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Abstract

While deep learning has witnessed remarkable
achievements in a wide range of applications,
its substantial computational cost imposes limita-
tions on application scenarios of neural networks.
To alleviate this problem, low-rank compression
is proposed as a class of efficient and hardware-
friendly network compression methods, which
reduce computation by replacing large matrices in
neural networks with products of two small ones.
In this paper, we implement low-rank networks by
inserting a sufficiently narrow linear layer without
bias between each of two adjacent nonlinear lay-
ers. We prove that low-rank Swish networks with
a fixed depth are capable of approximating any
function from the Hölder ball Cβ,R([0, 1]d) within
an arbitrarily small error where β is the smooth
parameter and R is the radius. Our proposed con-
structive approximation ensures that the width of
linear hidden layers required for approximation is
no more than one-third of the width of nonlinear
layers, which implies that the computational cost
can be decreased by at least one-third compared
with a network with the same depth and width of
nonlinear layers but without narrow linear hidden
layers. Our theoretical finding can offer a theo-
retical basis for low-rank compression from the
perspective of universal approximation theory.

1. Introduction
The universal approximation theory (UAT) for neural net-
works mainly studies the quantitative and qualitative aspects
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(b) a low-rank network

(a) a classical feedforward network

Figure 1. An illustration of the difference between classical feed-
forward network and low-rank network. A classical feedforward
network is composed of several nonlinear hidden layers and a
linear output layer. A low-rank network is composed of several
interleaved nonlinear and linear layers where the last linear layer
act as the output layer. A “△” stands for an input neuron, a “⃝”
stands for a nonlinear neuron (i.e. neuron with activation function),
and a “□” stands for a linear neuron (i.e. neuron without activation
function).

of how neural networks can approximate a specific class of
functions to an arbitrarily small error (Hornik et al., 1989;
Cybenko, 1989; Leshno et al., 1993; Yarotsky, 2017; Yarot-
sky & Zhevnerchuk, 2020; Siegel, 2023; Li et al., 2024a),
providing a solid foundation for understanding their out-
standing performance in a wide variety of fields such as
computer vision (Tolstikhin et al., 2021; Li et al., 2024b),
speech recognition (Graves et al., 2013; Ren et al., 2019),
natural language processing (Touvron et al., 2023; Li et al.,
2023), intelligent healthcare (Ren et al., 2021; Shi et al.,
2022), and smart city (Wang et al., 2022a;b; Jiang et al.,
2023; Ji et al., 2025).

In the realm of theoretical statistics, the upper bound of the
approximation rate is one of the most important ingredients
to derive the consistency and convergence rate of neural
network estimates (Chen & White, 1999; Schmidt-Hieber,
2020; Kohler & Langer, 2021; Farrell et al., 2021). Based on
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the convergence rate, we could further obtain the pointwise
asymptotic normality of neural network estimates and the
asymptotic normality of functionals of neural network esti-
mates, which is a key step towards constructing confidence
intervals and conducting hypothesis testings (Shintani &
Linton, 2004; Horel & Giesecke, 2020; Zhong et al., 2022).
Evidently, the UAT for neural networks occupies a central
position within the framework of learning theory.

Numerous works focused on UATs of ReLU neural net-
works(Yarotsky, 2017; 2018; Opschoor et al., 2022), owing
to its highly efficient computation. However, due to the fact
that the derivative of ReLU is zero on (−∞, 0), if the input
of a ReLU neuron is less than zero, its related parameters
cannot be trained, which is referred to as the “dying ReLU”
problem. Moreover, ReLU suffers from poor smoothness,
as it merely possesses a discontinuous weak derivative up
to the first order and the higher order derivatives are zero al-
most everywhere. Consequently, ReLU neural networks are
unable to achieve universal approximation with higher-order
Sobolev norms. In practice, problems in some fields such as
ecology, economics, and engineering physics concern not
only the estimation of the unknown function f0, but also
the estimation of its high-order derivatives(Shyu & Caswell,
2014; Wang & Werning, 2022), which cannot be estimated
using ReLU networks.

The Swish (SiLU, sigmoid-weighted linear unit) activation
function 1 inherits the advantages of ReLU while alleviating
the above problems, since Swish is an infinitely differen-
tiable function with a shape similar to that of ReLU and
a nonzero derivative almost everywhere. Empirical stud-
ies across various tasks and architectures show that Swish
neural networks generally perform better than ReLU neu-
ral networks and are seldom significantly inferior to other
popular activation functions such as ELU, GELU, Swish,
and Mish(Eger et al., 2018; Dubey et al., 2022). However,
works on UATs related to Swish neural networks are scarce.

Network compression aims to decrease the computational
and memory costs of neural networks by compressing their
sizes. Common network compression methods can be clas-
sified into four categories: pruning (Dong et al., 2017), low-
rank compression (Idelbayev & Carreira-Perpiñán, 2020),
quantization (Jacob et al., 2018), and knowledge distilla-
tion (Hinton et al., 2015). Except low-rank compression,
the remaining categories of methods are all underpinned
by UATs to some extent. For pruning, Yarotsky(2017),
Petersen & Voigtlaender(2018), and Bolcskei et al.(2019)
show that sparse neural networks, which can be viewed as
the results of pruning fully-connected networks, could also

1Strictly speaking, Swish x 7→ x(1 + e−βx)−1 proposed by
Ramachandran et al.(2018) and SiLU x 7→ x(1+e−x)−1 proposed
by Elfwing et al.(2018) are slightly different. This paper ignored
the difference by defaulting β to 1.

be universal approximators. Their results indicate that only
O(LH) nonzero parameters are required to achieve the op-
timal approximation rate, where L is the depth and H is
the width. For quantization, Petersen & Voigtlaender(2018)
proves that networks with parameters encoded by O(log2

1
ε )

bits can approximate piecewise smooth functions to ε and
Gühring & Raslan(2021) proves the same quantization con-
dition for approximating smooth functions by networks with
general smooth activation functions. As for knowledge dis-
tillation methods, all research efforts involving upper and
lower bounds of sizes of networks needed to achieve a rapid
approximation rate can offer valuable insights for the design
of student networks (Shen et al., 2022b; Hon & Yang, 2022;
Liu & Chen, 2024).

Low-rank compression is a class of efficient and hardware-
friendly neural network compression techniques that approx-
imate weight matrices through matrix factorization (Denil
et al., 2013; Sainath et al., 2013). A standard low-rank
compression pipeline typically involves two key steps: first,
decomposing weight matrices of the trained network into
pairs of low-rank matrices, followed by fine-tuning the re-
sulting low-rank network on the training dataset. Intuitively,
whether low-rank compression can preserve performance
without significant degradation depends on the properties of
the original weight matrices, which are inherently shaped
by the training data distribution. Consequently, there is no
universal guarantee that low-rank compression will remain
effective across diverse tasks and domains. However, ex-
tensive empirical evidence suggests that low-rank compres-
sion can achieve significant computational savings while
maintaining nearly identical network performance in most
practical applications. Our main theoretical result (Theorem
4.1) provides a principled explanation for the universal ef-
fectiveness of low-rank compression in preserving model
performance.

In this paper, we develop the theoretical foundation for low-
rank compression from the perspective of approximation
theory by answering the question of whether a low-rank
neural network can serve as a good approximator for a
wide range of functions. To be specific, we consider how
Swish neural networks with a sufficiently narrow linear
layer without bias between each of two adjacent nonlinear
layers, called low-rank Swish networks, can approximate
any function from the Hölder ball Cβ,R([0, 1]d) where β ∈
R+ is the smooth parameter and R ∈ R+ is the radius
of the ball. For any f ∈ Cβ,R([0, 1]d), we divide [0, 1]d

into Md hypercubes where M ∈ N+, then approximate f
by a sum–product combination of Taylor expansions and
approximate bump functions 2 at all grid points of [0, 1]d

where an approximate bump function at a point refers to

2Here we adopt the term “approximate bump function” to dis-
tinguish from “bump function” (also called “test function”) which
refers to infinitely differentiable function with compact support.
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a scalar function whose absolute value is small when the
input is away from the point. Then we construct Taylor
polynomials and approximate bump functions using neural
networks respectively, multiply them together, and sum up.

Our main contributions are as follows:

• We derive an upper bound of error for approximating
any function from the Hölder ball Cβ,R([0, 1]d) by us-
ing low-rank Swish networks and provide the required
depth, width of linear hidden layers, width of nonlinear
layers, upper bound of number of nonzero parameters,
and upper bound of absolute values of parameters.

• Our constructive approximation guarantees that the
width of linear hidden layers is no more than one-third
of the width of nonlinear layers, indicating the quan-
tity of multiplication operations occurred in all hidden
layers except the first one could be reduced by at least
one-third compared with a network with the same depth
and width of nonlinear layers but without linear hidden
layers.

2. Related Works
2.1. Universal Approximation

The research on UATs began with one-hidden-layer neural
networks. Hornik et al.(1989) proved that one-hidden-layer
neural networks activated by an arbitrary squashing func-
tion are capable of approximating any measurable function
on a compact set to any small error measured in the sup
norm. In the same year, a similar result was published
by Cybenko(1989). Hornik et al.(1990) improved Hornik
et al.(1989)’s result by replacing the sup norm with the first-
order Sobolev norm. Barron(1993) further specified that the
approximation rate of one-hidden-layer neural networks for
a specific class of functions is of the order O( 1n ) where n
represents the number of hidden nodes.

With the development of computational technology, the
training and deployment of deep neural networks have be-
come possible. A series of works have demonstrated that for
certain functions, if approximated by shallow networks, the
required width is far greater than that needed when approxi-
mated by deep networks (Eldan & Shamir, 2016; Telgarsky,
2016; Safran & Shamir, 2017; Rolnick & Tegmark, 2018).

In the last decade, works on approximation theories of
deep ReLU networks account for a large proportion. Yarot-
sky(2017) first demonstrated how to approximate general
smooth functions using deep ReLU networks. He proved
that ReLU networks with depth O(log( 1ε )) and number of
nonzero parameters O(ε−

d
n log( 1ε )) can approximate any

function from the unit ball of Sobolev space Wn,∞([0, 1]d)
within ε. Yarotsky(2018) studied approximations of continu-

ous functions on compact domains by deep ReLU networks.
Liu & Chen(2024) proved that deep ReLU networks with
width d + 1 can achieve the optimal approximation rate
where d is the input dimension. DeVore et al.(2021) wrote a
survey on UATs of ReLU networks.

Deep neural networks activated by popular ReLU-like
functions, including ELU (Clevert et al., 2016), GELU
(Hendrycks & Gimpel, 2016), Swish (Ramachandran et al.,
2018), and Mish (Misra, 2020), have attained great empirical
success in a diverse range of real-world applications (Ken-
ton & Toutanova, 2019; Bochkovskiy et al., 2020), inspiring
theoretical exploration of networks activated by them. Ohn
& Kim(2019) achieved an approximation theorem appropri-
ate for deep neural networks activated by a wide range of
functions. Although their result encompassed Swish neural
networks, we demonstrate in Corollary 4.2 that the same
approximation error can be achieved with a shallower depth
and a smaller upper bound of absolute values of parame-
ters. Zhang et al.(2024) showed that ReLU networks can be
approximated by networks with commonly used activation
functions, at the cost of only increasing the depth and width
of the networks by a small constant multiple.

Besides classical feedforward networks, there are some
novel studies on the approximation capabilities of mod-
ern network architectures. Shen et al.(2022a) derived a
non-asymptotic approximation error bound for deep convo-
lutional neural networks in Sobolev space. Yun et al.(2020)
and Zaheer et al.(2020) showed transformers are universal
approximators of sequence-to-sequence functions. Lin &
Jegelka(2018) studied the universal approximation property
of residual networks activated by ReLU.

2.2. Approximation Theory Foundations for Network
Compression

Network compression methods are divided into four major
categories: pruning, low-rank compression, quantization,
and knowledge distillation. Apart from low-rank compres-
sion, all the others have evidence from the universal approx-
imation theory to support their rationality.

Pruning methods downsize a network by eliminating either
unimportant parameters (LeCun et al., 1989; Dong et al.,
2017) or (groups of) neurons (Xia et al., 2022; Ko et al.,
2023). The former is generally referred to as unstructured
pruning, while the latter is known as structured pruning. For
unstructured pruning, Yarotsky(2017), Petersen & Voigt-
laender(2018), and Bolcskei et al.(2019) showed sparse
neural networks are enough to achieve the optimal approx-
imation rate for smooth functions with O(LH) nonzero
parameters where L represents the depth and H represents
the width. The UAT foundation of structured pruning is
presented together with knowledge distillation later.
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Quantization methods are designed to cut down on both
computational load and storage requirements by employing
a reduced number of bits to encode parameters(Jacob et al.,
2018). Petersen & Voigtlaender(2018) demonstrated that
networks with parameters encoded using O(log2

1
ε ) bits are

capable of approximating piecewise smooth functions with
error ε. Similarly, Gühring & Raslan (2021) established the
identical quantization condition for approximating smooth
functions by networks with general smooth activation func-
tions.

Knowledge distillation utilizes the outputs of a large net-
work as labels to train a small network, then replaces the
large network with the small one to achieve compression
(Hinton et al., 2015; Mirzadeh et al., 2020; Kim et al., 2022).
In terms of compression, both knowledge distillation and
structured pruning employ a network that is narrower and/or
shallower to substitute for the original network. Research
efforts on the upper and lower bounds of network sizes for
rapid approximation rates can offer theoretically guaran-
teed structural design for compressed networks (Shen et al.,
2022b; Hon & Yang, 2022; Liu & Chen, 2024).

