

000
001 **MSAFLow: A UNIFIED APPROACH FOR MSA REP-**
002 **RESENTATION, AUGMENTATION, AND FAMILY-BASED**
003 **PROTEIN DESIGN**
004
005

006
007 **Anonymous authors**
008 **Paper under double-blind review**
009

010
011 **ABSTRACT**
012

013
014 Multiple Sequence Alignments (MSAs) encode evolutionary information essen-
015 tial for protein structure prediction and functional design. However, high-quality
016 MSAs require substantial computational resources for database searches, and ho-
017 mology search methods retrieve insufficient sequences for proteins with limited
018 evolutionary relatives. While recent generative models have been proposed for
019 MSA augmentation, they face challenges in capturing sequence dependencies while
020 maintaining permutation invariance, and incur high memory costs due to quadratic
021 complexity of self-attention on two-dimensional MSA representations. We present
022 MSAFlow, a framework combining two components. First, we develop a generative
023 autoencoder pairing a compressed AlphaFold3 (AF3) MSA representation with
024 a conditional Statistical Flow Matching (SFM) decoder that models a family’s
025 sequence distribution while preserving permutation invariance. Second, we intro-
026 duce a latent flow-matching model that generates MSA embeddings from a single
027 sequence, enabling augmentation for orphan proteins. These components enable
028 MSA representation, augmentation, and family-based design within a single frame-
029 work. Evaluations demonstrate that MSAFlow achieves competitive performance
030 on family-based protein design and MSA augmentation tasks, particularly for
031 low-homology proteins. On CAMEO proteins, reconstructions from compressed
032 MSA embeddings achieve structure prediction metrics (pLDDT 89.0, TM-score
033 0.86) approaching full MSAs (pLDDT 91.6, TM-score 0.89) while using 6.5% of
034 the storage. For enzyme design with fewer than 20 training sequences, MSAFlow
035 achieves 83-95% accuracy-uniqueness scores. MSAFlow is lightweight, fast, and
036 memory-efficient, offering a versatile solution for diverse protein engineering tasks.
037

038 **1 INTRODUCTION**
039

040 Multiple Sequence Alignments (MSAs) collect homologous protein sequences that share evolutionary
041 ancestry, providing fundamental information about protein evolution that plays crucial roles in
042 downstream tasks such as structure prediction and family-based sequence design (Gong et al., 2025;
043 Truong Jr & Bepler, 2023; Chen et al., 2024; Zhang et al., 2024a; Cao et al., 2025). These alignments
044 represent evolutionary profiles that enable identification of conserved regions, such as key active site
045 residues for enzymes, and evolutionary couplings that inform three-dimensional structure.

046 Conventional homology search tools such as HHBlits (Remmert et al., 2012), MMSeqs (Steinegger &
047 Söding, 2017), and JackHMMER (Johnson et al., 2010) require substantial computational resources
048 for obtaining high-quality MSAs. More critically, despite recent acceleration of MMSeqs2 with
049 GPUs (Kallenborn et al., 2025), these methods retrieve insufficient sequences for low-homology and
050 orphan proteins when evolutionary relatives are scarce in natural databases. This limitation motivates
051 the development of tools that can generate MSAs and augment limited evolutionary data**, which
052 are** essential for expanding protein structure prediction and functional analysis capabilities. Recent
053 work has partially addressed MSA augmentation challenges through several approaches. Dense
054 Homology Retriever (DHR) (Hong et al., 2024) leverages embeddings from protein language models
055 to identify homologous sequences more efficiently and with greater sensitivity. Additional models,
056 including MSAGenerator (Zhang et al., 2024b), MSAGPT (Chen et al., 2024), and EvoDiff (Alamdar)

Figure 1: **General framework of MSAFlow.** Our approach supports three complementary pathways: (1) zero-shot generation from a single sequence using ESM2 embeddings, (2) few-shot augmentation of shallow MSAs, and (3) family-based design given MSAs embedded through the AF3 MSA Module and reconstructed through MSAFlow Decoder. All pathways leverage the latent flow-matching and decoder architecture to generate augmented or compressed MSAs, enabling both the enhancement of limited evolutionary information and the efficient representation of deep alignments.

et al.), have emerged, employing autoregressive and discrete diffusion frameworks, respectively to generate MSAs. While these methods show promise, they face architectural limitations in capturing distributional information while preserving permutation invariance. These methods typically utilize 2D positional encodings to represent row-wise and column-wise information in MSAs. This design incurs substantial memory costs due to the $O(N^2)$ space complexity of self-attention operations, which is further exacerbated by the 2D nature of MSAs. Additionally, methods like MSAGPT lack true permutation invariance due to left-to-right autoregressive decoding that introduces artificial sequential dependencies.

Beyond augmentation, improved generative models for MSAs that capture higher-order evolutionary patterns can serve as tools for guiding functional protein design. Potts models (Seemayer et al., 2014) pre-defined graphical models restricted to pairwise couplings. ProfileBFN (Gong et al., 2025) collapses sequence information into position-wise profiles that obscure higher-order dependencies, and methods such as MSA Transformer Rao et al. (2021) and EvoDiff (Alamdar et al.) flatten MSAs into 2D grids rather than explicitly modeling distributions over sequence space. These limitations motivate the development of a generative framework that can better approximate the underlying sequence distribution within an MSA without imposing strong assumptions.

To address these limitations, we introduce MSAFlow, a lightweight framework utilizing compressed latent MSA representations from AlphaFold3 (Abramson et al., 2024) (AF3) and conditional Statistical Flow Matching (Cheng et al., 2025) (SFM) as a generative decoder to model the sequence distribution in an input MSA. Specifically, MSAFlow employs AF3’s MSAModule as an encoder to produce pair representations of MSAs, which are then mean-pooled and used as conditioning for the SFM decoder that is trained to reconstruct the original set of sequences in the MSA (Figure 1). Unlike EVE (Frazer et al., 2021) which requires training a separate VAE for each MSA, MSAFlow learns a generalizable generative autoencoder over the space of MSAs (i.e., sets of sequences) with guaranteed permutation invariance. We further introduce a latent flow-matching model that generates MSA embeddings in a zero-shot manner from a single sequence’s ESM embedding. By learning from homology-rich MSA representations, our latent flow-matching model can augment proteins with shallow or absent MSAs. Integrating these components, we provide a unified end-to-end framework capable of MSA representation, augmentation and family-based protein design.

