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Abstract

Quality and diversity are two critical metrics001
for the training data of large language mod-002
els (LLMs), positively impacting performance.003
Existing studies often optimize these metrics004
separately, typically by first applying quality005
filtering and then adjusting data proportions.006
However, these approaches overlook the inher-007
ent trade-off between quality and diversity, ne-008
cessitating their joint consideration. Given a009
fixed training quota, it’s essential to evaluate010
both the quality of each data point and its com-011
plementary effect on the overall dataset. In012
this paper, we introduce a unified data selection013
framework called QuaDMix, which automati-014
cally optimizes the data distribution for LLM015
pretraining while balancing both quality and016
diversity. Specifically, we first propose multi-017
ple criteria to measure data quality and employ018
domain classification to distinguish data points,019
thereby measuring overall diversity. QuaDMix020
then employs a unified parameterized data sam-021
pling function that determines the sampling022
probability of each data point based on these023
quality and diversity related labels. To accel-024
erate the search for the optimal parameters in-025
volved in the QuaDMix framework, we con-026
duct simulated experiments on smaller mod-027
els and use LightGBM for parameters search-028
ing, inspired by the RegMix method. Our ex-029
periments across diverse models and datasets030
demonstrate that QuaDMix achieves an average031
performance improvement of 7.2% across mul-032
tiple benchmarks. These results outperform the033
independent strategies for quality and diversity,034
highlighting the necessity and the framework’s035
ability to balance data quality and diversity.036

1 Introduction037

The efficiency and preference of pretraining large038

language models are significantly influenced by039

the characteristics of the training corpus (Brown040

et al., 2020; Chowdhery et al., 2023; Longpre et al.,041

2024). There is evidence from existing research042

suggesting that the model performance can be im- 043

proved through the curation of high-quality data 044

(Wettig et al., 2024; Xie et al., 2023b; Sachdeva 045

et al., 2024), the application of data deduplication 046

and diversification strategies (Abbas et al., 2023; 047

Tirumala et al., 2023), and the careful balancing 048

of data distribution across various domains and 049

topics (Liu et al., 2024; Xie et al., 2023a). Never- 050

theless, identifying optimal configuration of com- 051

bining those factors remains an open challenge, 052

due to complex interplay between data quality and 053

diversity, which has yet to be fully understood. 054

There remains two major challenges to identify 055

the optimal data selection strategy. Firstly, the defi- 056

nition of quality and diversity is ambiguous. Pre- 057

vious research has proposed various definitions of 058

quality criteria, including factors such as regular ex- 059

pression (Penedo et al., 2023; Wenzek et al., 2020), 060

educational value (Penedo et al., 2024), similarity 061

to instruction tuning data (Li et al., 2024), etc, each 062

emphasizing only a specific aspect of the data. On 063

the other hand, approaches like (Liu et al., 2024; 064

Abbas et al., 2023) optimize the data mixtures for 065

more effective training, indicating that a better di- 066

versity is not necessarily uniform distribution. Sec- 067

ondly, there exists interplay between data quality 068

and diversity. The choice of quality criteria affects 069

the distribution of selected data as illustrated in 070

Figure 1, due to inherent biases in different criteria. 071

Meanwhile, changing of data mixtures influences 072

the data quality, as the quality level differs across 073

different domains. Also, since the high quality data 074

is limited, the trade-off between better quality or 075

diversity is inevitable, which is not feasible by op- 076

timizing only for data quality or diversity. How to 077

jointly optimize the data distribution together with 078

the selection of quality criteria remains another 079

unsolved issue. 080

To address these challenges, we propose a uni- 081

fied data selection framework, QuaDMix, which 082

simultaneously manages data quality and diversity. 083
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Figure 1: The distribution change of data selected with
Fineweb-edu Classifier. With the top5% documents se-
lected, the ratio of certain domains including Health,
Jobs and Education, increases for a large margin com-
pared with original data