3. Preliminaries
3.1. Notations

We denote the set of real numbers by R, the set of positive
real numbers by R+, the set of natural numbers by N, and
N−{0} by N+. For n ∈ N, we denote the set {0, 1, . . . , n}
by [n] and [n] − {0} by [n]+. If n = 0, then [n]+ is ∅.
For x ∈ R, ⌈x⌉ denotes the smallest integer greater than or
equal to x and ⌊x⌋ denotes the largest integer less than or
equal to x.

Vectors are denoted by bold lowercase letters, for example
x := (x1, x2, . . . , xd)

⊤ ∈ Rd is a d-dimensional vector.
Matrices are denoted by bold uppercase letters, for example
W ∈ Rm×n is a matrix with m rows and n columns whose
element at i-th row and j-th column iswij . A d-dimensional
multi-index α is a vector in Nd. For a multi-index α and a
vector x, we denote |α| :=

∑d
i=1 αi, α! :=

∏d
i=1 αi, and

xα :=
∏d

i=1 x
αi
i .

Let X and Y be two sets. The notation f : X → Y de-
notes the function f with domain X and co-domain Y . For
an univariate function f : X ⊂ R → R, its n-th derivative
is denoted by f (n). If n ≤ 3, we also use f ′, f ′′, and f ′′′ to
denote 1-st, 2-nd, and 3-rd derivatives respectively. For a
multivariate function f : X ⊂ Rd → R and a multi-index
α, we denote

∂α :=
∂|α|

∂α1∂α2 . . . ∂αd

and the α-order partial derivative of f by ∂αf .

The meaning of sup norm ∥ · ∥∞ varies with its input. For a

vector x, ∥x∥∞ := maxi |xi|. For a matrix A, ∥A∥∞ :=
maxi,j |ai,j |. For a function f : X → R, ∥f∥∞ :=
supx∈X |f(x)|. Note that for a function f : X → Rm

with integer m > 1, ∥f(x)∥∞ := maxi |(f(x))i| because
f(x) is a vector. For a vector or matrix, ∥ · ∥0 denotes its
total number of nonzero elements. Finally, we denote the
combinatorial number for all m,n ∈ N by(

m

n

)
:=

{
m!

n!(m−n)! , m ≥ n ≥ 0,

0, otherwise.

3.2. Low-Rank Swish Network

Drawing upon established works in low-rank compression
(including but not limited to Denil et al.(2013), Sainath
et al.(2013), and Idelbayev & Carreira-Perpiñán(2020)), we
formally define low-rank network as:

Definition 3.1 (Low-rank Network). Let d, o ∈ N+ be
the input and output dimensions and ρ : R → R be the
nonlinear activation function. For a vector input x ∈ Rn,
ρ(x) := (ρ(x1), ρ(x2), . . . , ρ(xn))

⊤. Let L be the depth,
i.e. the number of nonlinear layers, H be the width of
nonlinear layers and Hi be the width of i-th linear hidden
layer such that

2H < H (1)

that is called the low-rank condition. A low-rank Swish
network nn : X ⊂ Rd → Ro with depth L, width of
nonlinear layers H, width of linear hidden layersH , number
of nonzero parameters S, and maximum absolute value of
parameters B is a function defined by

nn(x) := lL ◦ lL−1 ◦ · · · ◦ l2 ◦ l1(x) + bL+1 (2)
li(z) := Viρ(Wiz + bi) (i ∈ [L]+) (3)

where W1 ∈ RH×d, Wi ∈ RH×H for i ∈ [L]+ − {1},
Vi ∈ RH×H for i ∈ [L − 1]+, VL ∈ Ro×H, bi ∈ RH for
i ∈ [L]+, and bL+1 ∈ Ro such that

1. S =
∑L

i=1(∥Wi∥0 + ∥Vi∥0) +
∑L+1

i=1 ∥bi∥0,

2. B = max{maxi∈[L]+ ∥Wi∥∞,maxi∈[L]+ ∥Vi∥∞,
maxi∈[L+1]+ ∥bi∥∞}.

Figure 1 illustrates the difference between the classical feed-
forward network and the low-rank network. Here we explain
why the “low-rank” network achieves low-rank compres-
sion. Let’s denote the output of the i-th nonlinear layer by
zi ∈ RH and the output of the i+ 1-th nonlinear layer by
zi+1 ∈ RH. In a low-rank network, by Definition 3.1, we
have

zi+1 = ρ(Wi+1Vizi + bi+1) (4)

where the weight Wi+1 ∈ RH×H and the weight Vi ∈
RH×H. For a classical feedforward network with the same
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depth and width of nonlinear layers,

zi+1 = ρ(W̃i+1zi + b̃i+1) (5)

where the weight W̃i+1 ∈ RH×H. The low-rank condition
(1) ensures that the number of elements in Wi+1 and Vi is
no more than the number of elements in W̃i+1, i.e.

2HH < H2, (6)

suggesting the memory required for storing weight matrices
is compressed. And the condition (1) also naturally implies
that the quantity of multiplication operations to calculate
from zi to zi+1 in the low-rank network is no more than
that in the classical feedforward network, i.e.

HH2 +HH2 < H3, (7)

suggesting the computational cost is compressed.

The Swish activation function ρ : R → R is defined by

ρ(x) :=
x

1 + e−x
. (8)

A low-rank network activated by Swish is called a low-rank
Swish network.

3.3. Hölder Function

Definition 3.2 (Hölder Space). Let d ∈ N+, X ∈ Rd and
β ∈ R+. There exist κ ∈ N and 0 < γ ≤ 1 such that
β = κ+ γ. For a function f : X → R, its Hölder norm is
defined by

∥f∥Cβ := max

{
sup
|α|≤κ

∥∂αf∥∞,

sup
|α|=κ

sup
x̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥γ∞

} (9)

And the Hölder space Cβ([0, 1]d) is defined as the set{
f : X → R

∣∣ ∥f∥Cβ <∞
}

(10)

equipped with Hölder norm ∥f∥Cβ .

We call functions in Cβ([0, 1]d) Hölder functions. When
0 < β ≤ 1 (i.e. κ = 0), we call them Hölder continuous
functions. When β > 1 (i.e. κ ∈ N+), we call them Hölder
smooth functions. Next we define the Hölder ball with
radius R.

Definition 3.3 (Hölder Ball). Let d ∈ N+, X ∈ Rd, R ∈
R+, and β = κ + γ, κ ∈ N, γ ∈ (0, 1]. The Hölder ball
Cβ,R([0, 1]d) is defined by{

f : X → R
∣∣ ∥f∥Cβ ≤ R

}
. (11)

4. Approximation Theorem for Low-Rank
Swish Neural Networks

Theorem 4.1. Let β ∈ R+, β = κ + γ, κ ∈ N, γ ∈ (0, 1],
and R ∈ R+. For all f ∈ Cβ,R([0, 1]d), M ∈ N+, λ ≥
2−

1
3 , and τ ≥ 1, there exists a low-rank Swish network

nn : [0, 1]d → R with depth

max
{⌈κ

2

⌉
, ⌈log2 d⌉+ 1

}
+ 1,

width of nonlinear layers

2

(
d+ 1

d− 1

)
+ 4

(
d+ κ− 2

d− 1

)
+ 4

(
d+ κ− 1

d− 1

)
+ 6(M + 1)d,

width of linear hidden layers(
d+ 1

d− 1

)
+

(
d+ κ− 3

d− 1

)
+

(
d+ κ− 2

d− 1

)
+ 2(M + 1)d,

upper bound of absolute values of parameters

max

(3M + 2)τ, 2λ2 max
|α|≤κ


∑
ν≥α
|ν|≤κ

R

ν!

d∏
i=1

(
νi
αi

) , 2λ2

 ,

and upper bound of number of nonzero parameters

c1 + c2(M + 1)d

such that

|nn(x)− f(x)|

≤ c3
(M + 1)d

λ2
+ c4M

−β + c5(M + 1)dτe−τ
(12)

for all x ∈ [0, 1]d, where c1, c2, c3, c4, and c5 are positive
constants depending only on d, κ, and R.

An extended version of Theorem 4.1 is presented in Ap-
pendix A as Theorem A.24. In Theorem A.24 we pro-
vide the exact formulas for upper bounds of the number
of nonzero parameters and the approximation error. Next,
we show a way to set the network size in Corollary 4.2 to
ensure that the approximation error can be arbitrarily small.
Corollary 4.2. Let β > 0 and R ∈ R+. For all 0 < ε ≤
3c4, there exists a low-rank Swish network nn : [0, 1]d → R
with depth O(1), width of nonlinear layers O(ε−

d
β ), width

of linear hidden layers O(ε−
d
β ), maximum absolute value of

parameters O(ε−
β+d
β ), and number of nonzero parameters

O(ε−
d
β ) such that

|f(x)− nn(x)| ≤ ε ∀x ∈ [0, 1]d. (13)

The proof ideas of Theorem 4.1 is showed in section 5. And
the rigorous proofs of Theorem 4.1 and Corollary 4.2 are
showed in Appendix A.
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Remark 4.3 (Comparison with (Ohn & Kim, 2019)). Ohn
& Kim(2019) demonstrated in their Theorem 1 that for any
continuous piecewise linear or locally quadratic function
there exists a feedforward neural network activated by it
with depth O(log 1

ε ), width O(ε−
d
β ), number of nonzero

paramters O(ε−
d
β log( 1ε )), and maximum absolute value

of parameters O(ε−
4(β+d)

β ) can approximate any functions
from the Hölder ball Cβ,R([0, 1]d) within ε. Because the
Swish is a locally quadratic function, their result holds for
Swish networks. Compared with Corollary 4.2, we only
requires a constant depth to achieve an approximation error
within ε. Moreover, our growth rates of the number of
nonzero parameters and the maximum absolute value of
parameters with respect to ε are better than those in Theorem
1 in (Ohn & Kim, 2019).
Remark 4.4 (Low-rank compression). In Theorem 4.1, we
notice that, when β > 2 (i.e. κ ≥ 2), the width of linear
hidden layers is always no more than one-third of the width
of nonlinear layers, since

3

((
d+ 1

d− 1

)
+

(
d+ κ− 3

d− 1

)
+

(
d+ κ− 2

d− 1

)
+ 2(M + 1)d

)

≤ 2

(
d+ 1

d− 1

)
+ 4

(
d+ κ− 2

d− 1

)
+ 4

(
d+ κ− 1

d− 1

)
+ 6(M + 1)d

⇐

(
d+ 1

d− 1

)
≤

(
d+ κ− 2

d− 1

)
+

(
d+ κ− 1

d− 1

)

⇐

(
d+ 1

d− 1

)
≤

(
d

d− 1

)
+

(
d+ 1

d− 1

)
.

For a low-rank network with depthL, width of linear hidden
layers H , and width of nonlinear layers H, excluding the
first and the last layers, evaluating it at one point requires
(L− 1)(HH2 +H2H) multiplication operations. However,
for a classical feedforward network with the same depth
and width of nonlinear layers, excluding the first and the
last layers, evaluating it at one point requires (L − 1)H3

multiplication operations. When H ≥ 3H , the low-rank
network can guarantee that the quantity of multiplication
operations is reduced by at least one-third compared to the
classical feedforward network, since

(L− 1)(HH2 +H2H) ≤ 2

3
(L− 1)H3

⇐HH2 +H2H ≤ 2

3
H3

⇐H3

3
+

H3

9
≤ 2

3
H3.

Remark 4.5 (Curse of dimensionality). In the realm of neu-
ral network approximation theory, the curse of dimensional-
ity refers to the phenomenon that as the input dimension d
goes to infinity, the network size required to achieve a given
approximation error grows fast or the approximation error
grows fast when the network size is fixed. Corollary 4.2
implies that our approximation result suffers from the curse

y

h4 h5

h1 h2 h3

x1 x2 x3 x4

Figure 2. An illustration of a hierarchical composite function. x1,
x2, x3, and x4 are input variables. h1 = h1(x1, x2), h2 =
h2(x1, x3), h3 = h3(x4), h4 = h4(h1, h3), h5 = h5(h2, h3),
and y = y(h4, h5). Though the input dimension of the hierarchical
composite function is 4, the input dimensions of its component
functions do not exceed 2.

of dimensionality, which poses difficulties in approximat-
ing high-dimensional functions. Here we briefly introduce
a class of high-dimensional functions, called hierarchical
composite functions, which are universal in reality and can
be approximated without being affected by the curse of di-
mensionality. A hierarchical composite function, as shown
in Figure 2, is composed of multiple layers of functions and
each component function is of low input dimension. It is
obvious that the network size required to approximate hier-
archical composite functions is directly related to the input
dimension of each component function and has no direct
relation to the input dimension of the hierarchical composite
functions, because we can construct networks to approxi-
mate component functions respectively, then combine them
into one network (Schmidt-Hieber, 2020; Kohler & Langer,
2021).

5. Proof Ideas
The proof of Theorem 4.1 can be segmented into four steps:

Step 1: approximating any Hölder function f by a
sum–product combination of Taylor polynomials and
approximate bump functions

Let M ∈ N+. We divide [0, 1]d into congruent hypercubes
with side length 1/M , then get (M+1)d grid points. For any
f ∈ Cβ,R([0, 1]d) and any m ∈ [M ]d, its κ-order Taylor
expansion at the grid point m/M is denoted by

Pκ
m(x) :=

∑
|α|≤κ

∂αf(m/M)

α!

