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ABSTRACT

Healthcare insurance fraud detection presents unique machine learning chal-
lenges: labeled data are scarce due to delayed verification processes, and fraud-
ulent behaviors evolve rapidly, often manifesting in complex, graph-structured
interactions. Existing methods struggle in such settings. Pretraining routines
typically overlook structural anomalies under limited supervision, while online
models often fail to adapt to changing fraud patterns without labeled updates. To
address these issues, we propose the Continual Fiedler Vector Graph model (Con-
FVG), a fraud detection framework designed for label-scarce and non-stationary
environments. The framework comprises two key components. To mitigate la-
bel scarcity, we develop a Fiedler Vector-guided graph autoencoder that lever-
ages spectral graph properties to learn structure-aware node representations. The
Fiedler Vector, derived from the second smallest eigenvalue of the graph Lapla-
cian, captures global topological signals such as community boundaries and con-
nectivity bottlenecks, which are patterns frequently associated with collusive
fraud. This enables the model to identify structurally anomalous nodes without
relying on labels. To handle evolving graph streams, we propose a Subgraph At-
tention Fusion (SAF) module that constructs neighborhood subgraphs and applies
attention-based reweighting to emphasize emerging high-risk structures. This de-
sign allows the model to adapt to new fraud patterns in real time. A Mean Teacher
mechanism further stabilizes online updates and prevents forgetting of previously
acquired knowledge. Experiments on real-world medical fraud datasets demon-
strate that the Continual Fiedler Vector Graph model outperforms state-of-the-art
baselines in both low-label and distribution-shift scenarios, offering a scalable
and structure-sensitive solution for real-time fraud detection. Codes are available
at https://github.com/yhzhang1309/ConFVG.

1 INTRODUCTION

Healthcare insurance fraud has become a critical issue in social healthcare systems, with increasingly
sophisticated and large-scale fraudulent schemes causing substantial financial losses. According to
the 2024 Medicaid Fraud Control Units Annual Report (U.S. Department of Health and Human Ser-
vices, Office of Inspector General, 2024), Federal Medicare fraud in the U.S. reached approximately
$61 billion, accounting for around 7% of total federal healthcare spending. These fraudulent claims
not only undermine patients’ access to rightful medical services but also strain healthcare budgets
and obstruct the path toward universal healthcare. This pressing societal issue calls for more intelli-
gent and scalable fraud detection solutions.

Machine learning has shown promise in identifying fraud patterns by leveraging the complex rela-
tionships between entities such as patients, providers, and claims. In particular, graph-based meth-
ods have demonstrated strong performance in capturing structural dependencies within healthcare
data. For instance, Dou et al. (2020) introduced a graph neural network (GNN) model with selective
neighbor aggregation for offline fraud detection. Building on this, Sadreddin and Sadaoui (2022)

∗Corresponding Author.

1

https://github.com/yhzhang1309/ConFVG


Published as a conference paper at ICLR 2026

Figure 1: The visualization of fraud pattern evolution in the medical insurance fraud dataset. We use
t-SNE to visualize the node distribution of features. The red node denotes fraudulent nodes, whereas
blue denotes normal nodes

developed an adaptive learning method that combines transfer and incremental learning. In the on-
line setting, Zhang et al. (2024) applied contrastive learning with parameter-level continual updates
to mitigate knowledge forgetting.

Despite these advancements, existing methods remain limited in real-world fraud detection scenar-
ios due to two major challenges: 1) Label scarcity during model pretraining. In practice, labeled
fraud cases are rare due to the high cost and time required for manual verification (Palacio, 2019),
especially in health care systems in some cases where only 0.062% are identified as fraud (Bauder
et al., 2018). Most prior methods assume access to fully labeled data during pretraining or rely on
supervised objectives, which suffer a decline in performance when labeled supervision is limited.
Although some self-supervised approaches employ the autoencoder to catch inner semantic repre-
sentations(Hou et al., 2022), they often fail to emphasize structurally meaningful fraud patterns such
as collusive groups or community anomalies.

2) Lack of adaptability in non-stationary graph streams. Fraud patterns are not static as shown in
Figure 1. They evolve over time, often emerging in new relational structures. Traditional static
fraud detection cannot catch the progressive evolution of fraudulent behaviors, causing performance
degradation over time. Meanwhile, labeled data are rarely available in online testing (Pereira and
Silveira, 2019), which makes supervised updates impractical. Models based on static presentations
or ground-truth label update strategies struggle to detect new fraudulent patterns.

To address these challenges, we propose the Continual Fiedler Vector Graph model (ConFVG), a
fraud detection model designed for label-scarce and non-stationary environments. ConFVG (shown
in Figure 2) consists of two core modules. 1) To handle label scarcity, we develop a Fiedler Vector-
guided graph autoencoder that incorporates spectral information from the second smallest eigen-
vector of the graph Laplacian (Fiedler, 1973). This vector captures global structural properties, such
as community boundaries and connectivity bottlenecks, which are often associated with collusive
fraud. By integrating these signals into the autoencoder, the model learns structure-aware node
representations that highlight fraud-relevant patterns without requiring labeled data. 2) To adapt to
evolving fraud behaviors, we introduce a Subgraph Attention Fusion (SAF) module that dynamically
augments and reweights local subgraphs based on attention. This enables the model to prioritize
emerging high-risk structures, such as unusually dense clusters or temporally synchronized activity.
A Mean Teacher architecture is used to stabilize updates and prevent catastrophic forgetting during
online training. Experiments on real-world datasets, including but not limited to insurance fraud,
demonstrate that the ConFVG consistently outperforms state-of-the-art baselines in both low-label
and distribution-shift scenarios, providing a scalable and structure-aware solution for real-time fraud
detection and beyond.

Our main contributions are as follows:

• We propose the Continual Fiedler Vector Graph model (ConFVG) for fraud detection under label-
scarce and non-stationary conditions, integrating spectral self-supervision with adaptive online
learning.

• We develop a Fiedler Vector-guided graph autoencoder that leverages global topological signals
to learn structure-aware representations in the absence of labels.

