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Abstract

Large language models (LLMs) have achieved
remarkable success, yet aligning their genera-
tions with human preferences remains a critical
challenge. Existing approaches to preference
modeling often rely on an explicit or implicit
reward function, overlooking the intricate and
multifaceted nature of human preferences that
may encompass conflicting factors across diverse
tasks and populations. To address this limitation,
we introduce Latent Preference Coding (LPC),
a novel framework that models the implicit fac-
tors as well as their combinations behind holis-
tic preferences using discrete latent codes. LPC
seamlessly integrates with various offline align-
ment algorithms, automatically inferring the un-
derlying factors and their importance from data
without relying on pre-defined reward functions
and hand-crafted combination weights. Extensive
experiments on multiple benchmarks demonstrate
that LPC consistently improves upon three align-
ment algorithms (DPO, SimPO, and IPO) using
three base models (Mistral-7B, Llama3-8B, and
Llama3-8B-Instruct). Furthermore, deeper analy-
sis reveals that the learned latent codes effectively
capture the differences in the distribution of hu-
man preferences and significantly enhance the
robustness of alignment against noise in data. By
providing a unified representation for the multi-
farious preference factors, LPC paves the way to-
wards developing more robust and versatile align-
ment techniques for the responsible deployment
of powerful LLMs.
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1. Introduction
Alignment has emerged as a key step in the development of
large language models (LLMs) (Ouyang et al., 2022; Bai
et al., 2022; Touvron et al., 2023; Dubey et al., 2024). The
goal of alignment is to leverage human feedback to gauge
the generative distributions of LLMs, steering their outputs
to be helpful, honest, and harmless (Askell et al., 2021).
To this end, human annotators are tasked with expressing
preferences among human-curated or machine-generated
texts, and these preference annotations serve as supervision
signals to further optimize LLMs. Amid the surge in align-
ment research, significant attention has been focused on
optimization objectives, considering both online (Schulman
et al., 2017; Munos et al., 2023; Calandriello et al., 2024;
Yang et al., 2024b) and offline (Rafailov et al., 2024; Zhao
et al., 2023; Azar et al., 2024; Meng et al., 2024; Tang et al.,
2024) environments as well as different types of preference
annotations, such as scalar ratings (Richemond et al., 2024)
and pairwise rankings (Rafailov et al., 2024). Optimization
with the well-designed objectives has been widely validated
for effectively reducing toxicity (Dai et al., 2024) while
significantly improving the truthfulness and coherence of
LLM outputs (Touvron et al., 2023). In this work, we study
the alignment of LLMs from a different perspective: Can
we exploit the supervision signals more effectively through
fine-grained modeling of complex human preference?

The common practice for preference modeling typically
involves estimating a single reward function from human
annotations as a proxy for human preference (Schulman
et al., 2017; Gulcehre et al., 2023). Recently, human annota-
tions have also been used directly as supervision signals in
optimization (Rafailov et al., 2024). These approaches, how-
ever, often overlook the challenges in preference modeling
that arise from the inherent complexity of human prefer-
ence (Casper et al., 2023): (1) Human preference may
hinge on multiple factors. The multifaceted factors en-
tailed by a prompt may not be easily represented by a single
reward function, especially when some factors conflict with
one another. A typical example is the divergence between
“helpfuness” and “safty,” which differ dramatically in their
preferred response patterns, making it difficult for a single
reward model to achieve the best of both worlds (Mu et al.,
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2024). (2) The factors may vary across tasks and popula-
tions. There lacks a unified way to represent all factors. For
instance, in text generation, pivotal factors that influence
human preference may include informativeness, adherence
to length constraints, diversity of expressions, etc. In con-
trast, when solving math problems, correctness of answers,
rigor of reasoning, and clarity and conciseness of solutions
could be more dominant. (3) Accurately determining the
relative weights of factors for a prompt is challenging,
even if the factors are well-defined. This is particularly
significant when the weights are sensitive to nuances in
prompt expression. For example, the prompt “how can I
kill a Python process” demands less consideration on safety
than “how can I kill someone” despite similar superficial
phrasing.

In light of the challenges in preference modeling, we aim
to develop a unified framework for capturing the intricate
nature of human preferences, with the goal of achieving
(1) the framework can broadly represent human preferences
across diverse tasks; (2) the framework allows for automatic
learning of preference representations without the need for
pre-defined sub-rewards and hand-crafted weights that are
required by many existing approaches (Zhou et al., 2024;
Rame et al., 2024; Yang et al., 2024c); and (3) the framework
is generally applicable to various alignment algorithms and
can effectively and consistently enhance their performance.

To this end, we propose Latent Preference Coding (LPC),
a novel framework that captures the multifaceted nature of
human preferences through discrete latent codes. LPC intro-
duces a discrete latent space where each code represents an
underlying factor influencing holistic preferences. Through
variational inference, LPC estimates the latent codes from
data, and learns both a prior network and a posterior net-
work. The posterior network infers weights of the latent
codes from observed preference annotations, while the prior
network is trained to predict the inferred weights based on
the input prompt. Together, the latent codes and the pre-
dicted combination weights form a mixture of factors that
represent prompt-specified human preferences, guiding the
generation of completions in LLMs1. More importantly, the
formulation of LPC is general, allowing for integration with
a wide range of offline preference algorithms, including
DPO (Rafailov et al., 2024), SimPO (Meng et al., 2024),
IPO (Azar et al., 2024), and others.

