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ABSTRACT

Multiple Sequence Alignments (MSAs) encode evolutionary information essen-
tial for protein structure prediction and functional design. However, high-quality
MSAs require substantial computational resources for database searches, and ho-
mology search methods retrieve insufficient sequences for proteins with limited
evolutionary relatives. While recent generative models have been proposed for
MSA augmentation, they face challenges in capturing sequence dependencies while
maintaining permutation invariance, and incur high memory costs due to quadratic
complexity of self-attention on two-dimensional MSA representations. We present
MSAFlow, a framework combining two components. First, we develop a generative
autoencoder pairing a compressed AlphaFold3 (AF3) MSA representation with
a conditional Statistical Flow Matching (SFM) decoder that models a family’s
sequence distribution while preserving permutation invariance. Second, we intro-
duce a latent flow-matching model that generates MSA embeddings from a single
sequence, enabling augmentation for orphan proteins. These components enable
MSA representation, augmentation, and family-based design within a single frame-
work. Evaluations demonstrate that MSAFlow achieves competitive performance
on family-based protein design and MSA augmentation tasks, particularly for
low-homology proteins. On CAMEO proteins, reconstructions from compressed
MSA embeddings achieve structure prediction metrics (pLDDT 89.0, TM-score
0.86) approaching full MSAs (pLDDT 91.6, TM-score 0.89) while using 6.5% of
the storage. For enzyme design with fewer than 20 training sequences, MSAFlow
achieves 83-95% accuracy-uniqueness scores. MSAFlow is lightweight, fast, and
memory-efficient, offering a versatile solution for diverse protein engineering tasks.

1 INTRODUCTION

Multiple Sequence Alignments (MSAs) collect homologous protein sequences that share evolutionary
ancestry, providing fundamental information about protein evolution that plays crucial roles in
downstream tasks such as structure prediction and family-based sequence design (Gong et al., 2025;
Truong Jr & Bepler, 2023; Chen et al., 2024; Zhang et al., 2024a; Cao et al., 2025). These alignments
represent evolutionary profiles that enable identification of conserved regions, such as key active site
residues for enzymes, and evolutionary couplings that inform three-dimensional structure.

Conventional homology search tools such as HHBlits (Remmert et al., 2012), MMSeqs (Steinegger &
Söding, 2017), and JackHMMER (Johnson et al., 2010) require substantial computational resources
for obtaining high-quality MSAs. More critically, despite recent acceleration of MMSeqs2 with
GPUs (Kallenborn et al., 2025), these methods retrieve insufficient sequences for low-homology and
orphan proteins when evolutionary relatives are scarce in natural databases. This limitation motivates
the development of tools that can generate MSAs and augment limited evolutionary data**, which
are** essential for expanding protein structure prediction and functional analysis capabilities. Recent
work has partially addressed MSA augmentation challenges through several approaches. Dense
Homology Retriever (DHR) (Hong et al., 2024) leverages embeddings from protein language models
to identify homologous sequences more efficiently and with greater sensitivity. Additional models,
including MSAGenerator (Zhang et al., 2024b), MSAGPT (Chen et al., 2024), and EvoDiff (Alamdari
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Figure 1: General framework of MSAFlow. Our approach supports three complementary pathways:
(1) zero-shot generation from a single sequence using ESM2 embeddings, (2) few-shot augmentation
of shallow MSAs, and (3) family-based design given MSAs embedded through the AF3 MSA Module
and reconstructed through MSAFlow Decoder. All pathways leverage the latent flow-matching and
decoder architecture to generate augmented or compressed MSAs, enabling both the enhancement of
limited evolutionary information and the efficient representation of deep alignments.

et al.), have emerged, employing autoregressive and discrete diffusion frameworks, respectively to
generate MSAs. While these methods show promise, they face architectural limitations in capturing
distributional information while preserving permutation invariance. These methods typically utilize
2D positional encodings to represent row-wise and column-wise information in MSAs. This design
incurs substantial memory costs due to the O(N²) space complexity of self-attention operations, which
is further exacerbated by the 2D nature of MSAs. Additionally, methods like MSAGPT lack true
permutation invariance due to left-to-right autoregressive decoding that introduces artificial sequential
dependencies.

Beyond augmentation, improved generative models for MSAs that capture higher-order evolutionary
patterns can serve as tools for guiding functional protein design. Potts models (Seemayer et al.,
2014) pre-defined graphical models restricted to pairwise couplings. ProfileBFN (Gong et al., 2025)
collapses sequence information into position-wise profiles that obscure higher-order dependencies,
and methods such as MSA Transformer Rao et al. (2021) and EvoDiff (Alamdari et al.) flatten MSAs
into 2D grids rather than explicitly modeling distributions over sequence space. These limitations
motivate the development of a generative framework that can better approximate the underlying
sequence distribution within an MSA without imposing strong assumptions.

To address these limitations, we introduce MSAFlow, a lightweight framework utilizing compressed
latent MSA representations from AlphaFold3 (Abramson et al., 2024) (AF3) and conditional Sta-
tistical Flow Matching (Cheng et al., 2025) (SFM) as a generative decoder to model the sequence
distribution in an input MSA. Specifically, MSAFlow employs AF3’s MSAModule as an encoder
to produce pair representations of MSAs, which are then mean-pooled and used as conditioning for
the SFM decoder that is trained to reconstruct the original set of sequences in the MSA (Figure 1).
Unlike EVE (Frazer et al., 2021) which requires training a separate VAE for each MSA, MSAFlow
learns a generalizable generative autoencoder over the space of MSAs (i.e., sets of sequences) with
guaranteed permutation invariance. We further introduce a latent flow-matching model that generates
MSA embeddings in a zero-shot manner from a single sequence’s ESM embedding. By learning from
homology-rich MSA representations, our latent flow-matching model can augment proteins with
shallow or absent MSAs. Integrating these components, we provide a unified end-to-end framework
capable of MSA representation, augmentation and family-based protein design.

We summarize our contributions as follows:

• Novel architecture for modeling MSAs. We propose MSAFlow, an generative autoencoding
framework that operates on the sequence space. MSAFlow leverages compressed AF3 MSA
embeddings to encode evolutionary information, paired with a conditional Statistical Flow-matching
decoder that reconstructs MSA sequences while maintaining permutation invariance.
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• We enabled zero-shot generation of synthetic MSA through a two-stage approach combining
latent flow-matching over MSA embedding space and our MSAFlow decoder.