• We introduce a Subgraph Attention Fusion (SAF) module for unsupervised online learning, en-
abling dynamic risk representation and continual adaptation to evolving fraud patterns.

2



Published as a conference paper at ICLR 2026

2 RELATED WORK

Fraud Detection. Fraud detection has become an active area of research across various domains,
including credit card transactions, insurance claims, and online payments (Cheng et al., 2025). Early
systems were largely rule-based or built upon conventional machine learning techniques (Chan et al.,
2002; Srivastava et al., 2008; Maes et al., 2002), which proved insufficient for capturing the complex
and evolving nature of modern fraud patterns. More recently, deep learning approaches, particularly
Graph Neural Networks (GNNs), Long Short-Term Memory (LSTM) networks, and Large Lan-
guage Models (LLMs), have been widely adopted for fraud detection. Among them, GNNs have
emerged as the most effective for modeling the relational structure inherent in fraud data. GNN-
based fraud detection methods can be broadly categorized into three scenarios: fully supervised
GNNs, semi-supervised GNNs, and online GNNs. Fully supervised models assume access to large-
scale labeled datasets, allowing for comprehensive pretraining. For example, CARE-GNN (Dou
et al., 2020) and PC-GNN (Liu et al., 2021) use label-aware node selection strategies to improve
fraud detection performance. Semi-supervised GNNs operate under the more realistic assumption
of label scarcity. They exploit graph structure through self-supervision and pseudo-labeling. For in-
stance, SemiGNN (Wang et al., 2019) incorporates hierarchical attention, and GTAN (Xiang et al.,
2023) uses gated temporal attention to improve fraud representation learning. Online GNNs are
designed for dynamic environments where fraud patterns evolve over time, requiring continual up-
dates post-pretraining. POCL (Zhang et al., 2024), for example, adjusts parameters based on their
contribution to previous tasks.

Although prior studies have explored either label-efficient pretraining or adaptive fraud detection
in evolving environments, these directions have largely been treated in isolation. In real-world
medical insurance streams, however, extreme label scarcity and shifting fraud patterns often occur
simultaneously. What remains missing is a unified approach that can both generalize from limited
supervision and adapt continuously to unseen behaviors. Our work addresses this gap by jointly
tackling the structural complexity of fraud graphs and the temporal dynamics of fraud evolution,
providing a more realistic and robust solution for fraud detection under deployment constraints.

Online Learning. Online learning addresses the challenge of training models on continuously ar-
riving data while mitigating catastrophic forgetting (Hoi et al., 2021). Existing approaches can be
broadly classified into three categories: parameter regularization, data rehearsal, and dynamic archi-
tecture. Parameter regularization methods constrain model updates to preserve previously learned
knowledge. Techniques such as EWC (Li et al., 2020) and EVCL (Batra and Clark, 2024) ap-
ply regularization penalties to sensitive parameters, balancing plasticity and stability across tasks.
Data rehearsal strategies, including iCaRL (Rebuffi et al., 2017) and GEM (Lopez-Paz and Ran-
zato, 2017), maintain a buffer of past samples or prototypes to reduce forgetting. Dynamic network
approaches adapt the model structure itself to accommodate new knowledge. Notable examples in-
clude DEN (Yoon et al., 2017) and BC-DEN (Yang et al., 2022), which expand network capacity
based on task complexity. Several methods have applied these ideas to GNNs. For instance, Contin-
ualGNN (Wang et al., 2020) and SGNN-GR (Wang et al., 2022b) combine parameter regularization
with data replay for online fraud detection. However, most of these approaches assume access to
ground-truth labels during online updates, which is rarely the case in real-world fraud detection
scenarios. To address this, we adopt a Mean Teacher framework in combination with our SAF mod-
ule, enabling unsupervised, structure-aware updates that integrate new information while preserving
previously learned representations.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

In online fraud detection scenario, we generate graph series G = (G0,G1,G2, . . . ,G|G|) from raw
dataset where each graph Gi represents the graph composed of claims in time periods. In medical
insurance claim graph G(X , E ,Y), each node Vi has its features represented by Fi ∈ R1×d , con-
stituting the node feature matrix X ∈ Rn×d. E ∈ Rn×n denotes the edges between claim nodes,
where claims have the same medical provider or beneficiary get connected. Node label Y ∈ Rn×1

denotes the label of each node: fraud (1), not fraud (0), or none (-1).
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Figure 2: The illustration of our Continual Fiedler Vector Graph model (ConFVG). (a) Pretrain Stage
employs Fiedler Vector-guided graph autoencoder to learn structure-aware node representations. (b)
Online learning stage utilizes Subgraph Attention Fusion (SAF) module to construct neighborhood
subgraphs and apply attention-based reweighting to emphasize high-risk structures.

To demonstrate the continual learning problem, we divide the whole dataset into the historical
dataset Gh = (G0h,G1h,G2h, . . .) and the online dataset Go = (G0o ,G1o ,G2o , . . .). In the pretrain stage,
the model can only access the historical dataset Gh to train the parameter θhistory. While in the
online learning stage, tasks come as a long sequence Go and the model can only access the current
task Gio without access to the previous dataset. We update the parameters θi of the model after the
new incoming task Gio to adapt to the ever-changing environment.

However, in real-world scenarios, historical datasets are scarce, and labeled samples only occupy
a small portion (Lebichot et al., 2016), the model accesses only unlabeled samples in the online
learning phase. To simplify the problems above, we design a new challenging scenario with a
partially labeled dataset in the pretrain stage and an unlabeled dataset in the online stage, as detailed
in the experiment.

3.2 FIEDLER VECTOR-GUIDED GRAPH AUTOENCODER

In semi-supervised scenarios, the autoencoder is commonly used for providing additional informa-
tion to the supervised learning process. Given the model encoder E and decoder D , our goal is to
regenerate node features X from the feature embeddings E (G) to force the model encoder to learn
the deeper feature representation of the graph. For the purpose of node classification, we use feature
mask (Li et al., 2023) to randomly mask a part of the node features and reconstruct the masked
features by comparing them to the real ones.