(
x− m

M

)α
, (14)

6
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where α ∈ Nd stands for multi-index.
Lemma 5.1. Let β ∈ R+, β = κ + γ, κ ∈ N, γ ∈ (0, 1],
and R ∈ R+. For all f ∈ Cβ,R([0, 1]d),M ∈ N+,m ∈
[M ]d, and x ∈ [0, 1]d,

|f(x)− Pκ
m(x)| ≤

(
κ+ d− 1

d− 1

)
R
∥∥∥x− m

M

∥∥∥β
∞
. (15)

Lemma 5.1 shows Pκ
m is a good approximator around

m/M , but the error cannot be well controlled when x is far
away from m/M . Next we introduce a technique proposed
by (Gühring & Raslan, 2021) to deal with this problem.

Let τ ∈ R+. Define ϕτm, an approximate bump function at
the grid point m/M , by

ψτ (x) :=
1

τ
(ρ(τ(x+ 2))− ρ(τ(x+ 1))

− ρ(τ(x− 1)) + ρ(τ(x− 2))) (16)

ϕτm(x) :=

d∏
i=1

ψτ
(
3M

(
xi −

mi

M

))
. (17)

The graph of ϕτm looks like a bump at the grid point m/M .
Lemma A.7 guarantees that |ϕτm(x)| is bounded when ∥x−
m/M∥∞ ≥ 1/M and the bound goes to zero as τ increases.
By intuition, ϕτm can preserve the value of Pκ

m when x
is near m/M and eliminate the influence of Pκ

m when x
is far from m/M . Thus, for every grid point, we use the
product of the Taylor polynomial and the approximate bump
function at this point to approximate f around this point,
then sum up the products at all grid points to approximate f
on [0, 1]d.
Lemma 5.2. Let β > 0, β = κ+ γ, κ ∈ N, γ ∈ (0, 1], and
R ∈ R+. For all f ∈ Cβ,R([0, 1]d),M ∈ N+, τ ≥ 1 and
x ∈ [0, 1]d,∣∣∣∣∣∣f(x)−

∑
m∈[M ]d

Pκ
m(x)ϕτm(x)

∣∣∣∣∣∣
≤ 6τe−τR

(2∥ρ′∥∞)d − 1

2∥ρ′∥∞ − 1
+

3dM−β

(
κ+ d− 1

d− 1

)
R(2∥ρ′∥∞)d+

6(M + 1)dτe−τ

(
κ+ d− 1

d− 1

)
R(2∥ρ′∥∞)d−1.

(18)

Step 2: approximating (Pκ
m)m∈[M ]d by a low-rank Swish

network P
Lemma 5.3. Let a ∈ Rd and bα ∈ R for all α ∈ Nd with
|α| ≤ κ. For all x ∈ Rd,∑
|α|≤κ

bα(x−a)α =
∑

|α|≤κ

xα
∑
ν≥α
|ν|≤κ

bν

d∏
i=1

(
νi
αi

)
(−ai)νi−αi .

(19)

Note that for two multi-indexes we say ν ≥ α iff νi ≥ αi

for all i. Lemma 5.3 shows Pκ
m could be represented as a

linear combination of monomials xα with |α| ≤ κ. Next
we construct all monomials xα in a network and Taylor
polynomials at all grid points by linear combinations of xα

whose coefficients determined by Lemma 5.3.

First we show a Swish network of depth 1 and width 2 can
approximate the square function.

Lemma 5.4. Let λ > 0. Then for all x ∈ R, there exist ξ
between 0 and x

λ and ζ between 0 and −x
λ such that

2λ2
(
ρ
(x
λ

)
+ ρ

(
−x
λ

))
= x2 +

ρ(4)(ξ) + ρ(4)(ζ)

12
· x

4

λ2
(20)

and ∣∣∣2λ2 (ρ(x
λ

)
+ ρ

(
−x
λ

))
− x2

∣∣∣ ≤ x4

12λ2
. (21)

Together with the polarization identity, we show a Swish
network of depth 1 and width 4 can approximate the multi-
plication function.

Lemma 5.5. Let λ > 0. For all x, y ∈ R,∣∣∣∣∣2λ2
(
ρ

(
x+ y

2λ

)
+ ρ

(
−x+ y

2λ

)
− ρ

(
x− y

2λ

)
−

ρ

(
−x− y

2λ

))
− xy

∣∣∣∣∣ ≤ 1

12λ2
· x

4 + 6x2y2 + y4

8
.

(22)

Next we show a Swish network of depth 1 and width 2 can
mimic the identity function exactly.

Lemma 5.6. For all x ∈ R,

ρ(x)− ρ(−x) = x

1 + e−x
− −x

1 + ex
= x. (23)

Next we briefly describe how to construct monomials and
Taylor polynomials in a network as depicted in Figure 3 in
Appendix A. The detailed construction is presented in the
proof of Lemma A.17. According to Lemma 5.6, 5.4 and
5.5, we use a nonlinear layer followed by a linear layer to
construct all 1st- and 2nd-order monomials from input vari-
ables x1, x2, . . . , xd. Then we utilize another linear layer
of width (M + 1)d linked to the previous nonlinear layer to
construct the first two orders of Taylor polynomials at all
(M+1)d grid points. The weights and biases are determined
by Lemma 5.6, 5.4, 5.5, and 5.3. We concatenate these two
linear layers in parallel as one which follows behind the
nonlinear layer. Next, following the similar way, we con-
struct all 2nd-, 3rd-, and 4th-order monomials from 1st- and
2nd-order monomials via a nonlinear layer followed by a
linear layer. And we use another nonlinear layer followed
by a linear layer to preserve the first two orders of all Taylor

7
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polynomials by Lemma 5.6, then connect this linear layer
to the previous nonlinear layer which constructs 3rd- and
4th-order monomials to approximate the first four orders
of all Taylor polynomials. Then we concatenate these two
nonlinear layers and two linear layers respectively as one
nonlinear layer followed by one linear layer. In the follow-
ing steps, letting the initial value of l be 2, we repeat the
process until (Pκ

m)m∈[M ]d is completely constructed:

1. using a nonlinear layer followed by a linear layer to
construct 2nd-, (2l+1)th-, and (2l+2)th-order mono-
mials from 2nd-, (2l − 1)th-, and (2l)th-order mono-
mials;

2. using another nonlinear layer followed by a linear layer
to preserve the first 2l orders of (Pκ

m)m∈[M ]d , then
adding connections to the nonlinear layer which con-
structs (2l + 1)th- and (2l + 2)th-order monomials to
approximate the first 2l + 2 orders of (Pκ

m)m∈[M ]d ;

3. concatenating these two nonlinear layers and two linear
layers in parallel respectively as one nonlinear layer
followed by one linear layer;

4. letting l := l + 2 and constructing the next nonlinear
and linear layers by step 1 to 4 until (Pκ

m)m∈[M ]d is
completely constructed.

We denote the network constructed above by P : [0, 1]d →
R(M+1)d . The approximation error and network size is
shown in Lemma A.17.

Step 3: approximating (ϕτm)m∈[M ]d by a low-rank Swish
network G

It is obvious that ψτ (3M(xi − mi

M )) can be exactly con-
structed by a nonlinear layer followed by a linear layer.
Then, to construct ϕτm, the key is to construct the product of
d variables. For convience, we suppose d = 2q where q ∈ N
and denote ψτ (3M(xi − mi

M )) as zi. We approximate the
mapping (z1, z2, . . . , zd) 7→ (z1z2, z3z4, . . . , z2q−1z2q )

⊤

using a nonlinear layer followed by a linear layer according
to Lemma 5.5. By applying the above way q times iter-
atively, we get

∏d
i=1 zi, i.e. ϕτm. For all m ∈ [M ]d, we

construct ϕτm in parallel. We denote the network constructed
above by G : [0, 1]d → R(M+1)d . The approximation error
and network size is shown in Lemma A.22.

Step 4: approximating
∑

m∈[M ]d P
κ
mϕ

τ
m by the inner

product of P and G

Based on the constructive approximation before, we have
that network P approximates (Pκ

m)m∈[M ]d and network G
approximates (ϕτm)m∈[M ]d . Considering that the depths
of P and G may be different, we construct several nonlin-
ear and linear layers according to Lemma 5.6 to align their
depths. And we still denote the two aligned networks by

Table 1. Cross-validation results for classical feedforward net-
works and low-rank networks on various classification (top) and
regression (bottom) datasets. L represents the depth (i.e. the num-
ber of nonlinear layers) of both networks and H represents the
depth of nonlinear layers of both networks.

DATASET L H ACC(%) tclassical low-rank

Iris 4 20 95.3± 4.3 94.7± 5.0 0.36
Rice 2 35 92.7± 1.9 92.6± 2.0 1.00
BankMarketing 2 188 68.9± 15.3 71.1± 15.4 −2.01
Adult 2 540 85.8± 0.3 85.8± 0.3 −0.47

DATASET L H RMSE tclassical low-rank

RealEstate 4 30 .078± .021 .077± .020 1.29
Abalone 3 50 .077± .022 .077± .022 −0.44
WineQuality 4 78 .123± .009 .123± .009 1.21
BikeSharing 4 60 .100± .036 .070± .024 3.90

P and G. By Lemma 5.5, we construct a nonlinear layer
with width 4(M + 1)d and a subsequent linear layer with
width 1 to multiply the output dimensions of P and G cor-
responding to the same grid point respectively, and then
sum them up. We denote the final network by nn which ap-
proximates

∑
m∈[M ]d P

κ
m(x)ϕτm(x). The approximation

error and size of nn is showed in Theorem 4.1 and Theorem
A.24.

6. Experiments
Our Theorem 4.1 shows that for a classical feedforward
Swish network with appropriate size, compressing each of
its weight matrix of size H×H to the product of two small
matrices of size H× H

3 and H
3 ×H will not result in a loss

of approximation ability. Here we conduct experiments to
verify that the ratio 1/3 is safe.

We choose eight popular UCI datasets, four of which are
used for classification tasks and four for regression tasks.
For each dataset, we convert each category feature to several
dummy features, then scale all features to [0, 1]. For regres-
sion datasets, we also scale the targets to [0, 1]. Table 2 in
Appendix B records the basic information for these datasets.
Then, for each dataset, we employ grid search with 10-fold
cross-validation to identify the optimal depth and width for
the classical feedforward Swish network. The candidate
set for the depth consists of {2, 3, 4}, and for the width,
it is {4d, 5d, 6d}, where d represents the input dimension.
Subsequently, we conduct 10-fold cross-validation to evalu-
ate the classical feedforward Swish network of the optimal
depth and width and the low-rank Swish network whose
depth and width of nonlinear layers are the same as those
of the classical feedforward Swish network and width of
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linear hidden layers is one-third of that of nonlinear layers.
In addition, we perform dependent t-tests for paired samples
on the cross-validation results.

The results of t-tests in Table 1 indicate that on all datasets,
classical feedforward Swish networks do not significantly
outperform low-rank Swish networks. Conversely, on the
BikeSharing dataset, the root mean square error (RMSE)
of the classical feedforward Swish network is significantly
higher than that of the low-rank Swish network. The exper-
imental results indicate that the compression ratio of 1/3
suggested by our Theorem 4.1 is reliable.

7. Conclusion
In this paper, we establish the theoretical foundation for
low-rank compression from the perspective of universal
approximation theory. Specifically, we prove that for any
Hölder function, there exists a Swish network with narrow
linear hidden layers sandwiched between adjacent nonlinear
layers, which can approximate the Hölder function within a
given small error. Through our constructive approximation,
we find that the width of the linear hidden layers is at most
one-third of that of the nonlinear layers. This leads to a sig-
nificant reduction: the number of multiplication operations
occurring in all hidden layers except the first one can be
decreased by at least one-third compared with a classical
feedforward network having the same depth and width of
nonlinear layers. Extensive experiments have confirmed the
reliability of our theoretical result. This research not only
enriches the theoretical understanding of low-rank compres-
sion but also holds great potential for practical applications
where computational efficiency is crucial.
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A. Technical Proofs
A.1. Approximatng f ∈ Cβ,R([0, 1]d) by

∑
m∈[M ]d P

κ
mϕ

τ
m

First we prove Lemma 5.1 which shows the approximation error of a Taylor polynomial at a grid point.

Proof of Lemma 5.1. By Taylor expansion theorem, there exists ξm ∈ [0, 1] for all m ∈ [M ] such that ∀x ∈ [0, 1]d,

|f(x)− Pκ
m(x)| =

∣∣∣∣∣∣
∑

|α|=κ

∂αf
(m
M

+ ξm

(
x− m

M

)) (x−m/M)α

α!
−
∑

|α|=κ

∂αf
(m
M

) (x−m/M)α

α!

∣∣∣∣∣∣
≤
∑

|α|=κ

∣∣∣∂αf (m
M

+ ξm

(
x− m

M

))
− ∂αf

(m
M

)∣∣∣ · |(x−m/M)α|
α!

≤
∑

|α|=κ

R
∥∥∥ξm(x− m

M
)
∥∥∥γ
∞

· |(x−m/M)α| (because f ∈ Cβ,R([0, 1]d))

≤
∑

|α|=κ

R
∥∥∥x− m

M

∥∥∥β
∞

=

(
κ+ d− 1

d− 1

)
R
∥∥∥x− m

M

∥∥∥β
∞
.

(24)

Next we show the boundedness of Pκ
m which is used to prove Lemma 5.2 latter.

