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ABSTRACT

The widespread adoption of AI models, especially foundation models (FMs), has
made a profound impact on numerous domains. However, it also raises significant
ethical concerns, including bias issues. Although numerous efforts have been
made to quantify and mitigate social bias in AI models, geographic bias (in
short, geo-bias) receives much less attention, which presents unique challenges.
While previous work has explored ways to quantify geo-bias, these measures are
model-specific (e.g., mean absolute deviation of LLM ratings) or spatially implicit
(e.g., average fairness scores of all spatial partitions). We lack a model-agnostic,
universally applicable, and spatially explicit geo-bias evaluation framework
that allows researchers to fairly compare the geo-bias of different AI models and
to understand what spatial factors contribute to the geo-bias. In this paper, we
establish an information-theoretic framework for geo-bias evaluation, called
GeoBS (Geo-Bias Scores). We demonstrate the generalizability of the proposed
framework by showing how to interpret and analyze existing geo-bias measures
under this framework. Then, we propose three novel geo-bias scores that explicitly
take intricate spatial factors (multi-scalability, distance decay, and anisotropy) into
consideration. Finally, we conduct extensive experiments on 3 tasks, 8 datasets, and
8 models to demonstrate that both task-specific GeoAI models and general-purpose
foundation models may suffer from various types of geo-bias. This framework
will not only advance the technical understanding of geographic bias but will also
establish a foundation for integrating spatial fairness into the design, deployment,
and evaluation of AI systems.

1 INTRODUCTION

Recent years have witnessed a major paradigm shift in the Artificial Intelligence (AI) domain from
task-specific models to foundation models (FMs) (Bommasani et al., 2021). However, the widespread
adoption of FMs also raises significant ethical concerns. A major challenge is bias (Gordon &
Desjardins, 1995; Gianfrancesco et al., 2018), which refers to systematic disparities or tendencies in
AI models that lead to unfair or prejudiced outcomes in terms of gender, race, religion, nationality,
etc. AI model bias is a well-documented issue that can lead to serious ethical consequences, with
notable examples such as Google Photo App’s racist blunder of misclassifying African American
people as gorillas (News, 2015). Due to the large training datasets and model sizes, FMs are more
prone to inheriting and amplifying these biases (Zhang et al., 2022; Touvron et al., 2023), thus having
the potential to cause a huge negative impact on society (Kamiran & Calders, 2012; Dhamala et al.,
2021; Hardt et al., 2016; Parrish et al., 2021; Gallegos et al., 2024). Extensive efforts have been
made for social biases evaluation and mitigation in terms of gender, religion, race, color, sexual
orientation, etc, in AI models, including FMs, by developing bias evaluation frameworks, benchmark
datasets (Nangia et al., 2020; Nadeem et al., 2021; Sheng et al., 2019; Dhamala et al., 2021; Gallegos
et al., 2024), and debiasing methods (Yang et al., 2023; Xie et al., 2022). However, few efforts have
been devoted to quantifying and addressing geographic bias of AI and FMs, which demonstrate
unique characteristics and require novel bias quantification methods and debiasing approaches (Liu
et al., 2022; Faisal & Anastasopoulos, 2023; Manvi et al., 2024).

Most previous work interprets it as a subclass of model bias – a phenomenon that an AI model
performs systematically differently across geographic regions beyond reasonable random fluctuations
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Unmarked SSI (radius = 0.05)

Cairo

(a) Unmarked SSI

Marked SSI (radius = 0.05)

Amsterdam

(b) Marked SSI

Scale-Grid SRI (radius = 0.05, scale = 0.01)

r
Tallahassee

(c) Scale-Grid SRE

Distance-Lag SRI (radius = 0.05, lag = 0.005)

Minneapolis

(d) Distance-Lag SRE

Direction-Sector SRI (radius = 0.05, n_splits = 12)

Beijing

(e) Direct.-Sec. SRE

Figure 1: Illustrations of the 5 types of geo-bias where “Direct.-Sec. SRE” stands for Direction-Sector
SRE. The dataset is fMoW (Christie et al., 2018). The evaluated models are Sphere2Vec-sphereC
(Mai et al., 2023) for Figure (a), (b), and NeRF (Mildenhall et al., 2020) for Figure (c), (d), (e). Dots
represent an evaluated data point. Darker red dots indicate worse model performances at this location.

(Liu et al., 2022; Xie et al., 2022; Wu et al., 2024). Despite the recent advancement in geo-bias
research, we identify two major research gaps:
1. Existing geo-bias metrics are often developed ad-hoc for specific models/tasks, and lack a

systematic framework. For example, Manvi et al. (2024) proposed a Spearman’s ρ bias score,
which is only applicable to certain LLM zero-shot prompting tasks.

2. Existing geo-bias metrics are implicit and lack a direct connection to their spatial implica-
tions, i.e., what spatial factors (distance, direction, scale, etc.) stand behind the observed bias. For
example, Xie et al. (2022) proposed to randomly partition the space and use the model’s average
performance difference over all possible partitioning as the geo-bias metric, which is hard to
interpret because it mixes different types of geo-bias.

In this paper, we propose to bridge the aforementioned gaps with the help of classic spatial statistics
and information theory by establishing an information-theoretic framework for geo-bias eval-
uation, called GeoBS. From a perspective of spatial point pattern analysis, a set of geolocations
associated with corresponding model performance metrics forms a distribution on the Earth’s surface,
which can be treated as spatial point patterns (SPP) (Illian et al., 2008; Boots & Getis, 2020). The
properties (e.g., Gaussian v.s. Poisson) and strengths (e.g., 10% Gaussian v.s. 90% Gaussian) of such
patterns can help us categorize existing geo-bias metrics and design novel ones. For instance, if we
define a Gaussian distribution as the “homogeneous” reference pattern that exhibits no geo-bias, then
a statistical distance such as KL-divergence or Wasserstein distance effectively measures how far the
observed SPP deviates from the predefined homogeneity, which may serve as a valid geo-bias metric.