• We offer a unified framework for MSA representation, augmentation, and family-based
sequence design. MSAFlow scales efficiently to large families, supports variable sequence lengths,
and adapts flexibly to downstream design and analysis tasks—capabilities that prior models could
not jointly achieve.

• Empirical significance. MSAFlow demonstrates competitive performance across multiple protein
structure prediction and family-based protein design tasks, including zero-shot and few-shot MSA
generation for orphan and low-homology proteins, and family-based enzyme design on EC classes
with limited data. MSAFlow achieves these results despite being lightweight (130M parameters)
and trained on smaller datasets, offering improved efficiency in terms of inference time and memory
consumption (Table 7).

2 ADDITIONAL RELATED WORK

Generative models for protein sequences Protein sequence generative modeling can be ap-
proached from both discrete and continuous perspectives. Discrete protein language models—such
as autoregressive transformers and masked language models—treat amino acid as token, learning
residue distributions through maximum likelihood estimation or masked denoising objectives. The
ProGen series (Madani et al., 2020; Bhatnagar et al., 2025) and ESM (Lin et al., 2023b) represent
notable examples that employ Transformer architectures (Vaswani et al., 2017) to model residue-
residue dependencies across protein families. Recent research has also explored discrete diffusion
frameworks, such as EvoDiff (Alamdari et al., 2023), which learns denoising processes in amino acid
token space, generating sequences with desired structural or functional properties through sequential
unmasking. Continuous methods, including flow-matching approaches like MultiFlow (Campbell
et al., 2024) and FlowSeq (Ma et al., 2019), offer protein generation in continuous spaces. These
continuous methods typically offer greater flexibility in conditional generation and interpolation but
require decoding mechanisms to map continuous representations back to valid sequences. These
language models have been applied to downstream tasks, including protein-binding peptide design
(D-Flow (Wu et al., 2024), PepFlow (Li et al., 2024)), structure-based sequence design (LM-Design
(Zheng et al., 2023), InstructPLM (Qiu et al., 2024), DRAKES (Wang et al., 2024)), and antibody
engineering (Frey et al.). However, most existing approaches focus on single-sequence modeling
and do not fully leverage evolutionary information contained in MSAs, which limits their capacity to
capture residue co-variation and functional diversity essential for robust protein design.

Latent diffusion for protein design. Latent diffusion models were initially applied to protein struc-
ture generation, demonstrating advantages of continuous representations (Fu et al., 2024; Zhang et al.,
2025; Xu et al., 2023; Yim et al.). Recently, these models have been used to model sequence–structure
relationships through continuous embeddings. Latent spaces enable consistency across multiple
protein modalities while maintaining compact representations. CHEAP (Lu et al., 2024) compresses
protein embeddings via VAE or VQ techniques to create an efficient latent space. Building on this,
PLAID (Lu et al.) applies latent diffusion over folding model embeddings for joint sequence–structure
generation. Similarly, ProteinGenerator (Lisanza et al., 2024) performs diffusion in sequence space
guided by RoseTTAFold (Baek et al., 2021) to enforce structural constraints. La-Proteina (Geffner
et al., 2025a) further extends these capabilities using partially latent flow matching for scalable joint
generation of sequences and all-atom structures. These advances have not yet been extended to
MSAs, which capture evolutionary variation and residue-wise dependencies. MSAFlow addresses
this gap by applying latent diffusion to the MSA domain.

3 METHOD

3.1 MSAFLOW: AN AUTO-ENCODING FRAMEWORK FOR MSAS

MSAs are mathematically represented as S = {s1, s2, ..., sM} where each sequence si ∈ AL consists
of amino acids and gaps from alphabet A, aligned to a reference sequence sref of length L. Despite
containing hundreds to thousands of sequences, we hypothesize that the functional and evolutionary
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information within an MSA can be compressed into a continuous latent representation that
captures the essential characteristics of the sequence distribution within that protein family.

MSA Embedding 
Latent space

𝒢

ℰ

Family 1 MSA

Family 2 MSA

Ambient protein 
sequence space

Figure 2: MSAFlow lifts autocoder to the space of sequence
distributions within MSAs and families.

This compression necessitates a
permutation-invariant encoding
method to avoid bias from sequence
ordering. Formally, we seek an
encoder hϕ : S → Rd such that
hϕ(S) = hϕ(π(S)) for any per-
mutation π of the sequences in S.
We leverage the AF3 MSAModule
architecture, which provides a com-
putationally efficient framework for
embedding evolutionary information
(Abramson et al., 2024). The AF3
MSAModule processes an MSA by
computing a position-wise outer product for each sequence si with the reference sequence, resulting
in pairwise representations Pi ∈ RL×L×hpair . These representations are averaged across all sequences
as Pavg = 1

M

∑M
i=1 Pi. The averaged representation is then processed through multiple triangle

self-attention blocks to produce a refined pair representation Prefined ∈ RL×L×H . We utilize Protenix
(Team et al., 2025), a pretrained variant of AF3, to generate these embeddings for MSAs from the
OpenFold dataset (Ahdritz et al., 2024). The resulting pair representation serves as our compressed
MSA embedding m = hϕ(S) ∈ RL×L×H .

Viewed this way, MSAFlow realizes an autoencoding framework over sets: the encoder maps the
finite set of sequences in an MSA to a latent embedding, while the decoder reconstructs the underlying
family-level distribution of sequences conditioned on this latent representation. This perspective
emphasizes that MSAFlow does not simply compress individual sequences, but rather learns a
compact representation of the set as a distribution, enabling permutation-invariant and family-aware
generative modeling.

3.1.1 STATISTICAL FLOW MATCHING FOR MSA SEQUENCE DECODING

We formulate MSA decoding as a conditional generation task over the sequences within a protein
family. Given an MSA S and its embedding m = hϕ(S), the decoder reconstructs sequence
distribution. Let S̃ = {s1, . . . , sn} be n sequences drawn uniformly without replacement from S.
We model pθ(S̃ | m) =

∏n
i=1 pθ(si | m), which is permutation-invariant by construction. The

decoder pθ(s | m) represents the probability of sampling a sequence s compatible with m.

