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Abstract

We present a differentially private learner for half-spaces over a finite domain X d ⊆ Rd with
sample complexity Õ(d·log∗ |X |), which improves over Õ(d2.5 ·8log∗ |X |), the state-of-the-art
result of [Kaplan et al., 2020]. The building block of our result is the reformulation from
privately learning half-spaces to a composition of privately learning thresholds.
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1. Introduction

Machine learning plays a pivotal role in modern technology by empowering systems to au-
tonomously learn from data, recognize patterns, and make informed decisions with minimal
human intervention, etc. However, as some of the applications involve sensitive individual
data, models trained on such data could potentially disclose private information, raising
concerns about data privacy protection. Therefore, an emerging demand is how to learn
from datasets while preserving data privacy.

Dwork et al. (2006) proposed Differential Privacy for data privacy studies. Due to its
robust theoretical framework and practical effectiveness in protecting individual privacy, it
has become a popular paradigm in related research. Building on the foundation of Probably
Approximately Correct (PAC) learning by Valiant (1984), Kasiviswanathan et al. (2011)
introduced the concept of private learning. This area merges PAC learning with differential
privacy to protect individual information within datasets. The core principle of differential
privacy is to ensure minimal impact on the output when a single data point changes, which
is inherently linked to stability. This connection highlights the natural synergy between
learnability, privacy, and stability in machine learning algorithms Dwork et al. (2014); Alon
et al. (2022). Private learning research tackles the challenge of balancing data usage (sample
complexity) with achieving both privacy and accuracy. Stricter privacy often demands more
data to maintain accuracy, increasing computational and logistical burdens. In this paper,
we focus on the sample complexity of privately learning half-spaces, a fundamental task
in computational learning theory that holds significant importance due to its versatility
and wide-ranging applications across various domains. We prove the following as our main
contribution in this work:

Main result: (informal) Given ϵ, δ, α, β ∈ (0, 1) and a finite domain X d ⊆ Rd, a
realizable sample with size Õ(d · log∗ |X |), there is an (ϵ, δ)-differentially private (α, β)-
empirical learner for d-dimensional half-spaces.
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1.1. Related Work

Kasiviswanathan et al. (2011) showed that any finite class C can be adequately learned with
pure differential privacy, achieving a sample complexity bound of O(log |C|). Based on this,
Beimel et al. (2014) established a matching lower bound for proper pure-private learners,
confirming the optimality of the sample complexity bound in this setting. Extending this
line of work, Feldman and Xiao (2014) showed that similar bounds hold even for improper
pure-private learners. In general, learning with pure differential privacy requires sample
complexity proportional to the logarithm of the size of the hypothesis class.

1.1.1. Privately Learning Thresholds

Regarding the task of privately learning one-dimensional half-spaces, also known as thresh-
olds, over a finite domain X ⊂ R, Beimel et al. (2013) showed that by relaxing the privacy
guarantees from pure to approximate differential privacy, the upper bound can be signifi-
cantly improved from O(log|X |) to Õ(8log

∗ |X |). After that, a line of research dedicated to
improving the sample complexity bound (Bun et al. (2015, 2018); Kaplan et al. (2020a); Bun
et al. (2015); Cohen et al. (2023), where the current knowledge of the bound is Θ̃(log∗ |X |).
It demonstrates a gap between private and non-private settings, where the sample complex-
ity of non-private learning is Θ(1).

1.1.2. Privately Learning Half-spaces

For privately learning half-spaces over X d, Beimel et al. (2019) presented an upper bound
of Õ(d4.5 · 8log∗ |X |) and significantly improved over previous bound of O(d2 · log |X |) by
Kasiviswanathan et al. (2011) in terms of the domain size |X |. Their method is based on
a reduction to the task of privately finding a point in the convex hull of a given dataset.
Subsequently, Kaplan et al. (2020b) improved the bound to Õ(d2.5 ·8log∗ |X |) with a different
reduction to the task of privately solving the linear feasibility problem, which is the best-
known upper bound. In contrast, learning with non-private setting only requires Θ(d).

1.2. Other Related Works

Based on different assumptions, there are several related works on the sample complexity.
For example, a line of works are based on the large margin assumption (Blum et al. (2005);
Bun et al. (2014); Bassily et al. (2014); Jain and Thakurta (2014)). Le Nguyen et al. (2020)
showed that the sample complexity bound could depend on the margin instead of the
dimension, and they proved that their bound is optimal in the setting. Dagan and Feldman
(2020), Su et al. (2023) studied the task of PAC learning half-spaces under a different privacy
constraint called non-interactive local differential privacy introduced by Kasiviswanathan et al.
(2011) and Evfimievski et al. (2003), where they presented an algorithm with the bound
on sample complexity linear in dimension. Ghazi et al. (2021) showed an upper bound on
sample complexity polynomial in the Littlestone dimension of the concept class (Littlestone
(1988)), which is a combinational measurement of online learnability.
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1.3. Organizations

The rest of this paper is organized as follows. In section 2, we introduce notations and
preliminaries. Section 3 shows our algorithm for privately learning half-spaces and its
analysis. We conclude with some remarks in section 4.