For the vanilla random masking method (Hou et al., 2022), given a graph G(X , E ,Y) and mask
ratio r, we obtain the masked node features Xmask by applying the mask matrix M ∈ {0, 1}n×d

to X , where Mif ∼ Bernoulli(1 − r), i ∈ {1, 2, . . . , n}, f ∈ {1, 2, . . . , d}. After obtaining the
reconstruction features X̂ = D(E (G(Xmask, E ,Y)) , we use a mean squared error (MSE) loss
Lmask to pull closer X and X̂ as follows

Lmask =
1

|I|

n∑
i=1

d∑
f=1

(1−Mif ) · (Xif − X̂if )
2, where I = {(i, f) |Mif = 0}. (1)

However, the vanilla random mask is not solid and may mask some of the fruitless features or
fail to mask important features (Liu et al., 2024), which may cause information loss and semantic
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irrelevance. To address the limitations of the above masking techniques, we incorporate the global
structural information with node features to take into account the fraud importance to the masking
strategies.

In the context of graph representation for fraud detection, fraudulent nodes often exhibit significant
anomalous connectivity patterns (Pourhabibi et al., 2020), such as isolated nodes or abnormally
dense local subgraphs. These structural deviations disrupt the global homophily of the graph, leading
to sharp increases in feature or label discrepancies among node neighborhoods. From the perspective
of spectral graph theory, such anomalous connectivity can be interpreted as ‘non-smooth’ signals:
normal nodes tend to maintain smooth representations within communities, while fraudulent nodes
introduce strong ’non-smooth’ values and high local gradients. This phenomenon is illustrated in
Appendix A.1.

To capture these non-smooth nodes and find out the fraud features, given a graph G(X , E ,Y), we
calculate its degree matrix D, adjacency matrix A, and laplacian matrix L = D−A with the edge
set E . To better quantify the smoothness of the node, we denote each node i has its smoothness
value qi, which constitutes the smoothness vector q ∈ Rn×1. We defined the global smoothness
Graphsmooth as follows

Graphsmooth =
∑

(i,j)∈E

(qi − qj)
2. (2)

To better optimize the smoothness of each node, we hypothesize that the connected nodes share
similar smoothness values, while the disconnected nodes have dissimilar values. Therefore, we aim
to minimize Graphsmooth as follows

min
∑

(i,j)∈E

(qi − qj)
2 = minqTLq = min

n∑
i=1

λiz
2
i , (3)

where λi denotes the eigenvalue of L, and zi is the projection of q on eigenvector i. To ensure the
Eq. 3 is minimized and meaningful, we make z1 = 0, z2 = 1, z3 = · · · = zn = 0. So qTLq = λ2,
where q is the eigenvector u2 corresponding to λ2, as the Fiedler vector vf = u2 indicating the
fraudulent probability of each node.

In the medical insurance fraud scenario, graphs are not always connected and may even have mul-
tiple connected components. Because of that, the Laplacian spectral decomposition in Eq. 3 de-
generates, and the Fiedler vector loses its ability to capture anomalies. To address this problem, we
add a fully connected perturbation to the original matrix, weakly connecting the multiple connected
components into a single connected graph as follows

A′ = A+ ϵ · (J− I), (4)

where A′ is the perturbed adjacency matrix, ϵ is the perturbation parameter, J is a matrix of all ones,
and I is the identity matrix. The bound of perturbation is discussed in Appendix, A.2.

While the smoothness values of a node solely represent the inner graph structure, we combine that
with the semantic features of nodes to show the contribution of each feature. We normalize the node
feature matrix and make a linear projection with x to get the mask probability sj as follows

sj =

∣∣∣∣∣
n∑

i=1

vf,i ·Xnorm,ij

∣∣∣∣∣ , j = 1, 2, . . . , d. (5)

With the mask weight s, we can reformulate the mask matrix M in Eq. 1 with sampling probability
equal to s, incorporating the fraud importance to the masking strategies.

To summarize, the total loss in the pretrain stage Lpretrain is defined as follows

Lpretrain = Lcls + αmask Lmask, (6)

where αmask is a hyperparameter of reconstruction loss.

5



Published as a conference paper at ICLR 2026

3.3 SUBGRAPH ATTENTION FUSION MODULE

3.3.1 SUBGRAPH COMPLEMENT STRATEGY

Traditional graph models, i.e., GraphSAGE(Hamilton and Ying, 2017), GAT(Veličković et al., 2017)
use top-k neighbors to transfer information between convolutional layers as follows

hk
N (v) ← AGGREGATEk

(
{hk−1

u , ∀u ∈ N (v)}
)
, (7)

where h,N (v) denotes the feature vector and neighbor nodes of node v, respectively, and k denotes
the kth layer of the model. These methods only focus on the subgraph that is fully connected in
the graph, which overlooks the correlation between each connected part. The performance of the
model becomes highly dependent on the initial graph connection, resulting in weaker generalization
capability. In addition, focusing solely on single connected graph may weaken the model ability
to capture similar fraudulent patterns from the entire graph, especially when the environment is
dynamic and fraudulent activities are ever-changing.

Therefore, we propose a subgraph attention-fused complement strategy to combine the original
graph with its subgraph complement to capture evolving fraudulent behavior. Suppose G(X ,V,Y)
is a graph with m connected components, denoted as C1, C2, . . . , Cm. Each connected component
Ci = (Xi,Vi) consists of a node feature matrix set Xi ⊆ X and a node set Vi ⊆ V . We can get the
graph complement Gcomp from the selected connected components as follows

Gcomp =
(
{0, 1, . . . , |V| − 1},

{
(ϕ(i), ϕ(j)) | i ̸= j, i, j ∈ V, (i, j) /∈ E

})
(8)

where V =
⋃k

i=1 Ci, ϕ() is the index projection function, and k denotes the top-k largest compo-
nents. The value of k is discussed in Appendix, A.3.Then we can obtain the original graph embed-
dings zorig = E(G) and the complement graph embeddings zcomp = E(Gcomp). So our attention-
fused embedding z is defined as follows

z = σ(W2ReLU(W1[zorig; zcomp] + b1) + b2), (9)

where W1 and W2 are parameter matrix for attention-fused, b1 and b2 are bias value, and σ is
the sigmoid active function. To force the model to adaptively capture the fraudulent pattern in the
online learning stage, we use the attention loss Lattn to control its weights on the complement graph
as follows,

Lattn = ReLU

 1

|V \ VG |
∑

i∈V\VG

ai −
1

|VG |
∑
i∈VG

ai

 , (10)

where G = (VG , EG) is the subgraph induced by the selected nodes VG ⊆ V , V \ VG is the set of
unselected nodes, a ∈ Rn is the attention weight vector with ai for node i.