To instantiate pθ(s | m) for discrete (categorical) sequences, we adopt Statistical Flow Matching
(SFM) (Cheng et al., 2024), which learns a continuous Riemannian flow over the statistical manifold
of categorical distributions equipped with Fisher-Rao metric. Concretely, each sequence in the MSA
is treated as a sample of the target distribution. We operate in the probability simplex ∆|A|×L, where
each position in the sequence is represented by a one-hot categorical distribution µ over amino acids.

Following SFM, we construct flow paths along geodesics on the positive orthant of the unit sphere
by applying the mapping: π : x = π(µ) =

√
µ. SFM demonstrated that such a mapping to the

unit sphere preserves the metric, which coincides with the canonical spherical geometry. Therefore,
we can operate on the unit sphere with the standard spherical geometry. Mathematically, given a
sequence si from the MSA and its corresponding categorical representation x1 = π(µ1) (e.g., one-hot
encoding) and the noise representation x0 = π(µ0), the time-dependent interpolation follows:

xt = expx0
(t · logx0

(x1)) (1)

where exp and log are the spherical exponential and logarithm maps on the manifold, respectively,
and can be calculated in closed form as

expx(u) = x cos ∥u∥2 +
u

∥u∥2
sin ∥u∥2, logx(y) =

arccos(⟨x, y⟩)√
1− ⟨x, y⟩2

(y − x− ⟨x, y − x⟩x), (2)

After transforming back to the simplex with µt = π−1(xt), the interpolation in Equation 1 traces the
geodesic between µ0 and µ1 with respect to the Fisher information metric, ensuring we follow the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

shortest path on the statistical manifold. The corresponding vector field for this mapped geodesic flow
is given by ut(xt|x0, x1) = logxt

(x1)/(1− t). Instead of an unconditional model, our MSAFlow
decoder employs a conditional parameterization where vθ(xt|m, t) is trained to approximate the
vector field conditioning on the MSA embedding m = hϕ(S):

LSFM(θ) = Et∼U [0,1],si∼S,µ0∼π∗p0,µ1∼π∗δ(si)

[
∥vθ(xt|m, t)− ut(xt|x0, x1)∥2

]
(3)

where π∗ denotes the pushforward operation of applying the mapping π, xt is obtained via the
geodesic interpolation, and δ(si) represents the categorical distribution corresponding to sequence si
(typically a one-hot encoding) in an MSA. During sampling, we first follow the learned marginal
vector field on the sphere to obtain x1, then discrete generations of MSAs can be sampled from the
categorical distribution µ1 = π−1(x1).

3.1.2 MODEL ARCHITECTURE AND IMPLEMENTATION

Figure 3: DiT architecture for MSAFlow decoder.

We implement the vector field model
vθ using a modified conditional Dif-
fusion Transformer (DiT) (Peebles &
Xie, 2023) architecture. Since the
output of the AF3 MSAModule is
the pair representation of dimension
L×L×H , we first compress it along
the second dimension through mean
pooling to obtain a sequence-level rep-
resentation of dimension L×H:

mseq =
1

L

L∑
j=1

m:,j,: ∈ RL×H (4)

This compressed representation serves as conditional information for the DiT model, which consists of
12 transformer blocks with a hidden dimension of 768, totaling approximately 130M parameters. The
architecture incorporates sinusoidal time embeddings for the diffusion timestep t, token embeddings
for each amino acid position, conditional embeddings from the compressed MSA representation, and
multi-headed self-attention blocks with adaptive layer normalization. Notably, the MSA embedding
conditioning is applied per-residue through a position-wise AdaLN, which introduces a novel
mechanism for residue-level control. Unlike global conditioning schemes that broadcast the same
modulation across all tokens, this design injects fine-grained, position-specific information into each
layer normalization step, allowing for more precise alignment between evolutionary context and
sequence generation. This innovation enhances the expressivity of the conditioning pathway and
represents a new approach for leveraging MSAs in diffusion-based protein design. At inference time,
we sample sequences by starting with random noise x1 ∼ Uniform(A) and iteratively applying:

xt−∆t = xt − vθ(xt|m, t) ·∆t (5)
for timesteps t = 1, 1−∆t, 1− 2∆t, ..., 0, where ∆t is a small step size (typically 0.01). At t = 0,
we obtain the final sequence by taking the argmax over the amino acid probabilities at each position.

3.2 CONDITIONAL LATENT FLOW MATCHING FOR ZERO-SHOT MSA EMBEDDING GENERATION

While our decoder model generates sequences from MSA embeddings, we also develop a complemen-
tary approach to generate synthetic MSA embeddings themselves. This enables us to create artificial
MSAs for proteins with limited evolutionary data. Let z1 = hϕ(S) ∈ RL×H be the compressed MSA
embedding for a reference sequence sref, and let e = gψ(sref) ∈ Rde be its ESM embedding. We aim
to learn a conditional generative model pθ(z1|e) that can produce plausible MSA embeddings given
only the reference sequence embedding.

Latent Flow Matching: We train a conditional rectified flow that maps a standard Gaussian z0∼
N (0, I) on the distribution of MSA embeddings p(z | e) conditioned on the ESM embedding e (Lin
et al., 2023b). We use a straight-line path zt = (1 − t) z1 + t z0 from target z1 (the ground-truth
MSA embedding) to noise z0, whose reference velocity is the constant field u⋆t (zt; z0, z1) = z0 − z1.
A time-dependent, conditional velocity vθ(zt, e, t) is learned by least-squares flow matching:

LRFM = Et∼U [0,1], z0∼N (0,I), z1

∥∥ vθ(zt, e, t)− (z0 − z1)
∥∥2
2
, (6)
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which provides a simple, stable objective without explicit score estimation.

Generative Sampling Process: At inference, we draw z0 ∼ N (0, I) and integrate the learned
conditional velocity backward from t=1 to t=0 with an explicit Euler solver. By default we use
the deterministic probability-flow ODE (T=0); optionally, we add isotropic noise with temperature
T ∈ [0, 1] to trade fidelity for diversity:

zt−∆t = zt − vθ(zt, e, t)∆t + T
√
∆t ε, ε ∼ N (0, I). (7)

Empirically, smaller T (e.g., T=0.5) improves alignment to e, while larger T increases sample
diversity. Full SDE variants and discretization details are provided in Appendix 6.7.

