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Abstract

Reinforcement Learning from Human Feedback (RLHF) has been highly successful in aligning
large language models with human preferences. While prevalent methods like DPO have
demonstrated strong performance, they frame interactions with the language model as a
bandit problem, which limits their applicability in real-world scenarios where multi-turn
conversations are common. Additionally, DPO relies on the Bradley-Terry model assumption,
which does not adequately capture the non-transitive nature of human preferences. In this
paper, we address these challenges by modeling the alignment problem as a two-player
constant-sum Markov game, where each player seeks to maximize their winning rate against
the other across all steps of the conversation. Our approach Optimistic Multi-step Preference
Optimization (OMPO) is built upon the optimistic online mirror descent algorithm (Rakhlin
& Sridharan, 2013; Joulani et al., 2017). Theoretically, we provide a rigorous analysis for
the convergence of OMPO and show that OMPO requires O(ϵ−1) policy updates to converge to
an ϵ-approximate Nash equilibrium. We also validate the effectiveness of our method on
multi-turn conversations dataset and math reasoning dataset.

1 Introduction

In recent years, the integration of large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023;
Team et al., 2023; Dubey et al., 2024) into various applications has highlighted the need for advanced
preference alignment methods (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al.,
2022; Rafailov et al., 2023; Guo et al., 2025). As models increasingly engage in complex decision making or
reasoning scenarios, the ability to align their outputs with user preferences requires a learning algorithm that
satisfies the following desiderata.

• Desiderata 1: Multi-step learning with intermediate preference signal. In multi-round con-
versations, alignment must occur at each turn to meet user needs. Similarly, in mathematical reasoning
with chain-of-thought prompting, step-by-step validation is essential to ensure accuracy in the final result.
Unfortunately, most existing works on reinforcement learning from human feedback (RLHF) focus on
one-step preference (Rafailov et al., 2023; Meng et al., 2024; Munos et al., 2024; Azar et al., 2024; Zhang
et al., 2024; Wu et al., 2025). In addition, most of the multi-step works (Wang et al., 2023; Shani et al.,
2024; Swamy et al., 2024) assume that the preferences are revealed only at the terminal state, neglecting
intermediate preferences.

• Desiderata 2: General preferences. The learning algorithm can handle general, non-transitive
preference models, bypassing the Bradley-Terry assumption (Bradley & Terry, 1952), which assigns a score
for each answer based on its preference. This assumption of the model cannot capture the non-transitive
preference, which is often observed in the averaged human preferences from the population (Tversky, 1969;
Gardner, 1970).
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Table 1: Comparison between the literature of learning from a general preference oracle, which may violate
the Bradley–Terry assumption. † denotes that this rate applies for convergences to the Nash equilibrium
(NE) of the regularized game, obtained by adding a penalty in the form αD(·, πref), where D denotes the
KL divergence. IPS stands for intermediate preference signal. ⋆ denotes that the last iterate convergence is
asymptotic only. Detailed related work can be found in Appx. B.

Algorithm IPS Multi Step Updates for ϵ-NE Without α-strong convexity α Last Iterate Guarantees

SPPO Wu et al. (2025) ✗ ✗ O(ε−2) ✓ − ✗

SPO Swamy et al. (2024) ✗ ✓ O(ε−2) ✓ − ✗

MTPO Shani et al. (2024) ✗ ✓ O(α−2ε−1)† ✗ 0.0025 ✓

Nash-MD Munos et al. (2024) ✗ ✗ O(α−2ε−1)† ✗ 0.008 ✓

EGPO Zhou et al. (2025) ✗ ✗ O(|Y|ε−1) ✓ − ✓

ONPO Zhang et al. (2025c) ✗ ✗ O(ε−1) ✓ − ✗

MMD Wang et al. (2024) ✗ ✗ asymptotic ✓ − ✓⋆

OMPO (Ours) ✓ ✓ O(ε−1) ✓ − ✓⋆

• Desiderata 3: Convergence guarantees. It has reliable and robust convergence guarantees in the
multi-turn setting. Recent work Shani et al. (2024) considers an α-regularized preference problem and
exploits its strong convexity to derive convergence bounds. Unfortunately, these bounds are not very
informative when the regularization strength α tends to 0. It remains open to prove a convergence rate
which does not deteriorate for vanishing α. Moreover, a non vacuous upper bound on the number of
policies updates should depend on the number of sentences |Y| at most logarithmically.

In this paper, we present the first algorithm achieving the three desiderata at once by formulating multi-step
general preference optimization within the framework of two-player Markov games (Shapley, 1953). In a
two-player Markov game, each player seeks to maximize their winning rate against the other across all steps
of the conversation.

Moreover, for the multi-turn learning from preference, it is enough to consider a Markov game where each
player has their own state and the transition dynamics do not depend on the state of the other player. Under
this setting, we can leverage techniques from the linear programming literature in Markov decision processes
Manne (1960) to formulate the multi-step problem as a bilinear problem over the space of the occupancy
measures.

We then apply the optimistic online mirror descent algorithm (Rakhlin & Sridharan, 2013; Joulani et al.,
2017) to obtain fast convergence guarantees. In particular, we show that it is possible to find an ε-Nash
equilibrium of this game in O(ε−1) gradients updates. Moreover, leveraging Lagrangian duality, we show
that the optimistic online mirror descent update can be implemented in a projection free manner, making it
suitable for a practical implementation.

We name the derived algorithm Optimistic Multi-step Preference Optimization (OMPO). Numerical results
demonstrate that OMPO attains considerable improvements on multi-turn conversation datasets and math
reasoning datasets. Our contribution is compared to the recent literature on the same topic in Tab. 1.

2 Problem setting: Multi-step RLHF as two-player Markov games

2.1 Notation

We define the prompt to the language model as x and the answer from the language model as a. For a
multi-turn conversation with turn H, the prompts and the answers are denoted by xh and ah,∀h ∈ [H]. The
concatenation of a prompt x and an answer a is denoted by [x, a] and can be generalized to the concatenation
of multiple prompts and answers, e.g., [x1, a1, . . . , xH , aH ].
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For any two prompt action sequences, e.g., y = [x1, a1, . . . , xH , aH ] and y′ = [x′
1, a

′
1, . . . , x

′
H , a

′
H ], we define a

preference oracle as o(y≻y′) ∈ {0, 1}, which can provide preference feedback with 0-1 scores, where 1 means
the conversation y is preferred and 0 otherwise. We denote P(y ≻ y′) = E[o(y ≻ y′)] as the probability that
the conversation y is preferred over y′. Moreover, we have P(y ≻ y′) = 1− P(y′ ≻ y).

An autoregressive language model is denoted by π(a|x), which receives input x and generates answer a. We
denote the KL divergence of two probability distributions p and q by D(p, q). The Bregman Divergences
between two points are denoted by D(p, q). The sigmoid function is defined by σ(z) := 1

1+e−z . Moreover, we
use capital letters to denote random variables: for example, s denotes a specific state, while S represents a
state sampled from a certain distribution. We use ∥ · ∥∞ to denote the ℓ∞-norm. Detailed definitions for the
notations are summarized in Appx. A.

2.2 Problem formulation of multi-step RLHF

In this section, we introduce the problem setting for multi-step RLHF. Specifically, we can cast the multi-
step alignment process as an episodic finite-horizon Markov Decision Process (MDP). An MDP is a tuple
M = (S,A, f, r, ν1, H), where S is the state space, A is the action space, H is the horizon (total steps),
the initial state distribution ν1 is a distribution over the state space S. A potentially non-stationary policy
π : A× [H]→ ∆A is a mapping from states (sentences) and stages to distribution over actions. We define
the policy set as Π.

Sampling an episode is done according to the following protocol. At the initial step, we sample the prompt
X1 ∼ ν1 and define the initial state equal to the prompt itself, i.e., S1 = X1. For each step h, a new action
Ah ∼ πh(·|Sh) is sampled from the policy and the next prompt is sampled according to the transition function
f , that is Xh+1 ∼ f(·|Sh, Ah). The next state is then constructed deterministically as Sh+1 = [Sh, Ah, Xh+1 ]
by using the concatenation operator between sentences. An important consequence is that the MDP is
tree-structured and that each state can be reached only from a single initial state. The episodes end after H
steps.

Our setting covers a number of alignment problems, and we list some examples below.
Example 1 (Single-step alignment). In single-step alignment, a language model receives one prompt and
outputs one answer. Our framework covers the single-step alignment by dissecting the answer into single
tokens. Specifically, we set X1 as the prompt, X2, . . . , XH+1 as empty sentences, and the answer Ah at each
turn consists of only one token. Then the horizon H is the number of tokens in the answer. The transition
between each state is deterministic.
Example 2 (Chain-of-thought reasoning alignment). In the chain-of-thought reasoning, the horizon H
denotes the number of reasoning steps, where X1 is the initial prompt and X2, . . . , XH+1 are empty. Each
Ah corresponds to a reasoning step. The transition between each state is deterministic.
Example 3 (Multi-turn conversation alignment). In multi-turn conversation, the horizon H denotes the total
number of turns in the conversation. In the h-th turn, Xh is the prompt, and Ah is the answer. The prompt
in the terminal state, XH+1, is an empty sentence. The transition between each state can be deterministic or
stochastic.

Next, we define the pair-wise reward function of two state-action pairs (s, a) ∈ S ×A and (s′, a′) ∈ S ×A as
the preference of two trajectories: r(s, a, s′, a′) = P([s, a] ≻ [s′, a′]) . Notice that, by definition, we have that
∥r∥∞ ≤ 1.

We aim to identify the Nash equilibrium of the following two-player symmetric constant-sum Markov game1:

(π∗, π∗) = arg max
π∈Π

min
π′∈Π

ES1∼ν1,π,π′

[ H∑
h=1

r(Sh, Ah, S′
h, A

′
h)
]
, (Game)

1In a two-player constant-sum Markov game, a Nash equilibrium is defined as (π⋆
1 , π

⋆
2) = arg maxπ minπ′ ES1∼ν1V

π,π′ (S1, S1),
where π⋆

1 and π⋆
2 do not necessarily coincide in general. However, in the symmetric game setting (our setting), the two players

face identical action and state spaces and share the same best-response structure. In this case, the equilibrium policies coincide
so that we write the equilibrium compactly as (π⋆, π⋆). The same convention applies to the occupancy measures (d⋆, d⋆).
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where the two state action sequences are generated with the above protocol {(Sh, Ah)}Hh=1 and {(S′
h, A

′
h)}Hh=1.

We enforce S′
1 = S1 to guarantee the two agents start from the same prompt.

For the reader’s convenience, we elaborate further on Game in Appx. G, discussing its interpretation in terms
of the max min operator, the role of the input X1, the time horizon H, the availability of P, and minimal
examples that illustrate the advantages of general preferences and intermediate rewards.

2.3 Useful facts in Markov games

Next, we present some additional quantities and notation which help in dealing with Markov games. We
define the pair-wise state and state action value functions as follows

V π,π
′

h (s, s′) = Eπ,π′

[ H∑
τ=h

r(Sτ , Aτ , S′
τ , A

′
τ )|Sh = s, S′

h = s′
]
,

Qπ,π
′

h (s, a, s′, a′) = Eπ,π′

[ H∑
τ=h

r(Sτ , Aτ , S′
τ , A

′
τ )|Sh = s, S′

h = s′, Ah = a,A′
h = a′

]
,

where Aτ ∼ πτ (·|Sτ ), A′
τ ∼ π′

τ (·|S′
τ ), Sτ+1 ∼ f(·|Sτ , Aτ ), and S′

τ+1 ∼ f(·|S′
τ , A

′
τ ). We will often denote

V π,π
′

1 without the subscript, i.e., as V π,π′ . Notice that since the reward function is bounded by 1, we have
that ∥V π,π

′

h ∥∞ ≤ H and ∥Qπ,π
′

h ∥∞ ≤ H for all h ∈ [H]. Moreover, notice that we consider potentially non-
stationary policies. In particular, πh denotes the probability of choosing actions at stage h and π = (π1, . . . , πH)
denotes the global policy that samples actions according to πh at stage h.
Remark 1. Readers might be surprised on reading a double state dependence in the definition of the state
value function. Indeed, in standard literature of two-player Markov games, the tuple s, s′ is considered as
a joint common state. Therefore, the agents generate the next actions sampling from policies conditioned
on the joint state (πh(·|sh, s′

h)). This protocol is not suitable for the conversation task in which each agent
(LLM) should generate the next action conditioned only on its own state (conversation up to stage h). This
motivates our choice of not representing s, s′ as a common joint state.

Having introduced the value functions, we can rewrite Game in terms of state value functions as follows:

(π∗, π∗) = arg max
π∈Π

min
π′∈Π

E
[ H∑
h=1

r(Sh, Ah, S′
h, A

′
h)
]

= arg max
π

min
π′

ES1∼ν1V
π,π′

(S1, S1) . (1)

Moreover, we will use the following compact inner product notation ES1∼ν1V
π,π′(S1, S1) =

〈
ν1, V

π,π′
〉

.
Given the above notation, we can formalize our objective. We look for a policy π satisfying the following
definition of approximate equilibrium.
Definition 1 (ϵ-approximate Nash equilibrium(Orabona, 2019; Daskalakis et al., 2020; Sayin et al.,
2021)). A policy π is said to be an approximate Nash equilibrium if it holds that:

⟨ν1, V
π,π⟩ −min

π̄∈Π

〈
ν1, V

π,π̄
〉
≤ ϵ, and max

π̄∈Π

〈
ν1, V

π̄,π
〉
− ⟨ν1, V

π,π⟩ ≤ ϵ.