2. Preliminaries

We use calligraphic letters to denote sets and boldface for vectors and matrices. For x =
(x1, x2, ...xd) ∈ Rd and x′ = (x′1, x

′
2, ..., x

′
d) ∈ Rd, let ⟨x,x′⟩ =

∑d
i=1 xix

′
i be the inner

product of x and x′ and ∥x∥2 be the l2-norm. Given a set X , we denote X ∗ as the set of
all possible multi-sets whose elements are taken from X , and let X n ∈ X ∗ be a multi-set
with size n. Given an integer n, log∗(n) denotes the iterated logarithm, which is a way to
express how many times it needs to take the logarithm of n until it gets a value at most 1,
i.e., log∗(n) = 1 + log∗(log(n)) if n > 1 and zero otherwise.

2.1. Private Learning

The concept of differential privacy is defined as follows.

Definition 1 (Differential Privacy Dwork et al. (2006)) A randomized algorithm A
with domain X is (ϵ, δ)-differentially private if for all E ⊆ Range(A) and for all neighboring
datasets D, D′ ∈ X ∗ such that:

Pr[A(D) ∈ E ] ≤ exp (ϵ) Pr [A(D′) ∈ E ] + δ.

If δ = 0, then A satisfies pure-differential privacy; otherwise, it satisfies approximate-
differential privacy. Such a definition also yields a property that it is immune to any
post-processing.

Lemma 2 (Post-Processing Dwork et al. (2014)) Consider some domains X ,H and
H′. Let M : X → H be an (ϵ, δ)-differentially private mechanism and f : H → H′ be any
arbitrary mapping. The concatenation f ◦M is (ϵ, δ)-differentially private.

The Laplace mechanism safeguards individual privacy in numerical data analysis by adding
noise that hides the influence of any single participant.

Definition 3 (Laplace Distribution) A random variable has the probability distribution

Lap(b) if its probability density function is f(x) = 1
2bexp(−

|x|
b ), where x ∈ R.

Definition 4 (Sensitivity) A function f : X ∗ → Rn has sensitivity k if for every neigh-
boring samples S, S′ ∈ X∗, it holds that |f(S)− f(S′)|1 ≤ k.

Lemma 5 (The Laplace Mechanism Dwork et al. (2006)) Let f : X ∗ → Rn be a
sensitivity-k function. For an input dataset D, the mechanism A that adds independent
noise with distribution Lap(kϵ ) to each of the n outputs of f(D) preserves ϵ-differential
privacy.



Huang Chen Tsai

Consider a PAC learner A (Valiant (1984)), that tries to learn a target concept c ∈ C.
We say that A is a private learner if it also satisfies differential privacy with respect to its
training data.

Definition 6 (Private PAC Learning Kasiviswanathan et al. (2011)) Let A be an
algorithm with input S ∈ X n. A is an (ϵ, δ)-differentially private (α, β)-PAC learner with
sample complexity n for a concept class C over X using hypothesis class H if

1. A is (ϵ, δ)-differentially private;

2. A is an (α, β, n)-PAC learner with hypothesis class H.

If H ⊆ C, then A is called a proper learner; otherwise, it is called an improper learner.

We use Empirical Learning to measure the performance of a trained model.

Definition 7 The empirical error of a hypothesis h for a sample S = (xi, yi)
n
i=1 is defined

as errorS(h) =
1
n |{i : h(xi) ̸= yi}|.

Definition 8 (Empirical Learning) An algorithm A is an (α, β, n)-empirical learner us-
ing hypothesis class H if for all distributions D on X × {−1, 1}, given an input sam-
ple S of size n drawn i.i.d. from D, algorithm A outputs a hypothesis h ∈ H satisfying
Pr[errorS(h) ≤ α] ≥ 1− β.

This task is simpler to handle than standard PAC learning, a distributional error minimiza-
tion task. Replacing PAC learning with this task does not lose generality, which is implied
by the result of Bun et al. (2015).

2.2. A Private Learner for Interior Points Problem - TreeLog

The algorithm TreeLog was initially proposed by Kaplan et al. (2020a) for solving the interior
points problem1, with a sample complexity bound of Õ((log∗ |X |)1.5). Cohen et al. (2023)
further improved it to Õ(log∗ |X |) by introducing a novel technique called Reorder-Slice-
Compute paradigm. This paradigm provided a more refined analysis of privacy, overcoming
the bottleneck caused by the advanced composition theorem Dwork et al. (2010) and hence
eliminating the polynomial dependency on log∗ |X |.