3.3 END-TO-END UNIFIED PIPELINE FOR MSA REPRESENTATION, AUGMENTATION AND
FAMILY-BASED SEQUENCE DESIGN

Our complete framework enables three complementary paths for MSA generation (as shown in
Figure 1), each tailored to specific protein scenarios:

MSA Compression and Reconstruction: For deep MSAs with abundant evolutionary information,
we first compress the multidimensional sequence information through the AF3 MSAModule into
a compact latent representation. This compressed embedding effectively captures the evolutionary
and functional signals present in the original MSA. We then use our SFM decoder to selectively
reconstruct sequences, maintaining the key evolutionary characteristics while reducing redundancy.

Zero-shot MSA Augmentation: For orphan or de novo proteins with limited evolutionary data, we
first generate the ESM embedding of the single available sequence. Our latent diffusion model then
transforms this single-sequence representation into a synthetic MSA embedding that emulates the
evolutionary diversity typically found in natural protein families. Finally, we decode multiple diverse
sequences from this embedding using our SFM decoder, effectively bootstrapping evolutionary
information where none previously existed.

Family-based Sequence Design: To perform family-based protein design, we first align all sequences
belonging to the family (e.g., enzyme class) for a given query. These sequences are compressed into
a latent representation using our AF3-based MSA encoder. Our SFM decoder then generates new
sequences conditioned on this latent embedding, effectively producing new sequence designs that
share a similar distribution to the given family. Because the generated sequences may include gaps,
we can support both variable-length and fixed-length designs: gaps can be ignored when constructing
the final sequence, enabling flexible design strategies.

This approach combines both MSA compression and generation capabilities in a unified framework.
For data-rich scenarios, our method enables efficient information extraction from deep MSAs while
preserving their evolutionary signals. For data-limited proteins, it allows the creation of synthetic
alignments that capture potential evolutionary diversity. The integration of these complementary
pathways addresses a fundamental limitation in protein analysis by extending evolutionary context to
proteins that previously lacked sufficient homologous sequences, potentially improving downstream
structure prediction, functional annotation tasks, and family-based design ability.

4 EXPERIMENTS

4.1 BENCHMARKING MSA AUTOENCODING

We evaluate the reconstruction capability of our model on 50 proteins released by CAMEO on
May 10, 2025, where the ground truth MSA is generated using the same procedure as described in
(Team et al., 2025). We took rigorous measures to avoid data leakage (maximum sequence identity
from training set of 0.72, average 0.55) and ensured clear temporal separation between training and
evaluation sets as described in Appendix 6.1. We compute the embedding for each MSA using the
AF3 MSAModule and generate 32 sequences for each latent MSA representation. The shallow MSAs
generated by our model achieve structure prediction metrics approaching those of deep, ground-truth
MSAs in terms of pLDDT (89.0 vs. 91.6) and TM-scores (0.86 vs. 0.89) while consuming 6.5%
of the storage required to represent a deep MSA. This compression ratio corresponds to an average
sequence length of 365 and more than 7,000 alignments from the CAMEO dataset. We perform
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conditional generation given an embedding of 16-bit floats with an average size of 365×128 from the
CAMEO dataset.

Figure 4: pLDDT and TM-scores for AF3 predictions of proteins from CAMEO with no MSA,
MSAs generated through the MSAFlow-based zero-shot augmentation method, the MSAFlow-based
reconstructed MSA (32 sequences), and the ground truth deep MSA (approximately 7k sequences).

When evaluating synthetic MSA embeddings generated via our latent diffusion model, we find that
our decoder reconstructs meaningful signals from the generated MSA latents, achieving higher
quality than predictions without MSAs, though structure prediction accuracy remains below that
obtained using ground truth embeddings. Our model compresses evolutionary information encoded
in thousands of aligned sequences into a single, fixed-size latent tensor that can be decoded into
sequences that remain evolutionarily related to the query, as further evidenced in Table 9. This
compression preserves most of the functional signal relevant for folding accuracy. Moreover, synthetic
MSAs consistently improve structure prediction over the no-MSA baseline: across the CAMEO
benchmark, zeroshot-generated MSAs improve pLDDT in 97.96% of cases and improve TM-score in
89.80% of cases, indicating that failure cases are rare. For completeness, we provide in the appendix
the PDB IDs corresponding to the small fraction of proteins where no improvement is observed.

We further evaluate the intrinsic quality of generated MSAs by comparing their residue-level entropy
statistics to ground truth alignments. Following the evaluation setup in Zhang et al. (2024b), we
generate 1000 sequences per MSA for our CAMEO test set and compute per-position entropies.
MSAFlow’s alignments mirror ground-truth entropy profiles, with generated sequences centered on
the true distribution (average entropy difference of 0.076 vs. 0.136 for ProfileBFN). Residue-level
conservation patterns are preserved with high fidelity, as reflected by lower variance (0.294 vs.
0.724), demonstrating that MSAFlow achieves alignment quality closer to ground truth statistics.
To more completely characterize distributional similarity beyond first- and second-order statistics,
we additionally compute Wasserstein distance and Maximum Mean Discrepancy (MMD), two well-
established divergence metrics for comparing distributions. Across both metrics, MSAFlow exhibits
substantially lower divergence from GT MSAs than ProfileBFN, reinforcing that our reconstructed
MSAs more faithfully preserve the underlying evolutionary signal.

Table 1: Comparison of entropy and distributional statistics between generated MSAs and ground
truth (GT). MSAFlow more accurately recapitulates GT distributions, with lower entropy deviations,
Wasserstein distance, and MMD.

MSAFlow ProfileBFN GT

Average entropy 2.755± 0.294 2.838± 0.724 2.68± 0.589
Average entropy difference from GT 0.076 0.136 –
Average Wasserstein distance from GT 0.344 0.470 –
Average MMD from GT 0.541 0.875 –
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4.2 AUGMENTING SHALLOW AND SINGLE-SEQUENCE MSAS

We evaluate our model on a dataset of sequences with limited evolutionary information derived
from MSAGPT (Chen et al., 2024), which includes 200 proteins from CAMEO (Haas et al., 2018),
CASP14, CASP15, and PDB (Berman et al., 2000) with either few or no sequences in their MSA
(few-shot and zero-shot cases, respectively). For the zero-shot case, we embed the query sequence
with ESM and use it as conditioning for our latent diffusion model, which generates a synthetic
MSA embedding for the reference sequence. We generate embeddings using 10 different seeds and
employ low-temperature sampling during the SDE forward pass for higher-fidelity reconstructions, as
detailed in (Geffner et al., 2025b). We then decode 32 sequences from each of the 10 synthetic MSA
embeddings and report the best pLDDT and TM-scores. Our model achieves improved performance
compared to prior MSA augmentation methods when evaluated using AF3.