We summarize our contributions as follows:

- **Novel architecture for modeling MSAs.** We propose MSAFlow, an generative autoencoding framework that operates on the sequence space. MSAFlow leverages compressed AF3 MSA embeddings to encode evolutionary information, paired with a conditional Statistical Flow-matching decoder that reconstructs MSA sequences while maintaining permutation invariance.

- 108 • We enabled **zero-shot generation of synthetic MSA** through a two-stage approach combining
109 latent flow-matching over MSA embedding space and our MSAFlow decoder.
- 110
- 111 • We offer a **unified framework for MSA representation, augmentation, and family-based**
112 **sequence design.** MSAFlow scales efficiently to large families, supports variable sequence lengths,
113 and adapts flexibly to downstream design and analysis tasks—capabilities that prior models could
114 not jointly achieve.
- 115 • **Empirical significance.** MSAFlow demonstrates competitive performance across multiple protein
116 structure prediction and family-based protein design tasks, including zero-shot and few-shot MSA
117 generation for orphan and low-homology proteins, and family-based enzyme design on EC classes
118 with limited data. MSAFlow achieves these results despite being lightweight (130M parameters)
119 and trained on smaller datasets, offering improved efficiency in terms of inference time and memory
120 consumption (Table 7).

122 2 ADDITIONAL RELATED WORK

124 **Generative models for protein sequences** Protein sequence generative modeling can be ap-
125 proached from both discrete and continuous perspectives. Discrete protein language models—such
126 as autoregressive transformers and masked language models—treat amino acid as token, learning
127 residue distributions through maximum likelihood estimation or masked denoising objectives. The
128 ProGen series (Madani et al., 2020; Bhatnagar et al., 2025) and ESM (Lin et al., 2023b) represent
129 notable examples that employ Transformer architectures (Vaswani et al., 2017) to model residue-
130 residue dependencies across protein families. Recent research has also explored discrete diffusion
131 frameworks, such as EvoDiff (Alamdar et al., 2023), which learns denoising processes in amino acid
132 token space, generating sequences with desired structural or functional properties through sequential
133 unmasking. Continuous methods, including flow-matching approaches like MultiFlow (Campbell
134 et al., 2024) and FlowSeq (Ma et al., 2019), offer protein generation in continuous spaces. These
135 continuous methods typically offer greater flexibility in conditional generation and interpolation but
136 require decoding mechanisms to map continuous representations back to valid sequences. These
137 language models have been applied to downstream tasks, including protein-binding peptide design
138 (D-Flow (Wu et al., 2024), PepFlow (Li et al., 2024)), structure-based sequence design (LM-Design
139 (Zheng et al., 2023), InstructPLM (Qiu et al., 2024), DRAKES (Wang et al., 2024)), and antibody
140 engineering (Frey et al.). However, most existing approaches focus on single-sequence modeling
141 and do not fully leverage evolutionary information contained in MSAs, which limits their capacity to
142 capture residue co-variation and functional diversity essential for robust protein design.

142 **Latent diffusion for protein design.** Latent diffusion models were initially applied to protein struc-
143 ture generation, demonstrating advantages of continuous representations (Fu et al., 2024; Zhang et al.,
144 2025; Xu et al., 2023; Yim et al.). Recently, these models have been used to model sequence–structure
145 relationships through continuous embeddings. Latent spaces enable consistency across multiple
146 protein modalities while maintaining compact representations. CHEAP (Lu et al., 2024) compresses
147 protein embeddings via VAE or VQ techniques to create an efficient latent space. Building on this,
148 PLAID (Lu et al.) applies latent diffusion over folding model embeddings for joint sequence–structure
149 generation. Similarly, ProteinGenerator (Lisanza et al., 2024) performs diffusion in sequence space
150 guided by RoseTTAFold (Baek et al., 2021) to enforce structural constraints. [La-Proteina \(Geffner et al., 2025a\)](#) [further extends these capabilities using partially latent flow matching for scalable joint generation of sequences and all-atom structures.](#) These advances have not yet been extended to
151 MSAs, which capture evolutionary variation and residue-wise dependencies. MSAFlow addresses
152 this gap by applying latent diffusion to the MSA domain.

155 3 METHOD

158 3.1 MSAFLOW: AN AUTO-ENCODING FRAMEWORK FOR MSAs

160 MSAs are mathematically represented as $\mathcal{S} = \{s_1, s_2, \dots, s_M\}$ where each sequence $s_i \in \mathcal{A}^L$ consists
161 of amino acids and gaps from alphabet \mathcal{A} , aligned to a reference sequence s_{ref} of length L . Despite
162 containing hundreds to thousands of sequences, we hypothesize that the functional and evolutionary

162 information within an MSA can be **compressed into a continuous latent representation** that
 163 captures the essential characteristics of the sequence distribution within that protein family.
 164

