves a fooling rate of 77.7% and 90.6%, respectively, indicating a remarkable gain of over 8 percentage points compared to PGN. Moreover, the attack remains highly effective on vision transformers, achieving near-perfect success rates, *e.g.*, 99.7% on ViT-B/16 and 93.5% on Swin-T, further emphasizing its robustness in the black-box transfer setting.

PiT as the surrogate model, attack others. We also evaluate the performance of our proposed attack when using PiT-B as the surrogate model. PiT differs from standard ViT by introducing pooling layers between stages, which reduces computational cost while maintaining competitive performance. Unlike in ViT, where robust tokens are appended to the end of the input sequence, tokens in PiT are arranged in a 2D square matrix. To simplify implementation and preserve the original spatial alignment of the token matrix at its top-left corner, we pad robust tokens only along the right and bottom edges of the matrix. These tokens are then optimized via gradient ascent, following our test-time objective defined in eq. (8).

As shown in table 2, our method again achieves state-of-the-art results across all target models. Compared with PGN, which already performs competitively, our method achieves a further improvement of over 12 percentage points in average fooling rate (87.4% vs. 75.1%). This margin is even more pronounced on lightweight convolutional networks, such as MobileNetV2 (93.6% v.s. 78.4%) and VGG-16 (91.7% v.s. 77.5%), demonstrating the effectiveness of our optimization approach under constrained surrogate architectures. The performance on transformer-based targets remains high as well, with 99.7% on PiT-B and 93.4% on Swin-T, indicating that the learned perturbations are not only strong but also generalizable across different transformer designs.

Swin as the Surrogate Model, Attacking Others. Unlike ViT and PiT, the Swin Transformer does not rely on a dedicated classification token. Instead, it generates predictions by aggregating outputs from all tokens in the final transformer stage. Moreover, the fixed input resolution and architectural constraints of Swin Transformer present challenges for integrating a flexible number of robust tokens at the beginning of the input. To overcome this, we adopt a modified strategy by inserting the randomly initialized token embeddings directly into the attention layer and optimizing them via gradient ascent following our test-time objective in eq. (8).

As shown in table 2, our method achieves an average fooling rate of **88.9%**, outperforming all baselines, including PGN (85.3%). It shows strong effectiveness across both convolutional and transformer-based targets, achieving 85.2% on ResNet-50, 90.1% on VGG-16, 85.4% on ViT-B/16, and 98.2% on Swin-T itself. These results underscore the generalizability of our attack strategy, even when launched from a structurally distinct and token-aggregative architecture like Swin.

Attack Vision-Language Large Models(VLLMs). As VLLMs are increasingly adopted in real-world applications, ensuring their robustness is of critical importance. In this work, we evaluate the effectiveness of our proposed adversarial attack method on several widely-used open-source VLLMs, i.e., LLaVA [Liu et al., 2023], Qwen [Bai et al., 2025], InternVL [Chen et al., 2024b] and DeepSeek [Lu et al., 2024]. Specifically, we employ the ViT model as the surrogate model to generate adversarial examples. These examples, along with a set of 1,000 candidate label names, are then input to the VLLMs, which are prompted to select the most appropriate label.

As shown in fig. 6, our method consistently outperforms all baseline approaches, with average improvements of 2.2% against the runner-up method PGN. Notably, on Qwen and InternVL—the two most robust VLLMs in the evaluation—our method surpasses the second-best method by 5.5% and 2.6%, respectively. These results highlight that our method consistently generates adversarial examples with high transferability across different VLLMs.