Table 2: The accuracy of MSAFlow-generated multiple sequence alignments compared to other
state-of-the-art methods, as evaluated by AlphaFold3 protein structure prediction performance on a
naturally scarce MSA dataset curated from CAMEO, PDB, and CASP.

AF3 pLDDT TM-score

Zero-shot Few-shot Zero-shot Few-shot

No/Shallow MSA 73.1 70.8 0.55 0.58
EvoDiff (650M) 67.7 67.5 0.49 0.55
MSAGPT (3B) 71.6 70.3 0.53 0.58
ESMFold - - 0.58 -
MSAFlow (Ours,130M) 75.2 70.4 0.62 0.60

For the few-shot augmentation case, we use our latent flow matching model to generate synthetic
embeddings for each sequence over 5 different seeds, and decode 32 sequences from each MSA
embedding. We then decode 64 sequences from the ground-truth shallow MSA embedding and
extract the 16 most diverse sequences across all generations, following Chen et al. (2024). We
concatenate our generated sequences with the original shallow MSA and observe improvements in
structure prediction accuracy for these cases. We detail ablations motivating this reconstruction and
augmentation scheme in Appendix 6.5 and 6.6.

4.3 CASE STUDIES ON de novo AND INTRINSICALLY DISORDERED PROTEINS

We demonstrate that MSAFlow improves structure prediction for challenging proteins by generating
synthetic MSAs. We focus on three cases from a sparse MSA dataset:

• 8B4K: the N-terminal domain of Rfa1 complexed with a phosphorylated Ddc2 peptide—only 133
residues, with scarce evolutionary relatives.

• 8G8I: a Rosetta-designed four-helix bundle with rigid backbone constraints, extraordinary thermal
stability (Tm > 90◦C), and NMR-validated topology (backbone RMSD = 1.11 Å).

• 8OKH: the crystal structure of Bdellovibrio bacteriovorus Bd1399.

MSAFlow’s synthetic MSAs outperform both MSA-free predictions and those using MSAGPT. This
demonstrates MSAFlow’s capability in addressing two challenging scenarios: (i) limited sequence
homology and (ii) intrinsically flexible or disordered regions. By generating MSAs in latent space,
our method provides evolutionary signals that modern folding models require for these targets. We
provide additional case studies in Appendix 6.2.

4.4 FAMILY-BASED PROTEIN DESIGN

To better demonstrate the strength of MSAFlow on few-shot generation and generalization to other
downstream applications than AF3 prediction, we now provide new results on family-based enzyme
design. Our experiments demonstrate clear and significant advantages of MSAFlow, particularly
for EC classes with limited sequences. Following ProfileBFN (Gong et al., 2025), we generate
sequences in a single shot using our model, for enzymes with less than 20 sequences in their
corresponding EC class, using the sequences from the EC class as an MSA. We then use CLEAN (Yu
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TM-score: 0.64

TM-score: 0.91

TM-score: 0.32

TM-score: 0.94

TM-score: 0.44

TM-score: 0.89

8gi8 8okh

MSAGPT

8b4k

Baseline
(no MSA)

8b4k 8gi8

8okh

MSAFlow
(Ours)

Figure 5: Visualization of improved structure prediction for zero-shot augmentation on de novo
and disordered proteins with MSAFlow-decoded synthetic MSAs, as compared to MSAs generated
with MSAGPT. Blue represents predictions with an MSAFlow-generated MSA and green represents
predictions with an MSAGPT-generated MSA. Red indicates the ground truth structure, and yellow
indicates the prediction obtained without using any MSA.

et al., 2023) to determine their EC number, and compute the accuracy (i.e. how many generated
designs match the ground truth EC number) and the uniqueness across all generated designs. We report
the accuracy × uniqueness score as done by ProfileBFN, the current SOTA for this task. MSAFlow
exhibits SOTA performance on family-based enzyme design in both fixed and variable length
settings. Notably, ProfileBFN is confined to fixed-length generation, whereas MSAFlow learns
a meaningful homology distribution that guides the placement of gaps, which effectively enables
variable-length design with unprecedented success rate.

Table 3: Performance comparison of MSAFlow with baseline methods on family-based enzyme
design task across different EC classes.

Q15I65 Q15BH7 P13280 P57298
MSA Depth 15 12 13 15
# of Generated Sequences 1000 100 100 100

Acc. × Uniqueness (Fixed Length)
EvoDiff 1.39% (Gong et al., 2025) 0% 80% 5%

ProfileBFN 42.67% (Gong et al., 2025) 89% 100% 82%
MSAFlow 83.10% 84% 100% 95%

Acc. × Uniqueness (Variable Length)
EvoDiff 0% 0% 0% 0%

MSAGPT 15.11% 35.59% 37.5% 24.98%
MSAFlow 51% 92% 92% 84%

To further validate that MSAFlow generates evolutionarily meaningful and non-degenerate variants,
we additionally evaluate Diversity and Novelty metrics across three enzyme families (Table 4).
Diversity measures average pairwise sequence identity among generated sequences (lower indicates
greater diversity), while Novelty measures dissimilarity from the natural sequence (higher indicates
more distinct yet plausible variants). As shown below, compared to MSAGPT and ProfileBFN,
MSAFlow achieves the strongest balance of evolutionary diversity and novelty across all enzyme
classes. Although the diversity of novelty of EvoDiff is also high, its accuracy is close to 0% in
Table 3, indicating that many of the generated MSAs are irrelevant random sequences that do not
capture the evolutionary information well. In contrast, MSAFlow consistently generates high-quality
MSAs while maintaining broad diversity and novelty.

5 CONCLUSION

MSAFlow integrates statistical flow matching with latent space optimization to enable bidirectional
manipulation of multiple sequence alignments. By combining AlphaFold3-inspired permutation-
equivariant embeddings with diffusion-based generation, it uniquely achieves both evolutionary
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Table 4: Diversity (lower = more diverse) and Novelty (higher = more distinct from natural sequence)
of generated sequences across three enzymes. MSAFlow achieves one of the strongest combinations
of diversity and novelty. Although EvoDiff also achieves good diversity, its close to 0% accuracy
limits the practical application. Best results are in bold and the second best are underlined.