Firstly, we apply several quality scorers and domain084

classification on each document in the training cor-085

pus, to measure the data quality and diversity. Then086

a parameterized function is designed to determine087

the sampling frequency for each document based088

on those quality and domain labels. Specifically,089

an aggregated quality score is first computed by090

weighted averaging the quality scores, where the091

weights are controlled by adjustable parameters.092

Then a parameterized sampling function takes the093

aggregated quality score as input and calculate the094

sampling frequency, where data with higher quality095

is assigned with more frequency and the parameters096

affect how the frequency decreases as the quality097

diminishes. Here we take the assumption that train-098

ing samples with higher quality worth sampled for099

more times. We assign independent parameters for100

data across different domains to control the diver-101

sity via parameters. To find the optimal parameters102

among the numerous parameter space, we employ103

a two-step approach inspired by (Liu et al., 2024).104

First, we train a set of small models on datasets105

sampled using QuaDMix with various parameter106

configurations, as an approximation for the perfor-107

mance of larger models. Next, we train a regression108

model to fit the performance results from this lim-109

ited set of small models. This regression model is110

then used to predict the performance for unseen pa-111

rameter configurations, providing an efficient way112

to explore the parameter space without exhaustive113

large-scale training.114

To validate the effectiveness of QuaDMix, we115

train 3000 models with 1M parameters for 1B to-116

kens, each using data sampled from RefinedWeb117

(Penedo et al., 2023) with various QuaDMix pa-118

rameters. The optimal parameter configuration 119

is then determined by searching the input space 120

of a trained LightGBM regressor(Ke et al., 2017). 121

We then evaluate different pretraining data selec- 122

tion methods on models with 530M parameters. 123

The optimal configuration identified by QuaDMix 124

achieves superior performance on an aggregated 125

benchmark. Our results also reveal the following 126

insights: (1) Different quality criteria exhibit trade- 127

offs across downstream tasks, but appropriately 128

merging these criteria yields consistent improve- 129

ments across tasks by leveraging complementary 130

information. (2) The optimal data mixture varies 131

under different quality criteria, indicating the im- 132

portance of jointly optimizing both the quality and 133

diversity. (3) The target of regression model can 134

guide the preference for specific downstream tasks, 135

enabling task-focused data selection. 136

2 Related Work 137

2.1 Pretraining Data Selection 138

Data quality, diversity, and coverage are critical fac- 139

tors for ensuring the efficiency and generalizability 140

of large language models (Cheng et al., 2024; Tou- 141

vron et al., 2023; Chowdhery et al., 2023). 142

To improve data quality, rule-based filtering tech- 143

niques are commonly employed (Laurençon et al., 144

2022; Weber et al., 2024; Penedo et al., 2023; Raf- 145

fel et al., 2020). These methods use handcrafted 146

heuristics, such as removing terminal marks, de- 147

tecting sentence repetitions, and enforcing length 148

constraints, to exclude low-quality data. While 149

these rules effectively filter out noisy data from 150

the training corpus, they fail to capture semantic- 151

level information, which is crucial for more refined 152

data selection. Alternative approaches aim to ad- 153

dress this limitation. For instance, (Wenzek et al., 154

2020; Marion et al., 2023; Thrush et al., 2024) use 155

model perplexity as a measure of data quality, while 156

(Lin et al., 2025) apply token-level selection by re- 157

weighting the loss across tokens. (Xie et al., 2023b) 158

utilize n-gram features to quantify data importance 159

and sample accordingly. Discriminator-based meth- 160

ods (Brown et al., 2020; Du et al., 2022; Gao et al., 161

2020; Soldaini et al., 2024; Li et al., 2024) select 162

data by comparing it to predefined high-quality 163

datasets, such as Wikipedia or instruction-tuning 164

datasets. However, how much these predefined 165

datasets represent for high-quality relies on em- 166

pirical judgement. More recently, approaches like 167

(Gunasekar et al., 2023; Sachdeva et al., 2024; Wet- 168
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Figure 2: The overall design of QuaDMix. First we extract the data features using classifier and quality scores
(QS). Then we calculate quality rank for each domain with the merging parameters. Finally the sampling functions
controlled by sampling parameters are applied to generate the final output data.