Lemma A.1 (Boundedness of Pκ
m). For all x ∈ [0, 1]d,

|Pκ
m(x)| ≤

(
κ+ d− 1

d− 1

)
R
∥∥∥x− m

M

∥∥∥β
∞

+R. (25)

Proof of Lemma A.1. For all x ∈ [0, 1]d, by Lemma 5.1,

|Pκ
m(x)| ≤ |Pκ

m(x)− f(x)|+ |f(x)|

≤
(
κ+ d− 1

d− 1

)
R
∥∥∥x− m

M

∥∥∥β
∞

+R.
(26)

Next we show some important properties of ϕτm which are used in the proof of Lemma A.17.

Lemma A.2. ∀x ≥ 1, |ρ′(x)− 1| ≤ 3xe−x.

Proof of Lemma A.2. ∀x ≥ 0,

|ρ′(x)− 1| =
∣∣∣∣1 + e−x + xe−x

(1 + e−x)2
− 1

∣∣∣∣
=

∣∣∣∣e−x − xe−x + e−2x

(1 + e−x)2

∣∣∣∣
≤ e−x + xe−x + e−2x

≤ 3xe−x.

Lemma A.3. ∀x ≤ −1, |ρ′(x)| ≤ −3xex.

13
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Proof of Lemma A.3. ∀x ≤ −1,

|ρ′(x)| =
∣∣∣∣1 + e−x + xe−x

(1 + e−x)2

∣∣∣∣
≤
∣∣∣∣1 + e−x + xe−x

e−2x

∣∣∣∣
≤ e2x + ex − xex

≤ −3xex.

Lemma A.4 (Boundedness of ϕτm). Let τ ∈ R. For all x ∈ Rd,

|ϕτm(x)| ≤ (2∥ρ′∥∞)
d
. (27)

Proof of Lemma A.4. For all x ∈ Rd, by Lagrange’s Mean Value Theorem, there exist ξi, ζi ∈ [1, 2] (i = 1, 2, . . . , d) such
that

|ϕτm(x)| =
d∏

i=1

∣∣∣ψτ
(
3M

(
xi −

mi

M

))∣∣∣
=

d∏
i=1

∣∣∣ρ′ (3Mτ
(
xi −

mi

M

)
+ ξiτ

)
− ρ′

(
3Mτ

(
xi −

mi

M

)
− ζiτ

)∣∣∣
≤ (2∥ρ′∥∞)

d
.

(28)

Lemma A.5 (Locality of ϕτm. part I). Let τ ≥ 1. If xj − mj

M ≥ 1
M for some j ∈ {1, 2, . . . , d},

|ϕτm(x)| ≤ (2∥ρ′∥∞)d−1 · 6τe−τ . (29)

Proof of Lemma A.5. By Lagrange’s Mean Value Theorem, there exist ξi, ζi ∈ [1, 2] (i = 1, 2, . . . , d) such that

|ϕτm(x)| =
d∏

i=1

∣∣∣ψτ
(
3M

(
xi −

mi

M

))∣∣∣
=

d∏
i=1

∣∣∣ρ′ (3Mτ
(
xi −

mi

M

)
+ ξiτ

)
− ρ′

(
3Mτ

(
xi −

mi

M

)
− ζiτ

)∣∣∣
≤ (2∥ρ′∥∞)d−1

∣∣∣ρ′ (3Mτ
(
xj −

mj

M

)
+ ξjτ

)
− ρ′

(
3Mτ

(
xj −

mj

M

)
− ζjτ

)∣∣∣
≤ (2∥ρ′∥∞)d−1

(∣∣∣ρ′ (3Mτ
(
xj −

mj

M

)
+ ξjτ

)
− 1
∣∣∣+ ∣∣∣1− ρ′

(
3Mτ

(
xj −

mj

M

)
− ζjτ

)∣∣∣) .
(30)

Because xj − mj

M ≥ 1
M and τ ≥ 1, we have

3Mτ
(
xj −

mj

M

)
+ ξjτ ≥ 3Mτ

(
xj −

mj

M

)
− ζjτ ≥ 3τ − ζjτ ≥ τ ≥ 1. (31)

Together with the fact that xe−x decreases monotonically on [1,+∞), it follows

|ϕτm(x)| ≤ (2∥ρ′∥∞)d−1
(∣∣∣ρ′ (3Mτ

(
xj −

mj

M

)
+ ξjτ

)
− 1
∣∣∣+ ∣∣∣1− ρ′

(
3Mτ

(
xj −

mj

M

)
− ζjτ

)∣∣∣)
≤ (2∥ρ′∥∞)d−1

(
3
(
3Mτ

(
xj −

mj

M

)
+ ξjτ

)
e−(3Mτ(xj−

mj
M )+ξjτ)+

3
(
3Mτ

(
xj −

mj

M

)
− ζjτ

)
e−(3Mτ(xj−

mj
M )−ζjτ)

)
(by Lemma A.2)

≤ (2∥ρ′∥∞)d−1 · 6τe−τ .

(32)
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Lemma A.6 (Locality of ϕτm. part II). Let τ ≥ 1. If xj − mj

M ≤ − 1
M for some j ∈ {1, 2, . . . , d},

|ϕτm(x)| ≤ (2∥ρ′∥∞)d−1 · 6τe−τ . (33)

Proof of Lemma A.6. By Lagrange’s Mean Value Theorem, there exist ξi, ζi ∈ [1, 2] (i = 1, 2, . . . , d) such that

|ϕτm(x)| =
d∏

i=1

∣∣∣ψτ
(
3M

(
xi −

mi

M

))∣∣∣
=

d∏
i=1

∣∣∣ρ′ (3Mτ
(
xi −

mi

M

)
+ ξiτ

)
− ρ′

(
3Mτ

(
xi −

mi

M

)
− ζiτ

)∣∣∣
≤ (2∥ρ′∥∞)d−1

∣∣∣ρ′ (3Mτ
(
xj −

mj

M

)
+ ξjτ

)
− ρ′

(
3Mτ

(
xj −

mj

M

)
− ζjτ

)∣∣∣
≤ (2∥ρ′∥∞)d−1

(∣∣∣ρ′ (3Mτ
(
xj −

mj

M

)
+ ξjτ

)
− 1
∣∣∣+ ∣∣∣1− ρ′

(
3Mτ

(
xj −

mj

M

)
− ζjτ

)∣∣∣) .
(34)

Because xj − mj

M ≤ − 1
M and τ ≥ 1, we have

3Mτ
(
xj −

mj

M

)
− ζjτ ≤ 3Mτ

(
xj −

mj

M

)
+ ξjτ ≤ −3τ + ξjτ ≤ −τ ≤ −1. (35)

Together with the fact that −xex increases monotonically on (−∞,−1], it follows

|ϕτm(x)| ≤ (2∥ρ′∥∞)d−1
(∣∣∣ρ′ (3Mτ

(
xj −

mj

M

)
+ ξjτ

)
− 1
∣∣∣+ ∣∣∣1− ρ′

(
3Mτ

(
xj −

mj

M

)
− ζjτ

)∣∣∣)
≤ (2∥ρ′∥∞)d−1

(
− 3

(
3Mτ

(
xj −

mj

M

)
+ ξjτ

)
e3Mτ(xj−

mj
M )+ξjτ+

− 3
(
3Mτ

(
xj −

mj

M

)
− ζjτ

)
e3Mτ(xj−

mj
M )−ζjτ

)
(by Lemma A.3)

≤ (2∥ρ′∥∞)d−1 · 6τe−τ .

(36)

Then the following Lemma A.7 follows directly from Lemma A.5 and Lemma A.6.

Lemma A.7 (Locality of ϕτm). Let τ ≥ 1. If
∣∣xj − mj

M

∣∣ ≥ 1
M for some j ∈ {1, 2, . . . , d},

|ϕτm(x)| ≤ (2∥ρ′∥∞)d−1 · 6τe−τ . (37)

Lemma A.8 (Partition of unity property of ϕτm). For all x ∈ [0, 1]d,

∣∣∣∣∣∣1−
∑

m∈[M ]d

ϕτm(x)

∣∣∣∣∣∣ ≤ 6τe−τ · (2∥ρ
′∥∞)d − 1

2∥ρ′∥∞ − 1
. (38)

Proof of Lemma A.8. Let τ ≥ 1. For all x ∈ [0, 1]d, by Lagrange’s mean value theorem, there exist ξi, ζi ∈ [1, 2]
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(i = 1, 2, . . . , d) such that

∣∣∣∣∣∣1−
∑

m∈[M ]d

ϕτm(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1−
∑

m∈[M ]d

d∏
i=1

ψτ
(
3M

(
xi −

mi

M

))∣∣∣∣∣∣
=

∣∣∣∣∣1−
d∏

i=1

M∑
mi=0

ψτ
(
3M

(
xi −

mi

M

))∣∣∣∣∣
=

∣∣∣∣∣1−
d∏

i=1

M∑
mi=0

ρ(3Mτ(xi − mi

M ) + 2τ)− ρ(3Mτ(xi − mi

M ) + τ)− ρ(3Mτ(xi − mi

M )− τ) + ρ(3Mτ(xi − mi

M )− 2τ)

τ

∣∣∣∣∣
≤

∣∣∣∣∣1−
d∏

i=1

ρ(3Mτxi + 2τ)− ρ(3Mτxi + τ)− ρ(3Mτ(xi − 1)− τ) + ρ(3Mτ(xi − 1)− 2τ)

τ

∣∣∣∣∣
=

∣∣∣∣∣1−
d∏

i=1

(ρ′(3Mτxi + ξiτ)− ρ′(3Mτ(xi − 1)− ζiτ))

∣∣∣∣∣ .
By the inequality that

∣∣∣∣∣1−
d∏

i=1

xi

∣∣∣∣∣ =
∣∣∣∣∣1− x1 + x1 − x1x2 + · · ·+

d−1∏
i=1

xi −
d∏

i=1

xi

∣∣∣∣∣
≤ |1− x1|+ |x1| · |1− x2|+ · · ·+

∣∣∣∣∣
d−1∏
i=1

xi

∣∣∣∣∣ · |1− xd|

(39)

and the fact that 3Mτxi + ξiτ ≥ τ ≥ 1 and 3Mτ(xi − 1)− ζiτ ≤ −τ ≤ −1 (i = 1, 2, . . . , d), it follows that

∣∣∣∣∣∣1−
∑

m∈[M ]d

ϕτm(x)

∣∣∣∣∣∣
≤ |1− ρ′(3Mτx1 + ξ1τ) + ρ′(3Mτ(x1 − 1)− ζ1τ)|+
|ρ′(3Mτx1 + ξ1τ)− ρ′(3Mτ(x1 − 1)− ζ1τ)| · |1− ρ′(3Mτx2 + ξ2τ) + ρ′(3Mτ(x2 − 1)− ζ2τ)|+ · · ·+
d−1∏
i=1

|ρ′(3Mτxi + ξiτ)− ρ′(3Mτ(xi − 1)− ζiτ)| · |1− ρ′(3Mτxd + ξdτ) + ρ′(3Mτ(xd − 1)− ζdτ)|

≤ 6τe−τ · (1 + 2∥ρ′∥∞ + · · ·+ (2∥ρ′∥∞)d−1) (by Lemma A.2 and A.3)

= 6τe−τ · (2∥ρ
′∥∞)d − 1

2∥ρ′∥∞ − 1
.

At the end of this section, we prove Lemma 5.2, that is,
∑

m∈[M ]d P
κ
mϕ

τ
m approximates f ∈ Cβ,R([0, 1]d).
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Proof of Lemma 5.2. For all x ∈ [0, 1]d,∣∣∣∣∣∣f(x)−
∑

m∈[M ]d

Pκ
m(x)ϕτm(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣f(x)−
∑

m∈[M ]d

f(x)ϕτm(x)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

m∈[M ]d

f(x)ϕτm(x)−
∑

m∈[M ]d

Pκ
m(x)ϕτm(x)

∣∣∣∣∣∣
≤ 6τe−τ (2∥ρ′∥∞)d − 1

2∥ρ′∥∞ − 1
|f(x)|+

∣∣∣∣∣∣
∑

m∈[M ]d

(f(x)− Pκ
m(x))ϕτm(x)

∣∣∣∣∣∣ (by Lemma A.8)

≤ 6τe−τ (2∥ρ′∥∞)d − 1

2∥ρ′∥∞ − 1
R+

∣∣∣∣∣∣
∑

m∈[M ]d

(f(x)− Pκ
m(x))ϕτm(x)

∣∣∣∣∣∣ .
For the second term,∣∣∣∣∣∣

∑
m∈[M ]d

(f(x)− Pκ
m(x))ϕτm(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
∑

m∈[M ]d

∥x−m
M ∥∞≤ 1

M

(f(x)− Pκ
m(x))ϕτm(x)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣

∑
m∈[M ]d

∥x−m
M ∥∞> 1

M

(f(x)− Pκ
m(x))ϕτm(x)

∣∣∣∣∣∣∣∣∣
≤
(
κ+ d− 1

d− 1

)
RM−β

∣∣∣∣∣∣∣∣∣
∑

m∈[M ]d

∥x−m
M ∥∞≤ 1

M

ϕτm(x)

∣∣∣∣∣∣∣∣∣+
(
κ+ d− 1

d− 1

)
R

∣∣∣∣∣∣∣∣∣
∑

m∈[M ]d

∥x−m
M ∥∞> 1

M

ϕτm(x)

∣∣∣∣∣∣∣∣∣ (by Lemma 5.1)

≤
(
κ+ d− 1

d− 1

)
RM−β3d(2∥ρ′∥∞)d +

(
κ+ d− 1

d− 1

)
R
(
(M + 1)d − 2d

)
(2∥ρ′∥∞)d−16τe−τ (by Lemma A.7)

≤ 3dM−β

(
κ+ d− 1

d− 1

)
R(2∥ρ′∥∞)d + 6(M + 1)dτe−τ

(
κ+ d− 1

d− 1

)
R(2∥ρ′∥∞)d−1.