Although the interior point problem is trivial without privacy constraints (since any
input point is a valid output), solving it with differential privacy is much more challenging.
In particular, Bun et al. (2015) have shown that privately solving this problem is equivalent
to privately learning thresholds (properly) 2. We summarize the result about TreeLog as
follows.

1. An algorithm A solves the interior point problem over a domain X ⊆ R with sample complexity n and
failure probability at most β if for every dataset S ∈ Xn, Pr[minS ≤ A(S) ≤ maxS] ≥ 1− β, where the
probability is taken over the coins of A.

2. For u ∈ X ⊆ R, a threshold is defined as hu : X → {−1, 1} such that for x ∈ X , hu(x) = 1 if x ≤ u, and
−1 otherwise. An algorithm learns thresholds if given a sample (X ×{−1, 1})n , it outputs a hypothesis
h such that with probability at least 1− β, errorS(h) is at most α.
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Lemma 9 (TreeLog Cohen et al. (2023)) For any privacy parameters ϵ, δ ∈ (0, 1), any
finite and totally ordered domain X , any desired accuracy parameters α, β ∈ (0, 1), given a
realizable sample of size

n = O(
log∗ |X | · log2 ( log

∗ |X |
βδ )

αϵ
),

there is an (ϵ, δ)-differentially private (α, β)-empirical learner that learns thresholds.

3. Privately Learning Half-spaces

Following Kaplan et al. (2020b), we consider the task of privately learning half-spaces over
a finite space X d, where X = {x ∈ Z : |x| ≤ X} for some X ∈ N. We define the half-space
as follows.

Definition 10 (Half-space) For a = (a1, a2, ..., ad) ∈ Rd \ (0, 0, ..., 0) and b ∈ R, a half-
space is denoted as ha,b : X d → {−1, 1} where ha,b(x) = 1 if ⟨a,x⟩ + b ≥ 0, and −1
otherwise.

Without loss of generality, we assume that b = 0 and denote a half-space as ha, where
every half-space passes through the origin 3. Our goal is that given a realizable sample
S ∈ (X d×{−1, 1})∗ 4, the algorithm is an (ϵ, δ)-differentially private (α, β)-empirical learner
with parameters ϵ, δ, α, β ∈ (0, 1).

Inspired by the construction of Sadigurschi and Stemmer (2021) on privately learning
axis-aligned rectangles, we aim to reformulate the task to a composition of privately learning
thresholds.

3.1. Learning Half-spaces In Two Dimensions

As defined above, each half-space can be indicated with a unit normal vector n = (n1, n2, ..., nd),
where ∥n∥2 = 1. In the two-dimensional case, learning half-spaces can be reformulated as
learning a 2-dimensional unit vector, where the set of all possible half-spaces forms a cir-
cle. Therefore, by considering the vector as rotating from a reference direction, the task of
learning half-spaces can be reformulated as learning their corresponding angles. Formally,
We transform a vector n = (n1, n2) into the corresponding polar coordinate (r, ϕ), where
r > 0 is the distance from the origin and ϕ ∈ [0, 2π) is the rotate angle from the reference
vector. With n being a unit vector, we have r = 1, and our target is to find the angle ϕ.
For convenience, we abuse the notation and denote a half-space as hϕ.

The target is now an angle ϕ such that hϕ correctly classifies all elements in the sample
S. To evaluate how close the angle we found to the target one is, we define a quality function
as follows.

q(S, ϕ) = |{(x, y) ∈ S | hϕ(x) = y}|.

Intuitively, an approximate maximizer for this function implies a hypothesis that correctly
classifies a significant proportion of the dataset. In addition, this function is suitable for
private algorithms as we can verify that the sensitivity of the function is 1 (in terms of the

3. When b ̸= 0, we can consider it as the (d+ 1)th coordinate of a, and extend each x ∈ X d to (x, 1).
4. We say S is a realizable sample if there exists a concept c ∈ C that is consistent with the sample.
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first input). In particular, each element in S can affect the resulting quality by at most 1.
To this end, one might consider simply applying an optimization function for the task, while
the continuous space of angles is not privately learnable (Alon et al. (2019)). Therefore,
discretizing the angle domain becomes a crucial step in the reformulation process. We define
the function as follows.

Discretize(γ) = {i · γ : i = 0, 1, ..., ⌊2π/γ⌋}.

That is, Discretize takes an input angle γ ∈ [0, 2π) and outputs a set of (⌊2π/γ⌋+1) evenly
spaced angles, denoted as Hγ . We aim to set γ appropriately for the discretization while
preserving accuracy. In particular, We aim to guarantee that at least one of the half-spaces
with the maximum quality is included in Hγ .

