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Abstract

We introduce a multi-modal diffusion model tailored for the bi-directional conditional gen-
eration of video and audio. We propose a joint contrastive training loss to improve the
synchronization between visual and auditory occurrences. We present experiments on mul-
tiple datasets to thoroughly evaluate the efficacy of our proposed model. The assessment
of generation quality and alignment performance is carried out from various angles, encom-
passing both objective and subjective metrics. Our findings demonstrate that the proposed
model outperforms the baseline in terms of quality and generation speed through introduc-
tion of our novel cross-modal easy fusion architectural block. Furthermore, the incorporation
of the contrastive loss results in improvements in audio-visual alignment, particularly in the
high-correlation video-to-audio generation task.

1 Introduction

Multi-media generation with diffusion models has attracted extensive attention recently. Following break-
throughs in image (Ramesh et al., 2022) and audio generation (Liu et al., 2023), multi-media generation like
video remains challenging due to increased data and content size and the added complexity of dealing with
both audio and visual components. Challenges for generating multi-modal content include 1) time variant
feature maps leading to computationally expensive architecture and 2) audio and video having to be coherent
and synchronized in terms of semantics and temporal alignment.

Existing research has predominantly concentrated on unidirectional cross-modal generation, such as pro-
ducing audio from video cues (Luo et al., 2023; Zhu et al., 2023) and vice versa (Jeong et al., 2023; Lee
et al., 2023). These approaches typically employ a conditional diffusion model to learn a conditional data
distribution p(x|y). Although these models have shown considerable promise, their unidirectional nature is
a limitation; a model trained for p(x|y) is not suited for tasks requiring p(y|x). However, Bayes’ theorem
elucidates that a joint distribution can be decomposed into p(x, y) = p(x|y)p(y) = p(y|x)p(x), suggesting
that the construction of a joint distribution inherently encompasses bi-directional conditional distributions.
With the advent of the iterative sampling procedure in diffusion models, classifier guidance (Dhariwal &
Nichol, 2021; Song et al., 2021b; Ho et al., 2022) has emerged as a viable approach for training an uncondi-
tional model capable of conditional generation. This approach has been extensively adopted in addressing
the inverse problems associated with diffusion models, such as image restoration (Kawar et al., 2022) and
text-driven generation (Ramesh et al., 2021).

MM-diffusion (Ruan et al., 2023) represents a groundbreaking foray into the simultaneous modeling of
video and audio content. The architecture employs a dual U-Net structure, interconnected through cross-
attention mechanisms (Vaswani et al., 2017), to handle both video and audio signals. Although MM-diffusion
demonstrates impressive results in terms of unconditional generation quality, it has two major limitations:
Firstly, it’s random-shift cross-attention mechanism is still complex and it relies on a super-resolution up-
scaling model to improve image quality. Secondly, the focus has been on unconditional generation, while we
focus on conditional generation and improve the evaluation methodology.

In this study, we introduce an improved multi-modal diffusion architecture with focus on bi-directional
conditional generation of video and audio. This model incorporates an optimized design that more effectively
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integrates video and audio data for conditional generation tasks. Furthermore, we leverage a novel joint
contrastive diffusion loss to improve alignment between video and audio pairs. Our experiments on two
different dataset employ both subjective and objective evaluation criteria. We achieve superior quality than
the baseline and stronger synchronization without quality loss.

The key contributions can be summarized as follows:

• We present an optimized version of the multi-modal latent-spectrogram diffusion model, featuring
a pretrained video autoencoder, a vocoder and an easy fusion mechanism. This design aims to
more effectively integrate cross-modality information between video and audio, while also enhancing
conditional sampling quality.

• Drawing inspiration from uni-modal contrastive learning, we propose a novel contrastive loss function
tailored for the joint model. This function is instrumental in enhancing the alignment accuracy for
the conditional generation of video-audio pairs.

• Our extensive experimental evaluations, performed on two distinct datasets, AIST++ (Li et al.,
2021) and EPIC-Sound (Huh et al., 2023), cover a variety of video-audio scenarios. We propose to
use metrics with improved correlation human perception and practical relevance compared to prior
work in the field, as we find several widely used metrics to have strong deficiencies. The assessments,
based on a range of subjective and objective metrics demonstrate that our method outperforms
the existing MM-diffusion (Ruan et al., 2023) as well as non-contrastive variants derived from our
ablation studies.