tig et al., 2024; Penedo et al., 2024) leverage large169

language models (e.g., GPT-4) to evaluate and filter170

data based on designed prompts that emphasize var-171

ious dimensions of value, offering a more nuanced172

way to define and curate high-quality data.173

To optimize data distribution, various meth-174

ods leverage clustering and representativeness to175

achieve deduplication and diversification. For ex-176

ample, (Abbas et al., 2023; Shao et al., 2024; Tiru-177

mala et al., 2023) employ data clustering tech-178

niques to identify and select representative data179

points, ensuring both diversity and efficiency in the180

training corpus. Other approaches estimate opti-181

mal data mixtures through iterative modeling. (Xie182

et al., 2023a) first train a small reference model and183

subsequently optimize the worst-case loss across184

domains by training a proxy model to identify the185

optimal data mixture. Similarly, (Bai et al., 2024;186

Yu et al., 2024; Fan et al., 2024; Gu et al., 2024)187

calculate influence scores by tracking first-order188

gradients on an evaluation set, thereby identifying189

the most valuable data for training. Additionally,190

(Liu et al., 2024; Ye et al., 2024) simulate the per-191

formance of different data mixtures by training a192

series of proxy models, enabling the prediction of193

large-model performance with low compute cost.194

2.2 Scaling Laws195

Neural Scaling Laws have been shown to effec-196

tively predict performance across varying training197

budgets, model sizes, and dataset scales in LLM198

pretraining (Kaplan et al., 2020; Rae et al., 2022). 199

However, in practical scenarios where dataset size 200

is limited, or data mixtures vary, scaling laws ex- 201

hibit significant variations (Hoffmann et al., 2022). 202

Several studies have extended scaling laws to ac- 203

count for these complexities. (Muennighoff et al., 204

2023; Hernandez et al., 2022) explore the impact 205

of data repetition levels on scaling behaviors, while 206

(Ge et al., 2024) investigate scaling dynamics un- 207

der different domain proportions and dataset sizes. 208

To optimize data compositions, (Liu et al., 2024) 209

propose a regression model for predicting optimal 210

mixtures, and (Kang et al., 2024) further analyze 211

optimal compositions across varying scales. Ad- 212

ditionally, (Que et al., 2024) focus on identifying 213

the best data mixtures for the continued pretraining 214

stage, providing insights into refining pretraining 215

strategies under diverse constraints. 216

3 Methodology 217

Our approach can be illustrated in 4 parts: 1) We 218

propose the QuaDMix framework, which utilizes a 219

unified parameterized function to govern the data 220

sampling process. 2) We conduct small-scale exper- 221

iments to explore how different parameter settings 222

within QuaDMix affect the performance of LLM. 223

3) We train a regression model to capture these 224

effects, using it to identify the optimal parameters. 225

4) With the optimal parameter settings, we sample 226

large-scale data and train a large language model. 227
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3.1 Design of QuaDMix228

We design QuaDMix as a sampling algorithm that229

simultaneously accounts for data quality and di-230

versity, as shown in Figure 2. Given a pretrain-231

ing dataset X , we define a sampling function232

S(x, qx, dx;θ), which determines the expected233

sampling times of each data point x based on its234

data feature qx and dx. Here qx represents the235

quality score vector, which includes multiple qual-236

ity criteria, and dx denotes the domain to which x237

belongs. θ are the parameters to be optimized. The238

output of this function is fractional value, e.g. a.b,239

meaning the document will be sampled for a times240

plus another random sampling with probability b.241

Feature Extraction To measure a sample’s con-242

tribution to diversity and its quality, we propose243

using domain classification and N quality scorers244

to label the pretraining data. Specifically, we use245

a domain classifier to divide the dataset into M246

domains, where x will be assigned a domain label247

dx. Then we use N quality scorers to compute the248

quality vector qx = (q1,x, ..., qN,x), and for each249

qn,x, a smaller value indicates a better quality on250

that dimension. For the sake of simplicity, we omit251

x in the subscript in the following discussion.252

Quality Ranking We first define a merging func-253

tion that integrates the scores from various quality254

filters, aiming to incorporate complementary infor-255

mation provided by different criteria. Assuming256

there are N criteria, for any individual example x257

belonging to domain m, the merged quality score258

is calculated by259

q̄ =

N∑
n=1

σ(qn)αn,m, (1)260

where αm are the merging parameters for do-261

main m. We utilize separate merging parameters262

to balance the quality criteria across different do-263

mains, as the criteria exhibit varying preferences264

depending on the domain. σ is a normalization265

function to align the scales of quality criteria.266

We then sort the data based on the merged quality267

score. The sorting is operated separately in each268

domain. The merged quality rank r̄ is calculated269

by computing the percentile of the data within that270

domain. That is271

r̄ =
|{x|dx = m, q̄x <= q̄}|

|{x|dx = m}|
. (2)272

Here we calculate the size of the set by adding273

up the number of tokens for all sample within274

the set. For a given example in domain m with 275

r̄ = 0.05, this means that 95% of the tokens in 276

that domain have a worse quality compared to this 277

example. (Note that we use smaller quality scores 278

to represent higher quality.) 279

280

Quality Sampling Next, we define the sampling 281

function. We take the assumption that higher- 282

quality data should be sampled more frequently in 283

the final dataset. This assumption is supported by 284

evidence (Penedo et al., 2024), which demonstrates 285

that applying a higher quality threshold improves 286

downstream performance. For any example in do- 287

main m with merged quality rank r̄, the value of 288

the sampling function is determined by 289

S(r̄) =

{
( 2
1+e−λm(ωm−r̄) )