2.4 The occupancy measure view

As mentioned, our algorithm OMPO will operate over the occupancy measure space defined as follows. Given a
policy π, let us consider a trajectory {(Sh, Ah)}Hh=1 generated as S1 ∼ ν1, Ah ∼ πh(·|Sh), Sh+1 ∼ f(·|Sh, Ah)
for all h ≥ 1. Then, the single player occupancy measure of π, denoted as dπh ∈ ∆S×A, is defined at stage h
as dπh(s, a) = Pr(Sh = s,Ah = a).

We also define the occupancy measure conditioned on a particular initial state dπh|s1
(s, a) = Pr(Sh =

s,Ah = a|S1 = s1). In addition, given the policies π, π̄ and corresponding rollouts {(Sh, Ah)}Hh=1 and
{(S′

h, A
′
h)}Hh=1 from the same initial state S1 = S′

1, the joint occupancy measure of (π, π̄) at stage h is defined
as dπ,π̄h (s, a, s′, a′) = Pr(Sh = s,Ah = a, S′

h = s′, A′
h = a′).
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The usefulness of the occupancy measures is that the expected value function at the initial state can be
represented as an inner product between the reward function and the joint occupancy measure, i.e., ⟨ν1, V

π,π̄⟩ =∑H
h=1

〈
r, dπ,π̄h

〉
. Moreover, given the structure of the game where the sequences of sentences and answers

are generated independently by the two agents given an initial state s1 ∈ S, the joint occupancy measure at
each step can be factorized as the product of the two agents occupancy measures given a particular s1. In
particular, we have dπ,π̄h|s1

(s, a, s′, a′) = dπh|s1
(s, a) · dπ̄h|s1

(s′, a′) for all h, s, a, s′, a′. This makes possible to write
the objective in a bilinear form, that is, ⟨ν1, V

π,π̄⟩ = ES1∼ν1

[∑
h,s,a,s′,a′ dπh|S1

(s, a)r(s, a, s′, a′)dπ̄h|S1
(s′, a′)

]
.

Moreover, we can characterize the set of the occupancy measures via |S| dimensional affine constraints. In
particular, for each possible initial state s1, the set

Fs1 =
{
d = (d1, . . . , dH) :

∑
a

dh+1(s, a) =
∑
s′,a′

f(s|s′, a′)dh(s′, a′), d1(s) = 1 {s = s1}
}

describes the possible occupancy measures in the sense that for any element d = (d1, . . . , dH) ∈ Fs1 there
exists a policy π ∈ Π such that dπh|s1

= dh for all h ∈ [H]. This is an elementary fact about MDP whose proof
can be found in Puterman (1994). F is the product set of the Bellman flow constraints for a particular initial
state, i.e. F = ×s1∈supp(ν1)Fs1 .

With this notation in place we can write the following program, which corresponds to Game lifted to the
space of occupancy measures.

(d⋆, d⋆) = arg max
d∈F

min
d′∈F

ES1∼ν1

H∑
h=1

∑
s,a,s′,a′

dh(s, a|S1)r(s, a, s′, a′)d′
h(s′, a′|S1) . (Occ-Game)

The policy pair (π⋆, π⋆) solution of Game can be retrieved from the occupancy measure pair (d⋆, d⋆) as
π⋆(a|s) = d⋆(s,a)∑

a
d⋆(s,a)

. The advantage of the reformulation is that the program over occupancy measures is
linear with affine constraints while Game is non convex non concave.

Moreover, lifting the problem to the occupancy measures turns out to be fundamentally important for
enabling each agent to learn a policy conditioned only on their own state. This is different from the standard
literature on Markov Games (Daskalakis et al., 2020; Wei et al., 2021; Alacaoglu et al., 2022), which assumes
that both agents share a common state. Our idea, described in details in the next section, is to apply the
optimistic algorithm from Joulani et al. (2017) to the reformulation of Game over occupancy measures. We
present the resulting algorithm, i.e., OMPO, in Alg. 1.

3 Algorithm and convergence guarantees

Below we detail our algorithm, summarized in Sec. 3.1. The derivation is based on the optimistic online
descent method applied on the reformulation of the optimization problem in the occupancy measures space.
In particular, we will use that optimistic online mirror descent (Optimistic OMD) with one projection (Joulani
et al., 2017). For a bilinear function g : Z×W → R such that g(z, w) = ⟨z,Aw⟩, optimistic OMD can be used
to compute a saddle point minz∈Z maxw∈W g(z, w). In particular, the iterates for the z player implemented
with the Bregman divergence D induce by a Legendre potential with step size β iterates as follows

zt+1 = arg min
z∈Z

β ⟨2Awt −Awt−1, z⟩ − D(z, zt) .

The idea of optimism (Popov, 1980; Chiang et al., 2012; Rakhlin & Sridharan, 2013) has been used to obtain
better regret bounds for slow changing loss sequences in online learning or to achieve minmax optimal rates
in saddle point optimization. Our application falls into the latter category.

Specifically, we derive our algorithm given in Alg. 1 applying optimistic gradient descent ascent on the bilinear
problem Occ-Game . The next section provides the convergence guarantees for our method.
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Algorithm 1 OMPO (Theory Version)
1: input: occupancy measure of reference policy π1 denoted as d1, preference oracle P (i.e. reward function
r), learning rate β, Bregman divergence D, iteration T

2: for t = 1, 2, . . . , T do
3:

dt+1
h = arg max

d∈F
β
〈
d, 2ES′,A′∼dt

h
r(·, ·, S′, A′)− ES′,A′∼dt−1

h
r(·, ·, S′, A′)

〉
− D(d, dth).

4: end for
5: πout

h (a|s) = d̄h(s,a)∑
a
d̄h(s,a)

with d̄h = T−1∑T
t=1 d

t
h for all h ∈ [H].

6: Output : πout

3.1 Convergence guarantees of optimistic multi-step preference optimization (OMPO)

As the next theorem shows, in the ideal case where the updates can be computed exactly, Alg. 1 finds an
ϵ-approximate Nash equilibrium using fewer updates compared to a naive application of natural actor critic in
this setting (see Alg. 3 in Appx. C) and to Swamy et al. (2024, Alg. 1). The proof can be found at Appx. D.3.
Theorem 4 (Convergence of OMPO). Consider Alg. 1 and let us assume that the occupancy measure of
the reference policy d1 is uniformly lower bounded by d. Moreover, let D be 1/λ strongly convex, i.e.
D(p||q) ≥ ∥p−q∥2

1
2λ . Then, by setting T = 10H log d−1

βϵ and β ≤ 1√
2λ , we ensure that (πout, πout), i.e., the output

of Alg. 1 is an ϵ-approximate Nash equilibrium. Therefore, we need at most 10H log d−1

βϵ policy updates.

In addition, not only Swamy et al. (2024, Alg. 1) but also OMPO can be implemented using only one player
since in a constant sum game, the max and min player produce the same iterates. The result is formalized as
follows and the proof is deferred to Appx. D.4.
Theorem 5. Consider a constant sum two-player Markov game with reward such that r(s, a, s′, a′) =
1− r(s′, a′, s, a), then for each s1 ∈ supp(ν1) the updates for d in Alg. 1 coincides with the updates for the
min player that uses the updates

dt+1
h = arg max

d∈F
β
〈
d, 2ES′,A′∼dt

h
r(·, ·, S′, A′)− ES′,A′∼dt−1

h
r(·, ·, S′, A′)

〉
− D(d, dth).

It is important to notice that the above theorem uses the fact that shifting the reward by a constant does not
change the optimal policy. This happens because all feasible occupancy measures have fixed total mass. For
the first iteration, we initialize d0

h to be equal to d1
h for all h. Moreover, the next theorem shows that the last

iterate converges asymptotically. The proof is deferred to Appx. D.5.
Theorem 6. Assume that {dt}∞

t=1 are the iterates generated by Alg. 1 with β ≤ 1/
√

2λ and that there exists
a NE d⋆ such that d⋆(s, a) > 0. Then, their limit exists. Then {dt}∞

t=1 converges to the set of Nash equilibria
of Occ-Game .

An important caveat of the above result is that it requires the existence of an equilibrium in the interior of
the domain. In case the Nash equilibrium lies on the boundary our average iterate convergence guarantee
still applies while the last iterate result becomes vacuous.

3.2 Efficient implementation

We can avoid the projection over the set F by implementing this update on the policy space (see Appendix E).
We achieve such results following the techniques developed in Bas-Serrano et al. (2021); Viano et al.
(2022) for specific choices of the Bregman divergence D. In particular for the relative entropy, D(p, q) =∑H

h=1
∑
s,a ph(s, a) log (ph(s,a)qh(s)/qh(s,a)ph(s)) which is 1-strongly convex, we show in E.2 that the update in

Alg. 1 can be implemented as follows

πt+1
h (·|s) ∝ πth(·|s)⊙ exp

(
βhQ

t
h(s, ·)

)
, Qth(s, a) = r̃t(s, a) + Es′∼f(·|s,a)V

t
h(s′),

6
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r̃t(s, a) =
∑
s′,a′

(2dth(s′, a′)− dt−1
h (s′, a′))r(s, a, s′, a′), V th(s) = 1

βh
log
∑
a

πth(a|s) exp(βhQth(s, a)),

where βh = β
H−h+1 . These updates for the value functions are known as soft-Bellman equation Ziebart (2010).

The reward r̃t has this particular form because of the particular optimistic mirror descent update that we are
performing.

Approximating the value function updates Unfortunately these updates suffer from numerical in-
stabilities in practice but for β → 0 we have that the regularized value functions Qth and V th tends to the
standard state action and state value function respectively . Indeed as shown in the next theorem we have
that V th(s)→ ⟨πth(a|s), Qth(s, a)⟩ for β → 0.
Theorem 7. Let us denote βh = β

H−h+1 and let us assume that the values Qth generated by the soft Bellman
equations in Thm. 10 are uniformly upper bounded by Qmax, and let us choose βh ≤ 1

Qmax
for all h ∈ [H].

Then, it holds that〈
πth(·|s), Qth(s, ·)

〉
≤ 1
βh

log
∑
a

πth(a|s) exp(βhQth(s, a)) ≤
〈
πth(·|s), Qth(s, ·)

〉
+ βhQ

2
max .

Therefore, in practical implementation with small β it is reasonable to approximate the regularized state
action value functions with the standard single player state action value functions for the reward function r̃t

denoted with Qπ
h,̃r

(s, a) = Eπ
[∑H

τ=h r̃
t(Sτ , Aτ )|Sh = s,Ah = a

]
. Moreover, given the definition of r̃t, we can

write Qπt
h,̃r

as function of the joint action value functions as follows:

Qπ
t

h,̃r
(s, a) = 2ES′,A′∼dt

h
Qπ

t,πt

h (s, a, S′, A′)− ES′,A′∼dt−1
h
Qπ

t,πt−1

h (s, a, S′, A′).

In practice, the dynamics are unknown, so we use a standard Monte Carlo to approximate the state action
value functions. For the first term, we sample K pairs of trajectories from the same LLM ( with policy πth)
denoted

{(
Skτ , A

k
τ

)}H,K
τ=1,k=1 and

{(
S′,k
τ , A′,k

τ

)}H,K
τ=1,k=1 respectively. For the second term, we have to produce

K trajectories from the old policy πt−1, let us denote this rollouts as
{(
S†,k
τ , A†,k

τ

)}H,K
τ=1,k=1 . At this point,

we can produce the estimator whose unbiasedness is easy to be verified ( i.e. E
[
Q̂th(s, a)

]
= Qπ

t

h,̃r
(s, a)).

Q̂th(s, a) = 1
K

K∑
k=1

H∑
τ=h

(
2P([Skτ , Akτ ] ≻ [S′,k

τ , A′,k
τ ])− P([Skτ , Akτ ] ≻ [S†,k

τ , A†,k
τ ])

)
1{Sk1 =s,Akτ=a}. (2)

At the initial, iteration, when πt−1 is undefined we use the estimator Q̂1
h(s, a) = 1

K

∑K
k=1

∑H
τ=1 P([Skτ , Akτ ] ≻

[S′,k
τ , A′,k

τ ])1{Sk1 =s,Akτ=a}.

Approximating the policy update The last obstacle for a practical implementation is the normalization
constant in the policy update, which is intractable in practice. To circumvent this problem, we use the
approach suggested in Wu et al. (2025), which treats the log of the unknown normalization constant as a
tunable parameter.

The detailed pseudocode of our practical implementation is in Alg. 2. First, recall that our goal update
with the estimated state action value function πt+1

h (·|s) ∝ πth(·|s)⊙ exp
(
βhQ̂th(s, ·)

)
could be implemented

exactly as in the next equation if the state dependent normalization constant Zth(s) was computationally

tractable, i.e., πt+1
h (a|s) = πth(a|s) exp{βQ̂t

h
(s,a)}

Zt
h

(s) . This equation can be expressed equivalently as follows

log πt+1
h

(a|s)
πt
h

(a|s) = βQ̂th(s, a)− logZth(s). Therefore, following Wu et al. (2025), we approximate the above equality
with the following regression problem:

πt+1 = arg min
π∈Π

E S∼ν1
A∼π(·|S)

[ H∑
h=1

(
log π

t+1
h (A|S)
πth(A|S) − βQ̂

t
h(S,A) + logZth(S)

)2 ]
.
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Finally, to ensure computationally tractability we replace logZth(s) with βH−h+1
2 in all states s. Such

heuristic is motivated by the following observation: If the preference between ah and a′
h in Eq. (4) results

in a tie, then with such logZth(s), the solution of Eq. (4) is πt+1 = πt, leaving the model unchanged. In
summary, we provide a practical version of OMPO in Alg. 2. For simplicity, we used a stationary policy whioch
is a good approximation for large H and we find to be sufficient to obtain convincing results.