We conduct extensive experiments to assess LPC across di-
verse downstream tasks, employing Mistral-7B (Jiang et al.,
2023), Llama3-8B, and Llama3-8B-Instruct (Dubey et al.,

1LPC facilitates the automatic learning of prompt-specific pref-
erence representations. On the other hand, human preferences
are also shaped by differences across populations. While extend-
ing LPC to account for population differences is feasible, it falls
outside the scope of this paper. We leave the exploration of person-
alized LPC for future work.

2024) as base LLMs, paired with DPO, SimPO, and IPO
as alignment algorithms. Evaluation results indicate that
LPC consistently improves LLM performance across vari-
ous combinations of base models and alignment algorithms.
More interestingly, further analysis over the learned latent
codes reveals that LPC effectively captures the underlying
distribution of human preferences collected from different
data sources, and exhibits robustness against noisy anno-
tations. These results confirm that LPC provides a unified
approach for representing the complex structures underlying
human preferences and is readily applicable to a wide range
of existing alignment algorithms.

Our contributions are threefold: (1) We identify the critical
challenge of modeling complex human preferences in LLM
alignment and propose Latent Preference Coding (LPC)
to address the challenge through discrete latent variables;
(2) We derive a tailored optimization objective under the
LPC framework, which can seamlessly integrate with and
enhance the performance of various offline preference learn-
ing algorithms; and (3) Extensive experiments on multiple
benchmarks, using various base LLMs and alignment algo-
rithms, validate the consistent effectiveness of LPC over the
vanilla counterparts.

2. Related Work
2.1. Latent Variable Models

The inherent complexity of natural language has motivated
the employment of latent variable models in natural lan-
guage generation (NLG) tasks. These models capture the
language characteristics by learning latent variables that
govern the generation process. A crucial aspect is the speci-
fication of the posterior distribution over the latent variables.
Continuous distributions, such as the Gaussian distribu-
tion used in the variational auto-encoder (VAE) framework
(Kingma, 2013), have been widely adopted for modeling
response diversity (Zhao et al., 2017; Ke et al., 2018). Re-
cently, discrete distributions have emerged as a promising
alternative, offering several compelling advantages, includ-
ing mitigating the notorious posterior collapse issue (Bow-
man et al., 2016), enabling enhanced controllability through
latent variable manipulation (Bartolucci et al., 2022), and
demonstrating remarkable interpretability by revealing cor-
respondences between latent variables and categorical lan-
guage features like dialogue acts (Zhao et al., 2018), entity
states (Guan et al., 2023), and writing actions (Cornille et al.,
2024). The discrete latent variable models typically rely on
a multinomial distribution over a learnable codebook (Van
Den Oord et al., 2017) or a predefined vocabulary (Zelikman
et al., 2024) to represent the discrete latent space. Despite
the extensive exploration of latent variable models, their
applications to the alignment of LLMs remains largely un-
explored. Recently, a few works have attempted to apply

2



Latent Preference Coding: Aligning Large Language Models via Discrete Latent Codes

discrete latent variables to the alignment of LLMs. Poddar
et al. (2024) employs continuous latent variables to repre-
sent various personalized human needs. A concurrent study
by Yao et al. (2024) proposes a variational approach for
learning pluralistic preferences within a group. Our work
distinguishes itself from these works by modeling the intri-
cate preferences obscured in the prompts through the more
interpretable approach of discrete latent variables.

2.2. Learning from Human Feedback

Learning from human feedback has been a crucial paradigm
in aligning LLMs. Various forms of feedback have been
explored, including labels (Hastie et al., 2009), scalar rat-
ings (Silver et al., 2021; Richemond et al., 2024), ex-
pert trajectories (Hussein et al., 2017), and pairwise rank-
ings (Wirth et al., 2017; Rafailov et al., 2024), all of which
can be viewed as carriers of underlying human preferences.
Recently, reward modeling techniques, particularly those
based on pairwise rankings, have emerged as a promis-
ing approach for providing scalable feedback, such as the
Bradley-Terry model (Bradley & Terry, 1952). Such reward
models can then be leveraged to align LLMs with human
preference through reinforcement learning algorithms like
PPO (Schulman et al., 2017). This has been applied to en-
sure safety (Dai et al., 2024), enhance helpfulness (Nakano
et al., 2021), and promote honesty (Tian et al., 2024) in
LLMs. However, the complex implementation, hyper-
parameter tuning, sample inefficiency, and computational
overhead of PPO (Choshen et al., 2020) have motivated
the exploration of simpler approaches, including rejection
sampling (Touvron et al., 2023) that fine-tunes LLMs on re-
sponses with the highest reward among a number of samples,
and direct preference optimization (DPO) (Rafailov et al.,
2024) that directly optimizes LLMs from human preference
data without an explicit reward model. Following DPO, var-
ious preference optimization objectives have been proposed,
such as KTO (Ethayarajh et al., 2024), DRO (Richemond
et al., 2024), SimPO (Meng et al., 2024), and GPO (Tang
et al., 2024). Despite these advancements, a common lim-
itation of existing methods is their assumption of a single,
unified reward function, which may fail to capture the mul-
tifaceted nature of human preferences.