ηm + ϵm, r̄ <= ωm

ϵm, r̄ > ωm

(3) 290

We denote βm = (λm, ωm, ηm, ϵm) as the sam- 291

pling parameters for domain m. We use a format 292

of sigmoid to ensure the sampling value is mono- 293

tonically decreasing as the quality rank goes up 294

(worse quality) and λm is used to adjust how fast 295

it decreases. ωm controls the quality percentile 296

threshold, determining the minimum quality level 297

we aim to retain. ηm is a scaling parameter that 298

adjusts the sampling values, while ϵm introduces 299

randomness to incorporate data from all quality 300

ranges. By applying different sampling parameters 301

across domains, we achieve flexible control over 302

domain proportions. 303

In summary, by integrating (1),(2), and (3), we 304

define the sampling function for individual do- 305

main m, with the parameters structured as θm = 306

(αm,βm). The total number of parameters is 307

(N + 4) × M , where N represents the number 308

of used quality criteria and M denotes the total 309

number of distinct domains. 310

3.2 Proxy Model Experiments 311

We first sample a set of values for each parameter 312

defined above, subsequently generating correspond- 313

ing datasets using the QuaDMix sampling function. 314

Following this, a series of small proxy models are 315

trained on each dataset and evaluated on the valida- 316

tion set to compute the validation loss. 317

Parameter Sampling The parameter space re- 318

quires careful design to encompass valuable re- 319

gions, while avoiding extreme conditions. We sam- 320

ple from the parameter space as following: 321
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Algorithm 1 Parameter Sampling for QuaDMix

Ensure: θ
Require: N,M

Sample (a1, ..., aN ) ∼ U(0, 1)
ãn = an∑

i ai
for m = 1 to M do

Sample (b1,m, ..., bN,m) ∼ U(0, 1)

b̃n,m =
ãnbn,m∑
i ãibi,m

αm = (b̃n,m), n = 1, ..., N
Sample (λm, ωm, ηm, ϵm) ∼ U(0, 1)
λ̃m = 103λm , ω̃m = 0.1ωm

η̃m = ηm, ϵ̃m = ϵm/1000
βm = (λ̃m, ω̃m, η̃m, ϵ̃m)
θm = (αm,βm)

end for
θ = (θ1, ...,θM )

In the algorithm above, we introduce a global322

weight for each quality criteria, with the final323

weight computed by multiplying the global weight324

by the domain-specific weight. Without this global325

weight, the expected average weight across do-326

mains for each quality criterion would always be327

1/N , which fails to account for the scenario where328

one quality criterion may suppress another over-329

all. For βm, we rescale them accordingly to ensure330

domain proportions and quality thresholds remain331

within a reasonable range. Using this process, we332

generate 3,000 sets of parameters θi and then sam-333

ple with QuaDMix from our training data, produc-334

ing 3,000 proxy datasets, denoting as Di.335

Proxy Model Training Next we train the proxy
models on each proxy datasets from scratch.

f∗
i = argmin

f
L(f,Di)

After training, we evaluate the proxy models by cal-
culating the loss on the target evaluation datasets.

Li = L(f∗
i , Deval)