To concretely demonstrate the power and generalizability of our framework, we first prove that
two recently proposed and widely adopted geo-bias scores, Unmarked SSI and Marked SSI (Wu
et al., 2024), can be clearly interpreted and organically integrated into our geo-bias framework.
Then we propose three novel geo-bias scores under the guidance of this framework, which are able
to differentiate and quantify geo-bias related to different spatial factors such as multi-scalability,
distance decay, and anisotropy. Specifically, the Scale-Grid Spatial Relative-Entropy (SRE) score
(Figure 1c) considers the multi-scale heterogeneity, i.e., at what spatial scales the low-performance
points concentrate. The Distance-Lag SRE (Figure 1d) considers the distance-decay effect, i.e.,
whether the model performance changes as distance increases. The Direction-Sector SRE (Figure
1e) considers directional heterogeneity/anisotropy, i.e., whether the model performs differently in
different directions. These scores allow us to locate the intricate spatial factors behind the observed
geo-bias and better target potential solutions. All five geo-bias scores are conceptualized in Figure 1.
In summary, the major contributions of this paper are:

1. We propose a theoretical framework to evaluate geo-bias from the perspective of information
theory, which allows us to systematically categorize and interpret geo-bias.

2. We draw connections between spatial point pattern analysis with information theory, which allows
us to design model-agnostic and spatially explicit geo-bias scores.

3. We demonstrate that our theoretical framework can successfully interpret existing geo-bias scores
(e.g., Unmarked SSI and Marked SSI) and propose three novel geo-bias scores (Scale-Grid SRE,
Distance-Lag SRE, Direction-Sector SRE) that can explicitly capture the intricate spatial factors
behind observed geo-bias.

4. We extensively evaluate the geo-bias of both task-specific GeoAI models and task-agnostic
foundation models. It is shown that both model groups demonstrate substantial geo-bias, and it is
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important to use the spatially explicit geo-bias scores to interpret their underlying spatial factors
behind geo-bias because many models show geo-bias of mixed types.

5. We implement a plug-and-play Python package called GeoBS for efficiently computing the five
geo-bias scores. It will facilitate researchers to promptly check and report the geo-bias of their
models, promoting spatial fairness in the community.

2 RELATED WORK

AI models, including task-specific GeoAI and general-purpose foundation models, often perform dif-
ferently across various spatial contexts (Xie et al., 2022; Manvi et al., 2024; Faisal & Anastasopoulos,
2023; Wu et al., 2024). Such bias may lead to or even exacerbate inequities in resource allocation,
social disparities, and vulnerabilities in resilience and sustainability (Xie et al., 2022) raising ethical
concerns (Nelson et al., 2022). The objective of geo-bias metrics is to quantify geospatial bias, which
are inherently linked to geographic locations or spatial distributions of data samples (Hay, 1995; Xie
et al., 2022).

There has been extensive research on improving fairness in AI using pre-processing (Jo & Gebru,
2020; Steed & Caliskan, 2021), in-processing (Kamishima et al., 2011; Serna et al., 2020), and
post-processing techniques (Binns, 2018; Caton & Haas, 2024). Most fairness quantification methods
focus on categorical-attribute-based biases, i.e., ethnicity, and age (Caton & Haas, 2024). However,
geographical bias is in continuous 2D or 3D space, and those methods often fail to account for the
intrinsic spatial characteristics of data, such as directional dependence and scale effects.

3 PROBLEM SETUP

We first give some formal definitions and mathematical notations that will be used throughout the
paper in Section 3.1. Since we will refer to many concepts from classic spatial point pattern analysis,
we provide a brief introduction of these concepts in Section 3.2 for the broader AI community.

3.1 NOTATIONS AND DEFINITIONS

Definition 3.1 (Geospatial Dataset). A geospatial dataset D := {(Xi, Li, yi)|Li ∈ S2}ni=1 is a set of
triples: Xi is an observation, for example a streetview image; Li is the geographical location of Xi

on the Earth surface S2, or sometimes approximated by the Euclidean plane R2; yi is the task-specific
ground-truth for Xi, e.g., class labels in classification tasks and real values in regression tasks.
Definition 3.2 (Model & Predictions). A model F maps Xi and Li to a prediction ŷi of the ground-
truth, that is, ŷi := F(Xi, Li).
Definition 3.3 (Performance Function). A performance function π compares the ground-truth yi and
the prediction ŷi to assign an evaluation πi := π(yi, ŷi) to a location Li. π can be non-numerical
values. For example, in classification tasks, πi can be binary (correct v.s. incorrect), continuous
(logits of predictions), or categorical (human comments).
Definition 3.4 (Location Map & Performance Map). A location map is a set of locations LD :=
{Li}ni=1. A performance map is a set of location-evaluation tuplesMD,π := {(Li, πi)}ni=1.

Spatial point patterns always involve multiple locations (a single point will not form “patterns”), so
we define the unit to evaluate geo-bias as.
Definition 3.5 (Region Of Interest (ROI)). A region of interest (ROI) N ∈ P(MD,π) is a multiple-
point subset of the performance map, where P(MD,π) denotes the power set ofMD,π .
Definition 3.6 (Local Geo-Bias Score). A function γ : P(MD,π) → R measures the strength of
geo-bias in an ROI N . We call γ(N) a local geo-bias score.
Definition 3.7 (Global Geo-Bias Score). Let N := {Nm ∈ P(MD,π)}Mm=1 be the set of all ROIs
where we intend to measure geo-bias. We compute γ(Nm) for each Nm ∈ N and use their weighted
sum as the global geo-bias score.