Lemma 11 Given the domain X = {x ∈ Z : |x| ≤ k}, consider the directional vectors
passing through the origin and points in X 2. The minimum (positive) angle γ between any
two non-collinear directional vectors satisfies sin(γ) ≥ 1/2k2.

Proof Let v1,v2 be two non-collinear directional vectors achieving the minimum angle γ,
we have sin(γ) = ||v1 × v2||/(||v1|| · ||v2||), where v1 × v2 is the cross product of the two
vectors if we interpret v as (x1, x2, 0). That is, we have sin(γ) = |det((v1,v2))|/(||v1||·||v2||).
Since the vectors contain only integer elements, the minimum positive value of the numerator
is 1. Furthermore, the length of any vector ||v|| is at most

√
2k. Thereby, we have sin(γ) ≥

1/2k2.

Therefore, setting γ as guaranteed in Lemma 11 is sufficient for preparing the dataset.
ensures that for every pair of non-collinear directional vectors passing through the origin
and a point in X 2, there exists at least one half-space inHγ that passes through these points.
Moreover, given the assumption that the sample is realizable, this setting also guarantees
the existence of half-spaces with the maximum quality in the resulting dataset. With the
fact that sin(γ) ≈ γ for sufficiently small γ, the size of Hγ is O(|X |2). Remark that to
ensure the existence of half-spaces with the maximum quality in the domain, Beimel et al.
(2019) used an arbitrary domain with the size of O((d · |X |d4)2d). While Kaplan et al.

(2020b) provided a complicated construction of domain with the size of O(dd
d · |X |d) to

achieve the same assurance. Therefore, our construction significantly reduces the size of the
domain, enhancing the computational efficiency and scalability.

After obtaining the set of half-spaces Hγ , we observe a nice property: each element
in this set has a higher quality if it is closer to the one with the maximum quality in
terms of angles. That is, with the assumption of data being realizable, all possible error
points for any half-space can only be positioned between the half-space and the target one.
Furthermore, this property is also possessed by thresholds. This gives a hint of the problem
reformulation we aim to achieve.

Consider that we cut apart the circle formed by the set of half-spaces and flatten it. In
this way, finding a half-space on the flattened line can be closely related to finding thresholds
on a line, as we desired. Specifically, we can cut apart the circle by eliminating the elements
with the lowest qualities, since they are adjacent and are dispensable without significantly
compromising performance. However, this direct approach is not feasible as it can violate
the privacy.
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To see that, consider the scenario where the target half-space is aligned with the second
axis. Given a sample S = {(x = (0, 1), 1)}, there are half of the half-spaces in Hγ that
correctly classify the point (x, 1) and therefore have the quality value of 1, while the other
half, denoted as M , have the quality value of 0 and hence are the elements to be eliminated.
Suppose we increase the multiplicity of the point (x, 1) by 1, then the subset to be eliminated
is unchanged. However, adding another point ((0,−1), 1) can increase the quality values of
all but one half-space in M by 1, resulting in a subset differing from M in nearly half of
the elements.

The result shows that with two neighboring input samples, the resulting sets of half-
spaces are not necessarily neighboring. Therefore, we need to perform a preprocessing step
to transform the set into a suitable input for learning thresholds while preserving privacy.
Let ϕ(x) denote the angle corresponding to x, and we define the function as follows.

Algorithm 1: MakeData(ϵ,Hγ , S)

Input: ϵ > 0,Hγ ⊆ [0, 2π) , S ∈ (X 2 × {−1, 1})∗
SH ← {};
for ϕ ∈ Hγ do

nϕ = |{(x, y) ∈ S : |ϕ(x)− ϕ| < γ and hϕ(x) = y}|;
add max(⌈nϕ + Lap(1ϵ )⌉, 1) copies of ϕ to SH;

end
return SH;

Lemma 12 Algorithm 1 satisfies (ϵ, 0)-differential privacy. Furthermore, there is at least
one half-space (with the angle) ϕ∗ ∈ SH with quality q(S, ϕ∗) = maxϕ∈[0,2π)q(S, ϕ).

The function builds a connection between the resulting dataset SH and the input sample
S such that each half-space represents a portion of the input points. This connection enable
us to transform the dataset without violating the privacy. We define the function as follows.