2 Related Work

Diffusion Models: Demonstrating remarkable efficacy in image generation tasks, probabilistic diffu-
sion models have emerged as a robust alternative to highly-optimized Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). The superior performance of diffusion models is attributed to their sta-
bility during the training process (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b; Song & Ermon,
2019; Kingma et al., 2021; Dhariwal & Nichol, 2021). These models typically employ a parameter-free
diffusion process that degrades the original signal, followed by a denoising process using a trained U-Net
like architecture to restore the signal. The optimization objective of the diffusion model can be derived
from either the variational inference or stochastic differential equation perspectives (Ho et al., 2020; Song
et al., 2021b). Beyond image generation, there has been increasing interest in leveraging diffusion models
for conditional generation tasks, including image compression, translation, and enhancement (Saharia et al.,
2022b; Preechakul et al., 2022; Yang & Mandt, 2022; Saharia et al., 2022a). Recent advancements in diffu-
sion models (Ramesh et al., 2022; Rombach et al., 2022) incorporate the diffusion-denoising process in the
latent space, aiming to enhance the scalability of diffusion models for high-resolution images. In light of
their impressive results in image-related tasks, it is a logical progression to extend the application of these
models to video and audio signals (Ho et al., 2022; Yang et al., 2022; Blattmann et al., 2023; Voleti et al.,
2022; Kong et al., 2020b; Zhang et al., 2023). To learn the joint distribution of a sequence, these models are
further refined to account for the temporal coherence of the signals.

Advancements in Video-Audio Cross-Modality Models: The domain of deep generative models has
recently experienced a significant uptick in interest, particularly in the area of cross-modal generation—an
application that is currently undergoing rapid evolution. Historically, the majority of research in this field
has been primarily focused on text-to-visual tasks, as evidenced by various studies (Li et al., 2019; Singer
et al., 2022; Gafni et al., 2022; Zhang et al., 2023). However, a discernible trend towards the more intricate
audio-video modality has emerged (Lee et al., 2022; Ge et al., 2022; Di et al., 2021), driven by the potential to
create more innovative and engaging content within this sphere. Concurrently, diffusion models have begun
to assume a pivotal role in related research. These models, with their ability to model complex distributions,
have found a natural application in the cross-modal generation task. For example, TPoS (Jeong et al.,
2023) and Soundini (Lee et al., 2023) are two recent models that demonstrate proficiency in audio-to-video
generation. Their success underscores the potential of diffusion models in this domain. Other models
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Figure 1: Overview of our proposed architecture and method. The detailed implementation of each U-Net
block is depicted in the upper right corner. Training of the diffusion model is performed on latent-spectrogram
space.

such as CDCD (Zhu et al., 2023) and Diff-Foley (Luo et al., 2023) specifically target the video-to-audio
problem. These models represent a growing interest in reverse modality tasks, expanding the boundaries of
what is possible in the realm of cross-modal generation. Notably, MM-diffusion (Ruan et al., 2023), which
emphasizes the simultaneous generation of both video and audio, is, to our knowledge, the first model capable
of managing both video-to-audio and audio-to-video generation. Despite its impressive performance in low-
resolution unconditional generation, its computational efficiency and conditional generation performance
warrant further investigation.

3 Method

In this section, we provide an overview of the diffusion model employed, followed by a description of the
intricacies of the architecture design of the proposed model. Finally, we introduce the joint contrastive loss
that enhances the alignment of video and audio components. An overview of our model is shown in Fig. 1.

3.1 Video-Audio Joint Diffusion Model

Diffusion models represent a category of hierarchical latent variable models used for data generation
through a series of iterative stochastic denoising steps (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021a; Song & Ermon, 2019). These models establish a joint distribution encompassing both the
original data, denoted as x0, and its perturbed variants x1:N . In this framework, there are two key processes
at play: the diffusion process, denoted as q, which progressively erases structural information, and its
counterpart, pθ, which regenerates the structure. These processes involve Markovian dynamics across a
sequence of transitional steps (Ho et al., 2020), symbolized as n and can be described using the following
equations:

q(xn|xn−1) = N (xn|
√

1 − βnxn−1, βnI);
pθ(xn−1|xn) = N (xn−1|µθ(xn, n), βnI).

(1)

The variance, denoted as βn ∈ (0, 1), typically adheres to a predetermined schedule, such as linear or cosine
scheduling (Nichol & Dhariwal, 2021). Notably, the diffusion process is parameter-free, while the denoising
process relies on a neural network parameterized by θ to predict the posterior mean.

Denoising diffusion models introduced a practical objective function for training the reverse process (Ho
et al., 2020; Salimans & Ho, 2022; Hang et al., 2023):

L(θ, x0) = En,ϵ

[
w(n)||x0 − xθ(xn(x0), n)||2

]
(2)
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where n follows a uniform distribution Unif{1, ..., N}, ϵ is sampled from a standard normal distribution,
xn(x0) = √

αnx0 +
√

1 − αnϵ, xθ(·) reconstruct x0 and αn =
∏n

i=1(1 − βi). This formula characterizes a
universal diffusion model loss with an adjustable weighting term, w(n), which connects various parameteri-
zations of the prediction model θ:

Eq.2 ≡ En,ϵ[||ϵ − ϵθ(xn(x0), n)||2], when w(n) = αn

1 − αn

or En,ϵ[||v − vθ(xn(x0), n)||2], when w(n) = 1
1 − αn

(3)

where ϵθ represents the most commonly used parameterization in previous works (Karras et al., 2022; Ho
et al., 2020; Ruan et al., 2023; Dhariwal & Nichol, 2021; Rombach et al., 2022; Song et al., 2021a), and vθ

(velocity) has also shown promising results with a more stable training process (Salimans & Ho, 2022). We
adopt the latter method to train our model.