6 Conclusion

In this paper, we explore a novel perspective on adversarial attack generation by harnessing the computational redundancy inherent in Vision Transformers (ViTs). Through both theoretical insights and empirical analysis, we demonstrate that data-level and model-level redundancies, traditionally considered inefficient, can be effectively exploited to boost adversarial transferability. We propose a comprehensive framework that integrates multiple redundancy-driven techniques, including attention sparsity manipulation, attention head permutation, clean token regularization, ghost MoE diversification, and test-time adversarial training. Additionally, we introduce an online learning strategy that dynamically adapts redundant operations across transformer layers to further enhance transferability. SOTA performance shown in extensive experiments reveals the overlooked utility of redundancy in ViTs and open new avenues for designing stronger and more transferable adversarial attacks.

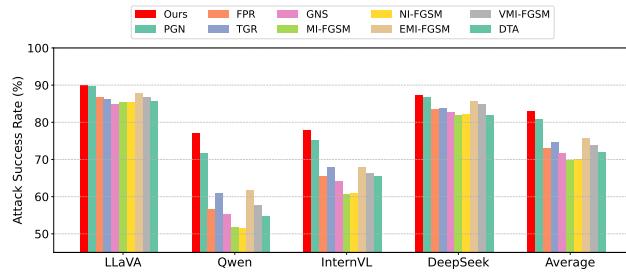


Figure 6: Attack Success Rate on LLaVA-v1.5-7B, Qwen 2.5-VL-7B-Instruct, InternVL 2.5-8B and DeepSeek-VL-7B-Chat. The adversarial examples are generated on ViT-B/16.

References

Angelika Ando, Spyros Gidaris, Andrei Bursuc, Gilles Puy, Alexandre Boulch, and Renaud Marlet. Rangevit: Towards vision transformers for 3d semantic segmentation in autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5240–5250, 2023.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square Attack: A Query-efficient Black-box Adversarial Attack via Random Search. In *Proceedings of the European Conference on Computer Vision*, pages 484–501, 2020.

Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S Nikolopoulos, Hans Vandierendonck, Deepu John, and Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution vision-language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 1773–1781, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token merging: Your vit but faster. *arXiv preprint arXiv:2210.09461*, 2022.

Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, and Will Hamilton. Adversarial example games. *Advances in neural information processing systems*, 33:8921–8934, 2020.

Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks. In *IEEE Symposium on Security and Privacy*, pages 39–57, 2017.

Huanran Chen, Yichi Zhang, Yinpeng Dong, and Jun Zhu. Rethinking model ensemble in transfer-based adversarial attacks. *arXiv preprint arXiv:2303.09105*, 2023.

Shaixiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for mitigating data conflicts in instruction finetuning mllms. *arXiv preprint arXiv:2401.16160*, 2024a.

Weilun Chen, Zhaoxiang Zhang, Xiaolin Hu, and Baoyuan Wu. Boosting Decision-based Black-box Adversarial Attacks with Random Sign Flip. In *Proceedings of the European Conference on Computer Vision*, pages 276–293, 2020.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24185–24198, 2024b.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting Adversarial Attacks with Momentum. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9185–9193, 2018.

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading Defenses to Transferable Adversarial Examples by Translation-invariant Attacks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4312–4321, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In *Proceedings of the International Conference on Learning Representations*, 2020.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter: A head-level kv cache compression method with integrated retrieval and reasoning. *arXiv preprint arXiv:2410.19258*, 2024.

Lianli Gao, Qilong Zhang, Jingkuan Song, Xianglong Liu, and Heng Tao Shen. Patch-wise Attack for Fooling Deep Neural Network. In *Proceedings of the European Conference on Computer Vision*, pages 307–322, 2020.

Zhijin Ge, Hongying Liu, Wang Xiaosen, Fanhua Shang, and Yuanyuan Liu. Boosting adversarial transferability by achieving flat local maxima. *Advances in Neural Information Processing Systems*, 36:70141–70161, 2023.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial Examples. In *Proceedings of the International Conference on Learning Representations*, 2015.

Martin Gubri, Maxime Cordy, Mike Papadakis, Yves Le Traon, and Koushik Sen. Lgv: Boosting Adversarial Example Transferability from Large Geometric Vicinity. In *Proceedings of the European Conference on Computer Vision*, pages 603–618, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 770–778, 2016.