3.3.2 MEAN TEACHER STRUCTURE

In the online learning scenario where labels are inaccessible, we utilize the mean-teacher structure
(Tarvainen and Valpola, 2017) with Lattn from Eq. 10 to update its parameter in data streams. We
denote the teacher model as Mt, and the student model as Ms, with their parameter θt and θs,
respectively. The task sequence is denoted by task = (t0, t1, t2, . . .), where ti denotes the graph
Gi. When a new task ti comes, the teacher model predicts the outputs, and the student model uses
the outputs to update its parameters. We use the KL divergence to restrict the outputs of the teacher
model and student model as follows

Lsim = KL
(
Softmax(zs)

∥∥Softmax(zt)
)
. (11)

So the total loss in the online learning scenario Lonline is

Lonline = Lsim + αattnLattn, (12)

where αsim is a hyperparameter. After ith task, the parameter of the student model gets updated by
Lonline, while the parameter of the teacher model gets updated using exponential moving average
(EMA) as follows

θ
(i)
t = α θ

(i−1)
t + (1− α) θ(i)s . (13)
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In summary, the pseudocode of the proposed Continual Fiedler Vector Graph Model is presented in
Algorithm 1.

Algorithm 1 Continual Fiedler Vector Graph Model
1: Input: Historical graph Gh, online graph dataset Go
2: Output: Model Ms with parameter θs
3: Initialize: Model Ms, decoder D
4: Compute graph laplacian matrix L ,get vf from decomposition
5: Compute mask weight sj = |

∑n
i=1 vf,i ·Xnorm,ij |, get mask matrix M

6: Compute Lmask, Lcls
7: Update θs with Lpretrain = Lcls + αmask Lmask, set θt ← θs
8: for each online graph Gi0, i = 1, 2, 3, . . . do
9: Make top k component graph complement Gcomp

10: Fuse attention z = σ(W2ReLU(W1[zorig; zcomp] + b1) + b2)
11: Compute Lsim, Lattn
12: Update θs with Lonline = Lsim + αattnLattn
13: Update θt ← αθt + (1− α)θs
14: end for

4 EXPERIMENTS

In scenarios with various proportions of scarce labels, we conduct experiments on the medical health
insurance dataset and other real-world fraud datasets. We first introduce the datasets and experimen-
tal settings, then validate the model’s exceptional performance and generalization capability under
real-world scenarios. Subsequently, we perform ablation studies to demonstrate the importance of
each component. Finally, we analyze the role of the autoencoder and subgraph complement strategy
through case studies.

4.1 DATASET AND EXPERIMENT SETUP

Dataset and metrics. To evaluate the performance of our model on real-world datasets, we utilized
a large-scale medical insurance dataset (Ma et al., 2023). This dataset comprises over 100,000
unique beneficiaries with a total of 517,737 distinct claims. All samples in the dataset are labeled
and timestamped, facilitating temporal grouping and validation. In the experiments, we select one
year of the data and construct daily medical diagnosis graphs. The initial 15 days were designated as
the historical dataset, while the remaining served as the online learning dataset. To better simulate
real-world scenarios, we randomly retain labels in the historical dataset with probabilities of 1%,
10%, while removing all labels from the online learning dataset. To demonstrate the generalizability
of our model across different scenarios, we conducted additional experiments using two widely
used datasets: Amazon (McAuley and Leskovec, 2013) and YelpChi (Rayana and Akoglu, 2015).
As the evaluation metric, we use the average accuracy, F1 score, and AUC to measure the model’s
performance in online learning scenarios.

Baseline. We compare our method with the state-of-the-art (SOTA) GNN models in fraud detec-
tion, including well-established baselines: CAREGNN(Dou et al., 2020), PCGNN (Liu et al., 2021),
SAD(Tian et al., 2023), GTAN(Xiang et al., 2023), GAD (Chen et al., 2024), ContinuesGNN(Wang
et al., 2020), FGN(Wang et al., 2022a), POCL(Zhang et al., 2024). CAREGNN and PCGNN are
traditional offline models, while SAD, GTAN, and GAD are designed for the semi-supervised sce-
nario. FGN and POCL are online models with parameter updates. In light of previous work not
applicable to the unsupervised learning scenario, we utilize their pre-trained model to complete the
subsequent online learning. To ensure the fairness of comparison, we make extra experiments on a
traditional online learning scenario where labels are abundant, denoted as 100%* label rate.

4.2 EXPERIMENTAL RESULTS

We conduct extensive experiments to compare our model against SOTA baseline methods. As shown
in Table 1, our model demonstrates superior performance, achieving the highest AUC and F1-score
across real-world scenarios with different label ratios. With a 10% label rate, a fully supervised
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Table 1: Performance comparison of different models on medical insurance dataset at different label
rates. 100% * label rate denotes the traditional online scenario.