2.3. Multi-Objecitve Optimization

Multi-objective optimization for aligning LLMs has gar-
nered significant attention, as it mitigates potential di-
chotomies between competing objectives (Bai et al., 2022)
and caters to diverse user needs (Dong et al., 2023). Exist-
ing approaches to multi-objective alignment can be broadly
categorized into three groups: (1) Reward Model Combi-
nation, which transforms multi-objective alignment into a
single-objective optimization problem by linearly combin-
ing rewards from individual reward models (Wu et al., 2023)
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Figure 1. Overview of Latent Preference Coding. The frame-
work is comprised of a discrete codebook and three modules: a
policy model πθ(y|x, z) conditioned on a latent variable z, a prior
network p(z|x) that learns to infer z from the prompt, and a poste-
rior network q(z|x, yw ≻ yl) that guides the training of the prior
network and latent code embeddings.

or via parameter interpolation (Rame et al., 2023). Then,
they use standard RL approaches to maximize the scalar
reward. (2) Policy Model Combination, which applies the
spirit of linear combination to policy models, i.e., combining
policy models learned from different reward models through
token-wise probability interpolation (Jang et al., 2023). (3)
Combination-aware Learning, which trains a single pol-
icy model conditioned on both the user instruction and the
expected combination weights of different objectives (Dong
et al., 2023; Wang et al., 2024). All these methods require
explicit human feedback for each objective and demand pre-
specified weights for combining multi-objective rewards,
imposing a substantial burden on human annotators. In
contrast, our approach aims to automatically infer both the
implicit factors and their relative importance from holis-
tic feedback data, without relying on pre-defined objective
weights or explicit reward models.

3. Methodology
We elaborate Latent Preference Coding (LPC) in this section.
Starting from a brief review of existing efforts in reinforce-
ment learning from human feedback (RLHF) (§3.2), we
derive the optimization objective of LPC (§3.2), and then
formulate the latent representation of preferences and other
important components in LPC (§3.3). Finally, we demon-
strate how LPC can be seamlessly integrated into a variety
of offline RLHF algorithms (§3.4).

3.1. Preliminaries: Reinforcement Learning from
Human Feedback

The goal of RLHF is to optimize a language model πθ(y|x)
parameterized by θ, initialized from a reference model
πref(y|x) obtained through pre-training or supervised fine-
tuning. The optimization of πθ(y|x) is guided by a reward
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model parameterized as rϕ(x, y), whose responsibility is
to evaluate how well the output y ∼ πθ(y|x) aligns with
human preference. Specifically, the policy model πθ(y|x) is
optimized to maximize the expected reward from rϕ(x, y)
while constrained by a KL penalty with respect to the refer-
ence model πref(y|x) (Ouyang et al., 2022):

maxπθEx∼D,y∼πθ(y|x)[rϕ(x, y)]− β · DKL[πθ(y|x)||πref(y|x)],
(1)

where β acts as a trade-off between the expectation of the
reward and the KL term.

Normally, rϕ(x, y) is estimated from a preference dataset
D = {(xi, yiw, y

i
l)}Ni=1 by optimizing a Bradley-Terry (BT)

model (Bradley & Terry, 1952):

p(yw ≻ yl|x) = σ(rϕ(x, yw)− rϕ(x, yl)) (2)

where for prompt x, completion yw is more preferred than
yl.

Problem 1 often requires a complex and unstable online
algorithm (Schulman et al., 2017), which motivates the
exploration on offline RLHF. In fact, as pointed out in (Go
et al., 2023), the solution to the KL-constrained reward
maximization objective 1 can be analytically written as:

π⋆
θ (y|x) =

1

Z(x)
πref(y|x)exp(β−1rϕ(x, y)), (3)

where Z(x) is the partition function. Hence, reward rϕ(x, y)
can be represented by:

rϕ(x, y) = βlog(
π⋆
θ (y|x)

πref(y|x)
) + βlog(Z(x)). (4)

Putting Eq. 2 and Eq. 4 together, RLHF can be performed
offline without the need of an explicit reward by learning
from the following loss (Rafailov et al., 2024):

LDPO = −E(x,yw,yl)∼D log p(yw ≻ yl|x)

= −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

(5)
Due to its simplicity and effectiveness, offline RLHF
has been adopted in the development of several leading
LLMs (Touvron et al., 2023; Dubey et al., 2024; Yang et al.,
2024a). Therefore, we choose offline RLHF as the starting
point for our research on preference modeling, and leave
the exploration for online RLHF as future work.

3.2. Learning Objective of Latent Preference Coding

Recognizing the diverse and multifaceted nature of human
preferences, our approach deviates from traditional RLHF
methods that rely on a single reward model rϕ(x, y) to
evaluate all data instances (either explicitly (Schulman et al.,
2017) or implicitly (Rafailov et al., 2024)). Instead, we aim

to capture the factors that underpin intricate holistic human
preferences. To this end, two problems must be addressed:
(1) How to model the mixture of factors implied by a prompt?
And (2) How to automatically and effectively learn the
mixtures of factors from data in an unsupervised fashion?
To answer these questions, we propose latent preference
coding (LPC) that implicitly models the underlying factors
behind human preferences using latent variables.

We assume that holistic human preference is a mixture of
multiple unobserved factors, and can be modeled by a latent
variable z. Hence, the preference model p(yw ≻ yl|x) in
Eq. 5 can be factorized as p(yw ≻ yl|z, x) · p(z|x), where
p(z|x) is a prior modeling the induction of a mixture of fac-
tors as a specific preference pattern with respect to prompt
x, and p(yw ≻ yl|z, x) measures how yw is preferred over
yl under the prompt and the preference pattern. Following
the assumption, the loss given by Eq. 5 can be re-formulated
as:

LLPC-DPO = −E(x,yw,yl)∼D logEz∼p(z|x)p(yw ≻ yl|x, z),
(6)

where

p(yw ≻ yl|x, z) = σ

(
β log

πθ(yw|x, z)
πref(yw|x, z)

− β log
πθ(yl|x, z)
πref(yl|x, z)

)
(7)

Normally, it is difficult to directly optimize Eq. 6 due to the
intractability of p(z|x). Therefore, we consider a posterior
q(z|x, yw ≻ yl) and perform learning through variational
inference. The posterior takes the observed preference be-
tween yw and yl as input and predicts a distribution of z,
which is then used to guide the direction of the prior. By
this means, the negative evidence lower bound (ELBO) for
LLPC-DPO is given by:

L̃LPC-DPO = −E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl) log σ

(
β log

πθ(yw|x, z)
πref(yw|x)

− β log
πθ(yl|x, z)
πref(yl|x)

)
− λDKL[q(·|x, yw ≻ yl)||pz(·|x)]

]
,

(8)
where λ is a hyper-parameter. Details of derivation are
presented in Appendix A.