165 This compression necessitates a
 166 permutation-invariant encoding
 167 method to avoid bias from sequence
 168 ordering. Formally, we seek an
 169 encoder $h_\phi : \mathcal{S} \rightarrow \mathbb{R}^d$ such that
 $h_\phi(\mathcal{S}) = h_\phi(\pi(\mathcal{S}))$ for any
 170 permutation π of the sequences in \mathcal{S} .
 171 We leverage the AF3 MSAModule
 172 architecture, which provides a com-
 173 putationally efficient framework for
 174 embedding evolutionary information
 175 (Abramson et al., 2024). The AF3
 176 MSAModule processes an MSA by
 177 computing a position-wise outer product for each sequence s_i with the reference sequence, resulting
 178 in pairwise representations $P_i \in \mathbb{R}^{L \times L \times h_{\text{pair}}}$. These representations are averaged across all sequences
 179 as $P_{\text{avg}} = \frac{1}{M} \sum_{i=1}^M P_i$. The averaged representation is then processed through multiple triangle
 180 self-attention blocks to produce a refined pair representation $P_{\text{refined}} \in \mathbb{R}^{L \times L \times H}$. We utilize Protenix
 181 (Team et al., 2025), a pretrained variant of AF3, to generate these embeddings for MSAs from the
 182 OpenFold dataset (Ahdritz et al., 2024). The resulting pair representation serves as our compressed
 183 MSA embedding $m = h_\phi(\mathcal{S}) \in \mathbb{R}^{L \times L \times H}$.

184 Viewed this way, MSAFlow realizes an autoencoding framework over sets: the encoder maps the
 185 finite set of sequences in an MSA to a latent embedding, while the decoder reconstructs the underlying
 186 family-level distribution of sequences conditioned on this latent representation. This perspective
 187 emphasizes that MSAFlow does not simply compress individual sequences, but rather learns a
 188 compact representation of the set as a distribution, enabling permutation-invariant and family-aware
 189 generative modeling.

190 3.1.1 STATISTICAL FLOW MATCHING FOR MSA SEQUENCE DECODING

192 We formulate MSA decoding as a conditional generation task over the sequences within a protein
 193 family. Given an MSA \mathcal{S} and its embedding $m = h_\phi(\mathcal{S})$, the decoder reconstructs sequence
 194 distribution. Let $\tilde{\mathcal{S}} = \{s_1, \dots, s_n\}$ be n sequences drawn uniformly without replacement from \mathcal{S} .
 195 We model $p_\theta(\tilde{\mathcal{S}} | m) = \prod_{i=1}^n p_\theta(s_i | m)$, which is permutation-invariant by construction. The
 196 decoder $p_\theta(s | m)$ represents the probability of sampling a sequence s compatible with m .

197 To instantiate $p_\theta(s | m)$ for discrete (categorical) sequences, we adopt Statistical Flow Matching
 198 (SFM) (Cheng et al., 2024), which learns a continuous Riemannian flow over the statistical manifold
 199 of categorical distributions equipped with Fisher-Rao metric. Concretely, each sequence in the MSA
 200 is treated as a sample of the target distribution. We operate in the probability simplex $\Delta^{|\mathcal{A}| \times L}$, where
 201 each position in the sequence is represented by a one-hot categorical distribution μ over amino acids.

202 Following SFM, we construct flow paths along geodesics on the positive orthant of the unit sphere
 203 by applying the mapping: $\pi : x = \pi(\mu) = \sqrt{\mu}$. SFM demonstrated that such a mapping to the
 204 unit sphere preserves the metric, which coincides with the canonical spherical geometry. Therefore,
 205 we can operate on the unit sphere with the standard spherical geometry. Mathematically, given a
 206 sequence s_i from the MSA and its corresponding categorical representation $x_1 = \pi(\mu_1)$ (e.g., one-hot
 207 encoding) and the noise representation $x_0 = \pi(\mu_0)$, the time-dependent interpolation follows:

$$x_t = \exp_{x_0}(t \cdot \log_{x_0}(x_1)) \quad (1)$$

210 where \exp and \log are the spherical exponential and logarithm maps on the manifold, respectively,
 211 and can be calculated in closed form as

$$\exp_x(u) = x \cos \|u\|_2 + \frac{u}{\|u\|_2} \sin \|u\|_2, \quad \log_x(y) = \frac{\arccos(\langle x, y \rangle)}{\sqrt{1 - \langle x, y \rangle^2}} (y - x - \langle x, y - x \rangle x), \quad (2)$$

212 After transforming back to the simplex with $\mu_t = \pi^{-1}(x_t)$, the interpolation in Equation 1 traces the
 213 geodesic between μ_0 and μ_1 with respect to the Fisher information metric, ensuring we follow the

Figure 2: MSAFlow lifts autocoder to the space of sequence distributions within MSAs and families.

shortest path on the statistical manifold. The corresponding vector field for this mapped geodesic flow is given by $u_t(x_t|x_0, x_1) = \log_{x_t}(x_1)/(1-t)$. Instead of an unconditional model, our MSAFlow decoder employs a conditional parameterization where $v_\theta(x_t|m, t)$ is trained to approximate the vector field conditioning on the MSA embedding $m = h_\phi(\mathcal{S})$:

$$\mathcal{L}_{\text{SFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], s_i \sim \mathcal{S}, \mu_0 \sim \pi_* p_0, \mu_1 \sim \pi_* \delta(s_i)} [\|v_\theta(x_t|m, t) - u_t(x_t|x_0, x_1)\|^2] \quad (3)$$

where π_* denotes the pushforward operation of applying the mapping π , x_t is obtained via the geodesic interpolation, and $\delta(s_i)$ represents the categorical distribution corresponding to sequence s_i (typically a one-hot encoding) in an MSA. During sampling, we first follow the learned marginal vector field on the sphere to obtain x_1 , then discrete generations of MSAs can be sampled from the categorical distribution $\mu_1 = \pi^{-1}(x_1)$.