3.3 Parameter Optimizing336

Regression Model Fitting The next step is to de-337

termine the correlation between the sampled QuaD-338

Mix parameters and model performance. We for-339

mulate this as a regression problem, as proposed in340

(Liu et al., 2024), with the goal of learning a func-341

tion that predicts the target value based on the input342

features. Specifically, we optimize a regressor R343

with344

R∗ = argmin
R

∑
i

||R(θi)− Li||2

We evaluate different types of regressors and se- 345

lect LightGBM (Ke et al., 2017), which ensembles 346

multiple decision trees, to predict the target value. 347

Optimal Parameter Estimation Once the regres- 348

sor is trained, we search the input space to find the 349

optimal parameters that minimize the predicted 350

loss. Rather than performing a random search 351

across the entire space, we sample 100,000 data 352

points using the algorithm outlined in Section 3.2 353

to mitigate the influence of outliers on the regres- 354

sor. To further reduce the variance in the regression 355

predictions, we sort the data points based on their 356

predicted target values and calculate the average of 357

the top 10 data points to determine the final output. 358

3.4 Large-scale Model Experiments 359

We then use the optimal parameters to generate 360

large-scale datasets for training large-scale models. 361

In practice, since sorting the quality scores across 362

the entire dataset is computationally expensive, we 363

estimate the quality percentile by randomly select- 364

ing a subset of 10,000 documents. Within this 365

subset, we calculate the mapping between the qual- 366

ity percentile and quality score, and then apply this 367

mapping to the entire dataset. 368

4 Experiments on Regression Model 369

4.1 Experiment Setup 370

Datasets We conduct our experiment on Refined- 371

Web (Penedo et al., 2023). It is an English large- 372

scale dataset for the pretraining of large language 373

models and consists of over 570B(billion) tokens. 374

For the small proxy datasets, we sample it from a 375

subset of RefinedWeb, each containing 1B tokens. 376

Feature Extraction We generate the necessary 377

data features including data quality and domain 378

index with 3 individual quality filters, AskLLM 379

(Sachdeva et al., 2024), Fineweb-Edu (Penedo 380

et al., 2024), DCLM (Li et al., 2024) and 1 do- 381

main classifier (Jennings et al.), which classify the 382

data into 26 different domains with a Deberta V3 383

(He et al., 2023) architecture. 384

Training and evaluation For the proxy models, 385

we train them on the proxy datasets for 1B to- 386

kens, taking 1 NVIDIA H100 GPU hour and calcu- 387

late the loss on the validation datasets. To con- 388

struct the validation datasets, we sample from 389

the instruction-formatted dataset OpenHermes 2.5 390
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Selected Reading Commonsense
Methods Token Comprehension Reasoning Knowledge Math Average
Random Selection 500B 32.9 51.6 17.4 2.8 32.3
DSIR 72B 34.9 49.2 17.5 6.9 32.7
RegMix 500B 35.5 52.4 17.7 3.5 33.6
Fineweb-edu 30B 41.4 55.5 20.1 6.0 37.4
AskLLM 30B 38.9 54.2 19.0 2.3 35.5
DCLM 30B 41.2 53.1 19.8 8.2 36.7
Criteria Mix 74B 40.1 53.7 20.0 3.1 36.0
QuaDMix-OH 30B 44.0 55.7 21.0 10.2 39.0
QuaDMix-BMK 30B 44.8 55.7 21.3 11.5 39.5

Table 1: QuaDMix outperforms the methods focusing only on data quality or data mixture. With benchmark training
set as the target, the results further boost.

Figure 3: Left: The prediction model loss vs real model
loss. Right: The regression model performance (MAE)
vs training size.