A.2. Approximating (Pκ
m)m∈[M ]d by a Low-Rank Swish Network P

We first prove Lemma 5.4 which shows how to approximate the square function with a Swish network of depth 1 and width
2 and Lemma 5.5 which shows how to approximate the multiplication function with a Swish network of depth 1 and width 4.

Proof of Lemma 5.4. For all x ∈ R, by Taylor expansion theorem, there exist ξ between 0 and x
λ and ζ between 0 and −x

λ
such that

ρ
(x
λ

)
= ρ(0) + ρ′(0) · x

λ
+
ρ′′(0)

2!
· x

2

λ2
+
ρ′′′(0)

3!
· x

3

λ3
+
ρ(4)(ξ)

4!
· x

4

λ4
(40)

and

ρ
(
−x
λ

)
= ρ(0)− ρ′(0) · x

λ
+
ρ′′(0)

2!
· x

2

λ2
− ρ′′′(0)

3!
· x

3

λ3
+
ρ(4)(ζ)

4!
· x

4

λ4
. (41)

This, together with ρ(0) = 0 and ρ′′(0) = 1
2 , implies that

2λ2
(
ρ
(x
λ

)
+ ρ

(
−x
λ

))
= x2 +

ρ(4)(ξ) + ρ(4)(ζ)

12
· x

4

λ2
. (42)
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Then, by the fact that ∥ρ(4)∥∞ ≤ 1
2 , it follows

∣∣∣2λ2 (ρ(x
λ

)
+ ρ

(
−x
λ

))
− x2

∣∣∣ ≤ 2∥ρ(4)∥∞x4

12λ2
≤ x4

12λ2
. (43)

Proof of Lemma 5.5. By Lemma 5.4, there exist ξ1 between 0 and x+y
2λ , ζ1 between 0 and −x+y

2λ , ξ2 between 0 and x−y
2λ ,

and ζ2 between 0 and −x−y
2λ such that∣∣∣∣2λ2(ρ(x+ y

2λ

)
+ ρ

(
−x+ y

2λ

)
− ρ

(
x− y

2λ

)
− ρ

(
−x− y

2λ

))
− xy

∣∣∣∣
=

∣∣∣∣∣ρ(4)(ξ1) + ρ(4)(ζ1)

12λ2

(
x+ y

2

)4

− ρ(4)(ξ2) + ρ(4)(ζ2)

12λ2

(
x− y

2

)4
∣∣∣∣∣

≤ 2∥ρ(4)∥∞
12λ2

(
x+ y

2

)4

+
2∥ρ(4)∥∞
12λ2

(
x− y

2

)4

≤ 1

12λ2

((
x+ y

2

)4

+

(
x− y

2

)4
)

=
1

12λ2
· x

4 + 6x2y2 + y4

8
.

(44)

For convenience, we denote

id(x) := ρ(x)− ρ(−x),

sq(x) := 2λ2
(
ρ
(x
λ

)
+ ρ

(
−x
λ

))
,

and

mult(x) := sq

(
x+ y

2

)
− sq

(
x− y

2

)
= 2λ2

(
ρ

(
x+ y

2λ

)
+ ρ

(
−x+ y

2λ

)
− ρ

(
x− y

2λ

)
− ρ

(
−x− y

2λ

))
.

Obviously, id can be implemented by a network of depth 1, width 2, number of nonzero parameters 4, and maximum
absolute value of parameters 1, sq can be implemented by a network of depth 1, width 2, number of nonzero parameters 4,
and maximum absolute value of parameters max{2λ2, 1

λ}, and mult can be implemented by a network of depth 1, width 4,
number of nonzero parameters 12, and maximum absolute value of parameters max{2λ2, 1

2λ}.

Next we want to construct monomials by stacking id, sq, and mult. To prepare for the subsequent approximation error
analysis, we show some conclusions about the output ranges of sq and mult.

Lemma A.9 (The output range of sq). Let λ > 0. For all x ∈ R,

0 ≤ sq(x) ≤ x2. (45)

Proof of Lemma A.9. (1). We first prove 0 ≤ sq(x) for all x ∈ R. The derivative of sq is

sq′(x) = 2λ
(
ρ′
(x
λ

)
− ρ′

(
−x
λ

))
= 2λ

(
1 + e−

x
λ + x

λe
− x

λ

(1 + e−
x
λ )2

−
1 + e

x
λ − x

λe
x
λ

(1 + e
x
λ )2

)
= 2λ ·

e
2x
λ + 2x

λ e
x
λ − 1

(1 + e
x
λ )2

.
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Let g(x) := e
2x
λ + 2x

λ e
x
λ − 1. For all x ∈ R, the sign of sq′(x) is consistent with that of g(x), because 2λ

(1+e
x
λ )
> 0. When

x < 0, g(x) < e
2x
λ − 1 < e0 − 1 = 0. ; when x > 0, g(x) > e

2x
λ − 1 > e0 − 1 = 0. Therefore, sq is monotonically

decreasing on (−∞, 0) and increasing on (0,+∞). It follows that for all x ∈ R, sq(x) ≥ sq(0) = 0.

(2). Next we prove sq(x) ≤ x2 for all x ∈ R. The derivative of x2 − sq(x) is

d

dx
(x2 − sq(x)) = 2x− 2λ2 ·

e
2x
λ + 2x

λ e
x
λ − 1

(1 + e
x
λ )2

=
2x+ 2xe

2x
λ − 2λe

2x
λ + 2λ

(1 + e
x
λ )2

.

Let h(x) := 2x+ 2xe
2x
λ − 2λe

2x
λ + 2λ. Then the derivative of h is

h′(x) = 2 + 2e
2x
λ +

4x

λ
e

2x
λ − 2e

2x
λ

and the 2nd derivative is

h′′(x) =
8x

λ2
e

2x
λ .

When x < 0, h′′(x) < 0; when x > 0, h′′(x) > 0. Therefore, h′ is monotonically decreasing on (−∞, 0) and increasing
on (0,+∞). Then for all x ∈ R, h′(x) ≥ h′(0) = 0. It follows that h is monotonically increasing on R. By the fact that
h(0) = 0, we have h(x) ≤ 0 when x < 0 and h(x) ≥ 0 when x > 0. It implies that x2− sq(x) is monotonically decreasing
on (−∞, 0) and increasing on (0,+∞). Finally, we have x2 − sq(x) ≥ 0− sq(0) = 0 for all x ∈ R.

Lemma A.10 (The output range of mult. part I). Let λ > 0. For all x, y ≥ 0, 0 ≤ mult(x, y) ≤ xy.

Proof of Lemma A.10. From the proof of Lemma A.9, we know that both sq(x) and x2−sq(x) are monotonically increasing
on (0,+∞). Therefore, for all x, y ≥ 0, when x− y ≥ 0, since x+ y ≥ x− y ≥ 0,

sq

(
x+ y

2

)
≥ sq

(
x− y

2

)
⇒ mult(x, y) = sq

(
x+ y

2

)
− sq

(
x− y

2

)
≥ 0,(

x+ y

2

)2

− sq

(
x+ y

2

)
≥
(
x− y

2

)2

− sq

(
x− y

2

)
⇒

sq

(
x+ y

2

)
− sq

(
x− y

2

)
≤
(
x+ y

2

)2

−
(
x− y

2

)2

= xy ⇒ mult(x, y) ≤ xy,

and when x− y ≤ 0, since x+ y ≥ y − x ≥ 0,

sq

(
x+ y

2

)
− sq

(
x− y

2

)
= sq

(
x+ y

2

)
− sq

(
y − x

2

)
≥ 0 ⇒ mult(x, y) ≥ 0,(

x+ y

2

)2

− sq

(
x+ y

2

)
≥
(
y − x

2

)2

− sq

(
y − x

2

)
=

(
x− y

2

)2

− sq

(
x− y

2

)
⇒

sq

(
x+ y

2

)
− sq

(
x− y

2

)
≤
(
x+ y

2

)2

−
(
x− y

2

)2

= xy ⇒ mult(x, y) ≤ xy.

Similar to the proof of Lemma A.10, it is easy to prove the following three lemmas.

Lemma A.11 (The output range of mult. part II). Let λ > 0. For all x ≤ 0 and y ≥ 0, xy ≤ mult(x, y) ≤ 0.

Lemma A.12 (The output range of mult. part III). Let λ > 0. For all x, y ≤ 0, 0 ≤ mult(x, y) ≤ xy.

Lemma A.13 (The output range of mult. part IV). Let λ > 0. For all x ≥ 0 and y ≤ 0, xy ≤ mult(x, y) ≤ 0.
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Combining Lemma A.10, A.11, A.12, and A.13, we have:

Lemma A.14 (The output range of mult). Let λ > 0. For all x, y ∈ R, |mult(x, y)| ≤ |xy|.

Next we define a series of functions Mα where α ∈ Nd
+ by stacking sq and mult. These functions will be implemented by

hidden neurons of P that is a network outputting Taylor polynomials at all grid points. For any α ∈ Nd
+, the function Mα

is defined by:

1. when |α| = 1, M(x) := xα;

2. when |α| = 2 and ∃|α′| = 1 such that α = 2α′, M(x) := sq(Mα′(x));

3. when |α| = 2 and ∃|α′| = |α′′| = 1 such that α = α′ +α′′ and α′ ̸= α′′, M(x) := mult(Mα′(x),Mα′′(x));

4. when |α| = 4 and ∃|α′| = 2 such that α = 2α′, M(x) := sq(Mα′(x));

5. when |α| = 4 and ∃|α′| = |α′′| = 2 such that α = α′ +α′′ and α′ ̸= α′′, M(x) := mult(Mα′(x),Mα′′(x));

6. when |α| ≥ 5 or = 3 and ∃|α′| = 2, |α′′| = |α|− |α′′| such that α = α′+α′′, M(x) := mult(Mα′(x),Mα′′(x)).

Next we show the upper bound of Mα on [−1, 1]d using Lemma A.9 and A.14.

Lemma A.15 (The upper bound of |Mα|). Let λ > 0 and α ∈ Nd. For all x ∈ [−1, 1]d,

|Mα(x)| ≤ 1. (46)

Proof of Lemma A.15. Here we prove it by mathematical induction. When |α| = 1,

|Mα(x)| = |xα| ≤ 1.

When |α| = 2 and ∃|α′| = 1 such that α = 2α′, by Lemma A.9,

|Mα(x)| = |sq(Mα′(x))| ≤ (Mα′(x))2 ≤ 1.

When |α| = 2 and ∃|α′| = |α′′| = 1 such that α = α′ +α′′ and α′ ̸= α′′, by Lemma A.14,

|Mα(x)| = |mult(Mα′(x),Mα′′(x))| ≤ |Mα′(x) · Mα′′(x)| ≤ 1.

When |α| = 3 and ∃|α′| = 2, |α′′| = |α| − |α′′| such that α = α′ +α′′, by Lemma A.14,

|Mα(x)| = |mult(Mα′(x),Mα′′(x))| ≤ |Mα′(x) · Mα′′(x)| ≤ 1.

When |α| = 4 and ∃|α′| = 2 such that α = 2α′, by Lemma A.14,

|Mα(x)| = |sq(Mα′(x))| ≤ (Mα′(x))2 ≤ 1.

When |α| = 4 and ∃|α′| = |α′′| = 2 such that α = α′ +α′′ and α′ ̸= α′′, by Lemma A.14,

|Mα(x)| = |mult(Mα′(x),Mα′′(x))| ≤ |Mα′(x) · Mα′′(x)| ≤ 1.

When |α| ≥ 5 and ∃|α′| = 2, |α′′| = |α| − |α′′| such that α = α′ +α′′, by Lemma A.14 and induction,

|Mα(x)| = |mult(Mα′(x),Mα′′(x))| ≤ |Mα′(x) · Mα′′(x)| ≤ 1.

The following lemma shows the error of Mα(x) to approximate xα measured by sup norm on [−1, 1]d.

Lemma A.16. Let λ > 0 and α ∈ Nd. Then for all x ∈ [−1, 1]d,

|Mα(x)− xα| ≤ |α| − 1

12λ2
. (47)
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Proof of Lemma A.16. Here we prove it by mathematical induction. When |α| = 1,

|Mα − xα| = |xα − xα| = 0.

When |α| = 2 and ∃|α′| = 1 such that α = 2α′, by Lemma 5.4,

|Mα(x)− xα| = |sq(Mα′(x))− x2α′
| = |sq(xα′

)− x2α′
| ≤ x4α′

12λ2
≤ 1

12λ2
.

When |α| = 2 and ∃|α′| = |α′′| = 1 such that α = α′ +α′′ and α′ ̸= α′′, by Lemma 5.5,

|Mα(x)− xα| = |mult(Mα′(x),Mα′′(x))− xα′
· xα′′

|

= |mult(xα′
,xα′′

)− xα′
· xα′′

|

≤ 1

12λ2
· x

4α′
+ 6x2α′ · x2α′′

+ x4α′′

8

≤ 1

12λ2
.