Video-Audio Modeling Our approach to video-audio joint modeling follows a design analogous to the
uni-modal diffusion model. Here, the data point x comprises two modalities: the video signal v0..N and
audio signal a0..N . Consequently, the optimization objective resembles the form in Eq.3:

Ljdiff = En,ϵ[||v − vθ(vn, an, n)||2] (4)

where v represents the velocity parameterization for both video and audio, specifically v = [√αnϵv −√
1 − αnv0,

√
αnϵa −

√
1 − αna0]. This implies that the model vθ simultaneously predicts two outputs,

embodying a joint diffusion model that effectively manages both modalities.

Guided Conditional Generation An intriguing aspect of diffusion models is their capacity to enable
conditional generation through guidance from a classifier, even in the context of models trained without
conditioning (Dhariwal & Nichol, 2021). Typically, this guidance method involves an additional classifier,
pϕ(y|x), and utilizes the gradient term ∇xpϕ(y|x) to adjust the sampling direction during the denoising
process.

However, in our model, which considers both video and audio modalities, we can employ a more straight-
forward reconstruction guidance approach (Ho et al., 2022). For the video-to-audio generation case, we can
formalize conditional generation as follows (audio-to-video shares a similar formulation).

1. vn = √
αnv0 +

√
1 − αnϵv where ϵv,a ∼ N (0, I)

2. vv, va = vθ(vn, an, n)

3. v̂0 =
√

αnϵv − vv√
1 − αn

, ā0 =
√

αnϵa − va√
1 − αn

4. â0 = ā0 − λ
√

αn∇an
||v0 − v̂0||2︸ ︷︷ ︸

reconstruction guidance

5. an−1 = √
αn−1â0 +

√
1 − αn−1ϵa

(5)

where the gradient guidance is weighted by λ, and in the case of λ = 0, the generation scheme is equivalent
to the replacement method (Song et al., 2021b). Both ϵa and ϵv are drawn from an isotropic Gaussian
prior at the start of the iteration. Therefore, these equations depict an intermediate stage of the conditional
generation process using the DDIM sampling method (Song et al., 2021a). Although the speed of sampling
is not the primary focus of our model, alternative ODE or SDE solvers can be employed to expedite the
denoising sampling process (Lu et al., 2022; Karras et al., 2022).

3.2 Architecture

Like most previous diffusion models, our architectural framework adheres to the U-Net-based design
paradigm (Ho et al., 2020; 2022; Ruan et al., 2023; Rombach et al., 2022; Ronneberger et al., 2015). To
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Figure 2: Easy Fusion: For brevity, we use the symbol v to denote video tensors, where F (Frames) × Cv

(Channels) × H (Height) × W (Width) represents the shape of the tensor. Similarly, we use the symbol a
to represent audio tensors, with T (Timesteps) × Ca (Channels) denoting the shape of the audio tensor. v
and a tensors are concurrently processed and merged in the final step. NN interpolation represents nearest
neighbor interpolation.

effectively process signals originating from dual modalities with distinct dimensionalities, we employ a com-
bination of 2D+1D Residual blocks with Temporal-Spatial attentions for video inputs. For audio inputs, we
only use 1D Residual blocks with Temporal Attention. While the foundational structure draws some inspira-
tion from MM-diffusion (Ruan et al., 2023), we have implemented a more efficient feature fusion mechanism
tailored to conditional generation requirements.

Latent-Spectrogram Diffusion The training and evaluation of a multi-modal diffusion model can pose
significant computational challenges. To address this issue, we adopt a methodology akin to latent diffu-
sion (Rombach et al., 2022) for the purpose of reducing the feature dimensionality. In particular, we employ
a pre-trained autoencoder to compress video frames into a concise representation while minimizing the loss
of semantic information. This approach not only enables our model to accommodate higher video resolu-
tions within GPU memory limitations but also enhances its ability to capture temporal dependencies in
videos (Blattmann et al., 2023). For audio signals, we use a time-frequency representation, specifically the
Mel-spectrogram. This transformation yields a more compact representation with frequency channels that
closely align with human auditory perception.

Improved MelGAN Vocoder The conversion of the generated Mel spectrogram back to an audio wave-
form was accomplished by training a vocoder on the MelGAN (Kumar et al., 2019) architecture. We incor-
porated several improvements from Hifi-GAN (Kong et al., 2020a), such as transitioning to a least-squares
GAN loss and adjusting the loss weightings, with a particular emphasis on the Mel-spectrogram loss.