(Teknium, 2023). As demonstrated in (Li et al.,391

2024), this dataset is used to train a robust qual-392

ity filter. To improve efficiency, we sampled 10k393

samples from it to form a validation subset, named394

openhermes-10k. Additionally, we test on the train-395

ing data from the downstream tasks including Hel-396

laSwag, ARC-E, ARC-C, MMLU, and TriviaQA397

to demonstrate the model’s ability to optimize for398

specific downstream tasks by altering the target399

evaluation datasets.400

For the regression model, we split the data into401

2800/200 for training and validation. We use Mean402

Absolute Error (MAE) as the evaluation metric,403

which calculates the average absolute differences404

between predicted and actual values.405

4.2 Results406

We show the results of regression models in Figure407

3. The left figure shows strong correlation between408

the predicted loss and the real model loss (evaluated409

on OpenHermes) on the validation set, providing410

the evidence that there exists statistical pattern be-411

tween the QuaDMix parameters and the model per-412

formance. We compare three regression models in 413

the right figure. We can see LightGBM yields bet- 414

ter accuracy in predicting the model performance 415

than SVR (Drucker et al., 1996) with Linear kernel 416

and RBF kernel. Also, with larger training size, the 417

accuracy keeps increasing. Considering the train- 418

ing budget, we conduct 3000 proxy experiments in 419

total to get a better results. 420

5 Experiments on Language Model 421

In this section we compare different methods of 422

data selection and mixture with QuaDMix by train- 423

ing language models from scratch and evaluating 424

on various downstream tasks. 425

5.1 Experiment Setup 426

Training and evaluation We train the language 427

model with 530M parameters from scratch for 428

500B tokens, taking 32 NVIDIA GPU for 3 days. 429

We use transformer architecture (Vaswani et al., 430

2017), SwiGLU (Shazeer, 2020) as the activation 431

function and RoPE embeddings (Su et al., 2024). 432

Then we evaluate the model performance using 433

lm-eval-harness (Gao et al., 2023). We choose 9 434

downstream tasks, including 3 commonsense rea- 435

soning tasks (PIQA (Bisk et al., 2019), HellaSwag 436

(Zellers et al., 2019), OpenBookQA (Mihaylov 437

et al., 2018)), 3 reading comprehension tasks (ARC- 438

E/C (Clark et al., 2018), Triviaqa (Joshi et al., 439

2017)), 1 math problem solving task (SVAMP 440

(Patel et al., 2021)) and 2 knowledge intensive 441

tasks (MMLU (Hendrycks et al., 2021), NQ-open 442

(Kwiatkowski et al., 2019; Lee et al., 2019)). For 443

each benchmark, we used normalized accuracy as 444

the evaluation metric. Some modifications on the 445

testing logic are applied for numerical stability. 446
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Selected Reading Commonsense
A F D Token Comprehension Reasoning Knowledge Math Average
✓ 30B 38.9 53.5 18.6 2.9 35.2

✓ 30B 41.4 55.5 20.1 6.0 37.4
✓ 30B 41.3 53.4 19.7 12.2 37.3

✓ ✓ 30B 41.9 55.6 20.0 5.1 37.5
✓ ✓ 30B 41.8 54.6 19.8 9.1 37.5

✓ ✓ 30B 43.5 55.6 20.8 9.6 38.7
✓ ✓ ✓ 90B 40.7 55.2 19.5 4.6 36.8
✓ ✓ ✓ 180B 37.8 53.9 18.9 2.8 35.1
✓ ✓ ✓ 30B 44.0 55.7 21.0 10.2 39.0

Table 2: QuaDMix-OH with different settings on number of quality filters and number of selected tokens. Using all
three quality filters yields the best results, and the best practical threshold for quality score is top 5% tokens

Figure 4: The visualization of optimal parameters from QuaDMix-BMK

5.2 Data Selection Methods447

We generate the training data from the RefinedWeb448

dataset using following data selection methods.449

• Random Selection: Documents are randomly450

selected from the whole dataset.451

• Fineweb-edu Classifier: Documents are scored452

with Fineweb-edu Classifier (Penedo et al., 2024)453

with top-k selection454

• AskLLM: Documents are scored with the prob-455

ability of generating "Yes" from a prompted large456

language model (Sachdeva et al., 2024). The top-k457

documents are selected.458

• DCLM: Documents are scored with fasttext based459

classifier (Li et al., 2024) with top-k selection.460

• Criteria Mix: Following (Wettig et al., 2024),461

the selected data from the above three filters are462

merged, with duplicated documents removed.463

• DSIR: Documents are sampled based on the im-464

portance calculated with the N-gram features (Xie465

et al., 2023b).466

• RegMix: Following (Liu et al., 2024), we conduct467

512 1M porxy experiments and randomly select468

data using the optimized data mixtures.469

• QuaDMix-OH: Documents are sampled with the470

proposed QuaDMix, where Openhermes is used as 471

the validation set for the proxy experiments 472

• QuaDMix-BMK: Documents are sampled with 473

the proposed QuaDMix, where the training set of 474

5 downstream tasks (HellaSwag, ARC-E, ARC-C, 475

MMLU, TriviaQA) are used as the validation set to 476

generate the optimal QuaDMix parameters. 477

5.3 Results 478

The results are summerized in Table 1. We can 479

see that QuaDMix outperforms the methods focus- 480

ing only on data quality or data mixture on all the 481

benchmarks, proving the necessity of jointly con- 482

sidering quality and diversity. It also shows that 483

the proxy model experiments can well indicate the 484

performance on large scale model. With loss of 485

the benchmark training set as the target when train- 486

ing the regression model, the results further boost. 487

This prove the ability of QuaDMix of optimizing 488

for specific downstream tasks by choosing evalua- 489

tion datasets in proxy experiments which are more 490

related to the downstream tasks. 491

Analysis of optimal QuaDMix parameters We 492

show the optimal data mixtures and merging pa- 493

rameters of quality filters from QuaDMix-BMK in 494
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Figure 5: The prediction loss of QuaDMix-BMK surpasses QuaDMix-OH on all 5 downstream tasks.