3.1.2 MODEL ARCHITECTURE AND IMPLEMENTATION

We implement the vector field model v_θ using a modified conditional Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture. Since the output of the AF3 MSA Module is the pair representation of dimension $L \times L \times H$, we first compress it along the second dimension through mean pooling to obtain a sequence-level representation of dimension $L \times H$:

$$m_{\text{seq}} = \frac{1}{L} \sum_{j=1}^L m_{:,j,:} \in \mathbb{R}^{L \times H} \quad (4)$$

This compressed representation serves as conditional information for the DiT model, which consists of 12 transformer blocks with a hidden dimension of 768, totaling approximately 130M parameters. The architecture incorporates sinusoidal time embeddings for the diffusion timestep t , token embeddings for each amino acid position, conditional embeddings from the compressed MSA representation, and multi-headed self-attention blocks with adaptive layer normalization. Notably, the MSA embedding conditioning is applied per-residue through a **position-wise AdaLN**, which introduces a novel mechanism for residue-level control. Unlike global conditioning schemes that broadcast the same modulation across all tokens, this design injects fine-grained, position-specific information into each layer normalization step, allowing for more precise alignment between evolutionary context and sequence generation. This innovation enhances the expressivity of the conditioning pathway and represents a new approach for leveraging MSAs in diffusion-based protein design. At inference time, we sample sequences by starting with random noise $x_1 \sim \text{Uniform}(\mathcal{A})$ and iteratively applying:

$$x_{t-\Delta t} = x_t - v_\theta(x_t|m, t) \cdot \Delta t \quad (5)$$

for timesteps $t = 1, 1 - \Delta t, 1 - 2\Delta t, \dots, 0$, where Δt is a small step size (typically 0.01). At $t = 0$, we obtain the final sequence by taking the argmax over the amino acid probabilities at each position.

3.2 CONDITIONAL LATENT FLOW MATCHING FOR ZERO-SHOT MSA EMBEDDING GENERATION

While our decoder model generates sequences from MSA embeddings, we also develop a complementary approach to generate synthetic MSA embeddings themselves. This enables us to create artificial MSAs for proteins with limited evolutionary data. Let $z_1 = h_\phi(\mathcal{S}) \in \mathbb{R}^{L \times H}$ be the compressed MSA embedding for a reference sequence s_{ref} , and let $e = g_\psi(s_{\text{ref}}) \in \mathbb{R}^{d_e}$ be its ESM embedding. We aim to learn a conditional generative model $p_\theta(z_1|e)$ that can produce plausible MSA embeddings given only the reference sequence embedding.

Latent Flow Matching: We train a *conditional rectified flow* that maps a standard Gaussian $z_0 \sim \mathcal{N}(0, I)$ on the distribution of MSA embeddings $p(z | e)$ conditioned on the ESM embedding e (Lin et al., 2023b). We use a straight-line path $z_t = (1-t)z_1 + t z_0$ from target z_1 (the ground-truth MSA embedding) to noise z_0 , whose reference velocity is the constant field $u_t^*(z_t; z_0, z_1) = z_0 - z_1$. A time-dependent, conditional velocity $v_\theta(z_t, e, t)$ is learned by least-squares flow matching:

$$\mathcal{L}_{\text{RFM}} = \mathbb{E}_{t \sim \mathcal{U}[0,1], z_0 \sim \mathcal{N}(0, I), z_1} \|v_\theta(z_t, e, t) - (z_0 - z_1)\|_2^2, \quad (6)$$

270 which provides a simple, stable objective without explicit score estimation.
 271

272 **Generative Sampling Process:** At inference, we draw $z_0 \sim \mathcal{N}(0, I)$ and integrate the learned
 273 conditional velocity backward from $t=1$ to $t=0$ with an explicit Euler solver. By default we use
 274 the deterministic probability-flow ODE ($T=0$); optionally, we add isotropic noise with temperature
 275 $T \in [0, 1]$ to trade fidelity for diversity:

$$276 \quad z_{t-\Delta t} = z_t - v_\theta(z_t, e, t) \Delta t + T \sqrt{\Delta t} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I). \quad (7)$$

277 Empirically, smaller T (e.g., $T=0.5$) improves alignment to e , while larger T increases sample
 278 diversity. Full SDE variants and discretization details are provided in Appendix 6.7.
 279

280 281 **3.3 END-TO-END UNIFIED PIPELINE FOR MSA REPRESENTATION, AUGMENTATION AND**
 282 **FAMILY-BASED SEQUENCE DESIGN**

283 Our complete framework enables three complementary paths for MSA generation (as shown in
 284 Figure 1), each tailored to specific protein scenarios:
 285

286 **MSA Compression and Reconstruction:** For deep MSAs with abundant evolutionary information,
 287 we first compress the multidimensional sequence information through the AF3 MSAModule into
 288 a compact latent representation. This compressed embedding effectively captures the evolutionary
 289 and functional signals present in the original MSA. We then use our SFM decoder to selectively
 290 reconstruct sequences, maintaining the key evolutionary characteristics while reducing redundancy.

291 **Zero-shot MSA Augmentation:** For orphan or de novo proteins with limited evolutionary data, we
 292 first generate the ESM embedding of the single available sequence. Our latent diffusion model then
 293 transforms this single-sequence representation into a synthetic MSA embedding that emulates the
 294 evolutionary diversity typically found in natural protein families. Finally, we decode multiple diverse
 295 sequences from this embedding using our SFM decoder, effectively bootstrapping evolutionary
 296 information where none previously existed.

297 **Family-based Sequence Design:** To perform family-based protein design, we first align all sequences
 298 belonging to the family (e.g., enzyme class) for a given query. These sequences are compressed into
 299 a latent representation using our AF3-based MSA encoder. Our SFM decoder then generates new
 300 sequences conditioned on this latent embedding, effectively producing new sequence designs that
 301 share a similar distribution to the given family. Because the generated sequences may include gaps,
 302 we can support both variable-length and fixed-length designs: gaps can be ignored when constructing
 303 the final sequence, enabling flexible design strategies.

304 This approach combines both MSA compression and generation capabilities in a unified framework.
 305 For data-rich scenarios, our method enables efficient information extraction from deep MSAs while
 306 preserving their evolutionary signals. For data-limited proteins, it allows the creation of synthetic
 307 alignments that capture potential evolutionary diversity. The integration of these complementary
 308 pathways addresses a fundamental limitation in protein analysis by extending evolutionary context to
 309 proteins that previously lacked sufficient homologous sequences, potentially improving downstream
 310 structure prediction, functional annotation tasks, and family-based design ability.