Model Type Model
1% label rate 10% label rate 100% * label rate

AUC F1 Score AUC F1 Score AUC F1 Score

Traditional Offline
CAREGNN 62.08 ± 1.31 40.58 ± 3.05 67.35 ± 1.20 49.61 ± 1.50 75.12 ± 0.78 54.23 ± 0.24
PCGNN 63.75 ± 1.72 50.16 ± 2.14 69.38 ± 0.55 54.25 ± 0.91 78.11 ± 0.33 60.10 ± 0.55

Semi-Supervised Offline
SAD 72.58 ± 1.29 55.40 ± 1.95 76.12 ± 1.23 62.30 ± 2.24 78.56 ± 0.21 62.04 ± 0.41
GTAN 72.43 ± 1.30 57.33 ± 1.71 75.60 ± 1.12 61.38 ± 2.57 76.54 ± 0.53 61.29 ± 0.67
GAD 73.29 ± 1.11 56.81 ± 2.19 76.54 ± 0.83 61.73 ± 1.88 77.56 ± 0.18 62.35 ± 0.28

Traditional Online
ContinuesGNN 63.14 ± 1.07 49.22 ± 2.83 69.52 ± 1.97 53.26 ± 1.36 78.60 ± 0.10 57.32 ± 0.22
FGN 62.83 ± 1.21 43.30 ± 3.21 65.71 ± 1.01 50.11 ± 1.92 73.91 ± 0.25 56.42 ± 0.51
POCL 70.64 ± 1.34 52.45 ± 2.57 74.76 ± 1.12 60.31 ± 1.88 80.32 ± 0.21 63.56 ± 0.28

Proposed Ours 76.13 ± 1.05 62.24 ± 2.26 80.48 ± 0.86 64.48 ± 1.24 80.61 ± 0.08 63.24 ± 0.16

Table 2: Performance comparison of models across different real-world datasets at 10% label rate.

Model Type Model
Medical Yelpchi Amazon

AUC F1 Score AUC F1 Score AUC F1 Score

Traditional Offline
CAREGNN 67.35 ± 1.20 49.61 ± 1.50 71.12 ± 1.83 61.05 ± 2.12 87.31 ± 0.06 84.24 ± 0.26
PCGNN 69.38 ± 0.55 54.25 ± 0.91 73.45 ± 1.17 61.21 ± 1.60 88.58 ± 0.12 86.12 ± 0.35

Semi-Supervised Offline
SAD 76.12 ± 1.23 62.30 ± 2.24 73.17 ± 0.59 61.01 ± 2.23 87.53 ± 0.62 84.16 ± 0.99
GTAN 75.60 ± 1.00 61.38 ± 2.57 74.74 ± 1.01 62.22 ± 2.01 88.67 ± 0.20 83.16 ± 0.77
GAD 76.54 ± 0.83 61.73 ± 1.70 75.22 ± 0.96 62.61 ± 1.93 89.56 ± 0.18 85.05 ± 0.31

Traditional Online
ContinuesGNN 69.52 ± 1.97 53.26 ± 1.36 71.62 ± 1.68 60.95 ± 2.05 81.28 ± 0.14 73.52 ± 0.35
FGN 65.71 ± 1.01 50.11 ± 1.92 70.37 ± 2.01 56.41 ± 2.57 81.12 ± 1.14 74.56 ± 1.55
POCL 74.76 ± 1.12 60.31 ± 1.88 73.18 ± 0.92 61.60 ± 2.11 87.57 ± 0.38 80.12 ± 1.53

Proposed Ours 80.48 ± 0.86 64.48 ± 1.24 76.85 ± 0.12 64.53 ± 1.92 91.07 ± 0.04 87.32 ± 0.52

model like CAREGNN requires full labels for pretraining and updating, which presents a challenge.
Although POCL is a fully supervised model, it utilizes the contrastive learning method to enhance
its discriminative capability between positive and negative samples, as seen in the pre-training stage,
which performs stably when the source dataset is scarce. Semi-supervised models apparently present
better performance for their data augmentation mechanics. When the label rate drops to 1%, tradi-
tional methods perform much worse with infeasible supervised information. And semi-supervised
methods drop less. In contrast, our model shows excellent performance when the label rate drops
from 10% to 1% with minimal degradation, which highlights the superiority of our approach.

Besides, we also make an experiment on a traditional scenario denoted as 100% * label rate, where
the pretrain and online datasets are fully labeled. We can see that the traditional offline model is
the worst, while the semi-supervised model performs a little better at catching the inner pattern for
fraud activities, which is a good backbone for the upcoming task. But they cannot update themselves
to adapt to the dynamic environment. Traditional online models update themselves in the online
learning stage and perform better. Interestingly, our model still presents its SOTA performance
compared to the traditional online model (despite the minimal difference in F1 score). We think that
in the historical dataset, our graph autoencoder has already learned nearly complete fraud patterns.
Furthermore, the subgraph completion strategy in the online learning phase accurately captures and
translates domain shifts in fraudulent behavior, which boosts our model performance in a traditional
scenario.

To better visualize the performance of the methods above during the online learning stage, we em-
ploy the monthly average accuracy to measure the performance. As shown in Figure 3, in the 10%
labeled data scenario, our model and semi-supervised model achieve a relatively high initial accu-
racy. During the online learning process, our model stays solid in accuracy by adapting to fraudulent
domain shifts. Other models have a certain degree of accuracy reduction, especially for traditional
ones. With 1% labeled data, our model still demonstrates a notably high initial accuracy and better
adapts to the environment with higher accuracy, while other models exhibit larger fluctuations in
accuracy. Most of the methods suffer from a continual decrease over time. To further validate our
method on real-world scenarios, we conduct extensive experiments on Yelpchi and Amazon datasets.
As shown in Table 2, our model greatly outperforms other methods.
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(a) Average monthly accuracy on 10% label rate (b) Average monthly accuracy on 1% label rate

Figure 3: Performance comparison of different fraud detection methods with different label rates on
average monthly accuracy and average accuracy decline rate for online learning within a year in the
medical fraud dataset.

Table 3: Ablation study on medical insurance fraud dataset with different component combinations.

Autoencoder Graph Complement Mean-Teacher
Medical Dataset

AUC F1-Score Accuracy

× × × 67.21 ± 2.41 39.13 ± 5.62 63.43 ± 2.12
× × ✓ 67.43 ± 2.12 40.52 ± 4.03 63.21 ± 2.01
× ✓ × 68.35 ± 2.06 46.41 ± 3.47 64.55 ± 2.31
✓ × × 76.13 ± 0.88 61.56 ± 1.10 74.29 ± 1.05
✓ ✓ × 78.21 ± 1.23 63.11 ± 1.52 74.12 ± 1.11
× ✓ ✓ 72.08 ± 1.78 60.24 ± 2.11 66.56 ± 1.75
✓ × ✓ 77.35 ± 1.54 64.25 ± 2.53 73.81 ± 1.92
✓ ✓ ✓ 80.48 ± 0.86 64.48 ± 1.24 76.45 ± 0.62

4.3 ABLATION STUDY

4.3.1 COMPONENT ANALYSIS

To evaluate the role of each component in the medical insurance fraud model, we conduct a series
of ablation studies on the label rate 10% scenario.