3.2 RELATED CONCEPTS FOR SPATIAL POINT PATTERN ANALYSIS

Unmarked & Marked Point Patterns. In spatial point pattern analysis, unmarked patterns only
consider the locations of points, while marked patterns consider both the locations and the attribute
values of the points. For example, the locations where bat-eared fox is observed is a typical unmarked
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spatial point pattern, since it only considers the spatial distributions of species occurrences, while
no value is attached to each location. On the other hand, a set of geo-tagged soil samples is a
marked spatial point pattern in which we consider both the geolocations of these samples and these
samples’ soil attribute values (e.g., soil moisture, pH, salinity, etc.). Based on the above definitions,
a location map LD := {Li}ni=1 is an unmarked spatial point pattern while a performance map
MD,π := {(πi, Li)}ni=1 is a marked spatial point pattern.

Summary Statistics of Spatial Point Patterns. In spatial point pattern analysis, various summary
statistics are developed to quantify the spatial autocorrelation or spatial heterogeneity of a spatial
point pattern. These statistics can be classified into two categories: first-order and second-order
summary statistics. The first-order summary statistics (O’sullivan, 2003; Ben-Said, 2021) focus
on quantifying the variation of the intensity of point patterns (for unmarked point patterns) and the
expectation of attribute values (for marked point patterns) across a study area. Examples include
nearest neighbor distribution function, spherical contact distribution (Ben-Said, 2021), Moran’s I
(Moran, 1950), LISA (Anselin, 1995), Geary’C, and Local Geary’s C (Anselin, 2019). In contrast, the
second-order statistics focus on quantifying the strength of interactions between points according to
distance. Examples include Ripley’s K-function (Ripley, 1977) and L-functions (Besag, 1977).

4 METHODS

In this work, we have two major objectives: 1) Proposing a systematic, theory-supported framework
to categorize and interpret geo-bias; 2) Designing spatially explicit geo-bias quantification under
this theoretical framework. For the former objective, we propose a novel framework of geo-bias
interpretation and categorization based on spatial point pattern analysis concepts introduced in
Section 3.2. This framework serves our purposes perfectly because (1) it is compatible with most
existing geo-bias metrics, and (2) it clearly points out three key factors we need to consider when
designing new geo-bias metrics. For the latter objective, we combine the key factors with information
theory to quantify geo-bias. It is because under our theoretical framework, geo-bias is in effect
the difference between the observed spatial point patterns in the location/performance maps and
predefined spatially homogeneous (i.e., “unbiased”) spatial point patterns, which can be quantified
using information-theoretic terms such as self-information and relative entropy.

In the rest of this section, we will firstly introduce our theoretical framework in Section 4.1 and use
concrete examples to demonstrate how existing geo-bias metrics can be integrated into our framework
in Section 4.2. Then, we will propose three novel information-theoretic geo-bias metrics based on
our framework in Section 4.3, also explaining their spatial implications with illustrations. Finally, we
will describe the algorithms for computing the aforementioned geo-bias scores in Section 4.4.

4.1 THEORETICAL FRAMEWORK & CATEGORIZATION OF GEO-BIAS

As we have discussed in Section 3.2, both the location map LD and the performance mapMD,π of a
model are spatial point patterns. Intuitively, the more “random” the location/performance map looks,
the less geographically biased it is. From the theoretical perspective of spatial point pattern analysis,
this intuition can be precisely described as comparing a location/performance map with a predefined,
spatially homogeneous reference pattern, and the more different they are the more geo-biased the
model is (against the chosen reference pattern). The metrics we use to quantify the difference between
patterns are naturally valid geo-bias metrics. For example, if we assume that an ideally unbiased
model should perform uniformly well across the space with Gaussian fluctuations, we can compute
the Kolmogorov–Smirnov (KS) test statistics of the performance map against a Gaussian distribution
and use it as a geo-bias metric – that is, the larger the statistics, the less unlikely the model performs
uniformly well as we hypothesized, thus more geo-biased under our assumption of homogeneity.

Based on this interpretation, we can summarize three key factors that differentiate one geo-bias
metric from another: (1) the map (location map or performance map) we use for comparison, (2)
the reference pattern (i.e., the desired unbiased pattern), and (3) the difference measure between
the map and the reference pattern. These factors enable a neat categorization of geo-bias: we
can categorize a geo-bias metric as (1) “Unmarked” v.s. “Marked” based on which map it uses,
(2) “Gaussian”, “Poisson”, “Permutation”, etc., based on which reference pattern it uses, and (3)
“Statistical”, “Information-Theoretic”, etc., based on which difference measure it uses.

Another important dimension of geo-bias categorization is “First-Order” v.s. “Second-Order”.
As discussed in Section 3.2, a geo-bias metric that summarizes the heterogeneity of a spatial point
pattern can be either first-order if it is an averaged number over all points, or second-order if it is a
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Figure 2: Workflows of Unmarked SSI and Marked SSI computation.

function of point interactions such as covariances against distance. Most existing geo-bias metrics
(Manvi et al., 2024; Xie et al., 2022; Wu et al., 2024), as well as the novel geo-bias scores we propose
in this paper, are first-order. We leave the investigation of second-order geo-bias metrics to the future.