Algorithm 2: MakeThrData(SH, S, C)

Input: SH ∈ ([0, 2π))∗, S ∈ (X 2 × {−1, 1})∗, C ∈ N
Calculate q(S, ϕ) for every ϕ ∈ SH;
Let maxC(SH) be the C largest elements in SH according to the lexicographical order
of (q(S, ϕ), ϕ);

Randomly select ϕ′ ∈ SH \maxC(SH) and rotate the coordinate so that ϕ′ = 0;
Let ϕ∗ := argmaxϕ∈maxC(SH){q(S, ϕ)};
SThr ← {};
for ϕ ∈ maxC(SH) do

y ← 1 if ϕ ≤ ϕ∗; otherwise, y ← −1;
add (ϕ, y) to SThr;

end
return SThr

The function first selects the C largest elements from SH according to their qualities.
To ensure the selected subset maxC(SH) contains adjacent elements, angles are also taken
into consideration. This ordering implies that the larger elements have higher quality and
are closer to the target half-space simultaneously. This adjacency criterion is significant
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since the selected elements will later be reordered by randomly choosing an element from
the subset SH \ maxC(SH) to serve as the anchor for rotating the coordinate. Therefore,
the elements are ordered properly such that the ones with lower quality are more distant
from the threshold, or vice versa. Furthermore, by our construction, the threshold ϕ∗ is a
maximizer for the quality function q, which implies that an algorithm that approximately
learns thresholds also approximately solves the original task. We summarize the properties
of MakeThrData as follows.

Lemma 13 There is at least one labeled half-space (with the angle) (ϕ∗, y), y ∈ {−1, 1}
in the output of Algorithm 2 with quality q(S, ϕ∗) = maxϕ∈[0,2π)q(S, ϕ).

Let AThr be any differentially private algorithm for learning thresholds over a domain
XThr ⊆ R, we can learn 2-dimensional half-spaces as follows.

Algorithm 3: ASimpleH(ϵ, δ, α, β, S, γ,AThr)

Input: ϵ, δ, α, β ∈ (0, 1), S ∈ (X 2 × {−1, 1})∗, γ ∈ [0, 2π), an (ϵ, δ)-differentially private
(α, β)-empirical learner AThr that privately learns thresholds over XThr with
sample complexity nThr = nThr(XThr, ϵ, δ, α, β)

Hγ ← Discretize(γ);
SH ←MakeData(ϵ,Hγ , S);
SThr ←MakeThrData(SH, S, nThr);
Apply AThr with input SThr, parameters ϵ, δ, α, β and get ϕ∗;
return hϕ∗

The following theorem shows the correctness of ASimpleH .

Theorem 14 For any ϵ, δ, α, β ∈ (0, 1), if there is an (ϵ, δ)-differentially private (α, β)-
empirical learner AThr that learns thresholds on a finite domain XThr with nThr(XThr, ϵ, δ, α, β)
samples, then with sample complexity

n = O(nThr(XThr,
ϵ

2
, δ, α, β)),

Algorithm 3 is an (ϵ, δ)-differentially private (α, β)-empirical learner for 2-dimensional half-
spaces.

Based on the above, we establish a connection between the task of privately learning
half-spaces and thresholds. This connection is indeed valuable for addressing the known gap.
For instance, with the construction and analysis above, we can apply the works on the task
of privately learning thresholds (Lemma 9) to half-spaces immediately, which significantly
improves the state-of-the-art result (Kaplan et al. (2020b)). Formally,

Corollary 15 For any privacy parameters ϵ, δ ∈ (0, 1), any desired accuracy parameters
α, β ∈ (0, 1), given a realizable sample with size

n = O(
log∗ |X | · log2 ( log

∗ |X |
βδ )

αϵ
),

there is an (ϵ, δ)-differentially private (α, β)-empirical learner A : (X 2×{−1, 1})n → H for
2-dimensional half-spaces.
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Since XThr ⊆ Hγ according to our construction, we have |XThr| = O(|X |2). Therefore, the
result follows by setting the privacy and accuracy parameters as Theorem 14 and applying
nThr as Lemma 9. The resulting sample complexity bound remains since the parameters
only increase in a constant factor, which shows that we can actually reformulate the task
of privately learning two-dimensional half-spaces as learning one-dimensional thresholds.

3.2. Learning Half-spaces In High Dimensions

We now generalize the above results to higher dimension d > 2. In the d-dimensional space,
we can represent a unit vector n = (n1, n2, ...nd) ∈ Rd with another vector (r, ϕ1, ϕ2, ...ϕd−1)
in spherical coordinate, Blumenson (1960), where r is the length of n and ϕi the angles
relative to the reference vector of the corresponding coordinate. Formally,

n1 = r cos(ϕ1),

n2 = r sin(ϕ1) cos(ϕ2),

...

nd = r sin(ϕ1)... sin(ϕd−2) sin(ϕd−1).

This transformation enables us to indicate any half-space in d-dimensional space by their
angles (ϕ1, ϕ2, ...ϕd−1). We next define a suitable quality function as above. Motivated
by Beimel et al. (2019) and Kaplan et al. (2020b), for all i ∈ {1, ..., d − 1}, define a qual-
ity function Qϕ∗

1,...ϕ
∗
i−1

(S, ϕi) := maxϕ̃i+1,...,ϕ̃d−1∈Hγ
q(S, (ϕ∗

1, ..., ϕ
∗
i−1, ϕi, ϕ̃i+1, ..., ϕ̃d−1)). Note

that this definition differs from the previous ones: Beimel et al. (2019) maximizes the Tukey
depth, and Kaplan et al. (2020b) maximizes the convexification of a quality function instead
of the function itself. Moreover, instead of searching among a continuous space as before,
our approach uses the quality function that searches within the discrete subspace Hγ and
significantly reduces the computational complexity.