During inference, LPC first samples a latent variable z ac-
cording to the prior p(z|x), and then generates the comple-
tion y from πθ(y|x, z).

3.3. Modeling of Latent Preference Coding

Figure 1 illustrates the architecture of LPC. To effectively
represent the multifaceted factors that shape holistic human
preferences, we propose to model the underlying factors
through discrete latent variables. Basically, we implement
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LPC based on the standard decoder-only Transformer archi-
tecture (Vaswani et al., 2017) parameterized by θ, taking
the input prompt x and generating the output completion y.
We use hx and hx,y to denote the hidden states of the last
layer at the last token of x and the concatenation of x and y,
respectively.

Discrete Latent Space. We introduce a discrete codebook
E = {ek ∈ Rd}Kk=1 that comprising K codes, where each
code ek corresponds to an underlying factor influencing
the holistic preference. We assume that both the prior and
posterior distributions are categorical distributions over the
latent codes in E, making it easy to derive the KL divergence
between them in Eq. 8.

Posterior network. Given a triple of (x, yw, yl), we im-
plement the posterior network by applying a two-layer MLP
on the concatenation of hx,yw and hx,yl

:

q(z|x, yw ≻ yl) = softmax (MLPposterior([hx,yw
;hx,yl

])) .
(9)

Prior network. Given an input prompt x, the prior net-
work feeds hx to another MLP, which predicts the prior
distribution over the latent codes:

p(z|x) = softmax (MLPprior(hx)) . (10)

Policy Model. To effectively leverage the insights gained
from LPC, the policy model should seamlessly integrate the
holistic preference representation derived from the latent
variable z into the language generation process. Formally,
we model the conditional probability πθ(y|x, z) as follows:

πθ(y|x, z) =
∏
t

πθ(yt, |x, z, y<t)

=
∏
t

softmax(LMHead(hx,y<t + z)), (11)

where LMHead is the language model head mapping the
hidden states to the vocabulary, hx,y<t

denotes the hidden
state of the language model encoding the prompt x and
the partially generated completion y<t, and z denotes the
representation of the holistic human preference derived from
the prior or posterior distributions of the latent variable z.

To circumvent the non-differentiability of sampling from
discrete categorical distributions, we leverage the Gumbel-
softmax reparameterization trick (Jang et al., 2017), which
allows us to obtain continuous and differentiable samples
from the prior and posterior distributions over the latent
codes. Specifically, we derive z as a convex combination of
all latent code embeddings in E, weighted by the Gumbel-
softmax samples from the prior and the posterior distribu-

tions:

z =

K∑
k=1

ckek,

{ck}Kk=1 = g · Gumbel-softmax(p(z|x))
+ (1− g) · Gumbel-softmax(q(z|x, yw ≻ yl)),

(12)

where {ck}Kk=1 is the categorical distribution over the latent
codes after applying Gumbel-softmax on the prior or poste-
rior distributions, and g ∈ [0, 1] is a weight that determines
the relative contributions of the prior and the posterior dis-
tributions in deriving z. We employ a linear scheduling
strategy to gradually increase g from 0 to 1 during training,
allowing the model to initially rely more on the more accu-
rate posterior distribution for guidance, and progressively
shift towards the prior distribution as the training goes on.
In this way, LPC can automatically infer their relative impor-
tance between different underlying factors during training.

It is worth noting that although LPC seems to be a bit
complex in formulation, it is actually simple to imple-
ment and introduce negligible additional computational cost.
This is because the policy model, prior and posterior net-
works share the same backbone model. For the input triple
< x, yw, yl >, we only need to forward the backbone LM
twice (once for < x, yw > and once for < x, yl >), which
is the same as DPO.

3.4. Extension to Other Offline RLHF Objectives

While the derivation of LPC originates from the DPO objec-
tive, its versatile formulation readily extends to other offline
RLHF objectives if the obejctives can be formulated as
− log(f(·)). This enables a unified framework for capturing
the intricate nature of human preferences across different
optimization paradigms.

Specifically, when applying LPC to SimPO (Meng et al.,
2024), we derive the following loss:

LLPC -SimPO = −E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl) log σ

(
β

|yw|
log πθ(yw|x, z)−

β

|yl|
log πθ(yl|x, z)− γ

)
− λDKL[q(·|x, yw ≻ yl)||pz(·|x)]

]
.

(13)

Furthermore, drawing inspiration from Eq. 8, we can
also apply LPC to objectives that do not strictly satisfy
− log(f(·))2. While the extension sacrifices some mathe-

2In this case, a rigorous derivation of the KL term is not feasible.
Therefore, we retain the KL term in Eq. 8 and just replace the
expectation term analogously to the formulation used in LPC for
DPO.
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matical rigor, it proves beneficial in practice, as will be seen
in Experiments. Specifically, when applied to IPO (Azar
et al., 2024), the loss for learning is given by:

LLPC -IPO = E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl)

(
log

πθ(yw|x, z)
πref(yw|x)

− log
πθ(yl|x, z)
πref(yl|x)

− 1

2τ

)2

+ λDKL[q(·|x, yw ≻ yl)||pz(·|x)]
]
.

(14)

Similarly, one can also extends LPC to more objectives as
presented in Tang et al. (2024).