Metric Model P13280 P57298 Q15BH7 Q15165

Diversity↓
MSAFlow (ours) 0.100 0.150 0.117 0.434

EvoDiff 0.062 0.064 0.064 0.788
MSAGPT 0.834 0.896 0.622 0.838

ProfileBFN 0.392 0.271 0.360 0.594

Novelty↑
MSAFlow (ours) 0.834 0.901 0.781 0.420

EvoDiff 0.898 0.895 0.897 0.922
MSAGPT 0.184 0.894 0.228 0.099

ProfileBFN 0.601 0.902 0.644 0.288

signal compression and biologically plausible augmentation of sparse alignments. Comprehensive
benchmarking across critical applications—latent space reconstruction fidelity, shallow MSA augmen-
tation, synthetic alignment generation, and enzyme design—demonstrates MSAFlow’s superiority,
achieving state-of-the-art performance with only 130M parameters. MSAFlow’s ability to generate
evolutionarily coherent sequence ensembles creates new opportunities for designing orphan proteins
and tackling de novo structure prediction challenges. Importantly, our framework also enables
family-based design, where latent representations distilled from enzyme or protein families can
guide the generation of sequences that remain faithful to family-level constraints while still exploring
novel sequence diversity. Overall, MSAFlow advances both computational efficiency and conceptual
modeling of protein sequence spaces through flow-based generation, paving the way for conditional
protein engineering, resource-efficient applications, and family-level design of functional proteins.

ETHICS AND REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our findings. The full model description,
including encoder, decoder, and flow-matching components, is detailed in Section 3. Hyperparameters,
training/test splits, and dataset sources are provided in Section 6.1. Ablation studies (Section 6.6,
Table 9) clarify the contributions of different components, and additional case studies (Section 6.2,
Table 4) demonstrate robustness across diverse proteins. Experimental comparisons with baselines
are presented in Section 4 (Tables 1–3). To further facilitate reproducibility, we plan to release the
anonymized source code and trained models in the supplementary material soon.
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6 ADDITIONAL RESULTS

6.1 DETAILS ON MSAFLOW TRAIN/TEST SPLIT

The maximum sequence identity for sequences in our CAMEO reconstruction dataset to our training
set is 0.72, when run at 80% coverage against the consensus sequence for each MSA in the training
set (with the average maximum identity across all sequences in the test set being 0.55). This is an
even stricter threshold than MSAGPT (which uses 90% coverage instead). Furthermore, the MSAs
we used for training come from the OpenProteinSet, which consists of sequences searched from
Uniclust30 v2018-8. The cutoff for AlphaFold3 training data is September of 2021, and the cutoff
for ESM2 training data is February of 2020. The CAMEO structures we used for reconstruction
evaluation, however, were all deposited in May of 2025. This rigorous separation ensures the novelty
of our test set. This is in line with ProfileBFN, which trains on the same corpus as ESM2, while
evaluating their model on CAMEO structures deposited in May of 2024. For the zero-shot/few-shot
augmentation task, we use the same test set as MSAGPT, which is also trained on the OpenProteinSet.
The authors ensure minimal data leakage between the train and test set during their experiments,
which implies the same for MSAFlow.

6.2 ADDITIONAL CASE STUDIES

To further validate the robustness of MSAFlow’s zero-shot predictions, we provide more cases for
comparison. From the table 5, we can observe that MSAFlow achieves improvement on cases with
different structural patterns as well as different families. We also provide the ground-truth zero-shot
prediction folding accuracy for the case studies in Figure ??.

PDB ID Length Description GT MSAGPT MSAFlow
6NW8_A 27 Scorpion venom toxin 0.39 0.40 0.53
6WKK_X 280 Phage capsid 0.28 0.27 0.55
7EQB_B 80 Central spindle assembly 0.65 0.58 0.71
7QRR_L 153 Noumeavirus 0.31 0.61 0.83
7ZOL_A 151 Cas 7-11 regulator 0.33 0.34 0.67

Table 5: Performance comparison of MSAFlow with baseline methods on clinically relevant proteins
showing TM-Score improvements across different structural patterns and protein families.

PDB ID GT MSAGPT MSAFlow
8OKH 0.47 0.64 0.89
8GI8 0.23 0.32 0.94
8B4K 0.43 0.44 0.91

Table 6: Performance comparison of MSAFlow with ground-truth for the case study in Figure ??.

6.3 INFERENCE SPEED AND MEMORY COST

In order to demonstrate that MSAFlow exhibits notable improvements in sampling efficiency com-
pared to other MSA-based generative models, We benchmark MSAFlow against existing tools,
attempting to generate 100 sequences conditioned on an existing MSA with 6 sequences on an
NVIDIA A40 GPU, and observe the following:

We find that MSAFlow has better sampling efficiency, both in terms of speed and memory. We can
attribute this to the fact that our model only has to deal with L×H embedding of the MSA, rather
than carry the quadratic cost of representing an MSA in the ambient space. The result shows that
MSAFlow has the potential to be a highly light-weight and accurate MSA designer.

Moreover, our pipeline utilizes outputs from tools like MMseqs and HMMER for Multiple Sequence
Alignment (MSA) reconstruction. A key advantage of this approach is its ability to generate high-
quality MSAs even when these standard homology search methods fail to find sufficient homologous
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Latency Per Sequence Memory Consumption
MSAFlow 1.02s 5.8 GiB
ProfileBFN 8.49s 7.7 GiB
MSAGPT 62.46s 41.6 GiB
EvoDiff 478.24s 4.0 GiB

Table 7: Sampling efficiency comparison of MSAFlow with baseline methods showing latency per
sequence and memory consumption on NVIDIA A40 GPU for generating 100 sequences conditioned
on an MSA with 6 sequences.

information. To provide a quantitative comparison of computational cost, we evaluated our MSAFlow
model against HMMER and MMseqs2 for generating an MSA from a single query sequence (PDB
9BCZ_A from CAMEO, 644 amino acids). The empirical results are detailed below.

Method Wall Clock Time (s)
MSAFlow (100 seqs) 153.93
HMMER 310.92
MMseqs2 497.73

Table 8: Computational cost comparison for generating MSA from query sequence alone (PDB
9BCZ_A from CAMEO, 644 AA) showing wall clock time in seconds.