4.2 EXISTING GEO-BIAS METRICS: SPATIAL SELF-INFORMATION (SSI) SCORES

We use two recently proposed but commonly used geo-bias metrics as concrete examples to demon-
strate the applicability of our framework discussed in Section 4.1. Unmarked SSI Score. Unmarked
SSI Score is proposed in (Wu et al., 2024) as a measure of dataset geo-bias, i.e., whether the data
points are uniformly distributed across the space. Figure 2 illustrates the computation workflow. Ac-
cording to our theoretical framework, this metric is (1) “Unmarked” because the location map is used,
(2) “Permutation” because the reference pattern is a random permutation of foreground/background
points, and (3) “Information-Theoretic” because the difference measure is the self-information of
the location map (implicitly against the reference pattern) Wang et al. (2024). Marked SSI Score.
Marked SSI Score is proposed in (Wu et al., 2024) as a measure of model performance geo-bias,
i.e., whether the model performance (accuracy, MSE, etc.) is consistently good across the space.
Figure 2 illustrates the computation workflow. Similarly, this metric is (1) “Marked” because the
performance map is used, (2) “Permutation” because the reference pattern is a random permutation
of good/bad performance points, and (3) “Information-Theoretic” because the difference measure is
the self-information of the performance map (implicitly against the reference pattern).

4.3 NOVEL GEO-BIAS METRICS: SPATIAL RELATIVE-ENTROPY (SRE) SCORES

We have demonstrated the power of our theoretical framework in decomposing a geo-bias metric into
three dimensions: the map, the reference pattern, and the difference measure. This decomposition
also helps us be more purposeful when designing geo-bias metrics. We notice that for Unmarked
SSI and Marked SSI, the difference measure, i.e., self-information (also known as “surprisal” in
information theory), effectively accounts for the geo-bias specifically related to spatial proximity.
This is because Wang et al. (2024) proves that the self-information of a spatial point pattern is an
alternative quantification of Moran’s I (Moran, 1950), which measures the autocorrelation among
spatial neighbors. This finding inspires us: what if we want to measure the geo-bias related to other
important spatial factors?

4.3.1 SPATIAL MOTIVATIONS OF SRE SCORES

Analogous to the famous Simpson’s Paradox in statistics (Pearl, 2022), spatial heterogeneity makes
the conclusions drawn from spatial data sensitive to the way we partition the space (Mai et al., 2025).
It is also related to the fundamental Modifiable Unit Area Problem (Openshaw, 1984; Fotheringham
& Wong, 1991; Goodchild, 2022; Chen et al., 2022), and recognized as a major source of bias in
various domains such as ecology (Jelinski & Wu, 1996; Swift et al., 2008) and urban geography
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Figure 3: Workflows of SRE Scores computation.

(Deng et al., 2024). For example, if a model is sensitive to directions, it will demonstrate strong
directional heterogeneity, i.e., the model performs significantly differently on data points drawn from
different directions. Figure 1 clearly illustrates that the model performance in each disjoint area (e.g.
square, ring, sector) differs from the overall performance, indicating that there is geo-bias.

In this paper, we are interested in (but not limited to) three specific partitionings: scale-grid, distance-
lag, and direction-sector. We thus design three novel, model-agnostic and spatially explicit geo-bias
metrics according to the partitionings called Scale-Grid SRE Score, Distance-Lag SRE Score, and
Direction-Sector SRE Score. They correspond to three important spatial factors – multi-scalability,
distance decay, and anisotropy, respectively. SRE stands for Spatial Relative-Entropy, because the
difference measures we use in these metrics is the Kullback–Leibler (KL) divergence, also known as
relative entropy.

4.3.2 FORMAL DEFINITIONS OF SRE SCORES

Definition 4.1 (Partition Function, Partitioning & Patch). PAR is called a partition function if it
divides the spatial area A of an ROI N into a set of disjoint sub-areas A :=

⋃
Ak and maps N

into disjoint subsets Pk := {(Li, πi)|Li ∈ Ak}. The set of disjoint subsets Π :=
⋃
Pk is called a

partitioning of N , and each subset Pk is called a patch in the partitioning.
Definition 4.2 (ROI & Patch Performance Distribution). Let h be a mapping from a set of location-
evaluation tuples to a probability distribution, e.g., the normalized histogram of correct and wrong
predictions. h(N) and h(Pk) are called an ROI performance distribution and a patch performance
distribution, respectively.
Definition 4.3 (Local SRE Score). Let d be a difference measure between distribution h(Pk) and
distribution h(N), e.g. Kullback–Leibler divergence. The Local SRE Score of ROI N is defined as
γSRE(N) := #Pk/#N

∑
k d(h(Pk), h(N)).

Definition 4.4 (Global SRE Score). The Global SRE Score is defined as the weighted sum of all
Local SRE Scores: ΓSRE :=

∑
m wmγSRE(Nm). wm is the user-defined weight for ROI Nm.

The partition functions used in this paper include: (1) Scale-Grid: Partition an ROI into equal-size
squares; (2) Distance-Lag: Partition an ROI into equal-width concentric rings. (3) Direction-Sector:
Partition an ROI into equal-angle sectors. However, we encourage researchers to design their own
partitioning based on their needs and domain knowledge and enlarge the family of SRE Scores.

4.4 IMPLEMENTATIONS OF SSI AND SRE GEO-BIAS SCORES IN GEOBS
Finally, we will discuss the detailed implementation of both SSI Scores and SRE Scores computation
in our GeoBSPython package.

For SSI Scores, the formal definitions and theoretical formulas can be found in Wu et al. (2024) and
Wang et al. (2024). While the SSI Score algorithm we use (Algorithm 2 in Appendix B.1) remains
mostly unaltered, the quality and stability of implementation in our GeoBS package are significantly
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Algorithm 1 Local SRE Algorithm
Input : Performance mapMD,π := {(πi, Li)}ni=1. Location of the ROI’s center point Lc. Radius of the

ROI r. Distance function dc. Partition algorithm PAR (Scale-Grid Partition, Distance-Lag Partition,
Direction-Sector Partition). Histogram bins (b0, b1, · · · , bH). KL divergence function DKL.