311 312 **4 EXPERIMENTS**

313 314 **4.1 BENCHMARKING MSA AUTOENCODING**

315 We evaluate the reconstruction capability of our model on 50 proteins released by CAMEO on
 316 May 10, 2025, where the ground truth MSA is generated using the same procedure as described in
 317 (Team et al., 2025). We took rigorous measures to avoid data leakage (maximum sequence identity
 318 from training set of 0.72, average 0.55) and ensured clear temporal separation between training and
 319 evaluation sets as described in Appendix 6.1. We compute the embedding for each MSA using the
 320 AF3 MSAModule and generate 32 sequences for each latent MSA representation. The shallow MSAs
 321 generated by our model achieve structure prediction metrics approaching those of deep, ground-truth
 322 MSAs in terms of pLDDT (89.0 vs. 91.6) and TM-scores (0.86 vs. 0.89) while consuming 6.5%
 323 of the storage required to represent a deep MSA. This compression ratio corresponds to an average
 sequence length of 365 and more than 7,000 alignments from the CAMEO dataset. We perform

324 conditional generation given an embedding of 16-bit floats with an average size of 365×128 from the
 325 CAMEO dataset.
 326

341 Figure 4: pLDDT and TM-scores for AF3 predictions of proteins from CAMEO with no MSA,
 342 MSAs generated through the MSAFlow-based zero-shot augmentation method, the MSAFlow-based
 343 reconstructed MSA (32 sequences), and the ground truth deep MSA (approximately 7k sequences).

344
 345 When evaluating synthetic MSA embeddings generated via our latent diffusion model, we find that
 346 our decoder reconstructs meaningful signals from the generated MSA latents, achieving higher
 347 quality than predictions without MSAs, though structure prediction accuracy remains below that
 348 obtained using ground truth embeddings. Our model compresses evolutionary information encoded
 349 in thousands of aligned sequences into a single, fixed-size latent tensor that can be decoded into
 350 sequences that remain evolutionarily related to the query, as further evidenced in Table 9. This
 351 compression preserves most of the functional signal relevant for folding accuracy. Moreover, synthetic
 352 MSAs consistently improve structure prediction over the no-MSA baseline: across the CAMEO
 353 benchmark, zero-shot-generated MSAs improve pLDDT in 97.96% of cases and improve TM-score in
 354 89.80% of cases, indicating that failure cases are rare. For completeness, we provide in the appendix
 355 the PDB IDs corresponding to the small fraction of proteins where no improvement is observed.

356 We further evaluate the intrinsic quality of generated MSAs by comparing their residue-level entropy
 357 statistics to ground truth alignments. Following the evaluation setup in Zhang et al. (2024b), we
 358 generate 1000 sequences per MSA for our CAMEO test set and compute per-position entropies.
 359 MSAFlow’s alignments mirror ground-truth entropy profiles, with generated sequences centered on
 360 the true distribution (average entropy difference of 0.076 vs. 0.136 for ProfileBFN). Residue-level
 361 conservation patterns are preserved with high fidelity, as reflected by lower variance (0.294 vs.
 362 0.724), demonstrating that MSAFlow achieves alignment quality closer to ground truth statistics.
 363 To more completely characterize distributional similarity beyond first- and second-order statistics,
 364 we additionally compute Wasserstein distance and Maximum Mean Discrepancy (MMD), two well-
 365 established divergence metrics for comparing distributions. Across both metrics, MSAFlow exhibits
 366 substantially lower divergence from GT MSAs than ProfileBFN, reinforcing that our reconstructed
 367 MSAs more faithfully preserve the underlying evolutionary signal.

368
 369 Table 1: Comparison of entropy and distributional statistics between generated MSAs and ground
 370 truth (GT). MSAFlow more accurately recapitulates GT distributions, with lower entropy deviations,
 371 Wasserstein distance, and MMD.

	MSAFlow	ProfileBFN	GT
Average entropy	2.755 ± 0.294	2.838 ± 0.724	2.68 ± 0.589
Average entropy difference from GT	0.076	0.136	—
Average Wasserstein distance from GT	0.344	0.470	—
Average MMD from GT	0.541	0.875	—

378 4.2 AUGMENTING SHALLOW AND SINGLE-SEQUENCE MSAs
379

380 We evaluate our model on a dataset of sequences with limited evolutionary information derived
381 from MSAGPT (Chen et al., 2024), which includes 200 proteins from CAMEO (Haas et al., 2018),
382 CASP14, CASP15, and PDB (Berman et al., 2000) with either few or no sequences in their MSA
383 (few-shot and zero-shot cases, respectively). For the zero-shot case, we embed the query sequence
384 with ESM and use it as conditioning for our latent diffusion model, which generates a synthetic
385 MSA embedding for the reference sequence. We generate embeddings using 10 different seeds and
386 employ low-temperature sampling during the SDE forward pass for higher-fidelity reconstructions, as
387 detailed in (Geffner et al., 2025b). We then decode 32 sequences from each of the 10 synthetic MSA
388 embeddings and report the best pLDDT and TM-scores. Our model achieves improved performance
389 compared to prior MSA augmentation methods when evaluated using AF3.
390

390 Table 2: The accuracy of MSAFlow-generated multiple sequence alignments compared to other
391 state-of-the-art methods, as evaluated by AlphaFold3 protein structure prediction performance on a
392 naturally scarce MSA dataset curated from CAMEO, PDB, and CASP.
393

	AF3 pLDDT		TM-score	
	Zero-shot	Few-shot	Zero-shot	Few-shot
No/Shallow MSA	73.1	70.8	0.55	0.58
EvoDiff (650M)	67.7	67.5	0.49	0.55
MSAGPT (3B)	71.6	70.3	0.53	0.58
ESMFold	-	-	0.58	-
MSAFlow (Ours, 130M)	75.2	70.4	0.62	0.60