4. Experiments
4.1. Experimental setup

Configuration. To comprehensively evaluate the efficacy
of LPC, we conduct experiments using three open-source
LLMs: Mistral-7B (Jiang et al., 2023), Llama3-8B, and
Llama3-8B-Instruct (Dubey et al., 2024). Furthermore, to
demonstrate the compatibility and flexibility of LPC, we
integrate it with three widely used offline preference learn-
ing algorithms: DPO, IPO, and SimPO. These algorithms
encompass different optimization strategies and inductive
biases, enabling a comprehensive evaluation of LPC’s per-
formance across diverse preference learning methods.

Dataset. We utilize the widely-adopted UltraFeedback
dataset (Cui et al., 2023) in experiments. The dataset is a
comprehensive collection of user preferences spanning di-
verse domains. It contains 63,967 instances from 6 publicly
available datasets, including TruthfulQA, FalseQA, Evol-
Instruct, UltraChat, ShareGPT, and FLAN. We randomly
sample 1,000 instances for validation and an additional
1,000 instances for testing. The rest of the instances are
used for training LPC and the baseline alignment methods.
We adopt the same data preprocessing pipeline as outlined
in (Tunstall et al., 2023) to construct the preference pairs.
For each instance, four completions are generated by dif-
ferent LMs. The completion with the highest overall score
is denoted as yw, while yl is randomly sampled from the
remaining completions.

Evaluation. We first evaluate LPC and the baselines on
several representative downstream benchmarks in terms
of three aspects: (1) Commonsense Reasoning: we em-
ploy ARC-challenge and ARC-easy (Clark et al., 2018)
as the evaluation datasets. (2) Mathematical Reasoning:
GSM8K (Cobbe et al., 2021), a collection of grade-school
problems, is exploited for evaluation. (3) Truthfulness: we
use TruthfulQA (Lin et al., 2022) to assess the honesty of
aligned LLMs. In appendix B.1 we provide more down-
stream evaluation results.

Then, we assess how well the models capture the holistic
human preferences by calculating the preference accuracy
for ranking completion pairs. Specifically, the accuracy
accounts for the proportion of instances where yw has a
higher reward score than yl based on Eq. 4. We calculate
the preference accuracy on the test set of UltraFeedback
comprising 1,000 examples.

Implementation Details. We leverage the OpenRLHF
library (Hu et al., 2024) for model training. All models
are trained for one epoch, employing the AdamW opti-
mizer (Loshchilov, 2017) and a linear learning rate sched-
uler peaking at 5e-7 with a 10% warm-up phase. The global
batch size is set to 64 and the max length is 1,024. For
LPC, we search λ in Eq.8 from {0.01, 0.05, 0.1} and find
λ = 0.05 yields good performance across all methods. For
the DPO and SimPO methods, we regulate the deviation
from the reference model by setting β in Eq. 5 and Eq. 13
to 0.1. In the case of IPO, we explore the optimal τ value
in Eq. 14 from {0.01, 0.05, 0.1, 0.5} based on the valida-
tion performance and empirically choose τ = 0.01. For
downstream task evaluation, we utilize the Language Model
Evaluation Harness library (Gao et al., 2024), adhering to
the default hyper-parameters and evaluation settings.

4.2. Main Results

Downstream Benchmark Evaluation. As demonstrated
in Table 1, it is evident that the proposed LPC framework
consistently enhances the performance of LLMs across a
diverse range of downstream tasks, base models, and pref-
erence methods. A closer examination of the results re-
veals several key insights: (1) DPO emerges as the most
robust alignment method, yielding consistent performance
gains across all datasets. Notably, when augment with LPC,
DPO’s performance is consistently amplified, accentuating
the synergistic benefits of LPC in modeling the underlying
preference factors. (2) SimPO and IPO exhibit more vari-
ability in their performance, occasionally underperforming
the base models on certain tasks, particularly GSM8K. How-
ever, when integrated with LPC, these performance deficits
are mitigated, and in some cases, even surpassed (e.g., IPO
w. LPC for Mistral-7B and Llama3-8B-Instruct on GSM8K,
and SimPO w. LPC for Llama3-8B on TruthfulQA), un-
derscoring LPC’s ability to elucidate and harmonize the
disparate preference factors. (3) LPC’s impact is not uni-
formly distributed across all tasks. Specifically, on tasks
that heavily rely on the model’s intrinsic capabilities, such
as abstraction and reasoning skills in the case of the ARC
datasets, LPC’s fine-grained preference modeling yields
relatively modest improvements. This suggests that while
LPC excels in capturing the nuances of human preferences,
it may have a limited influence on enhancing the model’s
commonsense reasoning capabilities, which are primarily
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Table 1. Evaluation results on the downstream tasks. We conducted
5 runs per model per task using different random seeds and report
the mean and the standard deviation across the 5 runs. Some details
of the 5 runs are provided in Appendix B.3.