When |α| = 3 and ∃|α′| = 2, |α′′| = |α| − |α′′| such that α = α′ +α′′, by Lemma 5.5 and A.15,

|Mα(x)− xα|

= |mult(Mα′(x),Mα′′(x))− xα′
· xα′′

|

≤ |mult(Mα′(x),Mα′′(x))−Mα′(x) · Mα′′(x)|+ |Mα′′(x)| · |Mα′(x)− xα′
|+ |xα′

| · |Mα′′(x)− xα′′
|

≤ 1

12λ2
+

1

12λ2
+ 0

=
2

12λ2
.

When |α| = 4 and ∃|α′| = 2 such that α = 2α′, by Lemma 5.4 and A.15,

|Mα(x)− xα|

≤ |sq(Mα′(x))− (Mα′(x))2|+ |(Mα′(x))2 − x2α′
|

≤ 1

12λ2
+ |Mα′(x)| · |Mα′(x)− xα′

|+ |xα′
| · |Mα′(x)− xα′

|

≤ 3

12λ2
.

When |α| = 4 and ∃|α′| = |α′′| = 2 such that α = α′ +α′′ and α′ ̸= α′′, by Lemma 5.5 and A.15,

|Mα(x)− xα|

= |mult(Mα′(x),Mα′′(x))− xα′
· xα′′

|

≤ |mult(Mα′(x),Mα′′(x))−Mα′(x) · Mα′′(x)|+ |Mα′′(x)| · |Mα′(x)− xα′
|+ |xα′

| · |Mα′′(x)− xα′′
|

≤ 1

12λ2
+

1

12λ2
+

1

12λ2

=
3

12λ2
.

When |α| ≥ 5 and ∃|α′| = 2, |α′′| = |α| − |α′′| such that α = α′ +α′′, by Lemma 5.5 and A.15 and induction,

|Mα(x)− xα|

= |mult(Mα′(x),Mα′′(x))− xα′
· xα′′

|

≤ |mult(Mα′(x),Mα′′(x))−Mα′(x) · Mα′′(x)|+ |Mα′′(x)| · |Mα′(x)− xα′
|+ |xα′

| · |Mα′′(x)− xα′′
|

≤ 1

12λ2
+

|α′| − 1

12λ2
+

|α′′| − 1

12λ2

=
|α| − 1

12λ2
.
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Next we prove Lemma 5.3 which can provide the coefficients of monomials in a Taylor polynomial at a point.

Proof of Lemma 5.3. The term xα in the expansion of
∑

|α|≤κ bα(x − a)α can only come from terms (x − a)ν with

ν ≥ α and |ν| ≤ κ. The coefficient of the term xα in the expansion of (x− a)ν is
∏d

i=1

(
νi

αi

)
(−ai)νi−αi . By summing

up coefficients from all terms bν(x − a)ν satisfying ν ≥ α and |ν| ≤ κ, we obtain that the coefficient of xα is∑
ν≥α
|ν|≤κ

bν
∏d

i=1

(
νi

αi

)
(−ai)νi−αi .

... ( )8

[ ]dM
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∈m m

( )
1=
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Figure 3. An example of constructive approximation for Taylor polynomials (Pκ
m)m∈[M ]d by network P where κ = 8. “△” stands for

input neuron, “⃝” stands for nonlinear neuron, and “□” stands for linear neuron. The neurons are divided into several groups by the
dashed ellipses. Except for the input neurons, the number of neuron marks does not represent the actual number of neurons. (xα)|α|=n

refers to all monomials of order n and (Pκ
m)m∈[M ]d refers to Taylor polynomials of order κ at all grid points.

Lemma A.17 (Neural networks approximate (Pκ
m)m∈[M ]d). Let β ∈ R+, β = κ+ γ, κ ∈ N, γ ∈ (0, 1], and R ∈ R. For

all f ∈ Cβ,R([0, 1]d), M ∈ N+, and λ ≥ 2−
1
3 , letting (Pκ

m)m∈[M ]d be κth-order Taylor polynomials of f at all grid points
{m/M |m ∈ [M ]d}, there exists a low-rank Swish network P : [−1, 1]d → R(M+1)d with depth⌈κ

2

⌉
, (48)

width of nonlinear layers

2

(
d+ 1

d− 1

)
+ 4

(
d+ κ− 2

d− 1

)
+ 4

(
d+ κ− 1

d− 1

)
+ 2(M + 1)d, (49)

width of linear hidden layers (
d+ 1

d− 1

)
+

(
d+ κ− 3

d− 1

)
+

(
d+ κ− 2

d− 1

)
+ (M + 1)d, (50)

upper bound of absolute values of parameters

max

2λ2 max
|α|≤κ


∑
ν≥α
|ν|≤κ

R

v!

d∏
i=1

(
νi
αi

) , 2λ2

 , (51)
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and upper bound of number of nonzero parameters

4
⌈κ
2

⌉(d+ 1

d− 1

)
+ 12

κ∑
l=2

(
d+ l − 1

d− 1

)
+ (M + 1)d

(
2d+ 4

⌈κ
2

⌉
+ 4

κ∑
l=2

(
d+ l − 1

d− 1

))
(52)

such that

∥∥P(x)− (Pκ
m(x))m∈[M ]d

∥∥
∞ ≤ 1

12λ2

∑
2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

(
R

v!

d∏
i=1

(
νi
αi

)) (53)

for all x ∈ [−1, 1]d.

Proof of Lemma A.17. Let f ∈ Cβ,R([0, 1]d), M ∈ N+, and λ ≥ 2−
1
3 .

If β ≤ 1, then κ = 0. For any m ∈ [M ]d, Pκ
m(x) = f(m/M). Then we directly build a linear layer as the output layer

without any connection to the input layer and with bias (f(m/M))m∈[M ]d . We call the above network P . Obviously,
P(x) = (Pκ

m(x))m∈[M ]d for all x ∈ [−1, 1]d and P is of depth 0 (i.e. no hidden layer), number of nonzero parameters no
more than (M + 1)d, and maximum absolute value of parameters no more than R.

If β > 1, we construct a network layer by layer. In the following proof, we do not specifically mention the slight differences
in the construction method when κ is small or odd, but the way to handle these is quite naı̈ve.

Step 1: constructing the first nonlinear and linear layers

By Lemma 5.6, for each input variable xi, we construct two Swish neurons followed by one linear neuron to exactly preserve
the value of xi. We arrange neurons for preserving all xi in parallel and thus obtain a nonlinear layer of width 2d followed
by a linear layer of width d. The total number of nonzero parameters of these two layers is 4d and the maximum absolute
value of parameters of them is 1.

Meanwhile we approximate each square term x2i with two Swish neurons followed by one linear neuron by Lemma 5.4
and each cross term xixj with four Swish neurons followed by one linear neuron by Lemma 5.5. By arranging neurons for
approximating all x2i and xixj , we obtain a nonlinear layer of width no more than 4

(
d+1
d−1

)
followed by a linear layer of width

no more than
(
d+1
d−1

)
because the number of all 2nd-order monomials is

(
d+1
d−1

)
. The total number of nonzero parameters of

these two layers is no more than 12
(
d+1
d−1

)
and the maximum absolute value of parameters of them is 2λ2 since λ ≥ 2−

1
3

implies 2λ2 ≥ 1
λ ≥ 1

2λ . It is easy to know that given input x ∈ [−1, 1]d the outputs of the linear layer are equal to Mα(x)
with α = 2. So by Lemma A.16 the approximation error for 2nd-order monomials is bounded by 1

12λ2 .

Next we construct a linear layer of width (M + 1)d to approximate the first two orders of (Pκ
m)m∈[M ]d . For each

m ∈ [M ]d, the linear neuron, approximating the first two orders of Pκ
m, links to two Swish neurons preserving xα

with weights
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi and −
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi for all |α| = 1,

two Swish neurons approximating the square term xα with weights 2λ2
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi

and 2λ2
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi for all |α| = 2 satisfying α = 2α′ where |α′| = 1, and

four Swish neurons approximating the cross term xα with weights 2λ2
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi ,

2λ2
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi , −2λ2
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi , and

−2λ2
∑

ν≥α
|ν|≤κ

∂νf(m/M)
ν!

∏d
i=1

(
νi

αi

)
(−mi

M )νi−αi for all |α| = 2 satisfying α = α′ + α′′ where |α′| = |α′′| = 1

and α′ ̸= α′. In addition, to construct the 0th-order items, we add the bias term
∑

|ν|≤κ
∂νf(m/M)

ν!

∏d
i=1(−

mi

M )νi for the
linear neuron approximating the first two orders of Pκ

m for all m ∈ [M ]d. Therefore the total number of nonzero parameters
of this linear layer is no more than (M + 1)d

(
2d+ 4

(
d+1
d−1

)
+ 1
)

and the absolute values of parameters are no more than

2λ2 max|α|≤2

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)
. By Lemma A.16 and 5.3, we notice that our construction to the 0th- and 1st-order
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terms is errorless, so the total approximation error to the first two orders of (Pκ
m)m∈[M ]d only comes from the 2nd-order

terms which is no more than 1
12λ2

∑
|α|=2

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)
.

Finally, we concatenate two nonlinear layers and three linear layers respectively, obtaining a nonlinear layer of width no
more than 2d+4

(
d+1
d−1

)
followed by a linear layer of width no more than d+

(
d+1
d−1

)
+(M +1)d. The total number of nonzero

parameters of these two layers is no more than 4d+ 12
(
d+1
d−1

)
+ (M + 1)d

(
2d+ 4

(
d+1
d−1

)
+ 1
)

and the absolute values of

them are no more than max

{
2λ2, 2λ2 max|α|≤2

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)}
. The approximation error for the first two orders

of (Pκ
m)m∈[M ]d by the outputs of the last (M + 1)d linear neurons is no more than 1

12λ2

∑
|α|=2

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)
.

Step 2: constructing the second nonlinear and linear layers

The method to construct the second nonlinear and linear layers is similar to the above.

We use a nonlinear layer of width 2
(
d+1
d−1

)
followed by a linear layer of width

(
d+1
d−1

)
to preserve the approximate 2nd-order

monomials constructed before. Meanwhile we multiply the 1st-order monomials with approximate 2nd-order monomials
to construct approximate 3rd-order monomials using a nonlinear layer of width 4

(
d+2
d−1

)
followed by a linear layer of

width
(
d+2
d−1

)
. In the meantime, we square approximate 2nd-order monomials and multiply different approximate 2nd-order

monomials to approximate all 4th-order monomials using a nonlinear layer of width no more than 4
(
d+3
d−1

)
followed by a

linear layer of width no more than
(
d+3
d−1

)
. Simultaneously we employ a nonlinear layer of width 2(M + 1)d followed by a

linear layer of width (M + 1)d to preserve the approximation of first two orders of (Pκ
m)m∈[M ]d , then connect the linear

layer with the previous two nonlinear layers used to approximate 3rd- and 4th-order monomials to approximate the first four
orders of (Pκ

m)m∈[M ]d .

Finally we concatenate four nonlinear layers and four linear layers respectively, obtaining a nonlinear layer of
width no more than 2

(
d+1
d−1

)
+ 4

(
d+2
d−1

)
+ 4

(
d+3
d−1

)
+ (M + 1)d followed by a linear layer of width no more than(

d+1
d−1

)
+
(
d+2
d−1

)
+
(
d+3
d−1

)
+ (M + 1)d. The total number of nonzero parameters of these two layers is no more than

4
(
d+1
d−1

)
+ 12

(
d+2
d−1

)
+ 12

(
d+3
d−1

)
+ (M + 1)d

(
4 + 4

(
d+2
d−1

)
+ 4
(
d+3
d−1

))
and the absolute values of them are no more than

max

{
2λ2, 2λ2 max3≤|α|≤4

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)}
. The approximation error for the first four orders of (Pκ

m)m∈[M ]d by

the outputs of the last (M + 1)d linear neurons is no more than 1
12λ2

∑
2≤|α|≤4(|α| − 1)

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)
.

Step 3: constructing the (l + 1)th nonlinear and linear layers by induction

Let l ∈ N+ with l ≥ 2. Now suppose that we can directly obtain approximate 2rd-, (2l − 1)th-, and (2l)th-order
monomials and the first 2l orders of (Pκ

m)m∈[M ]d from the last linear layer. The last nonlinear layer is of width no
more than 2

(
d+1
d−1

)
+ 4
(
d+2l−2
d−1

)
+ 4
(
d+2l−1
d−1

)
+ 2(M + 1)d and the last linear layer is of width no more than

(
d+1
d−1

)
+(

d+2l−2
d−1

)
+
(
d+2l−1
d−1

)
+(M +1)d. The total number of nonzero parameters of them is no more than 4

(
d+1
d−1

)
+12

(
d+2l−2
d−1

)
+

12
(
d+2l−1
d−1

)
+ (M + 1)d

(
4 + 4

(
d+2l−2
d−1

)
+ 4
(
d+2l−1
d−1

))
and the absolute values of parameters of them are no more than

max

{
2λ2, 2λ2 max2l−1≤|α|≤2l

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)}
. The approximation error for the first 2l orders of (Pκ

m)m∈[M ]d

by the outputs of the last (M + 1)d linear neurons is no more than 1
12λ2

∑
2≤|α|≤2l(|α| − 1)

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)
.