As shown in Table 3, we observe that the model performs weakly with only one component for a
poor pretrain model or online parameter update. Combining the graph autoencoder with the mean-
teacher framework yields better results, yet the addition of the graph completion mechanism is still
necessary to enhance the learning of fraudulent representation. Without the graph autoencoder, the
model has suboptimal performance due to the weak backbone. Finally, the integration of all three
components shows the best performance. This whole model not only strengthens the generalization
of fraud patterns from the pretrain model but also leverages the advantages of the graph completion
strategy during online learning, enabling effective dynamic adaptation to evolving environments.

4.3.2 ANALYSIS ON DIFFERENT MASK STRATEGY

To prove our extraordinary performance of mask strategy, we compare our proposed Fiedler Vector-
based feature masking approach with existing advanced methods, including random masking (Hou
et al., 2022), edge-based masking (Tan et al., 2023), and subgraph masking (Jiao et al., 2024), as
well as VGAE (Kipf and Welling, 2016). As shown in Table 4, the Fiedler vector-based graph
autoencoder selectively reconstructs the core features to capture deeper fraudulent representation,
outperforming the other baseline methods.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce ConFVG, which integrates a Fiedler Vector-guided graph encoder and
a Subgraph Attention Fusion module to address the challenges of pre-training label scarcity and
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Table 4: Performance comparison of different mask strategies on medical insurance fraud dataset
with label ratio of 10%.

Mask Strategies AUC F1-score Accuracy

Random Mask(Hou et al., 2022) 74.14 ± 0.68 59.23 ± 1.28 68.46 ± 1.50
Edge Mask(Tan et al., 2023) 73.25 ± 1.23 58.36 ± 2.13 67.15 ± 1.31
Subgraph Mask(Jiao et al., 2024) 75.24 ± 0.93 56.15 ± 1.23 69.59 ± 1.78
VGAE(Kipf and Welling, 2016) 77.87 ± 1.86 63.24 ± 1.02 74.25 ± 0.24

Fiedler-vector Mask 80.48 ± 0.86 64.48 ± 1.24 76.45 ± 0.62

unlabeled online learning in real-world scenarios. Our model leverages the graph encoder to learn
robust representations of fraudulent patterns, while incorporating a subgraph complement strategy
to enrich fraud representations during the online learning phase. We conduct extensive experiments
on multiple real-world datasets under two semi-supervised settings. The results demonstrate that
our model significantly outperforms existing methods in semi-supervised scenarios while remain-
ing competitive in traditional settings. In the future, we aim to extend our approach to other graph
anomaly detection tasks, such as network security intrusion detection and abnormal behavior iden-
tification in social networks. We also plan to explore the integration of multimodal graph data to
further enhance feature extraction and graph representation learning capabilities.
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A APPENDIX

A.1 STUDY ON FIEDLER VECTOR

To better explain the relationship between fraudulent nodes and Fiedler vector, we choose four slices
medical insurance claim graph and visualize the distribution of the Fiedler value (smoothness value
) in each node. The results are shown in Figure 4.

Figure 4: The visualization of Fiedler value in four medical insurance claim graphs. We use spring
layout to visualize the node distribution, where connected nodes are put closer while disconnected
nodes are put further. The fraudulent nodes are circled in red.

From Figure 4, we can easily conclude: 1) Connected nodes share similar Fiedler value (smoothness
value) in analogous colors. 2) Fraudulent nodes always exhibit isolated nodes or dense local sub-
graphs like little clusters in the center of the graph, which are identified by the Fiedler vector with a
higher Fiedler value. Additionally, we conduct a statistical analysis on the same dataset. The results
shown in Table 5 also demonstrate the strong guidance of the Fiedler vector.

A.2 BOUND OF PERTURBATION

In our fraud detection framework, the difference between the original null space U and the perturbed
subspace U ′ arises from added noise via the perturbation E = ϵ(nI − J). To assess whether
the perturbed Fiedler vector v′2 retains indicative significance for anomaly detection, we need to
evaluate its closeness to the original null space U , measured by the projection error eproj = ∥v′2 −
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Table 5: Statistics of nodes in the medical insurance dataset across days. We use ratio = mean fraud
node Fiedler value / mean normal node Fiedler value to measure the detection ability.

Day All Nodes Fraud Nodes Normal Nodes Edges Ratio (Fraud / Normal)
1 1596 599 997 3616 1.864

50 1608 616 992 3996 2.017
100 1599 602 997 3664 1.857
150 1608 586 1022 4014 2.141
200 1555 577 978 3292 1.922
250 1467 602 865 3218 1.837
300 1440 573 867 2970 2.032
All 554407 211270 343137 1255698 1.924

PUv
′
2∥2. A smaller error eproj indicates closer alignment with U , preserving the soft indicator

function structure.