402 For the few-shot augmentation case, we use our latent flow matching model to generate synthetic
403 embeddings for each sequence over 5 different seeds, and decode 32 sequences from each MSA
404 embedding. We then decode 64 sequences from the ground-truth shallow MSA embedding and
405 extract the 16 most diverse sequences across all generations, following Chen et al. (2024). We
406 concatenate our generated sequences with the original shallow MSA and observe improvements in
407 structure prediction accuracy for these cases. We detail ablations motivating this reconstruction and
408 augmentation scheme in Appendix 6.5 and 6.6.
409

410 4.3 CASE STUDIES ON *de novo* AND INTRINSICALLY DISORDERED PROTEINS

411 We demonstrate that MSAFlow improves structure prediction for challenging proteins by generating
412 synthetic MSAs. We focus on three cases from a sparse MSA dataset:
413

- 414 • **8B4K**: the N-terminal domain of Rfa1 complexed with a phosphorylated Ddc2 peptide—only 133
415 residues, with scarce evolutionary relatives.
- 416 • **8G8I**: a Rosetta-designed four-helix bundle with rigid backbone constraints, extraordinary thermal
417 stability ($T_m > 90^\circ\text{C}$), and NMR-validated topology (backbone RMSD = 1.11 Å).
- 418 • **8OKH**: the crystal structure of *Bdellovibrio bacteriovorus* Bd1399.

419 MSAFlow’s synthetic MSAs outperform both MSA-free predictions and those using MSAGPT. This
420 demonstrates MSAFlow’s capability in addressing two challenging scenarios: (i) limited sequence
421 homology and (ii) intrinsically flexible or disordered regions. By generating MSAs in latent space,
422 our method provides evolutionary signals that modern folding models require for these targets. We
423 provide additional case studies in Appendix 6.2.
424

425 4.4 FAMILY-BASED PROTEIN DESIGN

426 To better demonstrate the strength of MSAFlow on few-shot generation and generalization to other
427 downstream applications than AF3 prediction, we now provide new results on family-based enzyme
428 design. **Our experiments demonstrate clear and significant advantages of MSAFlow, particularly**
429 **for EC classes with limited sequences**. Following ProfileBFN (Gong et al., 2025), we generate
430 sequences in a single shot using our model, for enzymes with less than 20 sequences in their
431 corresponding EC class, using the sequences from the EC class as an MSA. We then use CLEAN (Yu

Figure 5: Visualization of improved structure prediction for zero-shot augmentation on de novo and disordered proteins with MSAFlow-decoded synthetic MSAs, as compared to MSAs generated with MSAGPT. **Blue** represents predictions with an MSAFlow-generated MSA and **green** represents predictions with an MSAGPT-generated MSA. **Red** indicates the ground truth structure, and **yellow** indicates the prediction obtained without using any MSA.

et al., 2023) to determine their EC number, and compute the accuracy (i.e. how many generated designs match the ground truth EC number) and the uniqueness across all generated designs. We report the accuracy \times uniqueness score as done by ProfileBFN, the current SOTA for this task. **MSAFlow exhibits SOTA performance on family-based enzyme design in both fixed and variable length settings.** Notably, ProfileBFN is confined to fixed-length generation, whereas MSAFlow learns a meaningful homology distribution that guides the placement of gaps, which effectively enables variable-length design with unprecedented success rate.

Table 3: Performance comparison of MSAFlow with baseline methods on family-based enzyme design task across different EC classes.

		Q15165	Q15BH7	P13280	P57298
MSA Depth		15	12	13	15
# of Generated Sequences		1000	100	100	100
Acc. \times Uniqueness (Fixed Length)	EvoDiff ProfileBFN MSAFlow	1.39% (Gong et al., 2025) 42.67% (Gong et al., 2025) 83.10%	0% 89% 84%	80% 100% 100%	5% 82% 95%
Acc. \times Uniqueness (Variable Length)	EvoDiff MSAGPT MSAFlow	0% 15.11% 51%	0% 35.59% 92%	0% 37.5% 92%	0% 24.98% 84%

To further validate that MSAFlow generates evolutionarily meaningful and non-degenerate variants, we additionally evaluate Diversity and Novelty metrics across three enzyme families (Table 4). Diversity measures average pairwise sequence identity among generated sequences (lower indicates greater diversity), while Novelty measures dissimilarity from the natural sequence (higher indicates more distinct yet plausible variants). As shown below, compared to MSAGPT and ProfileBFN, MSAFlow achieves the strongest balance of evolutionary diversity and novelty across all enzyme classes. Although the diversity of novelty of EvoDiff is also high, its accuracy is close to 0% in Table 3, indicating that many of the generated MSAs are irrelevant random sequences that do not capture the evolutionary information well. In contrast, MSAFlow consistently generates high-quality MSAs while maintaining broad diversity and novelty.

5 CONCLUSION

MSAFlow integrates statistical flow matching with latent space optimization to enable bidirectional manipulation of multiple sequence alignments. By combining AlphaFold3-inspired permutation-equivariant embeddings with diffusion-based generation, it uniquely achieves both evolutionary

486
 487 Table 4: Diversity (lower = more diverse) and Novelty (higher = more distinct from natural sequence)
 488 of generated sequences across three enzymes. MSAFlow achieves one of the strongest combinations
 489 of diversity and novelty. Although EvoDiff also achieves good diversity, its close to 0% accuracy
 490 limits the practical application. Best results are in **bold** and the second best are underlined.