Algorithm 2 OMPO (Practical version)
input: reference policy π1, preference oracle P, learning rate β, number of generated samples K, horizon
H, total iteration T , tunable bias term τ .
for t = 1, 2, . . . , T do

Sample S1
1 ∼ ν1.

for h = 1, 2, . . . ,H do
Generate responses A1

h ∼ πt(·|S1
h).

end for
Clear the dataset buffer Dt.
for h = 1, 2, . . . ,H do

Set SKh = · · · = S2
h = S1

h.
Generate K − 1 conversations by sampling A2:K

ĥ
∼ πt(·|S2:K

ĥ
) for ĥ ∈ [h,H].

Estimate Q̂th via Eq. (2).
Add {(S1

h, A
k
h)}k∈[K] into Dt.

end for

Update policy πt+1 ← arg minπ∈Π
∑
S,A∈Dt

(
log π(A|S)− log πt(A|S)− βQ̂t1(S,A) + βH−h+1

2

)2
.

end for
output: πT+1

4 Experiments

In this section, we provide several numerical results. Additional description of the dataset setup, detail on
hardware setup, hyperparameter setup, evaluation setup, and ablation studies can be found in Appx. F
Beyond comparing OMPO with recent algorithms from the literature we compare with a simpler multi step
method based on actor critic dubbed MPO. We provide the derivation in Appx. C. This comparison serves to
assess the importance of the formulation over occupancy measures and of the optimism in the policy update.

4.1 Tabular experiment

First, we consider a synthetic experiment in which the state action functions can be computed exactly for
both OMPO and MPO. We generate 10 random gridworlds with a number of states and actions sample uniformly
from the intervals [1, 100] and [2, 10]. We plot the exploitability computed as maxπ

〈
ν1, V

π,πk − V πkπk
〉
,

which is a standard metric to evaluate the distance from a Nash equilibrium. In particular, when (πk, πk) is
a Nash equilibrium, the exploitability is 0. We can see that OMPO achieves very low exploitability after 100
updates while 2000 updates are needed by MPO. In this case, where the Q functions can be computed exactly,
we can appreciate the faster convergence rate of OMPO as described by Thm. 4.

4.2 Experiment on multi-turn conversation dataset

In this section, we test the proposed algorithms with multi-turn conversations in MT-bench-101 (Bai et al.,
2024), see detailed description of this dataset at Appx. F.1. We choose Mistral-7B-Instruct-v0.2 as the base
model (Jiang et al., 2023). We use a pre-trained PairRM 2 as the preference oracle. Specifically, given two
conversations [sh, ah] and [s′

h, a
′
h], PairRM will return a score that indicates the probability that [sh, ah] is

2https://huggingface.co/llm-blender/PairRM
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Table 2: Evaluation results on MT-bench-101 dataset. Mistral-7B-Instruct is selected as the base model.
We can observe that both of the proposed algorithms MPO and OMPO considerably outperform the baseline in
terms of the score (the higher the better). For OMPO, we omit the result for iteration 1, as it is the same as
MPO. OMPO relies on information from two adjacent steps, and at the initial step there is no previous step,
so it coincides with MPO.

Model
Perceptivity Adaptability Interactivity

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

DPO (iter=1) 6.361 7.889 6.483 7.699 8.149 8.973 7.098 7.423 3.448 6.123 3.421 4.492 5.639 5.858

DPO (iter=2) 6.327 7.611 6.206 8.106 8.052 9.111 6.670 7.153 3.494 5.884 3.360 4.691 5.837 6.078

DPO (iter=3) 5.391 6.019 4.521 6.890 6.631 8.177 5.437 5.723 3.448 5.295 3.142 4.015 5.256 5.529

SPPO (iter=1) 6.475 7.432 7.464 7.714 8.353 8.580 6.917 6.714 4.136 5.055 4.403 5.400 6.036 5.966

SPPO (iter=2) 6.541 7.516 7.496 7.808 8.313 8.731 7.077 6.867 4.136 5.281 4.488 5.477 6.098 5.751

SPPO (iter=3) 6.577 7.575 7.547 7.944 8.365 8.797 7.040 6.865 4.442 5.185 4.346 5.394 6.092 5.906

Step-DPO (iter=1) 6.433 7.463 7.054 7.790 8.157 8.593 6.827 6.748 4.234 4.849 4.236 5.519 5.982 6.171

Step-DPO (iter=2) 6.553 7.616 7.043 7.925 8.147 8.662 6.790 6.878 4.331 5.048 4.366 5.734 6.391 6.254

Step-DPO (iter=3) 6.442 7.665 7.023 7.767 8.016 8.589 6.723 6.581 4.305 5.014 4.153 5.453 6.202 6.257

MPO (iter=1) 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

MPO (iter=2) 6.735 7.838 7.723 8.196 8.590 9.027 7.347 7.209 4.240 5.137 4.469 5.531 6.181 6.061

MPO (iter=3) 6.733 7.868 7.686 8.289 8.510 9.078 7.330 7.529 4.461 4.829 4.225 5.366 6.198 6.155

OMPO(iter=2) 6.736 7.733 7.723 8.257 8.478 9.122 7.300 7.421 4.123 5.288 4.506 5.513 6.179 5.923

OMPO(iter=3) 6.776 7.649 7.792 8.281 8.578 9.136 7.424 7.635 4.377 5.308 4.312 5.455 6.187 5.954

Iterations
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(a) Results in tabular experiments.
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Figure 1: (a): Results in the tabular experiments. Curves are averages across 10 different randomly generated
environments. The error bars report one standard deviation. (b): Result of OMPO on the MT-bench-101
dataset; (c) Winning rate against the base model with different approximations for the Q functions. When
optimizing ah at the h step, only considering the preference of sh is sufficient compared to using sh, . . . , sH+1.

better than [s′
h, a

′
h], which can be used to considered as the preference oracle P defined in the previous section.

We select iterative DPO (Dong et al., 2024), iterative SPPO (Wu et al., 2025), and iterative Step-DPO
as our baselines. For both iterative DPO and iterative SPPO, we sample K = 5 complete conversations
starting from s1, and estimate the winning rate P([skH+1, a

k
H+1] ≻ (sk′

H+1, a
k′

H+1]) ∀k, k′ ∈ [K]. Then we select
both the best and worst conversations according to their winning rates against others, which is defined as
1
K

∑K
k′=1 P([skH+1, a

k
H+1] ≻ [sk′

H+1, a
k′

H+1]) for the conversation [skH+1, a
k
H+1]. Such a pair is used to train DPO

while the winning rate is used to train SPPO. For both Step-DPO, MPO, and OMPO, we do the same strategy with
starting at sh. In MPO and OMPO, we estimate Q(sh, ah, sh, a′

h) by P([sh, ah] ≻ [sh, a′
h]) to enhance the efficiency.

For OMPO, the Qπt,πt−1 term is estimated by calculating the winning rate between two answers (the best and the
worst) generated by the current policy πt and the five answers previously generated by πt−1. Each round of dia-
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Table 3: Performance of math reasoning on MATH and GSM8K dataset across various models. MPO and
OMPO achieve performance comparable to Step-DPO (Lai et al., 2024) without requiring the ground truth
label of the dataset during fine-tuning while Lai et al. (2024) requires. Additionally, MPO and OMPO only need
access to a Llama-3-based reward model (RM) to compare two answers whereas Step-DPO Lai et al. (2024)
requires GPT-4 to locate and identify the incorrect reasoning step in an answer, which is a considerably more
difficult task than comparison.

Method Additional info on
incorrect step

Auxiliary Autoregressive
Language Model Average GSM8K Math

Base (Qwen2-7B-Instruct) - - 0.7049 0.8559 0.5538
Step-DPO (Lai et al., 2024) ✓ ✓ (Require GPT-4) 0.7258 0.8680 0.5836

Step-DPO ✗ ✗ (Require Llama-3 RM) 0.7184 0.8749 0.5618
MPO ✗ ✗ (Require Llama-3 RM) 0.7260 0.8734 0.5786
OMPO ✗ ✗ (Require Llama-3 RM) 0.7283 0.8779 0.5786

logue is rated on a scale of 1 to 10 by GPT-4o mini, with the mean score reported for each dialogue. All methods
are run for a total of 3 iterations. The results are summarized in Tab. 2, showing significant improvements over
the baselines with the proposed MPO and OMPO approaches. In Fig. 1(b), we present the Radar chart on different
categories and we can see that the proposed OMPO leads to improvements generally along the iterations. Fig. 1(c)
shows that using the entire trajectory to estimate the Q function can lead to subtle improvement at the first
two iterations while it finally achieves a similar winning rate when compared to the one that only use one step.

4.3 Experiment on math reasoning dataset

As discussed in Sec. 2, our framework can also cover the alignment of chain-of-thought reasoning. In this
section, we validate the proposed methods in two widely used math reasoning datasets: MATH Hendrycks
et al. (2021) and GSM8K Cobbe et al. (2021). We use Qwen2-7B-Instruct as the base model and follow the
same evaluation procedure as in Lai et al. (2024). We adopt the dataset for alignment from Lai et al. (2024),
which contains 10795 samples of augmented mathematical problems from MetaMath (Yu et al., 2024) and
MMIQC (Liu et al., 2024b)3. For both MPO and OMPO, we select the Llama-3-based model4 as the preference
oracle. For Step-DPO, we implement two versions. The first version is using the Llama-3-based model as the
preference oracle and follows the same procedure as MPO and OMPO. The second version is using the checkpoint
provided in Lai et al. (2024). The result is provided in Tab. 3, showing that the proposed methods achieve
performance comparable to Step-DPO (Lai et al., 2024).

5 Conclusion

This work presents a novel framework to enhance the preference alignment of LLMs in multi-step setting by
casting the alignment process as a two-player Markov game. In particular, we provided a new formulation of
the problem on the occupancy measure space and propose an optimistic mirror descent ascent scheme to
solve it. A natural open direction is to investigate the rate for the last iterate of Alg. 1 for which our work
only establishes an asymptotic convergence result. Moreover, we think it would be interesting to understand
if our techniques still applies to the infinite horizon discount setting and to general sum matrices. A second
interesting direction is to find other applications of our formulation of learning from general preferences over
the space of occupancy measures. In addition, at theoretical level, it is interesting to investigate whether the
same conclusion offered by our work can extend to the infinite horizon setting. The main obstacle in that
direction is to establish the analogous result to the factorization of the occupancy measure, which we used to
derive the game formulation given in Eq. (Occ-Game ). For this reason, we think that the analysis of the
infinite horizon setting will require new conceptual tools to be carried out. From the practical point of view,
future work could extend our method to vision-language models (VLMs) for aligning both text and image

3https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
4https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B

10



Published in Transactions on Machine Learning Research (12/2025)

modalities. One can also apply our approach in the AI safety domain, particularly as a potential multi-step
defense mechanism against jailbreak attacks.

6 Broader impact

In this work, we propose novel algorithms for multi-step alignment in LLMs and establish their theoretical
guarantees. Our framework can make LLMs better at understanding and following complex instructions
over time. Our method could help improve AI systems used in education, math reasoning, finance reasoning,
customer service, or other areas where multi-step inference matter. We do not create any new benchmarks
for human preferences nor solicit human preferences for this study. As such, we do not expect any potential
violations of ethical standards, including those concerning the use of human data. Our contributions are
primarily methodological and theoretical analysis of the convergence, and we have taken care to ensure that
our work complies with all relevant ethical guidelines.
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Contents of the Appendix

The Appendix is organized as follows:

• In Appx. A, we summarize the symbols and notation used in this paper.

• In Appx. B we provide a complete overview of the related works, elaborate on the difference and
contribution of our work, and provide preliminaries on single-step RLHF.

• We describe MPO with natural actor-critic in Appx. C.

• In Appx. D, we provide the proofs for the theoretical results.

• Appx. E shows the implementation of Algorithm 1 with updates over policies.

• Appx. F provides supplementary material on the numerical experiments.

• We provide more discussion on Eq. (Game) in Appx. G.

Table 4: Core symbols and notations used in this paper.

Symbol Dimension(s) & range Definition

xh - Prompt at step h
ah - Specific Answer (action) at step h
Ah - An answer (action) sample from a certain distribution at step h
sh - Specific state at step h
Sh - A state sampled from a certain distribution at step h

s1(sh) - The only initial state that can lead to sh

π Language model (policy)
ν1 Initial distribution of state s1

dπ
h(s, a) [0, 1] Occupancy measure of π at stage h

f Transition function
Pr(sh = s, ah = a) [0, 1] Joint probability of sh = a and ah = a

o {0, 1} Preference oracle
P([s, a] ≻ [s′, a′)] [0, 1] Winning probability of [s, a] against [s′, a′)]

D(p, q) KL divergence of two probability distributions p and q
D(p, q) Bregman Divergences between two points q and p

Dt Dataset buffet at iteration t

∆X [0, 1]|X | Set of probability distributions over the set X
⊙ - Hadamard product between two vectors

O, o, Ω and Θ - Standard Bachmann–Landau order notation

We additionally use a compact notation for representing the Bellman flow constraints. We denote by
E ∈ R|S|×|A||S| the matrix such that (Ez)(s, a) = z(s) for all vectors z ∈ R|S|. Additionally, we denote by F
the matrix such that (Fz)(s, a) =

∑
s′ f(s′|s, a)z(s′) for all vectors z ∈ R|S|.

A Symbols and notation

We include the core symbols and notation in Tab. 4 to facilitate the understanding of our work.