Arc- Arc- Gsm- Truth- AverageChallenge Easy 8K fulQA

Mistral-7B

Base 49.74 80.72 37.30 41.13 52.22

DPO 55.38 83.33 40.11 48.10 56.73
w. LPC 55.550.1 83.540.1 44.282.8 47.860.4 57.81

IPO 58.19 84.76 30.48 48.96 55.60
w. LPC 57.170.1 83.880.5 42.612.5 50.800.7 58.61

SimPO 58.11 84.68 31.01 49.33 55.78
w. LPC 56.400.5 83.590.4 32.600.6 51.290.8 55.97

Llama3-8B

Base 50.43 80.05 49.51 43.82 55.95

DPO 54.01 81.27 54.36 43.70 58.33
w. LPC 54.180.2 81.480.2 55.340.5 44.680.8 58.92

IPO 51.37 80.89 50.42 44.19 56.72
w. LPC 51.540.2 80.810.3 50.950.1 45.410.3 57.18

SimPO 54.95 81.90 46.02 39.53 55.60
w. LPC 53.330.4 81.360.5 45.870.6 53.611.8 58.54

Llama3-8B-Instruct

Base 52.90 81.52 75.66 46.88 64.24

DPO 54.35 82.24 77.03 47.00 65.16
w. LPC 55.290.4 82.410.3 77.790.3 48.100.3 65.90

IPO 53.84 81.57 73.69 47.25 64.09
w. LPC 54.690.3 82.240.3 76.801.1 46.510.4 65.06

SimPO 55.97 83.50 66.79 56.79 65.77
w. LPC 57.340.3 82.910.6 73.621.9 56.060.4 67.48

Table 2. Preference accuracy before and after integrating LPC.

Llama3-8B Llama3-8B-Instrcut Mistral-7B

DPO 69.3 / 70.8 70.1 / 69.9 71.9 / 73.4
IPO 68.0 / 70.6 68.3 / 70.3 74.2 / 74.7
SimPO 69.2 / 71.8 74.1 / 73.2 73.5 / 75.6

shaped during the pre-training stage.

Preference Accuracy. Subsequently, we delve into the
preference accuracy evaluation to assess the efficacy of LPC
in distinguishing between favorable and unfavorable com-
pletions. As presented in Table 2, the integration of LPC
generally elevates preference accuracy across various base
models and alignment algorithms. This empirical evidence
corroborates LPC’s capacity to elucidate and harmonize the

8 16 32 64 128 256
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69.5
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70.5

71.0

71.5

PA

0% 10% 50% 90%
Flipping Ratio

60.0

62.5

65.0

67.5

70.0

72.5

75.0

PA

w/o. LPC
w. LPC

flan_v2_flan2021
flan_v2_p3
sharegpt
truthful_qa
ultrachat

false_qa
evol_instruct
flan_v2_niv2
flan_v2_cot

Figure 2. Top left: Preference accuracy (PA) of DPO w. LPC on
Llama3-8B varying with the latent codebook size. Bottom Left:
Flipping-label experiment on Llama3-8B. Models are evaluated on
the original test set with unflipped labels. Right: Visualization of
the latent variable z produced by the prior network of Llama3-8B.
The alignment method is DPO. For each data source in UltraFeed-
back, we randomly select 100 instances and visualize the T-SNE
features of these instances.

intricate factors that shape human preferences. Notably, for
the Llama3-8B-Instruct model, the impact of LPC on pref-
erence accuracy appears relatively muted. We conjecture
that this is because Llama3-8B-Instruct has been extensively
fine-tuned for instruction-following, which imbues it with
an enhanced ability to adhere to diverse human instructions.
Consequently, the influence of LPC’s fine-grained prefer-
ence modeling may be somewhat constrained. Neverthe-
less, as aforementioned, LPC continues to confer substantial
performance improvements on downstream tasks, even for
Llama3-8B-Instruct, underscoring its versatility and robust-
ness.

4.3. Latent Code Analysis

To gain deeper insights into the proposed LPC framework,
we conduct experiments to unravel two pivotal research
questions: (1) What is the optimal size of the latent code-
book to effectively capture the intricate landscape of human
preferences? (2) Does LPC truly capture the implicit factors
underpinning holistic preferences as hypothesized?

Investigating the Optimal Codebook Size. To inves-
tigate the optimal codebook size, we train a series of
models with distinct codebook sizes ranging from the set
{8, 16, 32, 64, 128, 256}. As illustrated in Figure 2 (Top
Left), the preference accuracy exhibits a distinct pattern: ini-
tially increasing with larger codebook sizes, peaking around
32 to 64 codes, and then gradually declining, suggesting that
it is crucial for LPC’s performance to striking the right bal-
ance in the size of the latent codebook. When the codebook

7
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Table 3. Preference accuracy on complex preference scenarios on
Llama-8B. TR: truthfulness, HP: helpfulness, HN: honesty.

TR vs. HP HP vs. HN

DPO 62.2/64.5 67.6/65.1
w. LPC 63.8/65.0 68.8/65.5

IPO 61.2/64.8 67.9/65.4
w. LPC 61.5/65.2 68.4/65.3

SimPO 63.1/65.5 68.7/65.2
w. LPC 64.2/65.7 68.8/65.7

is small (e.g., 8 codes), it may be insufficiently expressive to
capture the diversity of implicit preference factors, thereby
limiting performance. Conversely, when the codebook is
excessively large (e.g., 256 codes), LPC does not appear to
derive significant benefits from an expanded latent space.
This could be attributed to several factors: (1) the model
may struggle to effectively utilize such a high-dimensional
latent space given the limited training data, or (2) the risk of
overfitting increases as the codebook size grows.

Investigating the Capability to Distinguish Implicit Fac-
tors. The core rationale behind predicting implicit pref-
erence factors using the prior network p(z|x) lies in the
assumption that the prompt x accurately reflects the un-
derlying preference structure. To validate this critical as-
sumption, we devise a probing experiment by intentionally
distorting the preference annotations in the UltraFeedback
dataset. Specifically, we randomly flip x% of the prefer-
ence labels in the training data (i.e., replacing “yw ≻ yl”
with “yw ≺ yl”), appending a special token [FLIP] to
the prompts associated with these flipped instances. Sub-
sequently, we train Llama3-8B using DPO with or without
LPC on this distorted dataset to assess whether LPC can
effectively differentiate between flipped preferences and nor-
mal ones. Then, we calculate the preference accuracy on the
original test set of UltraFeedback. As illustrated in Figure 2
(Bottom Left), LPC consistently outperforms the baseline
DPO across all flipping ratios, and with 50% labels flipped,
LPC even improves the baseline by a larger margin than in
the ordinary setting, indicating that in more complex prefer-
ence environments with intermixed preferences—some of
which are even completely opposite—LPC’s capability to
model implicit preference factors enables it to distinguish
and disentangle these conflicting signals, thereby enhancing
overall performance.