As mentioned by Kaplan et al. (2020b), the function Q is not guaranteed to be quasi-
concave. In order to overcome this issue, they presented a technique to ’convexify’ a func-
tion, making it quasi-concave and thereby solvable by leveraging the method of Beimel et al.
(2013). However, this reformulation of the function introduces additional errors, eventu-
ally increasing the sample complexity in terms of dimension d. We can avoid these issues
by directly solving the optimization problem on Q without reducing it to a quasi-concave
optimization problem. In order to meet the privacy requirements, we first analyze the sen-
sitivity of Q. Note that the proof of this statement differs from those in Beimel et al. (2019)
and Kaplan et al. (2020b) as it requires no additional knowledge and is applicable to both
of their constructions.

Lemma 16 Qϕ∗
1,...,ϕ

∗
i−1

(·, ϕi) is a sensitivity-1 function in terms of the first input.

Proof Consider two neighboring samples S, S′ = S ∪ {(x, y)}. Given ϕ∗
1, ..., ϕ

∗
i−1, suppose

there exists a ϕi such that Qϕ∗
1,...,ϕ

∗
i−1

(S′, ϕi) ≥ Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕi) + 2. Let ϕi+1, ..., ϕd−1

be the maximum completion of Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕi), and ϕ′
i+1, ..., ϕ

′
d−1 for Qϕ∗

1,...,ϕ
∗
i−1

(S′, ϕi),
respectively. By the definition of Q,

q(S′, ϕ∗
1, ..., ϕ

∗
i−1, ϕi, ϕ

′
i+1, ..., ϕ

′
d−1) ≥ q(S, ϕ∗

1, ..., ϕ
∗
i−1, ϕi, ϕi+1, ..., ϕd−1) + 2,
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which implies

q(S′, (ϕ∗
1, ..., ϕ

∗
i−1, ϕi, ϕ

′
i+1, ..., ϕ

′
d−1)) ≥ q(S, (ϕ∗

1, ..., ϕ
∗
i−1, ϕi, ϕ

′
i+1, ..., ϕ

′
d−1)) + 2

since the latter value is at most that of q(S, ϕ∗
1, ..., ϕ

∗
i−1, ϕi, ϕi+1, ..., ϕd−1). With q(S, ·) being

a sensitivity-1 function in terms of the first input, the statement is proved by contradiction.

As we aim to leverage the aforementioned constructions and generalize them to the high-
dimensional setting, we first show that the error introduced in each coordinate does not
explode with the increased dimension.

Lemma 17 Consider ϕ∗
1, ..., ϕ

∗
i−1 and ϕ′

i = argmaxϕi∈HγQϕ∗
1,...,ϕ

∗
i−1

(S, ϕi), then

Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕ′
i) = maxϕ̃i,ϕ̃i+1,...,ϕ̃d−1∈[0,2π)q(S, (ϕ

∗
1, ..., ϕ

∗
i−1, ϕ̃i, ϕ̃i+1, ..., ϕ̃d−1).

Proof Let ϕ′
i+1, ..., ϕ

′
d−1 be the maximum completion for ϕ′

i, and ϕ∗
i+1, ..., ϕ

∗
d−1 for the

target value ϕ∗
i . Suppose that for some j ∈ {i + 1, ..., d − 1}, there exists a point x ∈ S

between ϕ′
j and ϕ∗

j such that the half-space with angle ϕ′
j mis-classifies it. Then

q(S, (ϕ∗
1, ..., ϕ

∗
i−1, ϕ

′
i, ϕ

′
i+1, ..., ϕ

′
j , ..., ϕ

′
d−1)) = q(S, (ϕ∗

1, ..., ϕ
∗
i−1, ϕ

∗
i , ϕ

∗
i+1, ..., ϕ

∗
j , ..., ϕ

∗
d−1))− 1.

However, by our construction, we can identify an angle ϕ̃j ∈ Hγ , which is closer to ϕ∗
j such

that there are no points between them. That is, if ϕ∗
j correctly classifies x, then ϕ̃j also

correctly classifies it, where

q(S, (ϕ∗
1, ..., ϕ

∗
i−1, ϕ

′
i, ϕ

′
i+1, ..., ϕ

′
j , ..., ϕ

′
d−1)) = q(S, (ϕ∗

1, ..., ϕ
∗
i−1, ϕ

∗
i , ϕ

′
i+1, ..., ϕ̃j , ..., ϕ

′
d−1))− 1.