B Related work

In this section, we present an overview of the related literature,discussion on the differences with related
literatures, and preliminary on single-step RLHF.
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B.1 Overview of related work

RLHF under Bradley-Terry model. Over the years, significant strides have been made towards developing
RLHF algorithms from various perspectives under the Bradley-Terry (BT) model Bradley & Terry (1952).
Earlier RLHF pipelines usually included supervised fine-tuning, learning a reward model, and reinforcement
learning optimization with PPO (Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al.,
2022). Due to the instability and scaling issues of such a pipeline, direct alignment methods such as DPO
have been proposed to bypass the training of the reward model (Rafailov et al., 2023). Several follow-up
methods, such as generalized preference optimization (Tang et al., 2024), use offline preference data to directly
optimize pairwise preferences against a fixed opponent. A number of works have proposed reference-model-free
method (Meng et al., 2024; Hong et al., 2024). In Meng et al. (2024), the impact of sequence length is
mitigated by averaging the likelihood over the length of the sequence. In the multi-step scenario, several
multi-step variants of DPO are introduced in the math reasoning task. Lu et al. (2024) initiate from an
intermediate step in a correct reasoning process and increase the temperature to produce a flawed reasoning
path leading to an incorrect answer. Meanwhile, Lai et al. (2024) leverage GPT-4 to detect the first incorrect
step in a multi-step reasoning trajectory, then regenerate from that point to obtain the correct path. Together,
these serve as the pair of samples for DPO.

RLHF under general preferences. The reward model in the BT model inherently implies transitivity
in preferences. However, human preferences, especially the resulting averaged human preferences from
populations, are usually nontransitive (Tversky, 1969; Gardner, 1970). To this end, Azar et al. (2024) outline
a general framework for RLHF starting from general preference optimization and shows that DPO is a
special case with the assumption of BT model. They further proposed IPO without such an assumption.
Subsequently, Munos et al. (2024) try to solve the alignment of non-transitive general preferences using
two-player Nash learning in a bandit setting. In their work, preferences are regularized through KL divergence
to a reference policy, and they prove the convergence of the last iterative. In Swamy et al. (2024), multi-step
alignment is considered while preference signals are only applied at the final step. Swamy et al. (2024) do not
demonstrate the effectiveness of this framework in large language models. Wu et al. (2025) propose SPPO,
studying bandit alignment under general preferences. They introduce a novel loss function that increases the
log-likelihood of the selected response while decreasing that of the rejected response, in contrast to DPO.
Rosset et al. (2024) start with the Nash learning framework and propose Online DPO, which is an iterative
version of DPO. Wang et al. (2023) provide theoretical analysis on multi-step RLHF under general preference
while practice application is not explored. In Wang et al. (2023), the preference signal is given for the entire
trajectory of an MDP while in this paper it is step-wise. Shani et al. (2024) study multi-step alignment under
general preferences. However, unlike their approach where only preferences at the final states are considered,
our work is built on a two-player Markov game which assumes that human preference is received at each step.
Additionally, we leverage the optimistic online gradient descent to achieve a better convergence rate than
Wang et al. (2023); Shani et al. (2024), and utilize Monte Carlo estimation with a small-scale pairwise reward
model, avoiding the need for an additional function approximator for the critic network. Our contribution is
compared to the recent literature on the same topic in Tab. 1.

Two-player markov game & optimistic online gradient descent. Two-player Markov games have been
widely studied since the seminal work (Shapley, 1953). Particularly relevant to our work is the research line
on policy gradient algorithms for two-player Markov games such as Daskalakis et al. (2020); Wei et al. (2021);
Alacaoglu et al. (2022). Our OMPO is strictly related to the idea of optimistic online gradient descent (Popov,
1980; Chiang et al., 2012; Rakhlin & Sridharan, 2013) originally proposed in online learning to achieve small
regret in case of slow varying loss sequences. Our update that uses only one projection per update was
proposed in Joulani et al. (2017). The name of our method is due to a similar algorithm introduced in the
context of variational inequalities by Malitsky & Tam (2020).

Token-level preference optimization. A line of work formulates the alignment of contextual bandit
problems in LLMs (Example.1) from token-level MDPs perspective (Rafailov et al., 2024; Zeng et al., 2024;
Liu et al., 2024a). In Rafailov et al. (2024), by defining the reward at each token before the terminal
token as the generation likelihood and using the maximum entropy RL objective, the authors derive the
original objective of DPO from a new perspective that incorporates token-level rewards. Zeng et al. (2024)
assume that the reward for a response can be decomposed into token-level rewards at each token. Then they
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design a token-level objective function based on Trust Region Policy Optimization, adding token-level KL
divergence constraints to the DPO objective in the final algorithm. More recently, Liu et al. (2024a) study
how the difference in average rewards between chosen and rejected responses affects the optimization stability,
designing a new algorithm where importance sampling weights are assigned to each token-level reward. There
are two main differences between the multi-step alignment approach in our work and those in previous work.
First, while Rafailov et al. (2024); Zeng et al. (2024); Liu et al. (2024a) develop alignment methods based on
the Bradley-Terry model with transitive rewards, our framework is motivated by a two-player game with
relative rewards. Secondly, although Rafailov et al. (2024); Zeng et al. (2024); Liu et al. (2024a) formulate
the alignment process as an MDP, their final objective is tailored to a contextual bandit problem in LLMs.
In contrast, our objective is designed for a multi-step alignment problem, suited for multi-turn conversation
or chain-of-thought reasoning.

B.2 Discussion on the difference from SPPO

Next, we elaborate on the difference with SPPO (Wu et al., 2025) below: Firstly, the theoretical analysis
of the proposed MPO differs from that of SPPO due to differences in the settings. SPPO considers the
contextual bandit problem and builds its analysis based on the game matrix from Freund & Schapire (1999).
In our case, however, we frame the problem as a Markov game and employ a distinct theoretical analysis
apart from Freund & Schapire (1999). Specifically, in our proof, we (i) use the performance difference
lemma to rewrite the global regret as weighted average of local regrets and (ii) control the local regrets with
multiplicative weights updates. Secondly, a new algorithm, OMPO, is developed in this work with a novel
theoretical guarantee. In the case where the horizon H = 1, the update of OMPO reduces to

πt+1(a|s) ∝ πt(a|s) exp [β(2P(a ≻ πt(·|s))− P(a ≻ πt−1(·|s)))],

while the update of SPPO is

πt+1(a|s) ∝ πt(a|s) exp [β(P(a ≻ πt(·|s)))].

As a result, OMPO enables O(ϵ−1) policy updates to converge to an ϵ-approximate Nash equilibrium instead
of O(ϵ−2), according to our theoretical analysis.

B.3 Preliminary on single-step RLHF

In this section, we review the earlier methods in single-step RLHF. Classical RLHF methods (Ziegler et al.,
2019; Ouyang et al., 2022) assume that the preference oracle can be expressed by an underlying Bradley-Terry
(BT) reward model (Bradley & Terry, 1952), i.e.,

P([x1, a1] ≻ [x1, a
′
1]) = σ(r(x1, a1)− r(x1, a

′
1)) .

Thus, one can first learn a reward model and optimize the policy based on the following KL-constrained RL
objective with PPO:

π⋆ = arg max
π

EX1∼ν1,A1∼π(·|X1)(r(X1, A1)− βD(π(·|X1), πref(·|X1))) ,

where β is a parameter controlling the deviation from the reference model πref . Another line of work, e.g.,
DPO (Rafailov et al., 2023), avoids explicit reward modeling and optimizes the following objective over
pair-wise preference data (X1, A

w
1 , A

l
1).

π⋆ = arg max
π

E(X1,Aw1 ,A
l
1)∼D

[
log σ

(
β log π(Aw1 |X1)

πref(Aw1 |X1) − β log π(Al1|X1)
πref(Al1|X1)

)]
.

More recently, several studies (Swamy et al., 2024; Munos et al., 2024; Wu et al., 2025; Zhang et al., 2024;
Rosset et al., 2024) have circumvented the Bradley-Terry (BT) assumption by directly modeling the general
oracle P, avoiding the reliance on the reward model which is transitive. Specifically, the goal is to identify the
Nash equilibrium (or von Neumann winner) of the following two-player constant-sum game:

(π∗, π∗) = arg max
π

min
π′

EX1∼ν1,A1∼π(·|X1),A′
1∼π′(·|X1)P([X1, A1] ≻ [X1, A

′
1]) .
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Algorithm 3 MPO (Theoretical Version)

1: input: reference policy π1, preference oracle P, learning rate β =
√

logπ−1

TH2 , total iteration T

2: for t = 1, 2, . . . , T do
3:

πt+1
h (a|s) ∝ πth(a|s) exp

[
βE

S′,A′∼dπt
h

|s1(s)Q
πt,πt

h (s, a, S′, A′)
]

4: end for
5: output: π̄T (s.t. dπ̄Th = 1

T

∑T
t=1 d

πt

h , ∀h ∈ [H].).

C MPO with natural actor-critic

This section presents our first method to find an approximate solution to Game. In order to find an
ϵ-approximate Nash equilibrium, the MPO method builds upon the next lemma which decomposes the
difference of two value functions to the Q function at each step. Lemma 1 is the extension of Kakade &
Langford (2002) to the multi-agent setting where the dynamics are controlled independently by each player
but the reward depends on the joint-state action tuple. In Kakade & Langford (2002), the Q function is a
function of only one state-action pair while in our setting the Q function is based on two state-action pairs.
Lemma 1 (Value difference lemma (Adapted from Kakade & Langford (2002))). For a finite horizon MDP
with initial distribution ν1 it holds that:

〈
ν1, V

π,π̄ − V π
′,π̄
〉

= ES1∼ν1

H∑
h=1

ES∼dπ
h

|S1

[〈
ES′,A′∼dπ̄

h
|S1Q

π′,π̄
h (S, ·, S′, A′), πh(·|S, S1)− π′

h(·|S, S1)
〉]

.

The proof can be found at Appx. D.1. In our setting, the initial state S1 is a deterministic function of the
state S so we can remove S1 from the conditioning in the policy5. To highlight this fact we denote, for all
s ∈ S as s1(s) the only initial state that can lead to s . By setting π′ = π = πt in Lemma 1 and π = π⋆

and summing from t = 1 to T we obtain:

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉

= Es1∼ν1

H∑
h=1

T∑
t=1

Es∼dπ⋆
h

|s1[〈
E
s′,a′∼dπt

h
|s1
Qπ

t,πt

h (s, ·, s′, a′), π⋆h(·|s)− πth(·|s)
〉]

.

Since the sum over t commutes with the expectation, we see that we can decompose the global regret∑T
t=1

〈
ν1, V

π⋆,πt − V πt,πt
〉

into a weighted sum of local regrets at each stage h ∈ [H]. Therefore, we can
control the global regret implementing at each state online mirror descent updates (Warmuth et al. 1997,
Orabona 2023, Chapter 6, Cesa-Bianchi & Lugosi 2006), i.e., implementing the following update:

πt+1
h (·|s) = arg max

π
⟨π(·|s),E

S′,A′∼dπt
h

|s1(s)Q
πt,πt

h (s, ·, S′, A′)⟩ − βD(π(·|s), πth(·|s)) ,

where β is a learning rate. The solution has the following form: πt+1
h (a|s) ∝

πth(a|s) exp{βE
S′,A′∼dπt

h
|s1(s)Q

πt,πt

h (s, a, S′, A′)}, which corresponds to natural actor-critic (Peters &
Schaal, 2008) that utilizes a softmax-based method for updating policies. The number of policy updates
needed by the ideal version of MPO (see Alg. 3) can be bounded as follows and the proof can be found at
Appx. D.2.

5This is motivated by practical LLM training, where system prompts such as “user” and “assistant” are inserted before every
xh and ah, respectively. As a result, one can infer a unique s1 for every s. The conditioning of the policy on the initial state
might appear unusual at the first glance but it is in fact common in the setting of Contextual MDPs (see for example Levy et al.
(2023)). Indeed, the initial state s1 could be interpreted as a context and we optimize over policies that depend on both the
initial context and the current state.
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Algorithm 4 MPO (Practical version)
1: input: reference policy π1, preference oracle P, learning rate β, number of generated samples K, horizon
H, total iteration T .

2: for t = 1, 2, . . . , T do
3: Sample s1

1 ∼ ν1.
4: for h = 1, 2, . . . ,H do
5: Generate responses A1

h ∼ πt(·|S1
h).

6: end for
7: Clear the dataset buffer Dt.
8: for h = 1, 2, . . . ,H do
9: Set SKh =, . . . ,= S2

h = S1
h.

10: Generate K − 1 conversations by sampling A2:K
ĥ
∼ πt(·|S2:K

ĥ
) for ĥ ∈ [h,H].

11: Estimate EAk′
h
Qπ

t,πt(S1
h, A

k
h, S

1
h, A

k′

h ),∀k, k′ ∈ [K] via Eq. (4) with query to P.

12: Fill out Dt with the following data pair
{

(S1
h, A

k
h,EAk′

h
Qπ

t,πt(S1
h, A

k
h, S

1
h, A

k′

h )
}
k∈[K]

,

13: end for
14: Optimize πt+1 over Dt according to πt+1 ← arg minπ E

(
log
(
π(Akh|S1

h)
πt(Ak

h
|S1
h

)

)
−

β

(
EAk′

h
Qπ

t,πt(S1
h, A

k
h, S

1
h, A

k′

h )− H−h+1
2

))2
.

15: end for
16: output: πT+1

Theorem 8. Consider Alg. 3 and assume that the reference policy is uniformly lower bounded by π, then
there exists a policy π̄T such that dπ̄Th = 1

T

∑T
t=1 d

πt

h ,∀h ∈ [H], and it holds that for T = 16H4 logπ−1

ϵ2 the
policy pair (π̄T , π̄T ) is an ϵ-approximate Nash equilibrium. Therefore, Alg. 3 outputs an ϵ-approximate Nash
equilibrium after 16H4 logπ−1

ϵ2 policy updates.
Remark 2. The above result generalizes the O(H2ϵ−2) bound on the policy updates proven in Swamy et al.
(2024) in the setting of terminal-only reward. The additional H2 factor in our theorem is due to considering
rewards that are not terminal-only. In Thm. 4 we show that Alg. 1 improves the number of policy updates
needed to converge to an ϵ-approximate Nash equilibrium to O(Hϵ−1).