To measure the error, we make an orthogonal decomposition of the Fiedler vector v′2 ∈ U ′ with
respect to the subspace U as follows

v′2 = PUv
′
2 + (I − PU )v

′
2, (14)

where PUv
′
2 ∈ U is the orthogonal projection of v′2 onto the null space U , and (I − PU )v

′
2 ∈ U⊥ is

the component of v′2 in the orthogonal complement of U . So the Eproj can be derived as follows

eproj = ∥v′2 − PUv
′
2∥2 = ∥(I − PU )v

′
2∥2, (15)

Given that v′2 is a unit vector, ∥v′2∥2 = 1, it follows that

eproj = ∥(I − PU )v
′
2∥2 =

√
1− ∥PUv′2∥22. (16)

We denote the angle θ(v′2, U) as the angle between v′2 and the subspace U , given by the angle to the
closest vector u in U . So we can conclude that

cos θ(v′2, U) = max
u∈U,∥u∥2=1

|⟨v′2, u⟩|. (17)

Apparently, u is equal to the unit vector PUv′
2

∥PUv′
2∥2

of the projection of v′2 onto U , so we can conclude
that

cos θ(v′2, U) = ⟨v′2,
PUv

′
2

∥PUv′2∥2
⟩ = ∥PUv

′
2∥2. (18)

Using the trigonometric identity:

sin θ(v′2, U) =
√
1− cos2 θ(v′2, U) =

√
1− ∥PUv′2∥22. (19)

Comparing the projection error and the angle:

eproj =
√

1− ∥PUv′2∥22 = sin θ(v′2, U). (20)

Table 6: Performance comparison of different nc on medical insurance fraud dataset on label ratio
of 10% with time consumption (seconds).

nc AUC F1-score Accuracy Time

0.01 79.32 ± 1.06 63.23 ± 1.73 75.22 ± 1.50 309.22 ± 2.41
0.05 80.48 ± 0.86 64.48 ± 1.24 76.45 ± 0.62 328.14 ± 2.85
0.1 80.51 ± 0.76 64.42 ± 1.10 76.22 ± 0.45 384.50 ± 2.73
0.2 80.05 ± 0.94 64.10 ± 1.02 74.25 ± 1.23 470.62 ± 3.59
0.3 78.08 ± 1.27 62.70 ± 1.56 73.45 ± 1.60 612.05 ± 5.17

14



Published as a conference paper at ICLR 2026

By the Davis-Kahan theorem(Davis and Kahan, 1970) in its single-vector form, for any v ∈ U ′, the
projection error is bounded by the maximum canonical angle between U and U ′:

sin θ(v, U) = ∥(I − PU )v∥2 ≤ ∥ sinΘ(U,U ′)∥2 (21)

Furthermore, the 2-norm of the sine of the angles satisfies:

∥ sinΘ(U,U ′)∥2 ≤ ∥ sinΘ(U,U ′)∥F ≤
∥E∥2
δ

. (22)

Thus, for v′2 ∈ U ′, we obtain:

∥v′2 − PUv
′
2∥2 = sin θ(v′2, U) ≤ ∥ sinΘ(U,U ′)∥2 ≤ ∥ sinΘ(U,U ′)∥F ≤

∥E∥2
δ

. (23)

As ∥E∥2 = ϵn is the spectral norm of the perturbation and δ = min(λk+1(L), λ1(L
′)) ≈ λk+1(L),

we can derive the upper bound of eproj as follows,

Eproj = ∥v′2 − PUv
′
2∥2 ≤

∥E∥2
δ

=
ϵn

λk+1(L)
. (24)

This bound, approximately 0.04 for medical insurance claim networks (n = 2000, ϵ = 10−5,
λk+1(L) ≈ 0.5), ensures that v′2 remains close to U , retaining its ability to capture anomalies
via projections like |XT v′2|.
To prove our assumption above, We test our model with different ϵ values. The results are shown in
Table 7.

Table 7: Performance of the model under different pertubation ϵ values.
Perturbation ϵ 1e-6 1e-5 5e-5 1e-4 1e-3 1e-2

AUC 78.72 ± 0.53 80.48 ± 0.86 80.46 ± 0.78 80.33 ± 1.02 78.30 ± 1.22 76.05 ± 1.53
F1-score 64.02 ± 1.29 64.48 ± 1.24 64.52 ± 1.33 63.67 ± 1.67 63.08 ± 1.93 61.22 ± 1.86

From Table 7, we can see that when ϵ is very small (ϵ < 1e − 6), the pertubation matrix is too
weak to overcome the sparsity of the original graph, resulting in an insufficient correction effect
on the Fiedler vector. When ϵ is in the range of 1e − 5 to 1e − 4, the subtle global connections
optimally strengthen the connectivity within communities without altering the macroscopic com-
munity structure, thereby sharpening the boundaries between communities and better reflecting the
true community structure. However, when ϵ becomes too large (ϵ > 1e− 3), the global pertubation
matrix overwhelms the original community structure, leading to a decline in performance.

A.3 STUDY ON TOP K COMPONENT

We conduct a series of experiments to test the best k value for the connected component. Concerning
that the number of nodes in each component may be different, we use the indicator nc = nodesel

nodeall

to measure our selection, where nodesel denotes the number of nodes in our selected component,
nodeall denotes the number of nodes in the whole graph. Our experiment result is as follows,

As shown in Table 6, the value of nc achieves a balance between accuracy and efficiency at 0.05.
When nc is lower, the number of selected nodes is too small for the model to effectively utilize
attention information during online learning. Conversely, when nc is higher, excessively noisy and
potentially meaningless edges may be introduced, leading to performance degradation. So the value
of k depends on nc to approximate.

B IMPLETION DETAILS

For hyperparameters, we choose mask ratio r = 0.2, αmask = 10, αattn = 0.1, pertubation ϵ = 1e−5.
We use Adam as the optimizer with pretrain learning rate = 1e-3 and online learning rate encoder =
3e-3. The implementation details are shown in Table 8.
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Table 8: Training and hyper-parameter settings of ConFVG. All experiments are run with a single
NVIDIA 4090 GPU.

Setting Medical Insurance YelpChi Amazon

Optimizer Adam Adam Adam
Learning rate (pretrain) 1e-3 1e-3 1e-3
Learning rate (online) 3e-3 3e-3 3e-3
Pre-training epochs 100 100 100
Number of pretrain tasks 14 14 14

Number of online tasks 351 351 351
Epochs per online task 10 10 10
Dropout 0.5 0.5 0.5
Feature mask ratio r 0.2 0.2 0.2

αmask 10 10 10
αattn 0.1 0.1 0.1
Perturbation ϵ 1e-5 1e-5 1e-5
Top-k components nc 0.05 0.05 0.05
EMA decay α 0.99 0.99 0.99

Table 9: Comparison of scalability and complexity among different models. We compare the whole
online learning time and trainable parameters with proposed models. CAREGNN, PCGNN, GTAN
are static models without online learning period.