Metric	Model	P13280	P57298	Q15BH7	Q15165
Diversity↓	MSAFlow (ours)	0.100	0.150	0.117	0.434
	EvoDiff	0.062	<u>0.064</u>	<u>0.064</u>	0.788
	MSAGPT	0.834	0.896	0.622	0.838
	ProfileBNF	0.392	0.271	0.360	0.594
Novelty↑	MSAFlow (ours)	0.834	<u>0.901</u>	0.781	0.420
	EvoDiff	0.898	0.895	0.897	0.922
	MSAGPT	0.184	0.894	0.228	0.099
	ProfileBNF	0.601	0.902	0.644	0.288

501 signal compression and biologically plausible augmentation of sparse alignments. Comprehensive
 502 benchmarking across critical applications—latent space reconstruction fidelity, shallow MSA augmen-
 503 tation, synthetic alignment generation, and enzyme design—demonstrates MSAFlow’s superiority,
 504 achieving state-of-the-art performance with only 130M parameters. MSAFlow’s ability to generate
 505 evolutionarily coherent sequence ensembles creates new opportunities for designing orphan proteins
 506 and tackling de novo structure prediction challenges. Importantly, our framework also enables
 507 family-based design, where latent representations distilled from enzyme or protein families can
 508 guide the generation of sequences that remain faithful to family-level constraints while still exploring
 509 novel sequence diversity. Overall, MSAFlow advances both computational efficiency and conceptual
 510 modeling of protein sequence spaces through flow-based generation, paving the way for conditional
 511 protein engineering, resource-efficient applications, and family-level design of functional proteins.

513 ETHICS AND REPRODUCIBILITY STATEMENT

514 We have taken several steps to ensure reproducibility of our findings. The full model description,
 515 including encoder, decoder, and flow-matching components, is detailed in Section 3. Hyperparameters,
 516 training/test splits, and dataset sources are provided in Section 6.1. Ablation studies (Section 6.6,
 517 Table 9) clarify the contributions of different components, and additional case studies (Section 6.2,
 518 Table 4) demonstrate robustness across diverse proteins. Experimental comparisons with baselines
 519 are presented in Section 4 (Tables 1–3). To further facilitate reproducibility, we plan to release the
 520 anonymized source code and trained models in the supplementary material soon.

522 REFERENCES

524 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
 525 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, Sebastian W Bodenstein,
 526 David A Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool,
 527 Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridg-
 528 land, Alexey Cherepanov, Miles Congreve, Alexander I Cowen-Rivers, Andrew Cowie, Michael
 529 Figurnov, Fabian B Fuchs, Hannah Gladman, Rishabh Jain, Yousuf A Khan, Caroline M R Low,
 530 Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisun-
 531 daram, Catherine Tong, Sergei Yakneen, Ellen D Zhong, Michal Zielinski, Augustin Žídek, Victor
 532 Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M Jumper. Accurate structure
 533 prediction of biomolecular interactions with AlphaFold 3. *Nature*, 630(8016):493–500, June 2024.

534 Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William Gerecke,
 535 Timothy J. O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, Bo Zhang, Arkadiusz
 536 Nowaczynski, Bei Wang, Marta M. Stepniewska-Dziubinska, Shang Zhang, Adegoke Ojewole,
 537 Murat Efe Guney, Stella Biderman, Andrew M. Watkins, Stephen Ra, Pablo Ribalta Lorenzo,
 538 Lucas Nivon, Brian Weitzner, Yih-En Andrew Ban, Shiyang Chen, Minjia Zhang, Conglong
 539 Li, Shuaiwen Leon Song, Yuxiong He, Peter K. Sorger, Emad Mostaque, Zhao Zhang, Richard
 Bonneau, and Mohammed AlQuraishi. Openfold: retraining alphafold2 yields new insights into its

540 learning mechanisms and capacity for generalization. *Nature Methods*, 21(8):1514–1524, May
 541 2024. ISSN 1548-7105. doi: 10.1038/s41592-024-02272-z. URL <http://dx.doi.org/10.1038/s41592-024-02272-z>.

542

543 Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, Ava P. Amini,
 544 and Kevin K. Yang. Protein generation with evolutionary diffusion: sequence is all you need.
 545 doi: 10.1101/2023.09.11.556673. URL <https://www.biorxiv.org/content/early/2023/09/12/2023.09.11.556673>. Publisher: Cold Spring Harbor Laboratory _eprint:
 546 <https://www.biorxiv.org/content/early/2023/09/12/2023.09.11.556673.full.pdf>.

547

548 Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholz, Bob Strome, Alan Moses,
 549 Alex Xijie Lu, Nicolo Fusi, Ava Pardis Amini, and Kevin K Yang. Protein generation with
 550 evolutionary diffusion: sequence is all you need. *BioRxiv*, pp. 2023–09, 2023.

551

552 Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church.
 553 Unified rational protein engineering with sequence-based deep representation learning. *Nature
 554 methods*, 16(12):1315–1322, 2019.

555

556 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
 557 Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein
 558 structures and interactions using a three-track neural network. *Science*, 373(6557):871–876, 2021.

559

560 H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov, and P E
 561 Bourne. The protein data bank. *Nucleic Acids Res.*, 28(1):235–242, January 2000.

562

563 Aadyot Bhatnagar, Sarthak Jain, Joel Beazer, Samuel C Curran, Alexander M Hoffnagle, Kyle Ching,
 564 Michael Martyn, Stephen Nayfach, Jeffrey A Ruffolo, and Ali Madani. Scaling unlocks broader
 565 generation and deeper functional understanding of proteins. *bioRxiv*, pp. 2025–04, 2025.

566

567 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 568 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
 569 *arXiv preprint arXiv:2402.04997*, 2024.

570

571 Hanqun Cao, Xinyi Zhou, Zijun Gao, Chenyu Wang, Xin Gao, Zhi Zhang, Chunbin Gu, Ge Liu, and
 572 Pheng-Ann Heng. Plame: Leveraging pretrained language models to generate enhanced protein
 573 multiple sequence alignments. *arXiv preprint arXiv:2507.07032*, 2025.

574

575 Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, and Le Song. Msagpt: Neural prompting
 576 protein structure prediction via msa generative pre-training, 2024. URL <https://arxiv.org/abs/2406.05347>.