Practical relaxations. For the above theorem, MPO requires the access of the Q function, which is unknown.
Next, we are going to develop a practical algorithm to efficiently estimate the Q function and implement
Alg. 3. Equivalently, the update in Alg. 3 can be written as

πt+1
h (a|s) =

πth(a|s) exp{βE
S′,A′∼dπt

h
|s1(S)Q

πt,πt

h (s, a, S′, A′)}
Zth(s) , (3)

where Zth(S) is the partition function. Next, we express Eq. (3) as follows for all s, a ∈ S ×A:

log π
t+1
h (a|s)
πth(a|s) = βE

S′,A′∼dπt
h

|s1(s)Q
πt,πt

h (s, a, S′, A′)− logZth(s) .

Next, following Wu et al. (2025), we approximate the equation above with an approximate solution of the
following optimization program:

πt+1 = arg min
π

H∑
h=1

E S1∼ν1

(Sh,Ah)∼dπ
t

h |S1

[
log π(Ah|Sh)

πth(Ah|Sh) − (E
S′,A′∼dπt

h
|S1
Qπ

t,πt

h (Sh, Ah, S′, A′)− logZth(Sh))
]2
.

Unfortunately, solving the above minimization exactly is out of hope. The first difficulty is the efficient
estimation of E

S′,A′∼dπt
h

|s1
Qπ

t,πt

h (Sh, Ah, S′, A′). In particular, since S′ and S are sampled from the same
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distribution, we will sample A′ from the state Sh and use the Monte Carlo estimator:

EA′∼πt(·|Sh)Q
πt,πt

h (Sh, Ah, Sh, A′)

≈ 1
K

K∑
k=1

H∑
ĥ=h

P([Sĥ,k, Aĥ,k] ≻ [S′
ĥ,k
, A′

ĥ,k
])1{Sh,k=S′

h,k
=Sh,Ah,k=Ah} ,

(4)

where the sequences
{

(Sĥ,k, Aĥ,k, S′
ĥ,k
, A′

ĥ,k
)
}H
ĥ=h

for k ∈ [K] are generated by rollouts of the policies pair
(πt, πt). The second difficulty is Zth(s), which is difficult to compute for large action spaces. In all states s, we
replace logZth(s) with βH−h+1

2 . Such heuristic is motivated by the following observation: If the preference
between ah and a′

h in Eq. (4) results in a tie, then with such logZth(s), the solution of Eq. (4) is πt+1 = πt,
leaving the model unchanged. In summary, we provide a practical version of MPO in Alg. 4. In practice, we
used a stationary policy that we find to be sufficient to obtain convincing results.

D Proofs

Lemma 2. (Adapted from Puterman (1994)) The pair-wise value function and pair-wise Q-value
function satisfy the Bellman equation, i.e., for all h ∈ [H]: Qπ,π

′

h (s, a, s′, a′) = r(s, a, s′, a′) +
EŜ∼f(·|s,a),S̄∼f(·|s′,a′)[V

π,π′

h+1 (Ŝ, S̄)] and V π,π
′

h (s, s′) = EA∼πh(·|S),A′∼π′
h

(·|S′)Q
π,π′

h (s, a,A′, A′).

Proof. By the definition of the state action value function for the policy pair (π, π′) we have that

Qπ,π
′

h (s, a, s′, a′) = r(s, a, s′, a′) + E
[ H∑
h′=h+1

r(Sh′ , Ah′ , S′
h′ , A′

h′)
]
.

Now, using tower property of the expectation we have that

Qπ,π
′

h (s, a, s′, a′)

= r(s, a, s′, a′) + ES′′∼f(·|s,a),S̄∼f(·|s′,a′)

[
E
[ H∑
h′=h+1

r(Sh′ , Ah′ , S′
h′ , A′

h′)|Sh+1 = S′′, S′
h+1 = S̄

]]
= r(s, a, s′, a′) + ES′′∼f(·|s,a),S̄∼f(·|s′,a′)

[
V π,π

′
(S′′, S̄)

]
,

where the last equality follows from the definition of the state value function.

D.1 Proof of Lemma 1

Proof. Let us consider the Bellman equation in vectorial form for the policy pair (π′, π̄), that is

rh + FV π
′,π̄

h+1 = Qπ
′,π̄
h ,

where F denoted the transition matrix induced by the transition function f : S2 × A → ∆S×S . Now,
multiplying by the occupancy measure of the policy pair (π, π̄) at stage h we obtain〈

dπ,π̄h , rh
〉

+
〈
dπ,π̄h , FV π

′,π̄
h+1

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h

〉
.

At this point, using the Bellman flow constraints Puterman (1994), it holds that

FT dπ,π̄h = ET dπ,π̄h+1,

where E ∈ R|S|2|A|×|S|2 such that (ETV )(s, a) = V (s) for all V ∈ R|S|2 . Plugging this equality in the Bellman
equation above we obtain 〈

dπ,π̄h , rh
〉

+
〈
dπ,π̄h+1, EV

π′,π̄
h+1

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h

〉
.
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Now, subtracting on both sides
〈
dπ,π̄h , EV π

′,π̄
h

〉
and rearranging, it holds that

〈
dπ,π̄h , rh

〉
+
〈
dπ,π̄h+1, EV

π′,π̄
h+1

〉
−
〈
dπ,π̄h , EV π

′,π̄
h

〉
=
〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

After this, taking sum from h = 1 to H and recognizing that for all policy pairs (π, π′) it holds that V π,π
′

H+1 = 0,
it holds that

H∑
h=1

〈
dπ,π̄h , rh

〉
−
〈
dπ,π̄1 , EV π

′,π̄
1

〉
=

H∑
h=1

〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

Then, notice that for all policies π, π̄ it holds that
∑H
h=1

〈
dπ,π̄h , rh

〉
= ⟨ν1, V

π,π̄⟩. Plugging in these observations,
we get 〈

ν1, V
π,π̄ − V π

′,π̄
〉

=
H∑
h=1

〈
dπ,π̄h , Qπ

′,π̄
h − EV π

′,π̄
h

〉
.

Therefore, expanding the expectation, and noticing that dπ,π̄h (s, a, s′, a′|s1) = dπh(s, a|s1)dπ̄h(s′, a′|s1) for all
h, s, a, s′, a′ and conditioning s1, we get that〈

ν1, V
π,π̄ − V π

′,π̄
〉

= ES1∼ν1

H∑
h=1

ES∼dπ
h

|S1

[〈
Es′,A′∼dπ̄

h
|S1Q

π′,π̄
h (S, ·, S′, A′), πh(·|S, S1)− π′

h(·|S, S1)
〉]
.

D.2 Proof of Thm. 8

Proof. We set π̄Th (ah|sh) =
∑T

t=1
dπ
t

h (sh,ah)∑T

t=1
dπ
t

h
(sh)

, where d(s) is the marginal distribution of d(s, a) on state s, and

π̄T = (π̄Th )Hh=1. We shows that dπ̄Th = 1
T

∑T
t=1 d

πt

h by induction. h = 1 holds by definition. Assuming on step
h, the equation holds, we have

dπ̄
T

h+1(sh+1, ah+1) = dπ̄
T

h+1(sh+1)π̄Th+1(ah+1|sh+1)

=
∑

sh,ah∼π̄T
h

(·|sh)

dπ̄
T

h (sh, ah)f(sh+1|sh, ah)π̄Th+1(ah+1|sh+1)

=
∑

sh,ah∼π̄T
h

(·|sh)

1
T

T∑
t=1

dπ
t

h (sh, ah)f(sh+1|sh, ah)π̄Th+1(ah+1|sh+1)

= 1
T

T∑
t=1

dπ
t

h+1(sh+1)π̄Th+1(ah+1|sh+1)

= 1
T

T∑
t=1

dπ
t

h+1(sh+1, ah+1),

where the last equation holds by definition of π̄Th+1. Therefore, h+ 1 holds, and the π̄T satisfy all equations
for h ∈ [H].

Using the value difference Lemma 1 we have that for any π⋆ ∈ Π〈
ν1, V

π⋆,πt − V π
t,πt
〉

= ES1∼ν1

H∑
h=1

ES∼dπ⋆
h

|S1

[〈
E
S′,A′∼dπt

h
|S1
Qπ

t,πt

h (S, ·, S′, A′), π⋆h(·|S)− πth(·|S)
〉]
.
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Therefore, summing over t from t = 1 to T we obtain

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉

= ES1∼ν1

H∑
h=1

ES∼dπ⋆
h

|S1

[
T∑
t=1

〈
E
S′,A′∼dπt

h
|S1
Qπ

t,πt

h (S, ·, S′, A′), π⋆h(·|S)− πth(·|S)
〉]

.

Therefore, we need to control the local regrets at each state s with loss ℓth(s, s1) :=
−E

S′,A′∼dπt
h

|s1
Qπ

t,πt

h (s, ·, S′, A′). To this end, we can invoke a standard convergence result for online mirror
descent (Theorem 6.10 of Orabona (2023)) we obtain that at each state we have

T∑
t=1

〈
ℓth(s, s1), π⋆(·|s)− πt(·|s)

〉
≤ D(π⋆(·|s), π1(·|s))

β
+ β

T∑
t=1
∥ℓth(s, s1)∥2

∞.

Now, noticing that we have ∥ℓth(s, s1)∥∞ ≤ H it holds that

T∑
t=1

〈
ℓth(s), π⋆h(·|s)− πth(·|s)

〉
≤ D(π⋆h(·|s), π1

h(·|s))
β

+ βTH2.

Finally, using the assumption that π1(a|s) ≥ π for all s, a ∈ S ×A it holds that D(π⋆(·|s), π1(·|s)) ≤ log π−1.
Therefore, choosing β =

√
logπ−1

TH2 it holds that

T∑
t=1

〈
ℓth(s, s1), π⋆(·|s)− πt(·|s)

〉
≤ 2H

√
T log π−1.

Thus, we conclude that
T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,πt
〉
≤ 2H2

√
T log π−1.

By the antisimmetry of the game, the same proof steps

T∑
t=1

〈
ν1, V

πt,πt − V π
t,π̄⋆
〉
≤ 2H2

√
T log π−1.

Therefore, it holds that for all π⋆, π̄⋆ ∈ Π

T∑
t=1

〈
ν1, V

π⋆,πt − V π
t,π⋆
〉
≤ 4H2

√
T log π−1.

Then, define π̄T the trajectory level mixture policy as in Swamy et al. (2024), i.e. such that dπ̄Th = 1
T

∑T
t=1 d

πt

h

for all stages h ∈ [H]. This implies that V π̄T ,π⋆ = 1
T

∑T
t=1 V

πt,π⋆ , and V π
⋆,π̄T = 1

T

∑T
t=1 V

π⋆,πt .

Therefore, we have that

〈
ν1, V

π⋆,π̄T − V π̄
T ,π̄⋆

〉
≤ 4H2

√
log π−1

T
.

Finally, selecting π⋆ =
〈
ν1, arg maxπ∈Π V

π,π̄T
〉

and π̄⋆ =
〈
ν1, arg minπ∈Π V

π̄T ,π
〉

, we obtain that

max
π∈Π

〈
ν1, V

π,π̄T
〉
−min
π∈Π

〈
ν1, V

π̄T ,π
〉
≤ 4H2

√
log π−1

T
.
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This implies that 〈
ν1, V

π̄T ,π̄T
〉
−min
π∈Π

〈
ν1, V

π̄T ,π
〉
≤ 4H2

√
log π−1

T
,

and

max
π∈Π

〈
ν1, V

π,π̄T
〉
−
〈
ν1, V

π̄T ,π̄T
〉
≤ 4H2

√
log π−1

T
,

Therefore, setting T = 16H4 logπ−1

ϵ2 we obtain an ϵ-approximate Nash equilibrium.

D.3 Proof of Theorem 4

Proof. The optimization problem

arg max
d∈F̃

min
d′∈F̃

Es1∼ν1

H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′
h(s′, a′|s1)

can be carried out individually over possible initial states. That is for each s1 ∈ supp(ν1) we aim at solving

arg max
d∈Fs1

min
d′∈Fs1

H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′
h(s′, a′|s1)

To this end for any s1, we consider ϕth ∈ F and ψth ∈ F which are generated by the following updates

ϕt+1
h = arg max

ϕ∈Fs1

β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth),

and

ψt+1
h = arg min

ψ∈Fs1

β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s′, a′, ·, ·)

〉
+ D(ψ,ψth),

In order to prove convergence to an ϵ-approximate Nash equilibrium, we need to control the quantity

Gaps1 = 1
T

H∑
h=1

T∑
t=1

〈
θth, ϕ

⋆
h − ϕth

〉
+ 1
T

H∑
h=1

T∑
t=1

〈
ζth, ψ

⋆
h − ψth

〉
,

for θth(s, a) =
∑
s′,a′ ψth(s′, a′)rh(s, a, s′, a′) and ζth(s′, a′) = −

∑
s,a ϕ

t
h(s, a)rh(s, a, s′, a′). At this point, we

bound the local regret term with the OMPO update. We have that for any ϕh ∈ F

β
〈
2θth − θt−1

h , ϕh − ϕt+1
h

〉
= β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth + θt+1

h − θt−1
h , ϕh − ϕt+1

h

〉
= β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
+ β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
+ β

〈
θt+1
h , ϕh − ϕt+1

h

〉
.

At this point, we work on the third summand above

−β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
≤ β2λ∥θth − θt−1

h ∥2
∞ + 1

4λ∥ϕ
t
h − ϕt+1

h ∥
2
1.