Output :A local SRE score γSRE for the ROI centered at Lc with radius r and partition function PAR(N).
1 Retrieve points in ROI: N ← {(πi, Li) | dc(Li, Lc) < r};
2 Partition ROI: Π← PAR(N);
3 Compute ROI histogram: h(N)← {#{bj ≤ πs < bj+1} | (πs, Ls) ∈ N};
4 Initialize γSRE ← 0;
5 For Pk ∈ Π:

Compute patch histogram: h(Pk)← {#{bj ≤ πt < bj+1} | (πt, Lt) ∈ Pk};
Compute KL divergence: d(Pk)← DKL(h(N) ∥h(Pk));
Accumulate weighted divergence: γSRE ← γSRE + #Pk

#N
· d(Pk);

6 return γSRE

improved over the original PyGBS package (Wu et al., 2024). The most important changes include:
(1) we modularized the SSI Score algorithm so that it shares common data preprocessing and
postprocessing procedures with our SRE Scores, which saves up to 20% of computational costs
since these procedures only need to run once and work for all five geo-bias scores; (2) we solved
the nan issues commonly encountered in the original implementation by introducing a background
point generator which automatically adjusts the point density ρ to avoid “divided by zero” errors;
(3) we implement the Fibonacci Lattice algorithm to generate background points in place of the
original random background point generation, which solved the reproducibility issue of the original
implementation (i.e., two runs of SSI Scores may differ due to different random background points).

For SRE Scores, we choose to use the KL divergence DKL(h(N), h(Pk)) as d in Definition 4.3. The
choice of KL divergence is based on two considerations: (1) d needs to be a difference measure
between probability distributions, among which KL divergence is the most commonly used and most
generally applicable (e.g., KL divergence can be computed in O(n) complexity for any discrete
distributions while Wasserstein distance may be as complex as O(n3) (Edmonds & Karp, 1972));
(2) KL divergence has physical meanings in that it measures the information gap between two
distributions (i.e., relative-entropy), which can be interpreted as the bits needed to transform a
geo-biased map into an unbiased one, potentially useful in transfer learning. We also choose to use
the normalized ROI size #Nm/

∑
m #Nm as the weight wm, but one can always use other factors

of interest, such as area, population, and GDP for weighting.

The computation of Local SRE Scores is described in Algorithm 1. Intuitively, if the model perfor-
mance does not have geo-bias under the given partitioning PAR, the probability of encountering
good/bad performance points in each patch Pk (e.g., square/ring/sector) should be similar. We use
the histograms h(N) ← {#{bi ≤ πs < bi+1} | (πs, Ls) ∈ N} and h(Pk) ← {#{bi ≤ πt <
bi+1} | (πt, Lt) ∈ Pk} as the empirical distributions of the model performance in the corresponding
ROI N and Patch Pk. Then, the KL-divergence between h(N) and h(Pk) is used as the measure of
information gap between the patch and the entire ROI. Finally, the weighted sum (over the sizes of
patches) of all KL-divergences across the ROI N is used as the SRE Score for the local region of
interest (see Definition 4.3).

5 EXPERIMENTS

The experiments in this research consist of three tasks:

1. Geo-Aware Image Classification: We conduct image classification on three geo-tagged image
datasets: iNat2017, iNat2018, and fMoW. The models evaluated include both an image-only classifier
(No Prior) and image classifiers enhanced with four commonly used location encoders: Radial Basis
Function (RBF), Space2Vec-theory (Space2Vec), NeRF, and Sphere2Vec-sphereC (Sphere2Vec). The
model performance is measured in binary numbers: 0 for wrong classes and 1 for correct classes.

2. Geo-Aware Image Regression: We use the same models as in general image classification
tasks, except that we predict continuous values which represent population density, forest coverage
percentage, nightlights luminosity, and other indices at the given location. The benchmark we use is
MOSAIKS (Rolf et al., 2021). The model performance is measured in binary numbers: 0 for absolute
errors smaller than the empirical variance of all prediction errors and 1 otherwise.
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Abbreviation U-SSI M-SSI SG-SRE DL-SRE DS-SRE SPAD
Meaning Unmarked SSI Marked SSI Scale-Grid SRE Distance-Lag SRE Direction-Sector SRE SPace-As-Distribution Score

Table 1: Abbreviations used in experiments.

Table 2: Accuracy and Global Geo-Bias Scores of geo-tagged
image classification. All geo-bias scores use an ROI radius
of 0.05 radian. Bold numbers indicate the best performance
or the lowest geo-bias.

Model Acc ↑ U-SSI ↓ M-SSI ↓ SG-SRE ↓ DL-SRE ↓ DS-SRE ↓ SPAD ↓

fM
oW

Hyperparam - - - 0.01 0.005 12 -
No Prior 69.83 546.59 432.19 13.94 6.70 7.68 18.20
rbf 70.64 545.82 436.38 14.67 6.76 7.80 18.98
Space2Vec 70.49 546.22 436.46 14.29 6.82 8.15 18.75
NeRF 69.92 546.55 433.56 13.87 6.66 7.61 18.56
Sphere2Vec 70.66 546.85 436.88 14.64 6.81 7.84 18.76

iN
at

20
17

Hyperparam - - - 0.005 0.005 8 -
No Prior 63.27 552.87 247.84 14.16 3.54 2.78 19.65
rbf 68.29 552.46 289.08 13.35 3.29 2.73 20.02
Space2Vec 68.30 556.42 289.45 13.98 3.58 2.85 19.31
NeRF 68.68 554.83 292.63 14.14 3.48 2.80 19.14
Sphere2Vec 69.16 555.67 297.54 13.79 3.51 2.83 18.38

iN
at

20
18

Hyperparam - - - 0.025 0.005 8 -
No Prior 60.20 447.25 170.95 2.12 1.95 1.41 21.84
rbf 63.89 462.59 185.43 2.14 1.99 1.39 21.92
Space2Vec 73.52 460.97 254.73 1.67 1.47 1.20 18.88
NeRF 72.91 458.90 248.31 1.69 1.48 1.21 18.69
Sphere2Vec 72.93 459.57 251.40 1.80 1.56 1.27 18.73