Additionally, we employ T-SNE (Van der Maaten & Hin-
ton, 2008) to visualize the latent variable z. As depicted
in Figure 2 (Right), instances from different data sources
cluster into several distinct groups. This clustering phe-
nomenon arises because data from various sources typically
emphasize different preferences. This observation further

Table 4. Results on AlpacaEval 2 judged by GPT-4-turbo-2024-
04-09. “LC” and “WR” denote length-controlled and raw win
rate, respectively. All methods are based on Llama3-8B-Instruct.
The baseline model compared against is GPT-4-1106-preview. We
use the official evaluation script (Li et al., 2023b), adopting the
same decoding hyper-parameters as Meng et al. (2024), with the
temperature set to 0.9.

DPO IPO SimPO
LC/WR LC/WR LC/WR

w/o. LPC 15.03/13.55 14.44/12.96 12.77/8.12
w. LPC 15.31/13.57 15.04/13.50 15.56/9.63

corroborates the effectiveness of LPC in modeling implicit
preference factors, as it can capture the intricate preference
structures inherent in diverse data sources.

4.4. Performance on Complex Human Preference
Scenarios

We simulate complex preference scenarios on UltraFeed-
back. We take the helpfulness/truthfulness or helpful-
ness/honesty labels in the Ultrafeedback dataset as two
preference directions and construct a new dataset whose
preference scores are mixed between the two directions.
Specifically, for each instance, we construct < yw, yl >
pairs using the two directions with equal probability. As
seen in Table 3, we find that our method can still achieve a
satisfying performance, which indicates the effectiveness of
our method in handling complex human intentions.

4.5. Win Rate Against GPT-4

To further validate LPC’s efficacy in aligning LLMs with
human preferences, we evaluate LPC on AlpacaEval 2 (Li
et al., 2023b) using GPT-4 as a judge. As depicted in Table 4,
LPC brings performance improvements across all alignment
algorithms on Llama3-8B-Instruct, further solidifying its
prowess in aligning LLMs with human preferences.

5. Conclusions
In this work, we propose LPC, a framework that enables
LLMs to capture the multifaceted nature of human prefer-
ences. LPC introduces discrete latent codes where each code
represents an underlying factor influencing holistic prefer-
ences. Through variational inference, LPC can model the
implicit factors without the need for fine-grained preference
annotations. Besides, LPC can be integrated with a vari-
ety of offline preference algorithms, including DPO, IPO,
SimPO, and so on. We conduct extensive experiments evalu-
ating LPC on three open-source LLMs, showing that LLMs
can achieve better performance across multiple benchmarks
by modeling the underlying factors of human preference.
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Impact Statement
The algorithm proposed in this paper automatically captures
latent preference factors from overall preference, which
might be biased, and does not reflect real human prefer-
ences.
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A. Deriving the evidence lower bound of LPC
We start with the standard DPO, where the objective is to maximize the log-likelihood E(x,yw,yl)∼D log p(yw ≻ yl|x). After
introducing latent variable z, we have:

log p(yw ≻ yl|x) = logEz∼p(z|x)p(yw ≻ yl|x, z)

= log

∫
p(yw ≻ yl|x, z)p(z|x)

q(z|x, yw ≻ yl)

q(z|x, yw ≻ yl)
dz

= logEz∼q(·|x,yw≻yl)
p(yw ≻ yl|x, z)p(z|x)

q(z|x, yw ≻ yl)

≥ Ez∼q(·|x,yw≻yl) log
p(yw ≻ yl|x, z)p(z|x)

q(z|x, yw ≻ yl)

= Ez∼q(·|x,yw≻yl)

[
log p(yw ≻ yl|x, z) + log

p(z|x)
q(z|x, yw ≻ yl)

]
= Ez∼q(·|x,yw≻yl) log p(yw ≻ yl|x, z)− DKL[q(·|x, yw ≻ yl)||p(·|x)].

(15)

By this means, we have:

L̃LPC-DPO = −E(x,yw,yl)∼D
[
Ez∼q(·|x,yw≻yl) log p(yw ≻ yl|x, z)− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
. (16)

Then we need to derive the mathematical solution for p(yw ≻ yl|x, z). We assume that each latent z corresponds to an
implicit reward model rϕz

(x, y). The derivation process is quite similar to standard DPO.