Then, following the above way, we use a nonlinear layer of width 2
(
d+1
d−1

)
followed by a linear layer of width

(
d+1
d−1

)
to preserve the approximate 2nd-order monomials. Meanwhile we multiply approximate 2nd-order monomials with
approximate (2l − 1)th-order monomials to construct approximate (2l + 1)th-order monomials using a nonlinear layer of
width 4

(
d+2l
d−1

)
followed by a linear layer of width

(
d+2l
d−1

)
and multiply approximate 2nd-order monomials with approximate

(2l)th-order monomials to construct approximate (2l + 2)th-order monomials using a nonlinear layer of width 4
(
d+2l+1
d−1

)
followed by a linear layer of width

(
d+2l+1
d−1

)
. Simultaneously we employ a nonlinear layer of width 2(M + 1)d followed by

a linear layer of width (M + 1)d to preserve the approximation of first (2l) orders of (Pκ
m)m∈[M ]d , then connect the linear
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layer with the previous two nonlinear layers used to approximate (2l+1)th- and (2l+2)th-order monomials to approximate
the first 2l + 2 orders of (Pκ

m)m∈[M ]d .

Finally we concatenate these four nonlinear layers and four linear layers in parallel respectively, obtaining a nonlinear
layer of width no more than 2

(
d+1
d−1

)
+ 4
(
d+2l
d−1

)
+ 4
(
d+2l+1
d−1

)
+ (M + 1)d followed by a linear layer of width no more

than
(
d+1
d−1

)
+
(
d+2l
d−1

)
+
(
d+2l+1
d−1

)
+ (M + 1)d. The total number of nonzero parameters of these two layers is no more

than 4
(
d+1
d−1

)
+ 12

(
d+2l
d−1

)
+ 12

(
d+2l+1
d−1

)
+ (M + 1)d

(
4 + 4

(
d+2l
d−1

)
+ 4
(
d+2l+1
d−1

))
and the absolute values of them are

no more than max

{
2λ2, 2λ2 max2l+1≤|α|≤2l+2

∑
ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)}
. The approximation error for the first 2l + 2

orders of (Pκ
m)m∈[M ]d by the outputs of the last (M + 1)d linear neurons is no more than 1

12λ2

∑
2≤|α|≤2l+2(|α| −

1)
∑

ν≥α
|ν|≤κ

R
ν!

∏d
i=1

(
νi

αi

)
.

Through the above process, we finally construct a network of depth ⌈κ
2 ⌉, called P , to approximate Taylor polynomials at all

grid points, (Pκ
m)m∈[M ]d , with error no more than

1

12λ2

∑
2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

R

ν!

d∏
i=1

(
νi
αi

)
.

Considering that there is no need to construct 2nd-, (2⌈κ
2 ⌉ − 1)th-, and (2⌈κ

2 ⌉)th-order monomials at the last linear layer,
the maximum width of nonlinear layers is no more than 2

(
d+1
d−1

)
+ 4
(
d+κ−2
d−1

)
+ 4
(
d+κ−1
d−1

)
+ 2(M + 1)d, the maximum

width of linear layers no more than
(
d+1
d−1

)
+
(
d+κ−3
d−1

)
+
(
d+κ−2
d−1

)
+ (M + 1)d, the absolute values of parameters are no

more than max

{
2λ2 max|α|≤κ

{∑
ν≥α
|ν|≤κ

R
v!

∏d
i=1

(
νi

αi

)}
, 2λ2

}
, and the number of nonzero parameters is no more than

4d+ 4
(⌈

κ
2

⌉
− 2
) (

d+1
d−1

)
+ 12

∑κ
l=2

(
d+l−1
d−1

)
+ (M + 1)d

(
1 + 2d+ 4

(⌈
κ
2

⌉
− 1
)
+ 4

∑κ
l=2

(
d+l−1
d−1

))
.

A.3. Approximating (ϕτm)m∈[M ]d by a Low-Rank Swish Network G

We first define a series of functions prodr where r ∈ N+ by stacking mult, then analyze the error of approximating
(x1, . . . , xr)

⊤ 7→
∏r

i=1 xi using prodr. When constructing (ϕτm)m∈[M ]d in the proof of Lemma A.22, we can see that
prodr is implemented by hidden neurons of network G for r ∈ [d]+. For all r ∈ N+, the function prodr : Rr → R is
defined by

1. when r = 1, prod1(x) := x;

2. when r ≥ 2, prodr(x1, . . . , xr) := mult(prod2q (x1, . . . , x2q ), prodr−2q (x2q+1, . . . , xr)) where q ∈ N and 2q <
r ≤ 2q+1.

Lemma A.18 (Boundedness of prodr). Let r ∈ N+. For all x ∈ Rr,

|prodr(x)| ≤
r∏

i=1

|xi|. (54)

Proof of Lemma A.18. We prove this lemma by induction. When r = 1, for all x ∈ R,

|prod1(x)| = |x|.

Assume that ∀x ∈ Rs, |prods(x)| ≤
∏s

i=1 |xi| holds for all s ≤ r. Then, letting q ∈ N satisfying 2q < r + 1 ≤ 2q+1, for
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all x ∈ Rr+1,

|prodr+1(x)| = |mult(prod2q (x1, . . . , x2q ), prodr−2q (x2q+1, . . . , xr+1))|
≤ |prod2q (x1, . . . , x2q ) · prodr+1−2q (x2q+1, . . . , xr+1)| (by Lemma A.14)

≤
2q∏
i=1

|xi| ·
r+1∏

i=2q+1

|xi| (by induction)

=

r+1∏
i=1

|xi|.

Lemma A.19. Let r ∈ N+ and λ ∈ R+. For all x ∈ [−1, 1]r,∣∣∣∣∣prodr(x)−
r∏

i=1

xi

∣∣∣∣∣ ≤ r − 1

12λ2
. (55)

Proof of Lemma A.19. We prove it by induction. When r = 1, for all x ∈ [−1, 1],

|prod1(x)− x| = 0. (56)

Assume that ∀x ∈ [−1, 1]s, |prodr(x)−
∏s

i=1 xi| ≤
s−1
12λ2 holds for all s ≤ r. Then, letting q ∈ N satisfying 2q < r+1 ≤

2q+1, for all x ∈ Rr+1, by Lemma 5.5 and A.18,∣∣∣∣∣prodr+1(x)−
r+1∏
i=1

xi

∣∣∣∣∣
≤ |mult(prod2q (x1, . . . , x2q ), prodr+1−2q (x2q+1, . . . , xr+1))− prod2q (x1, . . . , x2q ) · prodr+1−2q (x2q+1, . . . , xr+1)|+∣∣∣∣∣prod2q (x1, . . . , x2q ) · prodr+1−2q (x2q+1, . . . , xr+1)−

r+1∏
i=1

xi

∣∣∣∣∣
≤ 1

12λ2
+

∣∣∣∣∣prod2q (x1, . . . , x2q )−
2q∏
i=1

xi

∣∣∣∣∣+
∣∣∣∣∣prodr+1−2q (x1, . . . , x2q )−

r∏
i=2q+1

xi

∣∣∣∣∣
≤ 1

12λ2
+

2q − 1

12λ2
+
r + 1− 2q − 1

12λ2
(by induction)

≤ r − 1

12λ2
.

Next we introduce several lemmas which are helpful to explain how to approximate (ϕτm)m∈[M ]d using a network.

Lemma A.20. For all n ∈ N+,
2n ≥ 2n. (57)

Proof of . We prove it by induction. When n = 1, 21 = 2 · 1. ∀n ∈ N+, if 2n ≥ 2n, then

2n+1 = 2 · 2n ≥ 2 · 2n = 2(n+ n) ≥ 2(n+ 1).

Lemma A.21. For all d,M ∈ N+ and q ∈ N, if d ≥ 2q , then

(M + 1)d ≥ (M + 1)2
q

⌈
d

2q

⌉
. (58)
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Proof of Lemma A.21. There exists k ∈ N+ and p ∈ N with 0 ≤ p < 2q such that d = k2q + p. If p = 0, then by Lemma
A.20, ⌈

d

2q

⌉
= k ≤ 2k−1 ≤ (M + 1)2

q(k−1) ⇒ (M + 1)2
q

⌈
d

2q

⌉
≤ (M + 1)k2

q

= (M + 1)d.

If p > 0, then by Lemma A.20,⌈
d

2q

⌉
= k + 1 ≤ 2k ≤ 2 · 2k−1 ≤ 2(M + 1)2

q(k−1) ≤ (M + 1)2
q(k−1)+p

⇒ (M + 1)2
q

⌈
d

2q

⌉
≤ (M + 1)k2

q+p = (M + 1)d.

Lemma A.22 (Neural networks approximates (ϕτm)m∈[M ]d). For all M ∈ N+, λ ≥ 2−
2
3 , and τ ≥ 1, there exists a

low-rank Swish network G : [−1, 1]d → R(M+1)d with depth

⌈log2 d⌉+ 1, (59)

width of nonlinear layers
4(M + 1)d, (60)

width of linear layers
(M + 1)d, (61)

upper bound of absolute values of parameters

max{(3M + 2)τ, 2λ2}, (62)

and upper bound of number of nonzero parameters

(12 ⌈log2 d⌉+ 8)(M + 1)d, (63)

such that

∥G(x)− (ϕτm(x))m∈[M ]d∥∞ ≤ d− 1

12λ2
(64)

for all x ∈ [−1, 1]d.

Proof of Lemma A.22. For any i ∈ {1, 2, . . . , d}, we list ψτ
(
3M

(
xi − mi

M

))
for all mi ∈ {0, 1, . . . ,M}:

ψτ

(
3M

(
xi −

0

M

))
=

1

τ
(ρ(3Mτxi + 2τ)− ρ(3Mτxi + τ)− ρ(3Mτxi − τ) + ρ(3Mτxi − 2τ)),

ψτ

(
3M

(
xi −

1

M

))
=

1

τ
(ρ(3Mτxi − τ)− ρ(3Mτxi − 2τ)− ρ(3Mτxi − 4τ) + ρ(3Mτxi − 5τ)),

ψτ

(
3M

(
xi −

2

M

))
=

1

τ
(ρ(3Mτxi − 4τ)− ρ(3Mτxi − 5τ)− ρ(3Mτxi − 7τ) + ρ(3Mτxi − 8τ)),

. . . . . .

ψτ

(
3M

(
xi −

M − 1

M

))
=

1

τ
(ρ(3Mτxi + (−3M + 5)τ)− ρ(3Mτxi + (−3M + 4)τ)

− ρ(3Mτxi + (−3M + 2)τ) + ρ(3Mτxi + (−3M + 1)τ)),

ψτ

(
3M

(
xi −

M

M

))
=

1

τ
(ρ(3Mτxi + (−3M + 2)τ)− ρ(3Mτxi + (−3M + 1)τ)

− ρ(3Mτxi + (−3M − 1)τ) + ρ(3Mτxi + (−3M − 2)τ)).
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As we can see, to exactly construct ψτ (3M(xi − mi

M )) for all i ∈ [d]+ and mi ∈ [M ], we only need a nonlinear layer
of width (2M + 4)d followed by a linear layer of width (M + 1)d, where (2M + 4)d ≤ 4(M + 1)d ≤ 4(M + 1)d and
(M + 1)d ≤ (M + 1)d by Lemma A.21 with q = 0. The number of nonzero parameters of these two layers is no more
than 2(2M + 4)d + 4(M + 1)d ≤ 8(M + 1)d ≤ 8(M + 1)d (by Lemma A.21 with q = 0) and the absolute values of
parameters of them are no more than (3M + 2)τ since τ ≥ 1 implies (3M + 2)τ ≥ 1/τ .

Let q ∈ N. There exist k ∈ N and p ∈ N with 0 ≤ p < 2q such that d = k2q + p. Assume that there is a network of depth
q+1, width of nonlinear layers 4(M +1)d, width of linear layers (M +1)d, upper bound of number of nonzero parameters
(12q + 8)(M + 1)d, and upper bound of absolute values of parameters max{(3M + 2)τ, 2λ2} outputting

prod2q
(
ψτ
(
3M

(
xj −

mj

M

))
, . . . , ψτ

(
3M

(
xj+2q−1 −

mj+2q−1

M

)))
to approximate

2q−1∏
ι=0

ψτ
(
3M

(
xj+ι −

mj+ι

M

))
for all j ∈ {1, 2q + 1, 2 · 2q + 1, . . . , (k − 1) · 2q + 1} and m ∈ [M ]d if k > 0 (i.e. d ≥ 2q) and

prodp

(
ψτ
(
3M

(
xd−p+1 −

md−p+1

M

))
, . . . , ψτ

(
3M

(
xd −

md

M

)))
to approximate

0∏
ι=−p+1

ψτ
(
3M

(
xd+ι −

md+ι

M

))
for all m ∈ [M ]d if p > 0.