3. Remote Sensing (RS) Im-
age Classification: We experiment
with four RS image classification
datasets: EuroSat (Helber et al., 2019),
fMoW-sentinel (Cong et al., 2022),
WorldStrat-IPCC, and WorldStrat-
LCCS (Cornebise et al., 2022). To
study the geo-bias of different FMs,
we pick 2 remote sensing founda-
tion models, e.g., CROMA (Fuller
et al., 2024) and SATMAE (Cong
et al., 2022), along with an LLM, GPT-
4o, to classify multi-spectral satellite
imagery. The model performance is
measured in binary numbers: 0 for
wrong classes and 1 for correct classes.
We report the accuracy for classifica-
tion and R2 for regression. We also
report all five global geo-bias scores
(Unmarked SSI, Marked SSI, Scale-Grid SRE, Distance-Lag SRE, and Direction-Sector SRE) to-
gether with a baseline SPace-As-Distribution Score proposed by Xie et al. (2022). The global scores
are computed over ROIs that are not all 0s or all 1s for the sake of computational stability (in this
case, the scores could become infinity). The abbreviations we use throughout the experiment section
are listed in Table 1. For more information about the experiment setup, please see Appendix Table 5.

Table 3: R2 and Global Geo-Bias Scores of geo-aware neural
regression. All experiments use ROI radius 0.2 radian, scale
0.1 radian, lag 0.05 radian, number of splits 8. Bold numbers
indicate the best performance or the lowest geo-bias.

Model R2 ↑ U-SSI ↓ M-SSI ↓ SG-SRE ↓ DL-SRE ↓ DS-SRE ↓ SPAD ↓

Po
pu

la
tio

n
D

en
si

ty

No Prior 0.38 13.11 4.26 5.58 28.75 22.44 21.68
rbf 0.25 14.13 3.97 0.47 22.33 18.29 21.34
Space2Vec 0.57 15.53 3.04 1.65 33.53 22.24 20.68
NeRF 0.60 17.51 3.38 18.71 26.86 16.47 22.15
Sphere2Vec 0.63 15.01 2.82 4.57 25.91 14.86 21.90

Fo
re

st
C

ov
er

No Prior 0.52 20.32 3.51 47.78 144.54 297.32 23.43
rbf 0.54 19.60 2.63 37.28 126.78 299.58 24.80
Space2Vec 0.73 19.48 3.87 50.67 164.10 343.70 25.15
NeRF 0.68 18.08 2.85 37.98 149.73 305.72 25.84
Sphere2Vec 0.73 21.53 4.40 21.23 130.51 284.26 24.95

N
ig

ht
lig

ht
L

um
in

os
ity

No Prior 0.33 20.48 2.51 7.45 47.32 19.26 23.25
rbf 0.32 21.62 3.71 25.40 21.81 51.73 22.92
Space2Vec 0.21 20.19 2.96 4.11 7.65 12.05 21.57
NeRF 0.23 20.67 2.99 9.19 17.71 78.18 22.59
Sphere2Vec 0.35 20.13 2.18 10.23 9.76 40.05 21.60

E
le

va
tio

n

No Prior 0.27 22.33 3.93 30.71 21.76 106.08 21.26
rbf 0.39 21.79 4.50 9.61 6.97 24.96 19.62
Space2Vec 0.78 20.22 3.51 4.29 6.92 16.60 20.74
NeRF 0.76 20.82 4.25 7.43 9.44 26.37 19.88
Sphere2Vec 0.82 21.25 4.84 4.42 17.51 26.27 20.44

The hyperparameters used in the ex-
periments are: radius of ROI, grid size
for SG-SRE, lag width for DL-SRE,
the number of splits for DS-SRE. The
choice of hyperparameters affects the
amount of data points we use in com-
puting geo-bias scores. For example,
if the radius of an ROI is 1 km, it
is likely that each ROI only contains
one data point, and we are unable to
compute geo-bias scores. In order to
avoid such extreme cases, we select
the appropriate hyperparameters for
each dataset based on their data spa-
tial distribution. The principle is: (1)
each ROI contains at least 100 points,
and (2) at least 2 patches in one ROI
contain more than 10 points. All hy-
perparameters are reported in the ex-
periment tables. As to the baseline
SPAD Score, it ranges from 0 to 100
and is calculated using a maximum of
100 rows, 100 columns, and a partitioning sample size of 100 (Xie et al., 2022). For ablation studies
on the influence of hyperparameters, please see Table 6 and Table 7 in the Appendix.

5.1 GEO-BIAS OF TASK-SPECIFIC GEOAI MODELS

Table 2 reports the geo-tagged image classification geo-bias. By comparing the model accuracy with
the geo-bias scores, we can see that there is no strong correlation, which means geo-bias scores are a
(relatively) independent dimension of evaluation, and it is not sufficient to only report the overall
performance. Moreover, we observe that the geo-bias of task-specific GeoAI models tends to be
mostly dependent on datasets rather than on models. For example, all models have significantly lower
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SRE Scores on the iNat2018 dataset (notice that SSI and SRE Scores are log-based), which suggests
that iNat2018 might have more spatially balanced data.

In contrast, while the NeRF model shows very low geo-bias in terms of scale, distance, and direction
on the iNat2017 and iNat2018 datasets, it performs significantly more biased on the fMoW dataset.
Similar observations can be made from Table 3 which reports the geo-aware image regression geo-
bias, where the Forest Cover dataset shows drastically larger geo-bias in terms of all three SRE Scores.
See Figure 4 in Appendix B.2 for an intuitive visualization.