Method HellaSwag ARC-C ARC-E MMLU TriviaQA
QuaDMix-OH 56.5 39.2 71.1 34.1 21.6

QuaDMix-BMK 56.1 40.2 71.3 34.4 22.8

Table 3: QuaDMix-OH vs QuaDMix-BMK on 5 downstream tasks. The trend mostly agree with the prediction loss
on proxy model except for HellaSwag.

Figure 4. We see that the Health and Science do-495

main are upsampled for large margin, while Sports496

and Computers downsampled, indicating that the497

downstream tasks we choose have preference for498

specific domains. The right figure shows that the499

DCLM quality filter contributes most to the merged500

quality score, while AskLLM only occupies a small501

weight among the three filters.502

6 Ablations503

Quality Merging Benefits Selection To prove the504

necessity of quality score merging, we select dif-505

ferent combinations of quality filters by manually506

setting the weight of certain filters to 0 when find-507

ing the optimal QuaDMix parameters. As shown in508

Table 2, merging with all three quality filters shows509

the best performance. Although using one quality510

filter can be optimal for one specific task, for exam-511

ple DCLM-only for MATH, the merging process512

reduces intrinsic bias within the quality filters and513

outperforms in general ability, which is essential514

for language model pretraining.515

More Tokens not always good We also experi-516

ment with selecting more tokens by loosing the517

sampling parameter ω in QuaDMix. In that way518

we introduce more diversed tokens but lower qual-519

ity into the training. The results show that selecting520

30B tokens, i.e. documents with top5% quality521

yields the best result, meaning that curing data qual-522

ity contributes more than increasing the number of523

unique tokens within this range.524

Proxy Ability of Small Models How well the pre-525

diction loss on proxy models forecasts the perfor-526

mance on large-scale models is the key factor of527

QuaDMix. To study this, we train 5 separate re- 528

gression models, each using the loss on training set 529

of one benchmark as the target. The results on the 530

validation set are shown as blue points in Figure 531

5. We notice that HellaSwag has larger variance 532

than others, which indicates there may be more in- 533

fluencing factors related with HellaSwag, making 534

the loss on it harder to predict. Then we predict the 535

loss for optimal parameters from QuaDMix-OH 536

and QuaDMix-BMK using each regression model 537

as shown in Figure 5. It is reasonable to see the 538

loss of QuaDMix-BMK surpasses QuaDMix-OH 539

on all tasks since QuaDMix-BMK utilizes bench- 540

mark training set as optimizing target. Finally we 541

report the performance of large model in Table 542

3. Except for HellaSwag, QuaDMix-BMK outper- 543

forms QuaDMix-OH on other tasks, which agrees 544

with the trend on prediction loss. The inconsistent 545

conclusion on HellaSwag is because the predict 546

loss has larger variance as mentioned above, mak- 547

ing the proxy ability lower than other tasks. How 548

to further increase the proxy ability is one of the 549

future direction to explore. 550

7 Conclusion 551

In this paper, we propose a novel data selection 552

method QuaDMix that jointly optimizes the data 553

quality and diversity for language model pretrain- 554

ing. We design a parameterized space that controls 555

both the data quality and diversity, and conduct 556

proxy experiments to find the correlation between 557

the parameter and model performance. The training 558

data generated with optimal parameters are proved 559

to outperform others on various downstream tasks. 560
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8 Limitations561

We note several limitations of our work. There ex-562

ist improvement space for the design of parameter563

space of QuaDMix. For example the parameters of564

sampling function may generate similar functions565

under different parameters, which will cause redun-566

dancy and introduce uncertainty into the regression567

model. Secondly, the searching in the parameter568

space for optimal parameters is inefficient. We use569

random guessing in a space with 200 more dimen-570

sions, for certain the current optimal parameter is571

a local minimum and how to effectively search in572

the parameter space remains unclear. Finally, the573

proxy ability of small models is crucial, what is the574

systematic way to improve it is an important yet575

less explored topic. However, QuaDMix provides a576

useful solution for jointly optimize for data quality577

and diversity, and it worth continually exploring on578

the limitations mentioned above.579
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