In addition, we have that∥θth − θ
t−1
h ∥∞ ≤ ∥ψth − ψ

t−1
h ∥1 and we can apply the 1/λ strong convexity of D, we

obtain

β
〈
θth − θt−1

h , ϕth − ϕt+1
h

〉
≤ λβ2∥ψth − ψt−1

h ∥2
1 + 1

2D(ϕt+1
h , ϕth).
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On the other hand, by the three point identity we have that for all ϕ ∈ F

D(ϕh, ϕt+1
h ) = D(ϕh, ϕth)− D(ϕt+1

h , ϕth) +
〈
∇D(ϕt+1

h , ϕth), ϕt+1
h − ϕh

〉
Then, using the property of the update rule, we obtain that〈

∇D(ϕt+1
h , ϕth), ϕt+1

h − ϕh
〉
≤ β

〈
2θth − θt−1

h , ϕt+1
h − ϕh

〉
.

Putting all the pieces together we have that

D(ϕh, ϕt+1
h ) ≤ D(ϕh, ϕth)− D(ϕt+1

h , ϕth) + β
〈
2θth − θt−1

h , ϕt+1
h − ϕh

〉
≤ D(ϕh, ϕth)− D(ϕt+1

h , ϕth)
− β

〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
− β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β2λ∥ψth − ψt−1
h ∥2

1 + 1
2D(ϕt+1

h , ϕth)

− β
〈
θt+1
h , ϕh − ϕt+1

h

〉
.

Now, rearranging the terms we get

β
〈
θt+1
h , ϕh − ϕt+1

h

〉
≤ D(ϕh, ϕth)− D(ϕh, ϕt+1

h )− 1
2D(ϕt+1

h , ϕth)

− β
〈
θth − θt+1

h , ϕh − ϕt+1
h

〉
− β

〈
θth − θt−1

h , ϕh − ϕth
〉

+ β2λ∥ψth − ψt−1
h ∥2

1.

Now, denoting Φtϕ := D(ϕh, ϕth)− β
〈
θth − θ

t−1
h , ϕh − ϕth

〉
and summing over t we obtain

β

T∑
t=1

〈
θth, ϕh − ϕth

〉
≤

T∑
t=1

Φt−1
ϕ − Φtϕ −

1
2

T∑
t=1

D(ϕth, ϕt−1
h ) + β2λ

T∑
t=1
∥ψt−1

h − ψt−2
h ∥2

1.

Similarly we get

β

T∑
t=1

〈
ζt, ψh − ψth

〉
≤

T∑
t=1

Φt−1
ψ − Φtψ −

1
2

T∑
t=1

D(ψth, ψt−1
h ) + β2λ

T∑
t=1
∥ϕt−1

h − ϕt−2
h ∥

2
1.

Now, using 1/λ strong convexity of D and summing the two terms we have that

βTGaps1,h ≤ Φ0 − ΦT−1 − 1
2

T∑
t=1

(D(ψth, ψt−1
h ) + D(ϕth, ϕt−1

h ))

+ 2β2λ

T∑
t=1

(D(ψt−1
h , ψt−2

h ) + D(ϕt−1
h , ϕt−2

h )),

with Φt = Φtϕ + Φtψ. At this point, setting β ≤ 1√
2λ , we obtain a telescopic sum

βTGaps1,h

≤ Φ0 − ΦT−1 − 1
2

T∑
t=1

(D(ψth, ψt−1
h ) + D(ϕth, ϕt−1

h )− D(ψt−1
h , ψt−2

h )− D(ϕt−1
h , ϕt−2

h ))

≤ Φ0 − ΦT−1 + 1
2
(
D(ψ1

h, ψ
0
h) + D(ϕ1

h, ϕ
0
h)
)
.
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Now recalling that by assumption the occupancy measure of the reference policy is lower bounded, i.e.
dπ

1 ≥ d, we can upper bound Φ0 − ΦT ≤ 2 log d−1 + 8β that allows to conclude that for all n ∈ [N ] and
setting ψ0

h = ψ1
h and ϕ1

h = ϕ0
h,

Gaps1,h ≤
2 log d−1 + 8β

βT
≤ 10 log d−1

βT
.

Now, notice that Gap can be rewritten as

Gaps1 =
H∑
h=1

Gaps1,h

= 1
T

T∑
t=1

H∑
h=1

∑
s,a,s′,a′

ψth(s′, a′)rh(s, a, s′, a′)ϕ⋆h(s, a)

− 1
T

T∑
t=1

H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s′, a′)rh(s, a, s′, a′)ϕth(s, a)

=
H∑
h=1

∑
s,a,s′,a′

1
T

T∑
t=1

ψth(s′, a′)rh(s, a, s′, a′)ϕ⋆h(s, a)

−
H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s′, a′)rh(s, a, s′, a′) 1
T

T∑
t=1

ϕth(s, a)

=
H∑
h=1

∑
s,a,s′,a′

ψ̄h(s′, a′)rh(s, a, s′, a′)ϕ⋆h(s, a)−
H∑
h=1

∑
s,a,s′,a′

ψ⋆h(s′, a′)rh(s, a, s′, a′)ϕ̄h(s, a) .

At this point, let us define πout
ϕ (a|s) = ϕ̄(s,a)∑

a
ϕ̄(s,a)

and πout
ψ (a|s) = ψ̄(s,a)∑

a
ψ̄(s,a)

. For such policies and by
appropriate choice for ψ⋆ and ϕ⋆ it follows that

Gaps1 = max
ϕ

V ϕ,π
out
ψ (s1)−min

ψ
V π

out
ϕ ,ψ(s1).

By the bound on Gaps1 for each s1 ∈ supp(ν1), it follows that〈
ν1,max

ϕ
V ϕ,π

out
ψ −min

ψ
V π

out
ϕ ,ψ

〉
= Es1∼ν1Gaps1 ≤

10H log d−1

βT
,

therefore T ≥ 10H log d−1

βϵ . The proof is concluded invoking Thm. 5 that ensures that the policies πout
ψ and

πout
ϕ coincide.

D.4 Proof of Theorem 5

Proof. Let us consider two players performing the following updates

ϕt+1
h = arg max

ϕ∈Fs1

β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth),

and

ψt+1
h = arg min

ψ∈Fs1

β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s′, a′, ·, ·)

〉
+ D(ψ,ψth).

The goal is to proof that the iterates generated by the two updates are identical. We will prove this fact by
induction. The base case holds by initialization which gives ϕ0

h = ψ0
h for all h ∈ [H]. Then, let us assume by
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the induction step that ψth = ϕth for all h ∈ [H], then

ϕt+1
h

= arg max
ϕ∈Fs1

β
〈
ϕ, 2Es′,a′∼ψtrh(·, ·, s′, a′)− Es′,a′∼ψt−1rh(·, ·, s′, a′)

〉
− D(ϕ, ϕth)

= arg max
ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s′, a′, ·, ·)

〉
− D(ϕ, ϕth) + β ⟨ϕ,1⟩

(Antisymmetric Reward)
= arg max

ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s′, a′, ·, ·)

〉
− D(ϕ, ϕth) + β

(Normalization of ϕ)
= arg max

ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ψtrh(s′, a′, ·, ·) + Es′,a′∼ψt−1rh(s′, a′, ·, ·)

〉
− D(ϕ, ϕth)

(β does not depend on ϕ)
= arg max

ϕ∈Fs1

β
〈
ϕ,−2Es′,a′∼ϕtrh(s′, a′, ·, ·) + Es′,a′∼ϕt−1rh(s′, a′, ·, ·)

〉
− D(ϕ, ψth)

(Inductive Hypothesis)
= arg min

ψ∈Fs1

β
〈
ψ, 2Es′,a′∼ϕtrh(s′, a′, ·, ·)− Es′,a′∼ϕt−1rh(s′, a′, ·, ·)

〉
+ D(ψ,ψth)

(Renaming the optimization variable and arg max
x

f(x) = arg min
x

−f(x))

= ψt+1
h .

D.5 Proof of Thm. 6

Proof. As we assumed that d⋆ ≥ dmin > 0, let us modify the updates projecting onto F ∩ {d ∈ F : d ≥ dmin}.
This makes the negative entropy differentiable over the whole domain. The first step is to establish summability
of the iterates difference in the squared norm. To this end, let us recall that we proved along the proof of
Thm. 4 that

β

T∑
t=1

〈
θth, ϕh − ϕth

〉
≤

T∑
t=1

Φt−1
ϕ − Φtϕ −

1
2

T∑
t=1

D(ϕth, ϕt−1
h ) + β2λ

T∑
t=1
∥ψt−1

h − ψt−2
h ∥2

1.

and

β

T∑
t=1

〈
ζt, ψh − ψth

〉
≤

T∑
t=1

Φt−1
ψ − Φtψ −

1
2

T∑
t=1

D(ψth, ψt−1
h ) + β2λ

T∑
t=1
∥ϕt−1

h − ϕt−2
h ∥

2
1.

where Φt
ϕ := D(ϕh, ϕth) − β

〈
θth − θ

t−1
h , ϕh − ϕth

〉
and Φt

ψ := D(ψh, ψth) − β
〈
ζth − ζ

t−1
h , ψh − ψth

〉
and Φt =

Φtϕ + Φtψ. Summing the two above inequalities and the 1/λ strong convexity of the Bregman divergence we
obtain6

β

T∑
t=1

〈
θth, ϕh − ϕth

〉
+ β

T∑
t=1

〈
ζt, ψh − ψth

〉
≤ Φ1 − ΦT (5)

−
(

1
4λ − β

2λ

) T∑
t=1

(
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1

)
. (6)

6We also used that D(ϕT , ϕT −1) + D(ψT , ψT −1) ≥ 0 and that ϕ0
h = ϕ−1

0 by initialization.
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As in the proof of Thm. 4, we can set ϕh = ϕ⋆h and ψh = ψ⋆h to ensure that the LHS is positive and we upper
bound Φ0 − ΦT ≤ 2 log d−1 + 8β. We obtain(

1
4λ − β

2λ

) T∑
t=1

(
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1

)
≤ 2 log d−1 + 8β

Therefore for β ≤ 1/
√

8λ2, we have that
T∑
t=1

(
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1

)
≤ 16λ log d−1 + 64λβ

Therefore the sequence of the iterates difference squared is summable. Moreover, since the iterates belongs to
a closed compact set there exists a subsequence

{
ϕtnh , ψ

tn
h

}∞
n=1 which converges to {ϕ∞

h , ψ
∞
h } for all h ∈ [H].

Moreover the fact that the iterates difference squared is summable implies that
lim
t→∞
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1 = 0

Therefore, for the convergent subsequence it holds that
lim
t→∞
∥ϕtn−1

h − ϕtnh ∥
2
1 + ∥ψtnh − ψ

tn−1
h ∥2

1 = 0

Therefore the subsequences
{
ϕtnh , ψ

tn
h

}∞
n=1 and

{
ϕtn−1
h , ψtn−1

h

}∞
n=1 both converge to {ϕ∞

h , ψ
∞
h }. At this point,

notice that our update rule implies that〈
2θtnh − θ

tn−1
h +∇ω(ϕtn+1

h )−∇ω(ϕtnh ), ϕh − ϕtn+1
h

〉
≤ 0 ∀h ∈ [H],∀ϕh

and 〈
2ζtnh − ζ

tn−1
h +∇ω(ψtn+1

h )−∇ω(ψtnh ), ψh − ψtn+1
h

〉
≤ 0 ∀h ∈ [H],∀ψh

where ω denotes the potential function inducing the Bregman divergence D. That is, D(x, y) = ω(x) −
ω(y) − ⟨∇ω(y), x− y⟩. At this point, the fact that ω is continuous differentiable over the whole domain
F ∩ {d ∈ F : d ≥ dmin} it holds that

⟨θ∞
h , ϕh − ϕ∞

h ⟩ ≤ 0 ∀h ∈ [H],∀ϕh
and

⟨ζ∞
h , ψh − ψ∞

h ⟩ ≤ 0 ∀h ∈ [H],∀ψh
Therefore, ϕ∞, ψ∞ ( the limit of the subsequence ) is a Nash equilibrium point.

At this point, to establish convergence of the sequence let us notice that rearranging Equation 6 ( and not
considering the sum over t), it holds that

β
〈
θth, ϕh − ϕth

〉
+
〈
ζt, ψh − ψth

〉
≤ Φt−1 − Φt

−
(

1
4λ − β

2λ

)(
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1

)
.

= Et−1 − Et + βLt−1 − βLt −
(

1
4λ − β

2λ

)(
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1

)
.

where the last line introduced the notation Et = D(ϕh, ϕth) + D(ψh, ψth) and Lt = −
〈
θth − θ

t−1
h , ϕh − ϕth

〉
−〈

ζth − ζ
t−1
h , ψh − ψth

〉
and we used the fact that Φt = Et + Lt. At this point, choosing ϕh = ϕ⋆h and ψh = ψ⋆h

we have that the LHS is zero and Lt is summable. Indeed,
T∑
t=1

Lt =
T∑
t=1

(
−
〈
θth − θt−1

h , ϕh − ϕth
〉
−
〈
ζth − ζt−1

h , ψh − ψth
〉)

=
T∑
t=1

(
−
〈
θth − θt−1

h , ϕh
〉
−
〈
ζth − ζt−1

h , ψh
〉)

=
〈
θ0
h − θTh , ϕh

〉
+
〈
ζ0
h − ζTh , ψh

〉
≤ 2.
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Therefore, we can rearrange and obtain

Et ≤ Et−1 + βLt−1 − βLt −
(

1
4λ − β

2λ

)(
∥ϕt−1

h − ϕt−2
h ∥

2
1 + ∥ψt−1

h − ψt−2
h ∥2

1

)
Therefore, Et is a quasi-Féjer sequence and hence it has a limit E∞. At this point, we can notice that
0 = limn→∞∥ϕtnh − ϕ⋆h∥+∥ψ

tn
h − ψ⋆h∥ by the convergence of the subsequence, implies that limn→∞ D(ϕtnh , ϕ⋆h)+

D(ψtnh , ψ⋆h) = 0 by the reciprocity condition which holds since our constraints define a subset of the simplex.
However, by convergence of the energy levels, limt→∞ D(ϕth, ϕ⋆h) + D(ψth, ψ⋆h) exists and must be equal to the
limit of the subsequence. Therefore, limt→∞ D(ϕth, ϕ⋆h) + D(ψth, ψ⋆h) = 0. Finally by strong convexity of the
Bregman divergence we can conclude limt→∞∥ϕth − ϕ⋆h∥

2
1 + ∥ψth − ψ⋆h∥

2
1 = 0.