Our hypothesis is that it is because such GeoAI models explicitly leverage the geographical metadata
(e.g., latitudes and longitudes) for predictions, which causes the model to overfit to the spatial
distributions of training data (Mai et al., 2020; 2023). If the dataset is geo-biased in data sampling,
the performance will also suffer regardless of which model is used. In this case, we should focus on
improving the data quality, such as class balance, spatial coverage, etc.

5.2 GEO-BIAS OF REMOTE SENSING FOUNDATION MODELS

Table 4: Accuracy and Global Geo-Bias Scores of remote
sensing image classification. All geo-bias scores use an
ROI radius of 0.01 radian. Bold numbers indicate the best
performance or the lowest geo-bias. Bold numbers indicate
the best performance or the lowest geo-bias scores.

Model Acc ↑ U-SSI ↓M-SSI ↓ SG-SRE ↓ DL-SRE ↓ DS-SRE ↓ SPAD ↓

fM
oW

-s
en

tin
el Hyperparam - - - 0.01 0.01 8 -

GPT-4o 5.72 516.80 63.96 3.81 1.32 0.76 18.25
CROMA ft 52.67 560.80 447.89 61.47 16.79 19.94 39.19
CROMA lp 31.46 560.11 466.31 152.72 38.69 42.17 36.37
SatMAE ft 64.77 560.96 16.29 2.16 0.57 0.74 12.84
SatMAE lp 62.76 561.29 14.06 2.47 0.61 0.88 12.36

W
or

ld
St

ra
t

-L
C

C
S

Hyperparam - - - 0.05 0.005 8 -
GPT-4o 41.33 399.27 276.18 7.87 54.87 62.21 66.93
CROMA ft 60.78 354.01 275.65 12.91 18.89 23.46 63.23
CROMA lp 58.73 369.52 305.35 3.98 10.59 21.51 66.56
SatMAE ft 52.37 418.63 6.00 0.06 0.11 0.14 16.51
SatMAE lp 44.29 416.44 6.95 0.06 0.12 0.16 15.29

W
or

ld
St

ra
t

-I
PC

C

Hyperparam - - - 0.05 0.005 8 -
GPT-4o 51.92 404.86 200.12 3.82 12.06 12.40 56.40
CROMA ft 69.61 359.10 251.67 7.64 13.21 14.67 52.27
CROMA lp 65.79 379.79 271.37 4.64 8.28 9.09 56.12
SatMAE ft 66.56 410.33 19.23 0.07 0.18 0.15 15.81
SatMAE lp 45.36 416.16 7.06 0.08 0.14 0.16 16.07

E
ur

oS
AT

Hyperparam - - - 0.01 0.005 12 -
GPT-4o 44.89 119.43 79.59 2.62 1.29 0.64 53.52
CROMA ft 97.43 115.72 96.58 0.25 0.67 0.48 8.67
CROMA lp 92.87 100.00 60.35 0.56 0.44 0.37 19.23
SatMAE ft 74.30 115.93 13.02 0.03 0.07 0.05 15.65
SatMAE lp 56.54 113.19 6.43 0.02 0.07 0.06 34.91

Foundation models, which are trained
on massive data, are believed to suf-
fer less from data bias. This partially
matches our observation. Table 4 re-
ports the performance of ChatGPT
and two remote sensing foundation
models with variations (ft stands for
“finetuning” and lp stands for “lin-
ear probing”). The geo-bias scores
are significantly lower than the task-
specific counterparts. Besides, unlike
the task-specific case, the differences
in geo-bias scores of the same model
across different datasets are not promi-
nent. Instead, we observe that while
the CROMA ft model outperforms
SatMAE almost consistently, it also
has way stronger geo-bias of all types.
See Figure 5 in Appendix B.2 for an
illustration of this phenomenon.

Our hypothesis is that, while founda-
tion models are trained on a massive
amount of data and thus less affected
by data geo-bias, their powerful learning capability may overfit the implicit geographical information
in the data, especially considering that the EuroSAT dataset only covers Europe, and the implicit
spatial patterns can be easily acquired without explicit input of geolocations. In other words, whether
a foundation model is prone to geo-bias might be more dependent on its own model architecture, i.e.,
how suitable this model is for learning spatial features.

6 CONCLUSION, LIMITATION & FUTURE WORK

Our work is an example of using the rich domain knowledge (spatial data analysis, point pattern
analysis) to guide AI research. We provide a powerful framework of designing geo-bias scores that
explicitly describes what spatial factors you care about and gives clear-cut, information-theoretic
interpretations of the evaluation results. We see this as a great opportunity to encourage researchers
to report geo-bias scores in their work so that we are not only racing for higher model performance,
but also keeping in mind the spatial fairness issues behind it. In this paper, we limit our discussion
on first-order, relative-entropy-based geo-bias scores, but we will design more geo-bias scores in
our future work that deal with other intricate spatial factors, for example, network and time-space.
Besides, since the geo-bias scores we propose are based on self-information and relative information,
they are differentiable and compatible with most existing training objectives. We see great potential
in introducing the geo-bias scores as debiasing loss functions and help train more fair models.

9
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our methods, algorithm implementation, models, datasets and
hyperparameters in Section 3, 4, 5 and Appendix B. To support replication, we have uploaded
anonymized source code as supplementary materials.

ETHICS STATEMENT

We use only publicly available datasets and established benchmarks for evaluation; experiments
operate at regional/task level rather than individual profiling. All datasets are used under their licenses,
and results are reported for scientific benchmarking only. We adhere to the ICLR Code of Ethics
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A APPENDIX

B APPENDIX

B.1 SUPPLEMENTARY INFORMATION OF SSI SCORES

Below is the algorithm we use to implement the SSI Scores described in (Wu et al., 2024). Notice
that it is slightly different from the original algorithm in the way of generating background points.