Easy Fusion and Implicit Cross-Attention Our model’s capacity to handle inputs and outputs from
two distinct modalities presents a considerable challenge in terms of aligning feature maps and merging
semantic information for cross-modal conditioning. While conventional cross-attention mechanisms (Vaswani
et al., 2017) offer an approach to bridging these signals, they can become computationally inefficient as the
length of time sequences increases. In contrast, MM-Diffusion (Ruan et al., 2023) resorts to randomly
truncating time windows to alleviate the computational load, yet this method inevitably results in a loss of
receptive field.

In response to this challenge, we introduce our computationally more efficient easy fusion method, illustrated
in Fig. 2. This design includes nearest neighbor, pooling, and repetition, to guarantee that both video and
audio tensors maintain consistent temporal/spatial shapes, enabling their concatenation along the channel
dimension. Another crucial consideration is that the most recent U-Net designs for diffusion models incorpo-
rate a self-attention module (Ruan et al., 2023; Rombach et al., 2022; Ho et al., 2022), offering the potential
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to alleviate computational overhead from cross-attention. Within the context of easy fusion, we assume that
the attention module can be described by:

CrossAttention(v, a) ∼= SelfAttention(EasyFusion(v, a)). (6)

We posit that the self-attention operating in this manner implicitly signifies the existence of an inherent
cross-attention mechanism, thereby rendering an additional attention block obsolete.

3.3 Joint Contrastive Training

To improve the synchronization of video and audio in our model, we draw inspiration from the principles
of contrastive learning (Oord et al., 2018). This approach has proven effective in maximizing the mu-
tual information I(a; v) for video-to-audio conditional generation (Zhu et al., 2023; Luo et al., 2023). The
CDCD (Zhu et al., 2023) method seamlessly integrates contrastive loss into the video-to-audio conditional
diffusion models, as given by

Lcont := EA log
[
1 + pθ(a0:N )

q(a0:N |v0) MEA′

[pθ(a¬
0:N |v0)

q(a¬
0:N )

]]
≡ Lcdiff(a0:N , v0) − η

∑
a¬

0 ∈A′

Lcdiff(a¬
0:N , v0)

(7)

where the set A includes the correct corresponding audio samples, while A′ contains the mismatched negative
samples of A. Lcdiff denotes the unimodal conditional diffusion loss, with v representing the conditioning
videos and M indicating the number of negative samples. To streamline the training process, we replace
M with a weighting term η, eliminating the need to generate M negative samples at each training step.
This means at each training step, we can sub-sample a batch of a¬ from the M samples for computational
efficiency.

The above formulation pertains to training a classifier-free conditional diffusion model. To adapt this ap-
proach to our joint diffusion loss, as described in Eq.4, we observe that we are training an implicit conditional
diffusion model pθ(an−1|an, vn). Eq.5 demonstrates that vn can be directly calculated during conditional
generation:

vn ∼ q(vn|v0) = √
αnv0 +

√
1 − αnϵv (8)

which implies that v1:N is fixed with a given ϵv and v0. Given this relationship between vn and v0, we have
following approximation pθ(an−1|an, v0) ≈ pθ(an−1|an, vn)q(vn|vN ), where vN denotes the sampled noise ϵv.
Thus, we can bridge Eq.7 to our jointly trained multi-modal diffusion model. For video-to-audio generation,
we can follow the same method above by swapping v and a. Finally, the resulting joint contrastive loss can
be represented by the following three terms:

Lcont = Ljdiff(a0:N , v0:N ) − ηEa¬
0 ∼A′Ljdiff(a¬

0:N , v0:N )
− ηEv¬

0 ∼V ′Ljdiff(a0:N , v¬
0:N )

(9)

where V ′ denotes the set of negative samples for a0 and η adjusts the weight of the contrastive term. It’s
important to note that, instead of iterating over all the V ′ and A′ samples, we choose to randomly draw a
subset from them per gradient descent step to reduce GPU memory consumption.

Creating Negative Samples In absence of a pre-existing high-quality dataset for contrastive learning,
we can generate negative samples through data augmentation. Specifically, we employ the following methods
to create V ′ and A′ in the context of paired positive data a, v. For brevity, we will only outline the generation
of negative audio samples a¬. The creation of negative videos v¬ follows a similar formulation:

• Random Temporal Shifts: We apply random temporal shifts to a, moving the signal backward or
forward by a random duration within some hundreds of milliseconds.
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Algorithm 1 Training the joint diffusion model with a contrastive loss. D denotes the training dataset.
repeat

v0, a0 ∼ D
Create V ′ and A′ with D and v0, a0
v¬

0 , a¬
0 ∼ V ′, A′ # draw multiple negative samples

n ∼ U(1, 2, .., N)
(ϵa, ϵ¬

a , ϵv, ϵ¬
v ) ∼ N (0, I)

(an, vn) = √
αn(a0, v0) +

√
1 − αn(ϵa, ϵv)

(a¬
n , v¬

n ) = √
αn(a¬

0 , v¬
0 ) +

√
1 − αn(ϵ¬

a , ϵ¬
v )

L = ||v − vθ(vn, an, n)||2
L¬ = ||v − vθ(v¬

n , an, n)||2 + ||v − vθ(vn, a¬
n , n)||2

Lcont = L − ηL¬

θ = θ − ε∇θLcont (learning rate: ε)
until converge

• Random Segmentation and Swapping: We randomly draw a separate audio segment, denoted as ad,
with the same length as a. Subsequently, we sample a random split point on both ad and a, allowing
us to construct a¬ as either concatenate(aleft

d , aright) or concatenate(aleft, aright
d ).