Shuai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is needed. *arXiv preprint arXiv:2406.15786*, 2024.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spatial dimensions of vision transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11936–11945, 2021.

Yao Huang, Yinpeng Dong, Shouwei Ruan, Xiao Yang, Hang Su, and Xingxing Wei. Towards transferable targeted 3d adversarial attack in the physical world. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24512–24522, 2024.

Qingyun Jin, Xiaohui Song, Feng Zhou, and Zengchang Qin. Align attention heads before merging them: An effective way for converting mha to gqa. *arXiv preprint arXiv:2412.20677*, 2024.

Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen. Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples. In *Proceedings of the International Conference on Learning Representations*, 2023.

Xiu-Chuan Li, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Decision-based Adversarial Attack with Frequency Mixup. *IEEE Transactions on Information Forensics and Security*, 17:1038–1052, 2022.

Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, and Alan Yuille. Learning Transferable Adversarial Examples via Ghost Networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 11458–11465, 2020.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. *arXiv preprint arXiv:2401.15947*, 2024.

Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. In *Proceedings of the International Conference on Learning Representations*, 2020.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into Transferable Adversarial Examples and Black-box Attacks. In *Proceedings of the International Conference on Learning Representations*, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10012–10022, 2021.

Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian Zhang, and Jingkuan Song. Frequency Domain Model Augmentation for Adversarial Attack. In *Proceedings of the European Conference on Computer Vision*, pages 549–566, 2022.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-vl: Towards real-world vision-language understanding, 2024.

Amarachi B Mbakwe, Lyuyang Wang, Mehdi Moradi, and Ismini Lourentzou. Hierarchical vision transformers for disease progression detection in chest x-ray images. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 685–695. Springer, 2023.

Jie Min, Xinyi Song, Simin Zheng, Caleb B. King, Xinwei Deng, and Yili Hong. Applied statistics in the era of artificial intelligence: A review and vision, 2024. URL <https://arxiv.org/abs/2412.10331>.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A Simple and Accurate Method to Fool Deep Neural Networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2574–2582, 2016.

Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. *Advances in Neural Information Processing Systems*, 34:23296–23308, 2021.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do vision transformers see like convolutional neural networks? *Advances in neural information processing systems*, 34:12116–12128, 2021.

Yuchen Ren, Zhengyu Zhao, Chenhao Lin, Bo Yang, Lu Zhou, Zhe Liu, and Chao Shen. Improving adversarial transferability on vision transformers via forward propagation refinement. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2025a.

Yuchen Ren, Zhengyu Zhao, Chenhao Lin, Bo Yang, Lu Zhou, Zhe Liu, and Chao Shen. Improving adversarial transferability on vision transformers via forward propagation refinement. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025b.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4510–4520, 2018.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In *Proceedings of the International Conference on Learning Representations*, 2015.

Xinyi Song, Lina Lee, Kexin Xie, Xueying Liu, Xinwei Deng, and Yili Hong. Statllm: A dataset for evaluating the performance of large language models in statistical analysis, 2025a. URL <https://arxiv.org/abs/2502.17657>.

Xinyi Song, Kexin Xie, Lina Lee, Ruizhe Chen, Jared M. Clark, Hao He, Haoran He, Jie Min, Xinlei Zhang, Simin Zheng, Zhiyang Zhang, Xinwei Deng, and Yili Hong. Performance evaluation of large language models in statistical programming, 2025b. URL <https://arxiv.org/abs/2502.13117>.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing Properties of Neural Networks. *arXiv:1312.6199*, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2818–2826, 2016.

Jiafeng Wang, Zhaoyu Chen, Kaixun Jiang, Dingkang Yang, Lingyi Hong, Yan Wang, and Wenqiang Zhang. Boosting the Transferability of Adversarial Attacks with Global Momentum Initialization. *arXiv:2211.11236*, 2022a.