For each implicit preference factor z, we optimize the following objective:

max
πθ

Ex∼D,y∼πθ(·|x,z)[rϕz (x, y)]− βDKL[πθ(y|x, z)||πref(y|x, z)]. (17)

Because the parameter of the reference model is fixed during training, the output of πref would not be affected by z, i.e.,
πref(y|x, z) = πref(y|x). We now have:

max
πθ

Ex∼D,y∼πθ(·|x,z)[rϕz
(x, y)]− βDKL[πθ(y|x, z)||πref(y|x, z)]

= max
πθ

Ex∼D,y∼πθz (·|x,z)

[
rϕz

(x, y)− β log
πθz (y|x, z)
πref(y|x)

]
= min

πθz

Ex∼D,y∼πθz (·|x,z)

[
log

πθz (y|x, z)
πref(y|x)

− β−1rϕz (x, y)

]
= min

πθz

Ex∼D,y∼πθz (·|x,z)

[
log

πθz (y|x, z)
π∗(y|x, z)

− logZz(x)

]
= min

πθz

Ex∼D[DKL(πθz (y|x, z)||π∗(y|x, z))− logZz(x)],

(18)

where:
Zz(x) =

∑
y

πref(y|x) exp
(
β−1rϕz (x, y)

)
(19)

and

π∗(y|x, z) = 1

Zz(x)
πref(y|x) exp

(
β−1rϕz (x, y)

)
. (20)

The KL-divergence in Eq.18 reaches the minimum when πθz (y|x, z) = π∗(y|x, z)). As a result, we obtain the expression
of optimal reward:

r∗ϕz
(x, y) = β log

π∗(y|x, z)
πref(y|x)

+ β logZz(x). (21)
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Table 5. Evaluation results on MMLU.

MMLU

Mistral-7B Llama3-8B Llama3-8B-Instruct

Base Model 60.10 62.10 63.89

DPO 58.48 62.68 63.60
w. LPC 59.14 62.54 63.73

IPO 60.23 61.56 63.25
w. LPC 59.97 61.47 63.75

SimPO 59.21 61.78 62.14
w. LPC 59.56 61.30 62.87

Table 6. Preference accuracy of different latent representations.

Preference Accuracy

Mistral-7B Llama3-8B Llama3-8B-Instruct

DPO 71.9 69.3 70.1
w. LPC (Discrete) 73.4 70.8 69.9
w. LPC (Continuous) 71.4 69.5 69.7

IPO 74.2 68.0 68.3
w. LPC (Discrete) 74.7 70.6 70.3
w. LPC (Continuous) 73.4 69.7 70.1

SimPO 73.5 69.2 74.1
w. LPC (Discrete) 75.6 71.8 73.2
w. LPC (Continuous) 73.1 71.0 72.9

Combining Eq.16 and Eq.21, we can get the final training objective of LPC.

L̃LPC-DPO = −E(x,yw,yl)∼D
[
Ez∼q(·|x,yw≻yl) log p(yw ≻ yl|x, z)− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
,

= −E(x,yw,yl)∼D
[
Ez∼q(·|x,yw≻yl) log σ(rϕz (x, yw)− rϕz (x, yl))− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
,

= −E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl) log σ

(
β log

πθ(yw|x, z)
πref(yw|x)

− β log
πθ(yl|x, z)
πref(yl|x)

)
− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
,

(22)

In practice, we insert a hyper-parameter λ before the KL term to enhance the flexibility of learning.

B. More Experimental Results
B.1. MMLU Evaluation

Table 5 shows evaluation results on MMLU (Hendrycks et al.). MMLU includes a diverse set of tasks including various
domains, which is a good indicator of the generalization ability of a model. While LPC does not significantly improve the
performance of alignment algorithms on MMLU, it also does not hurt the performance, which is consistent with previous
works (Meng et al., 2024). We believe that this is due to the large domain gap between training and evaluation.

B.2. How to Model Latent Preference? Discrete Code vs. Continuous Variable

As using continuous latent variables is a common practice to model latent factors (Li et al., 2023a), we conduct an ablation
study that replaces the discrete latent code with a continuous one sampled from a standard normal distribution while keeping
the rest of the framework unchanged. As illustrated in Table 6, the preference accuracy of the model using discrete latent
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code is higher than that using continuous latent variable a little bit. Compared with continuous latent representation, discrete
latent bypasses the sampling process. We choose to use discrete latent variables in our method mainly because of its
simplicity of implementation and training stability.

B.3. Detailed Results of DPO

Table 7. Detailed results of the 5 runs of DPO.

run1 run2 run3 run4 run5

Mistral-7B

Arc-Challenge w/o. LPC 55.26 55.64 55.33 55.48 55.19
w. LPC 55.65 55.72 55.51 55.40 55.47

Arc-Easy w/o. LPC 83.18 83.22 83.44 83.32 83.49
w. LPC 83.72 83.40 83.52 83.72 83.33

GSM8K w/o. LPC 39.88 40.45 39.62 40.43 40.17
w. LPC 46.52 43.92 41.56 41.00 48.40

TruthfulQA w/o. LPC 48.40 47.44 48.30 47.37 48.98
w. LPC 47.89 48.37 47.18 47.79 48.06

Llama3-8B

Arc-Challenge w/o. LPC 54.14 54.01 54.36 53.85 53.69
w. LPC 53.97 54.04 54.35 54.37 54.17

Arc-Easy w/o. LPC 81.21 81.07 81.41 81.36 81.28
w. LPC 81.74 81.41 81.68 81.12 81.44

GSM8K w/o. LPC 54.06 54.46 54.64 54.64 54.00
w. LPC 55.89 54.73 55.38 54.79 55.91

TruthfulQA w/o. LPC 43.84 43.78 44.06 42.80 44.02
w. LPC 45.15 44.65 43.45 45.76 44.39

Llama3-8B-Instruct

Arc-Challenge w/o. LPC 54.41 54.49 54.23 54.71 53.91
w. LPC 55.14 54.98 56.01 55.09 55.23

Arc-Easy w/o. LPC 82.49 82.20 82.25 81.82 82.45
w. LPC 82.68 81.88 82.57 82.49 82.43

GSM8K w/o. LPC 77.18 77.22 77.02 76.78 76.95
w. LPC 77.89 77.63 77.49 77.70 78.24

TruthfulQA w/o. LPC 47.49 46.45 47.38 46.38 47.30
w. LPC 47.57 48.60 48.01 48.12 48.20

15