• Random Swapping: In this method, we randomly select a different audio segment, ad, of the same
length as a, and substitute a with ad.

The detailed training procedure is outlined in Algorithm 1.

4 Experiments

This section details the comprehensive evaluation of our Contrastive Multi-Modal Diffusion (CMMD) model,
which we conducted using both subjective and objective measures on two distinct datasets. Furthermore,
we demonstrate the speedup of our model resulting from its more efficient design. Additional details and
results will be available in supplemental material.

Datasets Our evaluation leverages two datasets, each offering unique challenges and scenarios within the
audio-video domain: AIST++ (Li et al., 2021) is derived from the AIST Dance Database (Tsuchida et al.,
2019). This dataset features street dance videos with accompanying music. It serves a dual purpose in our
evaluation, being used for both video-to-audio and audio-to-video tasks. The EPIC-Sound (Huh et al.,
2023) dataset consists of first-person view video recordings that capture a variety of kitchen activities, such
as cooking, that are characterized by a strong audio-visual correlation. Due to the significant motion and
camera movement in the videos, which complicates visual learning, we use EPIC-Sound exclusively for video-
to-audio evaluation. We deliberately exclude other widely-used datasets such as the landscape recordings
used in Ruan et al. (2023), as they exhibit very weak audio-visual synchronization, making evaluation
impossible. However, we also note that our model still works well in unconditional generation task on
landscape dataset and some qualitative examples are provided in Appendix A

Baselines The MM-Diffusion model (Ruan et al., 2023) stands as the only known baseline capable of
handling both video-to-audio and audio-to-video synthesis tasks. For our comparison, we employed the
official MM-Diffusion implementation, utilizing weights trained on the 1.6 s 10fps AIST++ dataset at a
resolution of 64 × 64. Additionally, we present results from nCMMD, a variant of our CMMD model that
does not incorporate contrastive loss.

Feature Extraction & Data Preprocessing We sampled 18 frames from 10 fps video sequences and
the corresponding 1.8s audio at 16kHz. Video frames underwent center cropping and resizing to a 128 × 128
resolution, or optionally downsampling to 64 × 64 for a comparison with the MM-Diffusion baseline. The
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Figure 3: Conditioning video (top) with ground truth spectrogram below. The two bottom spectrograms
show the generated audio with CMMD and nCMMD conditioned on the video. Sound events are highlighted
with a green circle for matches and a red circle for mismatches.
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Figure 4: Generated video with CMMD conditioned on the audio shown as spectrogram above.

audio samples represented in a Mel Spectrogram have 80 channels and 112 time steps. During test time, we
use twice the training sequence length, i.e., 36 video frames, if not specified otherwise.

As outlined in Section 3.2, we encoded videos using the Gaussian VAE from the Stable Diffusion project
(Rombach et al., 2022), which effectively reduces image resolution by a factor of eight in both width and
height. We utilized the pre-trained model weights1 without further fine-tuning.

For audio features, we transformed waveforms sampled at 16 kHz into 80-bin mel spectrograms using a
Short-Time Fourier Transform (STFT) with a 32 ms window and 50% overlap, yielding a time resolution

1https://huggingface.co/stabilityai/sd-vae-ft-mse
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Model time #params video dim latent dim ms/FE
(n)CMMD 1.8s 106M 128 × 128 16 × 16 136
(n)CMMD 1.8s 106M 512 × 512 64 × 64 299

MM-Diff (Ruan et al., 2023) 1.6s 133M 64 × 64 - 721

Table 1: Comparison of model size and computational complexity, where ms/FE represents milliseconds per
function evaluation; (n)CMMD operates on a downsampled latent representation.

of 16 ms. The MelGAN vocoder was improved by the loss weightings from Hifi-GAN (Kong et al., 2020a)
and notably improved by training on sequences of 4 s, as opposed to the originally suggested 0.5 s. This
adjustment aligns with the MelGAN architecture’s receptive field of approximately 1.6 s. The vocoder was
trained on the entire AudioSet (Gemmeke et al., 2017) to ensure a broad sound reconstruction capability.

Model Hyperparameters Our nCMMD model was trained over 700,000 gradient steps with a batch size
of 8 for versions excluding contrastive loss. For the full-fledged CMMD model, we began fine-tuning from
a checkpoint at 400,000 steps of the nCMMD with η = 5 × 10−5 suggested by CDCD (Zhu et al., 2023),
continuing until 700,000 steps with a reduced batch size of 2. The Adam optimizer was employed with an
initial learning rate of 1 × 10−4, which was annealed with a factor of 0.8 every 80, 000 steps until 2 × 10−5.
To create contrastive samples, we applied random shifts of 2 − 4 frames (equivalent to 200 − 400 ms) to
either video or audio. We employ a cosine variance schedule for αn, and utilize 200 DDIM sampling steps
for conditional generation.