These results show that MSAFlow achieves over 2× speedups compared to HMMER and MMseqs2,
while still providing the ability to operate in settings where homology search fails. This confirms that
MSAFlow not only addresses the coverage gap but also offers computational efficiency advantages
over traditional methods.

6.4 ABLATION STUDY OF RECONSTRUCTION SEQUENCES

We address using the additional ablation study on the reconstuction task with 2, 4, 8, 16, and 32
decoded MSA sequences, as well as the comparison with natural-MSA depth on 3 samples from the
CAMEO reconstruction test set.

When we keep 2-4 sequences, the MSAFlow reconstructions beat the random ground-truth subsample.
As we generate more sequences, the designed MSAs generally match that of the ground-truth samples
(AlphaFold3 searched MSA), indicating that MSAFlow accurately captures structure patterns of
protein families.

PDB ID 2 4 8 16 32

Ground Truth Random Sample
9EJY 0.59 0.55 0.85 0.80 0.86

9BIX 0.19 0.32 0.35 0.32 0.49

9CVV 0.35 0.31 0.93 0.97 0.98

MSAFlow Reconstruction
9EJY 0.61 0.61 0.84 0.83 0.84

9BIX 0.28 0.22 0.20 0.30 0.26

9CVV 0.43 0.62 0.87 0.87 0.97

Table 9: Ablation study comparing MSAFlow reconstruction performance against ground truth
random samples across different sequence counts on CAMEO reconstruction test set. Values represent
performance metrics for MSA reconstruction quality. Numbers in the first row denotes the amounts
of decoding MSA sequences.
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6.5 ABLATION STUDY ON SYNTHETIC AND RECONSTRUCTED MSAS

The reconstruction pathway preserves the authentic signal from a limited, shallow MSA, while the
latentflow pathway generates evolutionary diversity generalized from other MSA-rich proteins. These
two tracks provide complementary signals that make the few-shot augmentation stronger. To provide
evidence for this, we detail the separate contributions of each track below:

Few-shot task TM Score Avg Per-position Entropy
Syn-16 0.54 2.23
Rec-16 0.52 1.33
Syn+Rec-32 0.57 2.69
Syn+Rec+GT 0.60 2.58
MSAGPT+GT 0.58 1.33
GT 0.58 2.16

Table 10: Ablation study showing the complementary contributions of synthetic and reconstructed
MSA pathways in few-shot tasks, demonstrating improved TM scores and entropy characteristics.
Syn represents Synthetic MSAs; Rec represents Reconstructed MSAs. The number denotes amount
of MSA sequences.

As shown in the table, the reconstruction path focuses on preserving crucial motif information within
the limited observed sequences, which is reflected in the lower entropy signals in the shallow MSA.
In contrast, the latentflow path generates synthetic MSAs that provide evolution-consistent diversity,
resulting in higher entropy.

The combination of both tracks leads to an improvement in TM score and an increase in entropy. This
observation confirms that the two tracks offer complementary signals, which synergistically improve
quality. Finally, by augmenting the shallow ground truth MSA with the combined generation output,
we improve prediction accuracy and achieve a better TM score than the MSAGPT baseline, which
is what we report in Table 1. As can be seen, MSAFlow is the only method to achieve a better TM
score than the ground truth, with an entropy value closest to it.

6.6 ABLATION STUDY ON ESM EMBEDDINGS

To clarify the individual contributions of the ESM embeddings and our proposed Statistical Flow-
matching decoding mechanism, we perform an ablation study on the zero-shot augmentation track of
MSAFlow. Specifically, we compare:

• A simple feature regression task that learns MSA embeddings from ESM2 features

• Replacing ESM2 embeddings with one-hot encodings of the query sequence

• Full ESM2 embeddings with our latent statistical flow-matching decoder

Method TM Score
MSAGPT (3B) 0.53
MSAFlow Latent w/ ESM2 regression (128M) 0.54
MSAFlow Latent w/ one-hot (130M) 0.55
MSAFlow Latent w/ ESM2 (130M) 0.62

Table 11: Ablation study comparing the contribution of ESM embeddings versus one-hot sequence
encoding in MSAFlow’s zero-shot MSA augmentation performance.

The results demonstrate that the efficiency of our method. Moreover, ESM2 encoding provides more
useful signals to address the evolutionary information.
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6.7 GENERATIVE SAMPLING PROCESS

To sample a synthetic MSA embedding, we convert the ODE flow into an SDE following Geffner
et al. (2025a), and integrate the reverse-time stochastic differential equation:

dzt =

(
vθt −

1

2
g2t · sθt (xt)

)
dt+ T · gt · dW̄t, t ∈ [0, 1] (8)

where ft = − zt
1−t is the drift term of the forward rectified flow, gt =

√
2t
1−t is the diffusion coefficient,

sθt = ∇zt log pθ(zt|e, t) is the score function that can be converted from our predicted vθ, T ∈ [0, 1]
is a temperature parameter, and dW̄t is the standard Wiener process running backward in time.

We implement the sampling using the Euler-Maruyama discretization with steps of size ∆t:

zt−∆t = zt −
(
vθt −

1

2
g2t · sθ(zt, e, t)

)
∆t− T · gt

√
∆t · ε, ε ∼ N (0, I) (9)

where vθ(zt, e, t) is the time-dependent vector field predicted by the DiT. The temperature parameter
T controls the stochasticity of the generation: T = 1 reproduces the exact generative SDE used
during training, while T → 0 suppresses the noise, approaching the deterministic probability-flow
ODE.

6.8 IMPLEMENTATION DETAILS

6.8.1 DATASET PREPARATION

We use the OpenFold dataset Ahdritz et al. (2024), which consists of 16M MSAs in total. To filter
high-quality MSAs, we only use alignments which have at least 10 sequences where at most 10% of
the sequence consists of gaps, following Chen et al. (2024). This results in a dataset of 4M MSAs.
We then generate MSA embeddings for each MSA with Protenix Team et al. (2025). Specifically, we
truncate the inference framework to halt after the MSAModule step and dump the corresponding pair
representation of the query sequence. This results in an embedding of shape (L× 128), where L is
the length of the query sequence. We use the default parameters that are used for structure prediction
for this task.