Algorithm 2 Local Unmarked/Marked SSI Algorithm
Input : Performance mapMD,π := {(πi, Li)}ni=1. Location of the ROI’s center point Lc. Radius of the ROI

r. Great circle distance dc. Background point density ρ. Moran’s I conversion algorithm SSI (Wang
et al., 2024).

Output :A local Unmarked/Marked SSI score γSSI for the ROI centered at Lc with radius r.
7 Retrieve the points within the ROI.

For Unmarked SSI: N ← {(1, Li) ∈ S2|(πi, Li) ∈MD,π, dc(Li, Lc) < r};
For Marked SSI: N ← {(πi, Li) ∈ S2|(πi, Li) ∈MD,π, dc(Li, Lc) < r};

8 Use the Fibonacci Lattice method to generate ρπr2 evenly distributed background points within the ROI:
B ← {(0, Lj) ∈ S2|dc(Lj , Lc) < r};

9 Merge N and B: M ← N
⋃

B;
10 Compute the local Unmarked/Marked SSI score: γSSI ← SSI(M)
11 return γSSI

B.2 SUPPLEMENTARY FIGURES

We visualize the spatial distributions of reported geo-bias scores on selected datasets and tasks. In all
visualizations, the values are normalized to the range of 0 to 1. A darker red color indicates higher
bias/error. The visual illustration conforms with the conclusions made in Section 5.
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Figure 4: Geographical distributions of error rate and local geo-bias scores of NeRF on fMoW,
iNaturalist2017 and iNaturalist2018 on different datasets.

B.3 SUPPLEMENTARY TABLES

B.3.1 EXPERIMENT SETUP

B.3.2 HYPERPARAMETER SENSITIVITY OF SSI SCORES

B.3.3 HYPERPARAMETER SENSITIVITY OF SRE SCORES
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Dataset Description
iNat2017 A global species recognition dataset designed for the iNaturalist 2017 challenges

(iNaturalist 2018 competition dataset), containing 675,170 images and 5,089
unique categories.

iNat2018 A global species recognition dataset designed for the iNaturalist 2018 challenges
(iNaturalist 2018 competition dataset), containing 461,939 images and 8,142
unique categories.

fMoW A global RS image classification dataset (Christie et al., 2018) that includes RS
images representing a wide range of land use types.

fMoW-sentinel A global Sentinel-2 dataset cross-referenced with fMoW, as a benchmark for
training models on multi-spectral satellite imagery. (Cong et al., 2022)

WorldStrat-LCCS A global collection of high-resolution satellite imagery using the Land Cover
Classification System (LCCS) to categorize land cover types. (Cornebise et al.,
2022)

WorldStrat-IPCC A global collection of high-resolution satellite imagery using the Intergovern-
mental Panel on Climate Change (IPCC) classification system. (Cornebise et al.,
2022)

EuroSAT A European dataset designed for land use and land cover classification using
satellite imagery. Helber et al. (2019)

Population Density A uniformly-at-random distributed global RS image dataset Wu et al. (2024) that
contains 425,637 samples and corresponding estimations of population density.

Forest Cover A uniformly-at-random distributed global RS image dataset Wu et al. (2024) that
contains 498,106 samples and corresponding estimations of forest cover rate.

Nightlights Luminosity A uniformly-at-random distributed global RS image dataset Wu et al. (2024) that
contains 492,226 samples and corresponding nightlights luminosity.

Elevation A uniformly-at-random distributed global RS image dataset Wu et al. (2024) that
contains 498,115 samples and corresponding elevation.

Model Description
No Prior Model using image classifier only
rbf Mai et al. (2020) is a kernel-based location encoder
Space2Vec (theory) A multi-scale location encoder for Euclidean space Mai et al. (2020)
NeRF A location encoder using Neural Radiance Fields (NeRF). Mildenhall et al.

(2021)
Sphere2Vec (sphereC) A multi-scale location encoder for spherical surface.
GPT-4o A LLM developed by OpenAI
CROMA A RS foundation model with contrastive radar-optical masked autoencoders.

(Fuller et al., 2024)
SATMAE A RS foundation model using pre-training transformers for temporal and multi-

spectral satellite imagery. (Cong et al., 2022)

Table 5: Detailed information of datasets and models.
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Figure 5: Geographical distributions of error rate and local geo-bias scores of different remote
sensing foundation models on EuroSAT. The spatial distributions of U-SSI across models are the
same because local U-SSI scores are unmarked and only dependent on data instead of models.

Table 6: Parameter sensitivity test of SSI on iNat2018 dataset. For Unmarked
and Marked SSIs, the results with a radius of 0.05, 0.10, 0.15, and 0.20 radians
are listed. Bold numbers indicate the chosen parameters.

U-SSI ↓ M-SSI ↓
Model 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
rbf 462.59 531.68 558.54 571.37 185.43 219.72 236.45 245.35
Space2Vec-theory 460.97 530.48 558.48 571.40 254.73 301.66 324.52 337.36
NeRF 458.90 529.38 557.77 570.68 248.31 294.85 317.66 330.49
Sphere2Vec-sphereC 459.57 529.49 557.94 571.04 251.40 297.71 320.62 333.46

Table 7: Parameter sensitivity test of SRE on NeRF. For
Scale-Grid SRE and Distance-Lag SRE, the scales are 0.005,
0.01, and 0.025 radians, respectively. For Direction-Sector
SRE, the numbers of splits are 4, 8, and 12. Bold numbers
indicate the chosen parameters.

SG-SRE ↓ DL-SRE ↓ DS-SRE ↓
Dataset 0.005 0.01 0.025 0.005 0.01 0.025 4 8 12
fMoW 20.26 13.87 6.98 6.66 3.36 0.99 2.77 5.50 7.61
iNat2017 14.14 10.50 4.87 3.48 2.08 0.78 1.54 2.80 3.74
iNat2018 2.70 2.40 1.69 1.48 0.90 0.28 0.72 1.21 1.51
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