4.1 Model Efficiency and Size

Before generative performance evaluation, we present a comparative evaluation of the inference efficiency
between different backbone U-Net models on RTX Titan, as summarized in Table 1. To ensure a fair
comparison, both models were executed on a 64 × 64 resolution space with a batch size of one. Notably,
for (n)CMMD, this 642-dimensional latent space is equivalent to operating on a 512 × 512 pixel space. For
MM-Diffusion, we activated gradient caching for the best performance. Our evaluation involved a series of
100 denoising steps applied to video-to-audio generation tasks, from which we derived the average runtime.
Additionally, the (n)CMMD model processed sequences of 1.8 s in length, compared to the 1.6 s sequences
used by MM-Diffusion. Despite handling longer sequences, our model demonstrated a significant performance
advantage, operating more than twice as fast and requiring 20% fewer parameters than the baseline model.

4.2 Metrics

Fréchet Distance Objective metrics to capture the perceived quality of video and audio are often difficult
to develop and have many imperfections. Especially in generative tasks, where new content is created and no
ground truth is available, such metrics are to be used with care. Popular approaches are statistical metrics,
which compare generated and reference distributions in some embedding space, such as the Fréchet Audio
Distance (FAD) (Kilgour et al., 2019) and Fréchet Video Distance (FVD) (Unterthiner et al., 2018). We
assess FVD in a pairwise manner (Yang et al., 2022; Voleti et al., 2022): calculating the score between the 5
times conditional generation results and the corresponding ground truth test sets. To measure audio quality,
we calculate FAD using CLAP embeddings (Elizalde et al., 2023), which have been shown recently in (Gui
et al., 2024) to represent acoustic quality much better than the widely used VGGish features. FAD scores
are calculated using the FAD toolkit (Gui et al., 2024) both individually for each generated sample and for
the entire set of samples generated by one model, using the test set as a reference. Additionally, we also
consider KVD (Bińkowski et al., 2018) as a complementary metric of visual quality for video contents.

Temporal Alignment For the dancing videos from AIST++, to evaluate the temporal alignment of
generated music, we use a beat tracking approach similarly as in (Ruan et al., 2023) to measure the rhythmic
synchronicity. The music beats are estimated using librosa (McFee et al., 2023) beat tracker and the hit rate
between beats of generated and ground truth audio is computed. We propose to use a tolerance of ±100 ms,
which corresponds approximately to the average perceivable audio-visual synchronicity thresholds found in
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Models CMMD nCMMD MM-Diff

FVD KVD FVD KVD FVD KVD

16 frames (64) 611 58 703 83 726 48
18 frames (64) 749 70 799 187 757 71
32 frames (64) 765 53 708 47 871 68
18 frames (128) 934 78 1036 136 N/A
36 frames (128) 973 49 882 49 N/A

Table 2: FVD and KVD results for different frame settings on AIST++ dataset. Numbers in parentheses
indicate the resolution of the evaluated frames.

gt

CMMD

nCMMD

MM-D
iff

0

500

1000

gt

CMMD

nCMMD

Figure 5: Per-sample (boxes) and per-set (×) Frechet audio distance (FAD) results for AIST++ (left) and
EPIC-Sound (right). FAD is calculated for 50 output samples of each model using CLAP embeddings with
the respective test set as reference. Boxes show the per-sample FAD distribution of these 50 samples, with
red markers indicating outliers beyond the whiskers which extend to 1.5 times the interquartile range. Note
that the per-set FAD scores for ground truth (gt) are larger than zero as only the small subset of the test
set used in the evaluation is compared to the whole test set used as reference. Comparing FAD scores for
identical set sizes avoids sample size bias (Gui et al., 2024).

literature (Younkin & Corriveau, 2008). For reference, we also use a larger tolerance of ±500 ms, to show
how significantly this can improve accuracy. Since the beat tracking method is applicable only to musical
content, we reserve the alignment assessment for EPIC-Sound to subjective evaluation.

Subjective Evaluation We conducted a user study with 14 participants to evaluate the audio-visual
quality and synchronicity. Participants were recruited lab internally on voluntary basis without restrictions
except unimpaired vision and hearing. No further demographical information was collected for privacy
reasons. For each example, we asked two or three questions about the quality of the generated content and
the temporal alignment of video and audio events on MOS scales from 1 (worst) to 5 (best). Specifically,
for generated video, we asked to rate the video quality and the temporal alignment. For audio generation
from AIST++ dance videos, we asked to rate separately the acoustic and musical quality, and the temporal
synchronization of the dancer to the music. For the EPIC-Sound cases, we asked to rate the acoustic
and semantic quality, and the temporal synchronization of events. Semantic quality refers to whether the
type of sounds heard make sense given the scene seen in the video without paying attention to temporal
synchronization.