Xiaosen Wang and Kun He. Enhancing the Transferability of Adversarial Attacks through Variance Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1924–1933, 2021.

Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the Transferability of Adversarial Attacks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 16158–16167, 2021a.

Xiaosen Wang, Jiadong Lin, Han Hu, Jingdong Wang, and Kun He. Boosting Adversarial Transferability through Enhanced Momentum. In *The British Machine Vision Conference*, 2021b.

Xiaosen Wang, Zeliang Zhang, Kangheng Tong, Dihong Gong, Kun He, Zhifeng Li, and Wei Liu. Triangle Attack: A Query-efficient Decision-based Adversarial Attack. In *Proceedings of the European Conference on Computer Vision*, pages 156–174, 2022b.

Xiaosen Wang, Zeliang Zhang, and Jianping Zhang. Structure invariant transformation for better adversarial transferability. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4607–4619, 2023a.

Yilin Wang and Farzan Farnia. On the role of generalization in transferability of adversarial examples. In *Uncertainty in Artificial Intelligence*, pages 2259–2270. PMLR, 2023.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving Adversarial Robustness Requires Revisiting Misclassified Examples. In *Proceedings of the International Conference on Learning Representations*, 2020.

Zhibo Wang, Siyan Zheng, Mengkai Song, Qian Wang, Alireza Rahimpour, and Hairong Qi. adv-pattern: Physical-world attacks on deep person re-identification via adversarially transformable patterns. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8341–8350, 2019.

Zhiyuan Wang, Zeliang Zhang, Siyuan Liang, and Xiaosen Wang. Diversifying the high-level features for better adversarial transferability. *arXiv preprint arXiv:2304.10136*, 2023b.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L. Yuille. Improving Transferability of Adversarial Examples With Input Diversity. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2730–2739, 2019.

Pengfei Xie, Linyuan Wang, Ruoxi Qin, Kai Qiao, Shuhao Shi, Guoen Hu, and Bin Yan. Improving the Transferability of Adversarial Examples with New Iteration Framework and Input Dropout. *arXiv:2106.01617*, 2021.

Yifeng Xiong, Jiadong Lin, Min Zhang, John E Hopcroft, and Kun He. Stochastic variance reduced ensemble adversarial attack for boosting the adversarial transferability. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 14983–14992, 2022.

Xiangyuan Yang, Jie Lin, Hanlin Zhang, Xinyu Yang, and Peng Zhao. Improving the transferability of adversarial examples via direction tuning. *arXiv preprint arXiv:2303.15109*, 2023.

Maksym Yatsura, Jan Metzen, and Matthias Hein. Meta-learning the Search Distribution of Black-box Random Search Based Adversarial Attacks. In *Proceedings of the Advances in Neural Information Processing Systems*, pages 30181–30195, 2021.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive tokens for efficient vision transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10809–10818, 2022.

Jianping Zhang, Yizhan Huang, Weibin Wu, and Michael R Lyu. Transferable adversarial attacks on vision transformers with token gradient regularization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16415–16424, 2023.

Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xiangqi Huang, Xiang Gan, and Yong Yang. Transferable Adversarial Perturbations. In *Proceedings of the European Conference on Computer Vision*, pages 452–467, 2018.

Rongyi Zhu, Zeliang Zhang, Susan Liang, Zhuo Liu, and Chenliang Xu. Learning to transform dynamically for better adversarial transferability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24273–24283, 2024a.

Yao Zhu, Jiacheng Sun, and Zhenguo Li. Rethinking Adversarial Transferability from a Data Distribution Perspective. In *Proceedings of the International Conference on Learning Representations*, 2021.

Zhiyu Zhu, Xinyi Wang, Zhibo Jin, Jiayu Zhang, and Huaming Chen. Enhancing transferable adversarial attacks on vision transformers through gradient normalization scaling and high-frequency adaptation. In *The Twelfth International Conference on Learning Representations*, 2024b.