Then when q′ = q + 1, there exist k′ ∈ N and p′ ∈ N with 0 ≤ p′ < 2q
′

such that d = k′2q
′
+ p′. We build a nonlinear

layer of width 4(M + 1)2
q′ ⌈ d

2q′
⌉ ≤ 4(M + 1)d and a subsequent linear layer of width (M + 1)2

q′ ⌈ d
2q′

⌉ ≤ (M + 1)d upon
the network to approximately multiply the outputs of it using mult. Thus the new network outputs

prod2q′
(
ψτ
(
3M

(
xj −

mj

M

))
, . . . , ψτ

(
3M

(
xj+2q′−1 −

mj+2q′−1

M

)))
to approximate

2q
′
−1∏

ι=0

ψτ
(
3M

(
xj+ι −

mj+ι

M

))
within 2q

′
−1

12λ2 (by Lemma A.19) for all j ∈ {1, 2q′ + 1, 2 · 2q′ + 1, . . . , (k′ − 1) · 2q′ + 1} and m ∈ [M ]d if k′ > 0 (i.e.
d ≥ 2q

′
) and

prodp′

(
ψτ
(
3M

(
xd−p′+1 −

md−p′+1

M

))
, . . . , ψτ

(
3M

(
xd −

md

M

)))
to approximate

0∏
ι=−p′+1

ψτ
(
3M

(
xd+ι −

md+ι

M

))
within p′−1

12λ2 (by Lemma A.19) for all m ∈ [M ]d if p′ > 0. Conbining the newly built two layers, the new network is of depth
q′ + 1, width of nonlinear layer 4(M + 1)d, width of linear layer (M + 1)d, upper bound of number of nonzero parameters
(12q′ + 8)(M + 1)d, and upper bound of absolute values of parameters max{(3M + 2)τ, 2λ2}. And the approximation
error is within d−1

12λ2 .

We stop the above construction process after the iteration with q = ⌈log2 d⌉ because at this point, (ϕτm)m∈[M ]d is just
approximately constructed.
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A.4. Approximating
∑

m∈[M ]d P
κ
mϕ

τ
m by the Inner Product of P and G

We denote the output dimension of P to approximate Pκ
m by Pm and the output dimension of G to approximate ϕτm by Gm.

Here we introduce some inequalities about Pm and Gm.
Lemma A.23 (Boundedness of Pm and Gm). Let M ∈ N+, τ ≥ 1, and λ ≥ 2−

1
3 . For all x ∈ [0, 1]d and m ∈ [M ]d,

|Pm(x)| ≤ 1

6 3
√
2

∑
2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

(
R

v!

d∏
i=1

(
νi
αi

))+

(
κ+ d− 1

d− 1

)
R+R (65)

and
|Gm(x)| ≤ d− 1

6 3
√
2

+ (2∥ρ′∥∞)d. (66)

Proof of A.23. To show the first inequality, by Lemma A.17 and A.1,

|Pm(x)| ≤ |Pm(x)− Pκ
m(x)|+ |Pκ

m(x)|

≤ 1

12λ2

∑
2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

(
R

v!

d∏
i=1

(
νi
αi

))+

(
κ+ d− 1

d− 1

)
R+R

≤ 1

6 3
√
2

∑
2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

(
R

v!

d∏
i=1

(
νi
αi

))+

(
κ+ d− 1

d− 1

)
R+R.

To show the second inequality, by Lemma A.22 and A.4,

|Gm(x)| ≤ |Gm(x)− ϕτm(x)|+ |ϕτm(x)|

≤ d− 1

12λ2
+ (2∥ρ′∥∞)d

≤ d− 1

6 3
√
2

+ (2∥ρ′∥∞)d.

Theorem A.24 (Neural Networks Approximates f ∈ Cβ,R(
[
0, 1
]d
)). Let β ∈ R+, β = κ + γ, κ ∈ N, γ ∈ (0, 1], and

R ∈ R+. For all f ∈ Cβ,R([0, 1]d), M ∈ N+, λ ≥ 2−
1
3 , and τ ≥ 1, there exists a low-rank Swish network nn : [0, 1]d → R

with depth
max

{⌈κ
2

⌉
, ⌈log2 d⌉+ 1

}
+ 1, (67)

width of nonlinear layers

2

(
d+ 1

d− 1

)
+ 4

(
d+ κ− 2

d− 1

)
+ 4

(
d+ κ− 1

d− 1

)
+ 6(M + 1)d, (68)

width of linear hidden layers (
d+ 1

d− 1

)
+

(
d+ κ− 3

d− 1

)
+

(
d+ κ− 2

d− 1

)
+ 2(M + 1)d, (69)

upper bound of number of nonzero parameters

4
⌈κ
2

⌉(d+ 1

d− 1

)
+ 12

κ∑
l=2

(
d+ l − 1

d− 1

)
+

(M + 1)d

(
24 + 16⌈log2 d⌉+ 2d+ 8

⌈κ
2

⌉
+ 4

κ∑
l=2

(
d+ l − 1

d− 1

)) (70)
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and upper bound of absolute values of parameters

max

(3M + 2)τ, 2λ2 max
|α|≤κ


∑
ν≥α
|ν|≤κ

R

v!

d∏
i=1

(
νi
αi

) , 2λ2

 , (71)

such that

|nn(x)− f(x)|

≤ (M + 1)d

12λ2

(
C4

1 + 6C2
1C

2
2 + C4

2

8
+ C2C3 + C4(d− 1)

)
+ τe−τC5 +M−βC6 + (M + 1)dτe−τC7

≤ (M + 1)d

12λ2

(
C4

1 + 6C2
1C

2
2 + C4

2

8
+ C2C3 + C4(d− 1)

)
+M−βC6 + (M + 1)dτe−τ

(
C5

2d
+ C7

)
for all x ∈ [0, 1]d, where

C1 :=
1

6 3
√
2

∑
2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

(
R

v!

d∏
i=1

(
νi
αi

))+

(
κ+ d− 1

d− 1

)
R+R ,

C2 :=
d− 1

6 3
√
2

+ (2∥ρ′∥∞)d ,

C3 :=
∑

2≤|α|≤κ

(|α| − 1)
∑
ν≥α
|ν|≤κ

(
R

v!

d∏
i=1

(
νi
αi

)) ,

C4 :=

(
κ+ d− 1

d− 1

)
R
∥∥∥x− m

M

∥∥∥β
∞

+R ,

C5 := 6R
(2∥ρ′∥∞)d − 1

2∥ρ′∥∞ − 1
,

C6 := 3d
(
κ+ d− 1

d− 1

)
R(2∥ρ′∥∞)d ,

C7 = 6

(
κ+ d− 1

d− 1

)
R(2∥ρ′∥∞)d−1 .

Proof of Theorem A.24. For all f ∈ Cβ,R([0, 1]d), M ∈ N+, λ ≥ 2−
1
3 , and τ ≥ 1, by Lemma A.17 and A.22, there exist

network P and G approximating (Pκ
m)m∈[M ]d and (ϕτm)m∈[M ]d respectively. Considering that the depths of P and G may

be not identical, we construct several nonlinear and linear layers of width 2(M + 1)d and (M + 1)d, which mimic the
identity function by Lemma 5.6, upon the shallow one to align their depths. Note that adding these layers does not change
the output, width, and upper bound of absolute values of parameters of the shallow network, but its number of nonzero
parameters increases

4
(
max

{⌈κ
2

⌉
, ⌈log2 d⌉+ 1

}
−min

{⌈κ
2

⌉
, ⌈log2 d⌉+ 1

})
(M + 1)d ≤ 4

(⌈κ
2

⌉
+ ⌈log2 d⌉+ 1

)
(M + 1)d.

Define a function nn : [0, 1]d → R as the inner product of P and G, i.e.

nn(x) :=
∑

m∈[M ]d

mult (Pm(x),Gm(x)) . (72)

The function nn can be implemented by adding a nonlinear layer of width 4(M +1)d and a subsequent linear layer of width
1 upon depth-aligned P and G to approximately multiply Pm and Pm for all m ∈ [M ]d and sup them up. The number of
additional nonzero parameters is 12(M + 1)d.
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Next we analyze the approximation error: for all x ∈ [0, 1]d,

|nn(x)− f(x)|

≤

∣∣∣∣∣∣
∑

m∈[M ]d

mult (Pm(x),Gm(x))−
∑

m∈[M ]d

Pm(x)Gm(x)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

m∈[M ]d

Pm(x)Gm(x)−
∑

m∈[M ]d

Pκ
m(x)ϕτm(x)

∣∣∣∣∣∣+∣∣∣∣∣∣
∑

m∈[M ]d

Pκ
m(x)ϕτm(x)− f(x)

∣∣∣∣∣∣ .
For the first term, by Lemma 5.5 and A.23,∣∣∣∣∣∣

∑
m∈[M ]d

mult (Pm(x),Gm(x))−
∑

m∈[M ]d

Pm(x)Gm(x)

∣∣∣∣∣∣ ≤ (M + 1)d

12λ2
· P

4
m(x) + 6P2

m(x)G2
m(x) + G4

m(x)

8

≤ (M + 1)d

12λ2
· C

4
1 + 6C2

1C
2
2 + C4

2

8
.

For the second term, by Lemma A.17, A.22, A.1, and A.23,∣∣∣∣∣∣
∑

m∈[M ]d

Pm(x)Gm(x)−
∑

m∈[M ]d

Pκ
m(x)ϕτm(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

m∈[M ]d

Pm(x)Gm(x)−
∑

m∈[M ]d

Pκ
m(x)Gm(x)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

m∈[M ]d

Pκ
m(x)Gm(x)−

∑
m∈[M ]d

Pκ
m(x)ϕτm(x)

∣∣∣∣∣∣
≤

∑
m∈[M ]d

|Gm(x)| · |Pm(x)− Pκ
m(x)|+

∑
m∈[M ]d

|Pκ
m(x)| · |Gm(x)− ϕτm(x)|

≤ (M + 1)d

12λ2
C2C3 +

(M + 1)d

12λ2
C4(d− 1).

For the third term, by Lemma 5.2,∣∣∣∣∣∣
∑

m∈[M ]d

Pκ
m(x)ϕτm(x)− f(x)

∣∣∣∣∣∣ ≤ τe−τC5 +M−βC6 + (M + 1)dτe−τC7.

Proof of Theorem 4.1. Theorem A.24 directly implies Theorem 4.1 by setting

c1 := 4
⌈κ
2

⌉(d+ 1

d− 1

)
+ 12

κ∑
l=2

(
d+ l − 1

d− 1

)

c2 := 24 + 16⌈log2 d⌉+ 2d+ 8
⌈κ
2

⌉
+ 4

κ∑
l=2

(
d+ l − 1

d− 1

)
,

c3 :=
C4

1+6C2
1C

2
2+C4

2

8 + C2C3 + C4(d− 1)

12
,

c4 := C6,

c5 :=
C5

2d
+ C7.
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Lemma A.25. For all τ ∈ R,
e−

τ
2 ≥ τe−τ . (73)

Proof of Lemma A.25. Let g(τ) := e
τ
2 − τ , then the derivative g′(τ) = 1

2e
τ
2 − 1. Let g′(τ) = 0, then the solution is

2 ln 2. When τ ≥ 2 ln 2, g′(τ) ≥ 0; when τ ≤ 2 ln 2, g′(τ) ≤ 0. Therefore g(τ) decreases monotonically on (−∞, 2 ln 2],
increases monotonically on [2 ln 2,+∞), and thus takes the minimum value g(2 ln 2) = 2− 2 ln 2 ≥ 0. It follows that

e
τ
2 − τ ≥ 0 ⇒ e

τ
2 ≥ τ ⇒ e−

τ
2 ≥ τe−τ .

Proof of Corollary 4.2. For all 0 < ε ≤ 3c4, letting

M :=

⌈
3

1
β c

1
β

4 ε
− 1

β

⌉
= O

(
ε−

1
β

)
,

λ := max

{
2−

1
3 ,

√
3

d
β+d+1c3c

d
β

4 ε
− β+d

β

}
= O

(
ε−

β+d
2β

)
,

τ := max

{
2 ln

(
3

d
β+d+1c

d
β

4 c5ε
− β+d

β

)
, 1

}
= O

(
ln

1

ε

)
,

then

M ≥ 3
1
β c

1
β

4 ε
− 1

β ≥ 1,

λ ≥ 2−
1
3 ,

τ ≥ 1.

Therefore, by Theorem 4.1, because
(M + 1)d = O

(
ε−

d
β

)
,

the width of nonlinear layers, the width of linear hidden layers, and the number of nonzero parameters are O(ε−
d
β ); because

λ2 = O
(
ε−

β+d
β

)
and

(3M + 2)τ = O
(
ε−

1
β ln

1

ε

)
,

the maximum absolute value of parameters is O(ε−
β+d
β ); because

c3
(M + 1)d

λ2
≤ c3

(
3

1
β c

1
β

4 ε
− 1

β + 2

)d

λ2
≤ c3

3d3
d
β c

d
β

4 ε
− d

β

3
d
β+d+1c3c

d
β

4 ε
− β+d

β

=
ε

3
,

c4M
−β ≤ c4

(
3

1
β c

1
β

4 ε
− 1

β

)−β

≤ ε

3
,

c5(M + 1)dτe−τ ≤ c5(M + 1)de−
τ
2 ≤ c5

3d3
d
β c

d
β

4 ε
− d

β

3
d
β+d+1c

d
β

4 c5ε
− β+d

β

≤ ε

3
, (by Lemma A.25)

the approximation error is no more than ε.
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B. Supplementary Material for Experiments

Table 2. Basic information about UCI datasets used in experiments. The number of features for each dataset refers to the total number of
features after converting categorical features into dummy features. For example, the categorical feature “race” in the dataset “Adult” takes
values in the set {“White”, “Asian-Pac-Islander”, “Amer-Indian-Eskimo”, “Other”, “Black”} and we replace this feature with five dummy
features taking values in {0, 1}.

DATASET UCI ID # OBSERVATIONS # FEATURES TASK TYPE

Iris 53 150 4 Classification
Rice 545 3810 7 Classification
BankMarketing 222 45211 47 Classification
Adult 2 48842 108 Classification

RealEstate 477 414 6 Regression
Abalone 1 4177 10 Regression
WineQuality 186 6497 13 Regression
BikeSharing 275 17379 12 Regression
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