4.3 Objective Evaluation Results

The results for Fréchet Video Distance (FVD) and Kernel Video Distance (KVD) comparing the proposed
model and baseline models are detailed in Table 2. The findings reveal that (n)CMMD consistently outper-
forms MM-Diffusion across a variety of resolutions and sequence lengths. Specifically, CMMD demonstrates
a marginal superiority over nCMMD in shorter sequences. Conversely, nCMMD exhibits slightly better qual-
ity in longer sequences, aligning with our subjective assessments. MM-Diffusion, however, performs better

10
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CMMD nCMMD MM-Diff (Ruan et al., 2023)
Hitrate (500 ms) 89% 91% 89%
Hitrate (100 ms) 45% 44% 41%

Table 3: Comparison of Beat Tracking Accuracy (AIST++). The values in parentheses indicate the allowable
margin of error for beat timing, with a smaller window representing a stricter standard. Higher hit rates
within lower tolerance thresholds signify superior temporal alignment.
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Figure 6: Subjective results from user study for EPIC-Sound video conditioned audio generation (left),
AIST++ dance video conditioned audio generation (center), and audio conditioned video generation (right).

only in terms of KVD for low-resolution, short video sequences, which is the specific condition under which
this model was trained.

Fig. 5 illustrates the comparison of audio quality in a video-to-audio generation scenario. Our CMMD
model surpasses the baseline in AIST++ music audio quality, in terms of both per-sample FAD (Gui et al.,
2024) and batch FAD metrics. However, when compared to nCMMD, the improvement is modest, and this
observation holds true for both the AIST++ and EPIC-Sound datasets.

Table 3 presents the beat alignment results for the AIST++ audios. The table compares three different
methods: CMMD, nCMMD, and MM-Diffusion. In terms of beat tracking accuracy within a 100 ms toler-
ance, CMMD performs the best, showing a improvement of 1-4%. For a more lenient tolerance of 500 ms,
nCMMD demonstrates slightly higher accuracy with a hit rate of 91%. However, the difference in hit rates
between nCMMD and CMMD is not substantial. It’s important to note that a larger tolerance window
allows for more flexibility in matching the beat timing, which may result in a higher hit rate but potentially
less precise alignment with the reference beats.

In the generation processes of audios for EPIC-Sound and videos for AIST++, our primary reliance is
on subjective evaluation, given the absence of robust metrics. To supplement this assessment, we present
EPIC-Sound audio generation visualization provided in Fig. 3, where we can observe that CMMD has better
alignment with the ground truth than nCMMD in terms of temporal sound event alignment. Additionally,
Fig. 4 presents a qualitative sample showcasing audio-to-video generation in the context of AIST++.

4.4 Subjective Evaluation Results

In the subjective evaluation we used 85 videos. We used 5 different conditions (audio or video as conditioning),
two different sample generations per CMMD and nCMMD model, one sample each per ground truth and
baseline. For AIST++ we evaluated audio to video and video to audio generation. For EPIC-Sound, we
evaluated only video to audio and there is no MM-Diffusion baseline available.

The Mean Opinion Scores (MOS) are shown as boxplots in Fig. 6. We can see that the raters reliably
detected the ground truth samples giving it the highest score, though often the scale was not used fully.
For the generated dance visuals from AIST++ audio (Fig. 6 top right), we can observe a significantly
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higher rating of our proposed models over MM-Diffusion baseline. The nCMMD model has a slightly higher
video quality, but the difference is at the border of significance. The CMMD model shows a trending but
non-significant better temporal alignment than nCMMD. We tested statistical significance with Wilcoxon
signed-rank test with p-value < 0.05.

For audio generation based on AIST++ dance video conditions (Fig. 6 top left), we can not observe statisti-
cally significant differences between the models and the baseline, although also here a slight but insignificant
trend of better quality for the non-contrastive loss is observed. The proposed models have a lower quality
spread than the baseline.

For audio generation from EPIC-Sound videos (Fig. 6 bottom left), CMMD significantly outperforms
nCMMD in terms of semantic quality and temporal alignment due to the use of the contrastive loss.

4.5 Discussion

The results on the EPIC-Sound and AIST++ audio to video show a very clear benefit of the contrastive loss to
enforce stronger temporal synchronization and semantic alignment. Most subjective results in Fig. 6indicate
that it may be possible that the model trades off a small amount of quality for better synchronization in
some cases. On the other hand, FVD suggests slightly better performance for CMMD. Note that those
trends are statistically not significant, so we can conclude a comparable audio and video quality of CMMD
and nCMMD, while CMMD significantly improves temporal synchronization. The temporal synchronization
results are generally less conclusive for the AIST++ dance data, possibly due to the fact that the alignment
of human dancers with music may be harder to judge for several reasons: 1) the dancers may vary in tempo
or their internal rhythm may be judged in ambiguous ways. 2) being off by one or two full beats may appear
as being in sync again.