Wanyi Zhuang, Qi Chu, Zhentao Tan, Qiankun Liu, Haojie Yuan, Changtao Miao, Zixiang Luo, and Nenghai Yu. Uia-vit: Unsupervised inconsistency-aware method based on vision transformer for face forgery detection. In *European conference on computer vision*, pages 391–407. Springer, 2022.

A Computational Redundancy in ViTs

We investigate the computational redundancy in Vision Transformers (ViTs) from two complementary perspectives: *data-level* and *model-level* redundancy.

Data-level redundancy. We begin by evaluating the robustness of ViTs under partial observations of the input. Specifically, we conduct two types of perturbations: (1) randomly dropping a proportion of patch tokens before entering the transformer, and (2) randomly zeroing out elements in the attention weight matrices during self-attention computation. In both cases, the [CLS] token is retained. As shown in Figure 7, the top-1 accuracy on ImageNet remains remarkably stable even after removing up to 50% of tokens or attention weights. This indicates that ViTs possess strong resilience to incomplete or noisy visual evidence, likely due to the high degree of representational redundancy inherent in dense token embeddings and global attention.

Model-level redundancy. We further explore the internal redundancy of ViTs by ablating key components of the architecture at inference time. We consider: (1) randomly disabling a subset of attention heads in each layer, and (2) randomly dropping a proportion of hidden units in the intermediate layers of the feedforward network (FFN). As seen in Figure 7, both forms of perturbation lead to graceful degradation in performance. Even with 30–50% of heads or FFN neurons removed, the models still maintain high accuracy. This reinforces the observation that ViTs are significantly overparameterized, and many internal computations can be suppressed without compromising the final output.

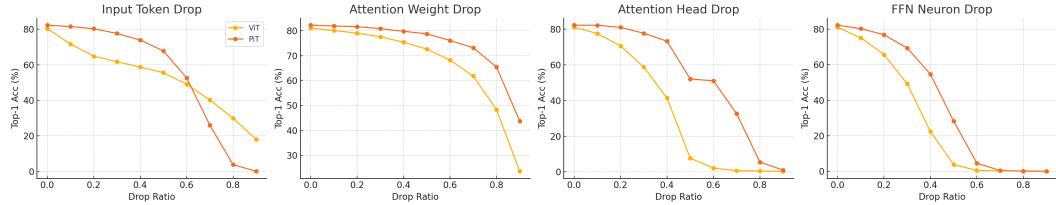


Figure 7: Top-1 accuracy of ViT under various types of token and structural drop perturbations. ViTs exhibit strong robustness to both input-level and architecture-level degradation, suggesting substantial redundancy in both data representation and model computation.

Related works on studying the computational redundancy of transformers and ViTs. There have been many works that systematically study and leverage the redundancy within the ViT’s architecture. For example, Bolya et al. [2022], Yin et al. [2022], Shang et al. [2024], Arif et al. [2025] find that dropping unimportant visual tokens or merging similar tokens will accelerate the inference of ViTs without harming the model performance. Jin et al. [2024], Fu et al. [2024], He et al. [2024] find that there exists similarity to some degree between different attention heads. Some works leverage the computational redundancy to enhance the performance of model, *e.g.*, the use of MoE [Lin et al., 2024, Chen et al., 2024a].

B Licenses for existing assets

In our paper, we use the ImageNet as the studied dataset, which is under the BSD 3-Clause License.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The claims are provided in the abstract.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Limitations are discussed in the conclusion part.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: No theory results are provided.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: Experimental details are provided in the experiment setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The code is publicly available on GitHub, with the link provided in the abstract.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: Details are provided in the setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[No\]](#)

Justification: We fix the random seed and verify the experiments on a large amount of data to minimize the randomness.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Details are provided in the setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: Confirmed.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss it in the introduction.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We discuss it in the appendix.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No assets are released.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Not involve LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.