E Implementation of Algorithm 1 with updates over policies

In this section, we explain how the update in Algorithm 1 for different choices of D. In both cases, we will
derive an update that can be summarized by following template. Let us define rth(s, a) = Es′,a′∼dt

h
r(s, a, s′, a′)

and rt−1
h (s, a) = Es′,a′∼dt−1

h
r(s, a, s′, a′)

• Compute the Qth function corresponding to the reward function 2rth− r
t−1
h minimizing a loss function

that depends on the choice of D.

• Update the policy as

πt+1
h (a|s) ∝ πth(a|s) exp

(
βQth(s, a)

)
.

Finally, in Appx. E.3 we show that for D being the conditional relative entropy and for β small enough the
value function Qth is well approximated by the standard Bellman equations.
Remark 3. Both choices of the Bregman divergence are 1 strongly convex so Thm. 4 applies with λ = 1.

In the following we consider a generic reward function r̃. In our setting, we will apply the following results
for r̃th = 2rth − r

t−1
h in order to implement the updates of Alg. 1 for the different values of h and t.

E.1 D chosen as the sum of conditional and relative entropy

In this section, we explain how to implement the occupancy measure update in Algorithm 1 over policies. We
use the machinery for single agent MDPs introduced in Bas-Serrano et al. (2021). In particular, we consider the
Bregman divergence given by the sum of the relative entropy D(d, d′) =

∑
s,a d(s, a) log

(
d(s,a)
d′(s,a)

)
and of the

conditional relative entropy given, i.e. H(d, d′) =
∑
s,a d(s, a) log

(
πd(a|s)
πd′ (a|s)

)
with πd(a|s) = d(s, a)/

∑
a d(s, a).

Under this choice for D, the update of Algorithm 1 for particular values of h, t, s1 corresponds to the solution
of the following optimization program

dt+1
h = arg max

d∈∆H

H∑
h=1

〈
dh, r̃

t
h

〉
− 1
β
D(dh, dth)− 1

β
H(dh, dth),

s.t. ET dh = FT dh−1 ∀h ∈ [H]. (Update I)

Theorem 9. The policy πt+1
h with occupancy measure dt+1

h defined in Eq. (Update I) can be computed as
follows

πt+1
h (a|s) ∝ πth(a|s) exp

(
βQth(s, a)

)
,

where Qth is the minimizer of the following loss

1
β

H∑
h=1

log
∑
s,a

µth(s, a) exp
(
β(2r̃th + PVh+1 −Qh)(s, a)

)
+ ⟨ν1, V1⟩ ,
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while V th+1 is given by the following closed form.

V th+1(s) = 1
β

log
∑
a

πth(a|s) exp(βQth+1(s, a)).

Proof. Let us introduce an auxiliary variable µh = dh for all h ∈ [H], then we can rewrite the optimization
program as

arg max
d∈∆H

max
µ∈∆H

H∑
h=1
⟨µh, r̃h⟩ −

1
β
D(µh, µth)− 1

β
H(dh, dth),

s.t. ET dh = FTµh−1 ∀h ∈ [H],
s.t. µh = dh ∀h ∈ [H].

Then, by Lagrangian duality we have that

max
d∈∆H

max
µ∈∆H

min
Q,V

H∑
h=1
⟨µh, r̃⟩ −

1
β
D(µh, µth)− 1

β
H(dh, dth)

+
〈
−ET dh + FTµh−1, Vh

〉
+ ⟨Qh, dh − µh⟩

= max
d∈∆H

max
µ∈∆H

min
Q,V

H∑
h=1
⟨µh, r̃ + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1
β
D(µh, µth)− 1

β
H(dh, dth)

+ ⟨ν1, V1⟩ = L⋆ .

Then, by Lagrangian duality, we have that the objective is unchanged by swapping the min and max

L⋆ = min
Q,V

max
d∈∆H

max
µ∈∆H

H∑
h=1
⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1
β
D(µh, µth)− 1

β
H(dh, dth) + ⟨ν1, V1⟩ .

The inner maximization is solved by the following values

µ+
h (Q,V ) ∝ µth ⊙ exp (β(r̃h + FVh+1 −Qh)) ,

π+
h (Q,V ; s) ∝ πth(·|s)⊙ exp (β(Qh(s, ·)− Vh(s))) ,

where ⊙ denotes the elementwise product between vectors. Then, replacing these values in the Lagrandian
and parameterizing the functions Vh by the functions Qh to ensure normalization of the policy, i.e. Vh(s) =
1
β log

∑
a π

t
h(a|s) exp(βQh(s, a)) we have that

L⋆ = min
Q

1
β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(r̃h + FVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ .

Therefore, denoting

Qth = arg min
Q

1
β

H∑
h=1

log
∑
s,a

µth(s, a) exp (β(r̃h + FVh+1 −Qh)(s, a)) + ⟨ν1, V1⟩ ,

and V th = 1
β log

∑
a π

t
h(a|s) exp(βQth(s, a)), we have that the policy πt+1

h (·|s) = π+
h (Qt, V t; s) has occupancy

measure equal to dt+1
h for all h ∈ [H]. This is because by the constraints of the problem we have that dt+1

h

satisfies the Bellman flow constraints and that the policy πt+1
h satisfies πt+1

h (a|s) = dth(s, a)/
∑
a d

t
h(s, a).
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E.2 D chosen as conditional relative entropy Neu et al. (2017)

In this section, we study the update considering D chosen as sum of the conditional relative entropy over the
stages h′ s.t. 1 ≤ h′ ≤ h, i.e. we study the following update.7

dt+1 = arg max
d∈∆H

H∑
h=1

(
⟨dh, r̃h⟩ −

1
β

h∑
h′=1

H(dh′ , dth′)
)
,

s.t. ET dh = FT dh−1 ∀h ∈ [H]. (7)

Theorem 10. The policy πt+1
h with occupancy measure dt+1

h defined in Eq. (7) can be computed as follows

πt+1
h (a|s) =

πth(a|s) exp
(

β
H−h+1Q

t
h(s, a)

)
∑
a′∈A π

t
h(a′|s) exp

(
β

H−h+1Q
t
h(s, a′)

) , ∀s ∈ S, ∀a ∈ A.

where Qth and V th+1 satisfies the following recursion

Qth = r̃h + FV th+1

V th+1(s) = H − h+ 1
β

log
∑
a

πth(a|s) exp
(

β

H − h+ 1Q
t
h+1(s, a)

)
.

Remark 4. The above recurrencies are sometimes called soft Bellman equations Ziebart (2010); Fox et al.
(2015).

Proof. Let us introduce an auxiliary variable µh = dh for all h ∈ [H], then we can rewrite the optimization
program as

arg max
d∈∆H

max
µ

H∑
h=1

(
⟨µh, r̃h⟩ −

1
β

h∑
h′=1

H(dh′ , dth′)
)

s.t. ET dh = FTµh−1 ∀h ∈ [H]
s.t. µh = dh ∀h ∈ [H].

Notice that importantly, we do not constraint the variable µ. Then, by Lagrangian duality we have that

max
d∈∆H

max
µ

min
Q,V

H∑
h=1
⟨µh, r̃h⟩ −

1
β

h∑
h′=1

H(dh′ , dth′)

+
〈
−ET dh + FTµh−1, Vh

〉
+ ⟨Qh, dh − µh⟩

= max
d∈∆H

max
µ

min
Q,V

H∑
h=1
⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− 1
β

h∑
h′=1

H(dh′ , dth′) + ⟨ν1, V1⟩

= min
Q,V

max
d∈∆H

max
µ

H∑
h=1
⟨µh, r̃h + FVh+1 −Qh⟩+ ⟨dh, Qh − EVh⟩

− H − h+ 1
β

H(dh, dth) + ⟨ν1, V1⟩ = L̃⋆,

7The sum over previous stages is taken to ensure 1-strong convexity. Indeed, it holds that
∑h

h′=1 H(dh′ , d′
h′ ) ≥ D(dh, d

′
h) ≥

1
2 ∥dh − d′

h∥2
1. The first inequality is proven in Neu & Olkhovskaya (2021, Lemma 7).
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where the last equality holds by Lagrangian duality and by
∑H
h=1

∑h
h′=1 H(dh′ , dth′) =

∑H
h=1(H − h +

1)H(dh′ , dth′). Now since µ is unconstrained we have that maxµ
∑H
h=1 ⟨µh, r̃h + FVh+1 −Qh⟩ is equivalent

to impose the constraint r̃h + FVh+1 = Qh for all h ∈ [H]. Moreover, as in the proof of Thm. 9 the
optimal dh needs to satisfies that πdh(a|s) = dh(s, a)/

∑
a dh(s, a) is equal to π+

h (Q,V ; s) = πth(·|s) ⊙
exp

(
β

H−h+1 (Qh(s, ·)− Vh(s))
)

for Vh(s) = H−h+1
β log

∑
a π

t
h(a|s) exp( β

H−h+1Qh(s, a)). Plugging in, these
facts in the expression for L̃⋆, we have that

L̃⋆ = min
Q
⟨ν1, V1⟩ s.t. r̃h + FVh+1 = Qh ∀h ∈ [H].

Since the above problem as only one feasible point, we have that the solution is the sequence Qth satisfying
the recursion r̃h + FV th+1 = Qth with V th(s) = H−h+1

β log
∑
a π

t
h(a|s) exp( β

H−h+1Q
t
h(s, a)).

E.3 Approximating soft Bellman equations by standard Bellman equations.

Unfortunately, implementing the update for the V value as in Theorem 9 is often numerically instable. In
this section, we show a practical approximation which is easy to implement and shown to be accurate for β
sufficiently small. In particular, we prove here Thm. 7.

E.4 Proof of Thm. 7

Proof.

1
βh

log
∑
a

πth(a|s) exp(βhQth(s, a)) ≥ 1
βh

∑
a

πth(a|s) log exp(βhQth(s, a))

=
〈
πth(·|s), Qth(s, ·)

〉
,

where the above inequality holds for Jensen’s. For the upper bound, we first use the inequality ex ≤ 1 +x+x2

for x ≤ 1 we have that

1
βh

log
∑
a

πth exp(βhQth(s, a))

≤ 1
βh

log
∑
a

πth(1 + βhQ
t
h(s, a) + β2

hQ
2
max) (Using Qth(s, a) ≤ Qmax)

= 1
βh

log(1 + βh
∑
a

πth(a|s)Qth(s, a) + β2
hQ

2
max)

≤ 1
βh

(∑
a

πth(a|s)βhQth(s, a) + β2
hQ

2
max

)
(Using log(1 + x) ≤ x)

≤
〈
πth(·|s), Qth(s, ·)

〉
+ βhQ

2
max.

Remark 5. Given this result, in the implementation for deep RL experiment, i.e. Algorithm 2 we compute
the standard Q value satisfying the standard Bellman equations (given in Lemma 2) rather than the soft
Bellman equation in Thm. 9. In virtue of Thm. 7, the approximation is good for β reasonably small.

F Supplementary material on experiment

F.1 Experiment in MT-bench 101

The tasks in MT-bench 101 include Context Memory (CM), Anaphora Resolution (AR), Separate Input
(SI), Topic Shift (TS), Content Confusion (CC), Content Rephrasing (CR), Format Rephrasing (FR), Self-
correction (SC), Self-affirmation (SA), Mathematical Reasoning (MR), General Reasoning (GR), Instruction
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Clarification (IC), and Proactive Interaction (PI). We list the description of each task in Tab. 5. The default
evaluation mode of MT-bench 101 is that the GPT model requires to access the conversation based on the
given ground truth of previous steps, provided in MT-bench 101. However, in our problem setting, the
answers among the conversation is also generated by the model. We use “gpt-4o-mini-2024-07-18” to evaluate
the conversation. The maximum output length and maximum sequence length of gpt-4o are set as 4096.
We use a batch size of 8 with a temperature of 0.8. We use the same prompt for gpt-4o as in Bai et al.
(2024). Our experiment is conducted on 4 H200 GPUs. We use the PyTorch platform and the Transformer
Reinforcement Learning (TRL) for fine-tuning. The γ is selected as zero. Each method is trained with epochs
number selected from {1, 2}, learning rates from {5e-6, 5e-7}, and β values from {0.1, 0.01, 0.001}. The final
model is chosen based on the highest winning rate against the base model, as determined by the PairRM
model. We use full-parameter fine-tuning for all methods with bf16 precision. A batch size of 64 is used. The
maximum output length and maximum prompt length during training are both set as 2048. We use AdamW
optimizer (Loshchilov & Hutter, 2019) and cosine learning rate schedule (Loshchilov & Hutter, 2017) with a
warmup ratio of 0.1.

Table 5: A detailed description of each task in MT-bench 101 (taken from Bai et al. (2024).)