5 Conclusion

The multi-modal diffusion model we presented marks an advancement in the field of bi-directional conditional
generation of video and audio. Introduction of a more effective and efficient design and the joint contrastive
loss were shown to be beneficial improvements. Our experiments across various datasets validate our model’s
superior performance over existing baselines. The model not only excels in the quality of generation but also
shows advantage in alignment performance, especially in scenarios demanding tight audio-visual correlation.
This research paves the way for future innovations in video and audio conditional generation. Moving
forward, the model can serve as a foundational architecture for subsequent developments aimed at further
refining the quality and alignment of generated video-audio contents. Our results show minor indication that
there is an inherent trade-off between generation quality and temporal alignment, which can be addressed
in future work to analyze further and potentially improve.

Boarder Impact Our model’s capabilities also introduce several risks that must be carefully considered.
One of the primary concerns is the potential for misuse in creating deepfakes, which are increasingly re-
alistic and difficult to detect. These can be used to spread misinformation, manipulate public opinion, or
impersonate individuals, thereby undermining trust in media and harming reputations.

6 Limitation
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A Additional Landscape examples

Figure 7: Caption

B Additional Details On Model Structure

Table 4 shows details of the diffusion U-net architecture and training details.

Configurable Components Diffusion U-Net

Base channel 128
Channel scale multiply 1,2,3,4
Video downsample scale H/2, W/2
Audio downsample scale T/2
Attention dimension 64
Attention heads Channel // Attention Dim

Diffusion noise schedule cosine
Diffusion steps 1000 for training
Prediction target v
Sample method DDIM
Sample step 200
η 5

Table 4: Supplemental Diffusion U-Net configuration details.
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B.1 MelGAN vocoder

We used the official MelGAN architecture2 (Kumar et al., 2019) with only modifications in training procedure
and loss weightings. We found that the proposed architecture form HiFi-GAN (Kong et al., 2020a) did not
work better, but the loss weights provide a significant improvement. We noticed that the receptive field of
the convolutional net is around 1.6 s, but training sequences are proposed to 8192 samples, which is even less
than 0.5 s at the used sampling rate of 22.5 kHz. We noticed a large performance improvement by simply
increasing our training sequence lengths to 4 s.

We trained on full Audioset data (∼5000 h) in 16 kHz and augmentation by random biquad filtering to
ensure generalization to arbitrary sounds.

Configurable Components MelGAN

Mel bins 80
Sampling rate 16 kHz
Trainable parameters 4.27 M

Training sequence length 65536 samples
Feature loss weight 2
Mel spectrum loss weight 10

Table 5: MelGAN Configuration

C Subjective Evaluation Details

In this section, we show the set of questions employed in our subjective evaluation. Participants are tasked
with assigning a numerical rating on a scale ranging from 1(worst) to 5(best) for each question.

AIST++ video-to-audio generation.

1. Please rate the acoustic quality of the music, independent of the visual aspect.
• Low quality might be pure noise, heavily distorted sound or non-musical audio.
• Penalize any acoustic degradations like distortions, thin or muffled sound or other artifacts.
• High quality is a good sounding dance music without severe artifacts.

2. Please rate the musical quality. Consider the following attributes in your judgement:
• Does the music have a fluid rhythm or does the beat change randomly?
• Does the music have a melodical theme or does it not sound appealing?

3. Please rate the temporal synchronization between dancer and the music.
• Do the movements of the dancer seem to fit and be in sync with the music?

AIST++ audio-to-video generation.

1. Please rate the quality of the video, independent of the sound.
• Very low quality might be very blurry or unrecognizable content.
• Penalize artifacts like strange appearing body parts, separating bodies, physically impossible

movements, etc.
• High quality is a naturally looking video of a dancer. Required to answer. Single choice.

2. Please rate the temporal synchronization between dancer and the music: Do the movements of
the dancer seem to fit and be in sync with the music?

2https://github.com/descriptinc/melgan-neurips
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EPIC-Sound video-to-audio generation.

1. Please rate the quality of the sound, independent of the visual aspect.

• Low quality might be pure noise or heavily distorted sound.
• Penalize any acoustic degradations like distortions, thin or muffled sound or other artifacts.
• High quality is a naturally and realistic sounding recording with a POV camera.

2. Please rate the semantic relevance of audio, independent of the visual temporal alignment:

• Could the audio you hear appear in the environment you see (something out of the field of view
could make this sound)?

• Penalize sounds that would not appear in this kitchen scene.
• Give a high rating, if the sounds you hear could appear in this kitchen scene, regardless of the

video.

3. Please rate the temporal correlation between the audio and video events.

• Do the audio events you hear occur at the same time as in the video?

D Additional Qualitative Examples

We provide video files in .mp4 format as supplementary qualitative samples. Please utilize any video player
to evaluate the attached videos.
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