Therefore, by the definition of Q, the claim is proved by contradiction.

With the quality function, our goal is to identify a half-space, coordinate by coordinate,
which approximately maximizes the quality. Specifically, suppose we identify a value ϕ∗

1

for the first coordinate, which approximately maximizes Q. By the definition of Q, this
guarantees that there exists a completion (ϕ̃2, ..., ϕ̃d−1) such that q(S, ϕ∗

1, ϕ̃2, ..., ϕ̃d−1) is
close to the maximum quality. Thus, in every iteration, we find a value for the coordinate
such that there is a completion in which we do not lose too much from the maximum
attainable quality.

To generalize the previous result in 2-dimensional case, we review the functions defined
above. Since Discretize has its construction independent of the input samples, the function
remains unchanged and is actually applicable to each coordinate. For the functionMakeData
to be applicable for each iteration, let ϕi(x) be the i-th angle corresponding to x, we modify
the function as follows.

Algorithm 4: MakeHighDimData(ϵ,Hγ , S, i)

Input: ϵ > 0,Hγ ⊆ [0, 2π) , S ∈ (X d × {−1, 1})∗, i ∈ {1, 2, ..., d− 1}
SH ← {};
for ϕ ∈ Hγ do

nϕ = |{(x, y) ∈ S : |ϕi(x)− ϕ| < γ and hϕ(x) = y}|;
add ϕ with max(⌈nϕ + Lap(1ϵ )⌉, 1) copies to SH;

end
return SH;
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We summarize the properties of MakeHighDimData as follows.

Corollary 18 Algorithm 4 satisfies ϵ-differential privacy. Moreover, there is at least one
half-space (with angle) ϕ∗

i in the dataset SH with quality

Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕ∗) = maxϕ∈[0,2π)(Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕ)).

The proof is similar to that of Lemma 12 with the guarantee of Lemma 17. With this
modification, the function can be applied for each iteration and outputs the corresponding
dataset of half-spaces for the coordinate.

Next, we modify MakeThrData as in Algorithm 5, where we introduce a constant pa-
rameter that determines the initial size of the output dataset and incorporates angles from
previous iterations. Instead of employing the function q, we utilize Q as the quality metric
suitable for high-dimensional settings. Additionally, we introduce a noise addition step at
Line 2. We also record the points in the original sample S that corresponds to the dataset
SThr.

Algorithm 5: MakeHighDimThrData(ϵ, SH, S, C, ϕ
∗
1, ..., ϕ

∗
i−1)

Input: ϵ > 0, SH ∈ ([0, 2π))∗, S ∈ (X d × {−1, 1})∗, C ∈ N, ϕ∗
1, ..., ϕ

∗
i−1 ∈ Hγ

Calculate Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕi) for every ϕi ∈ SH;

Let maxC̃(SH) be the C +Geom(1− e−ϵ) largest elements in SH according to the
lexicographical order of (Qϕ∗

1,...,ϕ
∗
i−1

(S, ϕi), ϕi);

SThr = ∅;
Randomly choose ϕ′

i ∈ SH \maxC̃(SH) and rotate the coordinate so that ϕ′
i = 0;

Let ϕ∗
i := argmaxϕi∈maxC̃(SH){Qϕ∗

1,...,ϕ
∗
i−1

(S, ϕi)};
for ϕi ∈ maxC̃(SH) do

y ← 1 if ϕi ≤ ϕ∗; otherwise, y ← −1;
add (ϕi, y) to SThr;

end
Let SC̃ ⊆ S be the points corresponding to the elements in SThr without labels;
return SThr, SC̃

The function is summarized as follows.

Corollary 19 There is at least one labeled half-space (with the angle) (ϕ∗
i , y), y ∈ {−1, 1}

in the output of Algorithm 5 with the quality function

Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕ∗
i ) = maxϕ∈[0,2π)(Qϕ∗

1,...,ϕ
∗
i−1

(S, ϕ)).

The proof is similar to that of Lemma 13 with the guarantee of Lemma 17. Now we describe
the generalized algorithm as follows.
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Algorithm 6: AHighH(ϵ, δ, α, β, S, γ,AThr)

Input: ϵ, δ, α, β ∈ (0, 1), S ∈ (X d × {−1, 1})∗, γ ∈ [0, 2π), an (ϵ, δ)-differentially private
(α, β)-empirical learner AThr that privately learns thresholds over XThr with
sample complexity nThr(XThr, ϵ, δ, α, β)

Hγ ← Discretize(γ);
S0 ← S;
for i = 1, 2, ...d− 1 do

SH ←MakeHighDimData(Hγ , Si−1, i);
SThr, SC̃ ←MakeHighDimThrData(ϵ, SH, Si−1, nThr, ϕ

∗
1, ..., ϕ

∗
i−1);

Apply AThr with input SThr and get ϕ∗
i ;

Si ← Si−1 \ SC̃ ;

end
return h(ϕ∗

1,...,ϕ
∗
d−1)

For the estimation of the total privacy cost, we adopt a paradigm called the Reorder-
Slice-Compute paradigm proposed by Cohen et al. (2023). Let Geom(p) be the geometric
distribution with parameter 0 < p ≤ 1. Formally, Pr[Geom(p) = k] = (1− p)kp for integer
k ≥ 0. We apply a simplified version of the paradigm as follows.