Task Abbr. Description
Context Memory CM Recall early dialogue details to address the user’s current question.
Anaphora Resolution AR Identify pronoun referents throughout a multi-turn dialogue.
Separate Input SI The first turn outlines the task requirements and the following turns specify the task input.
Topic Shift TS Recognize and focus on the new topic when users unpredictably switch topics.
Content Confusion CC Avoid interference from similar-looking queries with distinct meanings in the dialogue’s history.
Content Rephrasing CR Rephrase the content of the last response according to the user’s newest requirement.
Format Rephrasing FR Rephrase the format of the last response according to the user’s newest requirement.
Self-correction SC Recorrect the last response according to the user feedback.
Self-affirmation SA Preserve the last response against inaccurate user feedback.
Mathematical Reasoning MR Collaboratively solve complex mathematical problems with users across dialogue turns.
General Reasoning GR Collaboratively solve complex general reasoning problems with users across dialogue turns.
Instruction Clarification IC Seek clarification by asking further questions on ambiguous user queries.
Proactive Interaction PI Propose questions in reaction to user statements to spark their interest to continue the dialogue.

Next, we provide the comparison between the proposed MPO and IPO (Azar et al., 2024), which also uses the
squared loss and bypasses the BT model assumption. We run both IPO and MPO for one iteration. The
results in Tab. 6 show that MPO achieves a higher average score than IPO.

Table 6: Comparison between MPO and IPO in MT-BENCH 101 dataset.

Model
Perceptivity Adaptability Interactivity

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

IPO 6.498 7.518 7.480 7.759 7.952 8.652 6.892 6.768 4.390 5.185 4.313 5.378 6.146 6.044

MPO 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

We now present an ablation study to evaluate the benefits of incorporating terminal rewards. Using MPO,
we compare two approaches for optimizing ah: one computes the preference signal based on the terminal
state sH+1, while the other uses the immediate next state sh. The results within one iteration for the
MT-Bench 101 dataset are shown in Tab. 8, and those for the GSM/Math experiments are provided in Tab. 7.
Our findings reveal that using the terminal state sH+1 performs worse than using the immediate state sh
in MT-Bench 101. In contrast, the difference in performance is negligible in the GSM/Math tasks. The
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underlying reason is that in multi-turn conversational datasets, especially when adjacent questions are not
closely related, relying on preferences derived from the terminal state can introduce noise. However, in math
and reasoning tasks, the terminal state often captures the final answer, making it more critical. Moreover,
using sH+1 for preference signals is significantly more computationally expensive than using sh, due to the
extended sequence length. Consequently, we conclude that adapting the choice of terminal preference or
intermediate preference on the task’s characteristics is crucial for balancing performance and efficiency.

F.2 Experiment in math-reasoning task

Our experiment is conducted on 4 A100 GPUs. For both MPO and OMPO, we perform full-parameter finetuning
for 1 epoch with learning rate 5e−7 and β tuned in the range of {0.1, 0.01, 0.001}, we set the log z as 0.5.
The final state with the answer is important in this task so we only use the terminal reward (see Tab. 7 for
comparison). We run two iterations for both methods. We use AdamW optimizer (Loshchilov & Hutter,
2019) and cosine learning rate schedule (Loshchilov & Hutter, 2017) with a warmup ratio of 0.1.

Table 7: Ablation on terminal reward in MATH and GSM8K dataset.

Method GSM8K Math
Base (Qwen2-7B-Instruct) 0.8559 0.5538
MPO (intermediate reward) 0.8734 0.5720

MPO (terminal reward) 0.8734 0.5734

F.3 Additional ablation study and experimental detail

We conduct an ablation study on the math reasoning task for OMPO at the second iteration, using various
combinations of (β, log z). The method generally performs robustly across a wide range of parameter settings,
except for the case of (β, log z) = (0.001, 0.5), which shows noticeably degraded performance. On the other
hand, we adopt a learning rate of 5× 10−7 following the StepDPO paper (Lai et al., 2024), as we observed
that using larger or smaller learning rates often causes training to fail to reach sufficiently low loss values
(lower than 0.5), similar to the failure mode observed for (β, log z) = (0.001, 0.5).

Table 9: Comparison of GSM and Math results for various (β, log z) settings.

(β, log z) GSM Math

(0.1, 0) 0.8711 0.5730
(0.01, 0) 0.8741 0.5762
(0.001, 0) 0.8810 0.5774

(0.1, 0.5) 0.8779 0.5786
(0.01, 0.5) 0.8711 0.5774
(0.001, 0.5) 0.1713 0.1396

Regarding the experimental details, as also mentioned in the previous subsection, we use 4 H200 GPUs for
the MT-Bench 101 experiment and 4 A100 GPUs for the math reasoning experiment. The training time per
run is approximately one hour and two hour for the MT-Bench 101, and math reasoning task, respectively.
The total time scales with the number of hyperparameter searches, as mentioned earlier. Also the total
time scales with the numer of algorithms’ iterations, where we use OMPO(iter=3). The evaluation time on
MT-Bench 101 depends on the network, as we use GPT-4o-mini for evaluation, which generally takes around
30 minutes. For the math reasoning task, we completely follow the training and evaluation pipeline from
Lai et al. (2024). In their paper, they provided a math reasoning dataset as a training set, which includes
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Table 8: Ablation on terminal reward in MT-BENCH 101 dataset.

Model
Perceptivity Adaptability Interactivity

Avg. CM SI AR TS CC CR FR SC SA MR GR IC PI

Base (Mistral-7B-Instruct) 6.223 7.202 7.141 7.477 7.839 8.294 6.526 6.480 4.123 4.836 4.455 5.061 5.818 5.641

MPO (intermediate reward) 6.630 7.624 7.846 8.085 8.398 8.947 7.105 7.286 4.208 4.993 4.377 5.264 6.179 5.873

MPO (terminal reward) 6.459 7.536 7.328 7.643 8.084 8.518 6.847 6.883 4.357 4.863 4.403 5.542 6.034 5.924

10,795, which is a mixture from the GSM8k and the Math dataset. For the testing set, In GSM dataset,
there are 1319 questions while in the math dataset there are 5000 questions, and the data can be bound
in StepDPO’s repository 8. For the MT-bench-101, we use the dataset provided in 9. The MT-Bench-101
dataset contains 4208 turns across 13 tasks, as described in Bai et al. (2024). Due to limited dataset size and
the fact that MT-Bench-101 does not provide any ground-truth preference labels, we use its prompts as the
source of conversations during training, while the actual supervision comes exclusively from the Pairwise
Reward Model (PairRM). Thus, the model does not memorize human preference scores or annotations from
MT-Bench-101. For evaluation, we follow the standard practice in iterative preference optimization and use a
separate judge model (GPT-4o-mini via the OpenCompass platform) to score conversations generated by
our trained models. The evaluation judge is completely independent of the PairRM used for training. We
conduct inference with the following settings: 16 queries per second, maximum output length of 4096 tokens,
maximum sequence length of 4096 tokens, batch size of 8, and sampling temperature 0.8. The resulting scores
are competitive with those reported in Bai et al. (2024), with the difference being that we use GPT-4o-mini
as the judge instead of GPT-4o.

G Discussion on the Eq. (Game) objective

In this section, we elaborate on the Eq. (Game) objective for multi-step alignment.

Discussion on the arg max min. By arg maxπminπ′ , we refer to getting the saddle point of the problem, so
that a policy pair is returned. The considered game has antisymmetry property of the preference relation, i.e.,
P(y ≻ y′) = 1− P(y ≺ y′). This antisymmetry implies that if (π⋆, π̂⋆) is a Nash equilibrium (NE), then so is
(π̂⋆, π⋆). Moreover, by the interchangeability of NE strategies in two-player constant-sum games, (π⋆, π⋆)
and (π̂⋆, π̂⋆) must also be NE (Nash, 1951). Therefore, the optimal policies coincide.

Different prompts x and different horizon H. In the notation section, the preference between two
sentences [x, a] and [x′, a′] is defined as P([x, a] ≻ [x′, a′]) as a general definition.

Considering the special case H = 1 , the objective reduces to (π∗, π∗) = arg maxπ minπ′ Ex1,ah,a′
h
P([x1, a1] ≻

[x1, a
′
1]). Therefore, there is no need to consider preference on different x.

Considering H > 1, we need to calculate P([sh, ah] ≻ [s′
h, a

′
h]), note that sh = [sh−1, ah−1, xh], s′

h =
[s′
h−1, a

′
h−1, xh] where xh is the same question in the h step for both player in multi-turn conversation tasks,

or empty in multi-step reasoning tasks. Therefore, the comparison still does not involve two completely
unrelated questions, contrary to the reviewer’s example.

In our experimental datasets MT-Bench101 and GSM8k/Math, sh and s′
h are highly correlated within the

same topic. This makes it reasonable for the reward model to score based on the current state output.
However, we agree that mitigating the effect of previous answers or adding penalties for earlier steps could be
valuable directions for future work when designing the reward model.

8https://github.com/dvlab-research/Step-DPO/tree/main/data/test
9https://github.com/mtbench101/mt-bench-101

35



Published in Transactions on Machine Learning Research (12/2025)

The horizon H in the objective can be taken as the maximum horizon among all questions. So even if problem
A has shorter trajectory (e.g., 2 step) compared to B (e.g., 3 steps), we have P([sh, ah] ≻ [s′

h, a
′
h]) = 1/2 for

step h = 3 where both players have empty answers. Therefore, the constant sum is 3, which are the same for
problems A, B.

Regarding the steps in the reasoning dataset, in theory, it corresponds to the maximum horizon across all
questions as discussed above. In the practical implementation of our algorithm, at each step, the model
generates different answers and performs preference optimization. Therefore, the number of steps for each
question is determined by the model itself. Once the model outputs the final answer, the process ends.

Minimal example for the benefit of general preference P. The BT assumption implies transitivity.
This is restrictive because the preference dataset collected from different humans might not be transitive even
if each human follows a transitive model in generating the preference. As an example, consider 3 humans
e1, e2, e3 and 3 answers y1, y2, y3, denote oe the preference model of human e. They follow these preferences:

oe1(y1 ≻ y2) = 1, oe1(y2 > y3) = 0, oe1(y3 ≻ y1) = 1.
oe2(y1 ≻ y2) = 0, oe2(y2 ≻ y3) = 1, oe2(y3 ≻ y1) = 1.
oe3(y1 ≻ y2) = 1, oe3(y2 ≻ y3) = 1, oe3(y3 ≻ y1) = 0.

Each of these models is transitive. However, the average preference model defined as P(y ≻ y′) =
1
3
∑
e∈{e1,e2,e3} oe(y ≻ y′) satisfies P(y1 ≻ y2) = P(y2 ≻ y3) = P(y3 ≻ y1) = 2/3. Thus, the average

model is non transitive and can not be modeled by the BT assumption. Therefore, the BT assumption is data
wasteful. In this example, one should consider preferences only from a single human in order to make the BT
assumption valid. Not enforcing the BT assumption allows the use of more data, i.e., preferences from all
three humans. Thus, DPO is developed based on the assumption of BT model, which can not capture such
intransitive preference. Moreover, the Nash Equilibrium (NE) policy π⋆ guarantees a win rate greater than
50% against any other policy. This follows by the definition of NE: P(π⋆ ≻ π) ≥ P(π⋆ ≻ π⋆) = 50% for any π.

Minimal example for the benefit of intermediate reward. In multi-turn conversation tasks, such as
MT-bench 101 (Bai et al., 2024), the user asks questions x1, x2, x3, and receives answers a1, a2, a3. When x2
is not closely related to x1, aligning the first step using feedback among different a1 is much more helpful than
using the sequence [a1, x2, a2], where x2, a2 can be considered as noise. In mathematical reasoning tasks,
as mentioned in Lai et al. (2024), some cases yield correct final answers but contain errors in intermediate
reasoning steps. Consequently, Lai et al. (2024) filter out such samples using GPT-4. For example, consider
a case where the reasoning steps yield a correct final answer but include an error: [acorrect

1 , awrong
2 , acorrect

3 ],
where awrong

2 is incorrect while all of the other steps and the final answer acorrect
3 is correct. When there is

another response, [acorrect
1 , acorrect

2 , acorrect
3 ] with all correct steps, using only terminal signal for aligning step 2

might not guarantee that acorrect
2 ≻ awrong

2 because both of final answers are correct, especially when there is
only an incorrect step among long reasoning steps. In contrast, an intermediate signal would clearly indicate
acorrect

2 ≻ awrong
2 , accurately reflecting the quality of the intermediate steps. In practice, if the final signal is

important, e.g., in math reasoning task, then we can use only the terminal reward or the average of terminal
reward and intermediate reward, otherwise one can just use the intermediate reward, which is cheaper to
collect as compared to assigning reward until the terminal state.

Availability of preference oracle P. Online preference signals are ideally obtained from human annotators
while it is prohibitively expensive in practice, limited by human capability, and often beyond the reach of
the open-source community (Dong et al., 2024). Prior work has demonstrated that training a preference
reward model (RM) and using it to generate labels in a semi-supervised fashion can significantly boost model
performance (Wu et al., 2025; Tran et al., 2023; Sessa et al., 2025). Notably, (Tran et al., 2023) shows that
the 0.4B Pair-RM (used in Sec. 4) can support iterative preference learning and get strong performance on
AlpacaEval-2. Process-reward-models are gaining significant attention due to their reliable inference-time
scaling (Zhang et al., 2025b;a). The llama-3-RM used in our paper is also trained on a multi-turn dataset.
More recently, process-based self-rewarding language models (Zhang et al., 2025b) are introduced to integrate
the reward model and the policy into a single model. We believe that as LLMs continue to improve, they can
increasingly serve as their own evaluators—following the “LLM-as-a-judge" paradigm (Zheng et al., 2023;
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Zhang et al., 2025b) and autoregressive RM (Xu et al., 2025). This makes it reliable to automate per-step
feedback using LLM itself rather than humans.
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