Method Online learning time (Minutes) # Trainable Parameters
CAREGNN / 2.2K
PCGNN / 2.7K
GTAN / 61K
ContinuesGNN 8.52 12K
POCL 1.35 7.6K
ConFVG (Ours) 5.46 11.8K

C COMPLEXITY AND SCALABILITY ANALYSIS

As shown in Table 9, we can see that our model has a relatively large number of parameters due
to the autoencoder and mean-teacher architecture, yet it demonstrates better speed compared to
ContinuesGNN during the online learning phase.

D SENSITIVITY ANALYSIS

Table 10: Hyperparameter sensitivity analysis.
Metric

Value αmask αattn

1 2 5 10 15 20 0.01 0.1 0.2 0.5 1 2

AUC 78.44 ± 0.60 79.48 ± 0.86 80.02 ± 0.90 80.48 ± 0.86 80.28 ± 0.94 80.02 ± 1.27 78.22 ± 0.72 80.48 ± 0.86 80.10 ± 0.76 79.33 ± 1.02 78.30 ± 1.22 76.22 ± 1.24
F1-score 62.36 ± 1.66 63.50 ± 1.57 64.12 ± 1.20 64.48 ± 1.24 64.28 ± 1.53 63.78 ± 1.44 64.25 ± 1.54 64.48 ± 1.24 64.01 ± 1.33 63.35 ± 1.62 62.28 ± 1.53 61.34 ± 1.82

Metric
Value EMA α Perturbation ε

0.9 0.95 0.97 0.99 0.995 0.999 1e-6 1e-5 5e-5 1e-4 1e-3 1e-2

AUC 77.36 ± 1.55 79.35 ± 1.16 80.00 ± 1.03 80.48 ± 0.86 79.32 ± 1.34 78.82 ± 1.26 78.72 ± 0.53 80.48 ± 0.86 80.46 ± 0.78 80.33 ± 1.02 78.30 ± 1.22 76.05 ± 1.53
F1-score 61.46 ± 1.94 63.31 ± 1.37 64.48 ± 1.30 64.48 ± 1.24 64.17 ± 1.15 63.54 ± 1.72 64.02 ± 1.29 64.48 ± 1.24 64.52 ± 1.33 63.67 ± 1.67 63.08 ± 1.93 61.22 ± 1.86

We systematically evaluate the sensitivity of our model to key hyperparameters, with results pre-
sented in Table 10. The model exhibits strong robustness across a reasonably wide range of values.
Performance consistently improves as the mask loss weight αmask increases from 1 to 10, peaking
at αmask = 10 with the highest AUC of 80.48 ± 0.86 and F1-score of 64.48 ± 1.24; further increas-
ing αmask beyond 10 leads to slight degradation and higher variance. The attention regularization
coefficient αattn achieves optimal results at 0.1, while values ≥ 0.5 excessively suppress meaning-
ful fraud-normal interaction patterns, causing a sharp performance drop. The EMA decay rate α
performs best around 0.99. Perturbation parameter ε shows excellent stability in the [10−5, 10−4]
range. Overall, the proposed approach maintains stable and superior performance across broad
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hyperparameter intervals, fully demonstrating its robustness and practicality for real-world fraud
detection deployment.

E ROBUSTNESS ANALYSIS

In addition to the scenarios we mentioned earlier, fraudsters may deliberately connect with normal
users to conceal malicious activities, which would lead to significant attribute discrepancies between
connected nodes. To evaluate our model robustness against adversarial fraud, we performed a con-
trolled test by connecting 1%, 10%, 30%, 50% of fraud nodes to random normal nodes with 1 or 3
camouflage edges connected in medical insurance dataset with 10% label rate.

Table 11: Robustness of ConFVG with 1 or 3 camouflage edge connected.
Camouflage edge Proportion of fraud nodes AUC F1-score

1

0% (original graph) 80.48 ± 0.86 64.48 ± 1.24
1% 80.12 ± 0.72 64.50 ± 1.52

10% 79.39 ± 1.10 64.12 ± 1.48
30% 79.30 ± 1.35 63.29 ± 1.32
50% 78.70 ± 1.44 62.57 ± 0.71

3

0% (original graph) 80.48 ± 0.86 64.48 ± 1.24
1% 79.71 ± 0.77 65.10 ± 1.16

10% 78.84 ± 1.02 63.70 ± 1.64
30% 78.82 ± 1.48 63.56 ± 1.57
50% 77.63 ± 1.65 63.14 ± 1.48

As shown in Table 11, ConFVG demonstrates remarkable robustness against deliberate camouflage
attacks. When fraudsters randomly connect to only 1 normal node, even if 50% of fraud nodes
perform such behavior, AUC drops merely from 80.48 to 78.70 (∆ = 1.78). When the attack in-
tensity is increased to 3 camouflage edges per fraud node, the performance decline is still gracefully
controlled. These results indicate that the artificially injected camouflage edges, although intended
to help fraudsters blend into normal communities, may inevitably create locally abnormal dense
subgraphs or spectral perturbations. The Fiedler vector is highly sensitive to such structural irreg-
ularities and successfully captures them as useful guiding signals for community-aware learning,
thereby suffering less from adversarial fraud.

F LLM USAGE

We utilized large language models (LLMs) to assist in drafting and refining this manuscript. Specif-
ically, LLMs helped optimize language expression, enhance readability, and ensure clarity across
sections. They assisted with tasks such as sentence restructuring, grammar checking, and improving
the overall fluency of the text.

It should be noted that LLMs were not involved in the conceptualization, research design, or ex-
perimental planning. All research concepts, ideas, and analyses were independently developed and
implemented by the authors. The contribution of LLMs was limited to enhancing the linguistic
quality of the manuscript and did not involve scientific content or data analysis.

The authors take full responsibility for the integrity of the manuscript’s content, including any text
generated or refined by LLMs. We have ensured that the content produced by LLMs adheres to
ethical standards and is free from plagiarism or academic misconduct.
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