Algorithm 7: ReorderSliceCompute(ϵ, δ, S, τ,m,E1, ...Eτ , A) (Cohen et al. (2023))

Input: ϵ, δ ∈ (0, 1), S ∈ (X )n, τ,m ∈ N, a sequence of sorters E1, ...Eτ , and an
(ϵ, δ)-differentially private algorithm A

S0 = S;
for i = 1, 2, ...τ do

m̃← m+Geom(1− e−ϵ);
maxm̃(Si−1)← the largest m̃ elements in Ei(Si−1);
Si ← Si−1 \maxm̃(Si−1);
ri ← A(maxm̃(Si−1));

end
return r1, ...rτ

The main idea of this paradigm is that during the iterative process, it is possible to
eliminate the single differing element and thereby reduce the privacy cost. In particular,
let S, S′ = S ∪ {(x′, y′)} be neighboring samples and we execute ReorderSliceCompute in
parallel with the inputs. Let Si, S

′
i be the respective datasets for the two executions during

the i-th iteration. If during some iteration j, x′ is included in the subset maxm̃(S′
j−1)

and the corresponding noises wj and w′
j satisfy wj = w′

j − 1, then the extra element x′

will be eliminated from S′. The remaining processes are now ’synchronized’ and no more
privacy cost introduced. Consequently, by carefully analyzing the privacy cost incurred by
the differing element, the algorithm preserves privacy requirements as follows:

Lemma 20 (Privacy of ReorderSliceCompute Cohen et al. (2023)) For any δ′ > 0,
Algorithm 7 is (O(ϵlog(1/δ′)), δ′ + 2δτ)-differentially private.

This implies that the total privacy cost avoids the dependence on τ in terms of ϵ, ensuring
our improvement of the sample complexity without sacrificing the privacy parameters in
higher dimensions. We prove the correctness of AHighH in Theorem 21.
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Theorem 21 For any ϵ, δ, α, β ∈ (0, 1) and δ′ > 0, if there is an (ϵ, δ)-differentially private
(α, β)-empirical learner AThr that learns thresholds on a finite domain XThr with sample
complexity nThr(XThr, ϵ, δ, α, β), then with sample complexity

n = O(nThr(XThr, O(
ϵ

log( 1
δ′ )

),
δ − δ′

2(d− 1)
,

α

d− 1
,

β

d− 1
)),

Algorithm 6 is an (ϵ, δ)-differentially private (α, β)-empirical learner for d-dimensional half-
spaces.

While a direct estimation of privacy composition introduces a 1
d0.5

term to the privacy
parameter, we avoid it with a tighter bound on the privacy cost induced by the differing
element. With this result, we obtain the following:

Corollary 22 For any privacy parameters ϵ, δ ∈ (0, 1), any desired accuracy parameters
α, β ∈ (0, 1), given a realizable sample with size

n = O(d ·
log∗ |X | · log2 (d·log

∗ |X |
βδ )

αϵ
),

there is a (ϵ, δ)-differentially private (α, β)-empirical learner A : (X d × {−1, 1})n → H for
d-dimensional half-spaces.

To this end, we have improved the upper bound on the sample complexity of privately
learning half-spaces over X d to Õ(d · log∗ |X |), where the remaining d term is introduced by
the setting of the error bound α.

4. Conclusion

In this paper, we proposed a private learner for half-spaces over a finite grid X d ∈ Rd with
sample complexity linear in both d and log∗ |X |, which improves the previous known bound
Õ(d2.5 · 8log∗ |X |) by Kaplan et al. (2020b), and answers an open problem raised by them.
Moreover, this improves over the generic bound O(d2·log |X |) in terms of both the dimension
and the domain size. However, the optimal sample complexity for learning half-spaces with
(approximate) differential privacy remains open. Besides, via the known transformation
from the realistic to the agnostic setting (Beimel et al. (2021), Alon et al. (2020)), the
sample complexity increases up to Õ(d · log∗ |X |+ d2). It is not clear whether this gap can
be closed. Lastly, the dominant complexity of our algorithm is O(d2 · X 2(d+1) · |S|), where
the computation of the quality functions can be the bottleneck. We leave it as a future
work.
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