6.8.2 TRAINING

We train a 130M parameter latent flow matching model and a 129M parameter conditional statistical
flow matching decoder model. Both the encoder and decoder model are in congruence with the
medium-size architecture of a diffusion transformer detailed in Peebles & Xie (2023). We detail
their architectures in Table 2. For the encoder, our objective is to reconstruct the MSA embedding
conditioned on the query sequence. For enhanced conditioning signal, we use the ESM2 650M
Lin et al. (2023a) to generate an embedding of the query sequence, resulting in a tensor of shape
(L× 1280). We train our encoder for 15 epochs on four H200 GPUs using the Adam optimizer with
a learning rate warmup of 3000 steps, learning rate of 2.6e-4, and a weight decay of 0.1. We use a
batch size of 32,768 maximum total sequence length for all sequences in the batch.

Our decoder model is conditioned on the MSA embedding and learns to reconstruct one-hot encoded
sequences from the original MSA. Our vocabulary includes the 20 standard amino acids, as well as
the gap token and the unknown amino acid token (X). We select only 32 sequences to reconstruct per
MSA, where each sequence is weighted to compensate for the data bias present in MSAs. Specifically,
each sequence’s weight wi is computed as follows:

wi =

1 +
∑
j ̸=i

1 {dhamming(xi, xj) < 0.2}

−1

This reweighting scheme reduces the influence of clusters of highly similar sequences, and is used
by Rao et al. (2021). We train our decoder for 7 epochs on four H200 GPUs with a learning rate
warmup of 5000 steps, learning rate of 1e-5, and a weight decay of 0.1. We use a batch size of 2,560
maximum total query sequence length for all MSAs in the batch, as each MSA has 32 sequences for
reconstruction as well.
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6.8.3 EVALUATION

For the folding task, we evaluate our MSAs by folding each sequence with the same seed, with 200
diffusion steps, 10 cycles, and 1 diffusion sampling trajectory. These are the default parameters
provided by Protenix. For evaluating ESMFold Lin et al. (2023a), we use the standard implementation
provided by the Transformers library.

Table 12: Architecture parameters of MSAFlow

Latent FM Encoder SFM Decoder
Input: FC(in = 128, out = 768) Input: FC(in = 22, out = 768)
Conditioning: FC(in dim. = 1280, out dim. = 768) Conditioning: FC(in = 128, out = 768)
12× DiTAdaLn(in = 768, heads = 12, cond. = 768) 12× DiTAdaLn(in = 768, heads = 12, cond. = 768)
Output: FC(in = 768, out = 128) Output: FC(in = 768, out = 22)

6.9 ABLATION STUDY ON DECODER ARCHITECTURE AND CONDITIONING MECHANISM

To further evaluate the flexibility of our framework and isolate the contributions of individual
architectural components, we introduce new ablation studies spanning (i) alternative discrete diffusion
formulations and (ii) alternative conditioning mechanisms.

6.9.1 COMPATIBILITY WITH MDLM AND SUPERIORITY OF SFM

We benchmarked MSAFlow against MDLM-based decoders under two architectural choices (DiT
vs. pretrained ESM) and two conditioning strategies (AdaLN vs. cross-attention). MDLM is a
discrete-state mask diffusion model that achieves state-of-the-art performance in natural language
generation and provides a strong non–flow-based baseline. Even when warm-started with pretrained
ESM weights, MDLM variants remain substantially weaker than our SFM formulation.

Table 13: Ablation on the choice of discrete FM models for decoder

Model pLDDT TM-score
MSAFlow–MDLM (ESM + cross-attn) 82.5 0.83
MSAFlow–MDLM (DiT + AdaLN) 79.5 0.74
MSAFlow (SFM, DiT, AdaLN) 89.0 0.86

These results highlight two conclusions: (1) our generative framework is compatible with multiple
discrete modeling paradigms, including MDLM; (2) SFM remains decisively superior, validating
continuous-state discrete flow-matching with proper manifold geometry as effective mechanism for
modeling evolutionary sequence distributions.

6.9.2 POSITION-WISE VS. GLOBAL ADALN CONDITIONING

To assess the importance of spatially resolved conditioning, we compared global AdaLN against
our proposed position-wise AdaLN. Global conditioning applies a single scale–shift pair across all
positions, whereas position-wise AdaLN modulates each residue independently. Our ablations show
that global conditioning is far too coarse to capture residue-level evolutionary constraints.

Table 14: Ablation on position-wise vs. global AdaLN conditioning

Model pLDDT TM-score
MSAFlow (DiT + global AdaLN) 42.9 0.32
MSAFlow (DiT + position-wise AdaLN) 89.0 0.86
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Figure 6: t-SNE projection of 10,000 latent MSA embeddings (mean across the first dimension).

The dramatic degradation under global AdaLN confirms that fine-grained, residue-level conditioning
is essential for representing evolutionary constraints, and it empirically validates position-wise AdaLN
as a crucial architectural component of MSAFlow.

6.9.3 DEPENDENCE ON PRETRAINED ENCODERS.

To quantify how much performance stems from the pretrained encoder versus the flow-matching
framework, we conducted an ablation study replacing the AF3 encoder with a smaller, pretrained
MSAPairformer encoder (111M params) on a smaller set of training data (100k MSAs).

Model pLDDT TM score
No MSA 47 0.33
MSAPairformer Embeddings (5 epochs) 70 0.53
AlphaFold3 Embeddings (5 epochs) 85 0.79

Table 15: Ablation comparing different pretrained encoders used within MSAFlow.

6.10 T-SNE VISUALIZATION OF LATENT MSA EMBEDDINGS

To further support the interpretability of our latent space, we include a t-SNE projection of 10,000
latent MSA embeddings (Fig. 6). The visualization reveals diffuse global structure with numerous
small, locally coherent clusters, consistent with the hypothesis that the model organizes sequences
according to shared evolutionary or functional patterns. While t-SNE is inherently qualitative, this
emergent clustering aligns with prior findings that deep protein embeddings naturally reflect structural

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and phylogenetic constraints Alley et al. (2019); Marquet et al. (2022), even in the absence of explicit
MSA conditioning. Combined with our strong performance across reconstruction, augmentation,
and enzyme design tasks, these patterns suggest that MSAFlow’s latent representations meaningfully
compress evolutionary variability into a compact and biologically informative manifold.

7 USAGE OF LANGUAGE MODELS

We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
to editorial tasks, including proofreading for typographical errors, correcting grammar, and improving
the clarity and readability of the text.
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