577

578 Chaoran Cheng, Jiahua Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical manifolds.
 579 *arXiv preprint arXiv:2405.16441*, 2024.

580

581 Chaoran Cheng, Jiahua Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical manifolds,
 582 2025. URL <https://arxiv.org/abs/2405.16441>.

583

584 Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K Min, Kelly Brock, Yarin Gal,
 585 and Debora S Marks. Disease variant prediction with deep generative models of evolutionary data.
 586 *Nature*, 599(7883):91–95, November 2021.

587

588 Nathan C Frey, Dan Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanassee,
 589 Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, et al. Protein discov-
 590 ery with discrete walk-jump sampling. In *The Twelfth International Conference on Learning
 591 Representations*.

592

593 Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado, Koji
 594 Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
 595 structure generation. In *Learning on Graphs Conference*, pp. 29–1. PMLR, 2024.

596

597 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
 598 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, and Karsten Kreis. Proteina: Scaling
 599 flow-based protein structure generative models, 2025a. URL <https://arxiv.org/abs/2503.00710>.

594 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
 595 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, and Karsten Kreis. Proteina: Scaling
 596 flow-based protein structure generative models, 2025b. URL <https://arxiv.org/abs/2503.00710>.

597

598 Jingjing Gong, Yu Pei, Siyu Long, Yuxuan Song, Zhe Zhang, Wenhao Huang, Ziyao Cao, Shuyi
 599 Zhang, Hao Zhou, and Wei-Ying Ma. Steering protein family design through profile bayesian flow.
 600 February 2025.

601

602 Jürgen Haas, Alessandro Barbato, Dario Behringer, Gabriel Studer, Steven Roth, Martino Bertoni,
 603 Khaled Mostaguir, Rafal Gumienny, and Torsten Schwede. Continuous automated model Evalu-
 604 atiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. *Proteins*,
 605 86:387–398, March 2018.

606

607 Liang Hong, Zhihang Hu, Siqi Sun, Xiangru Tang, Jiuming Wang, Qingxiong Tan, Liangzhen Zheng,
 608 Sheng Wang, Sheng Xu, Irwin King, Mark Gerstein, and Yu Li. Fast, sensitive detection of protein
 609 homologs using deep dense retrieval. *Nat. Biotechnol.*, pp. 1–13, August 2024. ISSN 1546-1696.
 610 doi: 10.1038/s41587-024-02353-6.

611

612 L. Steven Johnson, Sean R. Eddy, and Elon Portugaly. Hidden Markov model speed heuristic and iter-
 613 ative HMM search procedure. *BMC Bioinformatics*, 11(1):431, August 2010. ISSN 1471-2105. doi:
 614 10.1186/1471-2105-11-431. URL <https://doi.org/10.1186/1471-2105-11-431>.

615

616 Felix Kallenborn, Alejandro Chacon, Christian Hundt, Hassan Sirelkhatim, Kieran Didi, Sooyoung
 617 Cha, Christian Dallago, Milot Mirdita, Bertil Schmidt, and Martin Steinegger. Gpu-accelerated
 618 homology search with mmseqs2. *Nature Methods*, 2025. doi: 10.1038/s41592-025-02819-8. URL
<https://doi.org/10.1038/s41592-025-02819-8>.

619

620 Jiahua Li, Chaoran Cheng, Zuofan Wu, Ruihan Guo, Shitong Luo, Zhizhou Ren, Jian Peng, and
 621 Jianzhu Ma. Full-atom peptide design based on multi-modal flow matching. *arXiv preprint*
 622 *arXiv:2406.00735*, 2024.

623

624 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 625 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan Dos Santos Costa, Maryam Fazel-Zarandi, Tom
 626 Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
 627 protein structure with a language model. *Science*, 379(6637):1123–1130, March 2023a.

628

629 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 630 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
 631 Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
 632 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023b. doi: 10.1126/
 633 science.ade2574. URL <https://www.science.org/doi/abs/10.1126/science.ade2574>.

634

635 Sidney Lyayuga Lisanza, Jacob Merle Gershon, Samuel WK Tipps, Jeremiah Nelson Sims, Lucas
 636 Arnoldt, Samuel J Hendel, Miriam K Simma, Ge Liu, Muna Yase, Hongwei Wu, et al. Multistate
 637 and functional protein design using rosettafold sequence space diffusion. *Nature biotechnology*,
 638 pp. 1–11, 2024.

639

640 Amy X Lu, Wilson Yan, Sarah A Robinson, Simon Kelow, Kevin K Yang, Vladimir Gligorijevic,
 641 Kyunghyun Cho, Richard Bonneau, Pieter Abbeel, and Nathan C Frey. All-atom protein generation
 642 with latent diffusion. In *ICLR 2025 Workshop on Generative and Experimental Perspectives for*
 643 *Biomolecular Design*.

644

645 Amy X Lu, Wilson Yan, Kevin K Yang, Vladimir Gligorijevic, Kyunghyun Cho, Pieter Abbeel,
 646 Richard Bonneau, and Nathan Frey. Tokenized and continuous embedding compressions of protein
 647 sequence and structure. *bioRxiv*, pp. 2024–08, 2024.

648

649 Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. Flowseq: Non-
 650 autoregressive conditional sequence generation with generative flow, 2019. URL <https://arxiv.org/abs/1909.02480>.

648 Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R. Eguchi,
 649 Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation, 2020.
 650 URL <https://arxiv.org/abs/2004.03497>.

651 Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael
 652 Bernhofer, Dmitrii Nechaev, and Burkhard Rost. Embeddings from protein language models
 653 predict conservation and variant effects. *Human genetics*, 141(10):1629–1647, 2022.

654 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

655 Jiezong Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 656 Li, Bin Cui, et al. Instructplm: Aligning protein language models to follow protein structure
 657 instructions. *bioRxiv*, pp. 2024–04, 2024.

658 Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter Abbeel, Tom Sercu, and
 659 Alexander Rives. Msa transformer. *bioRxiv*, 2021. doi: 10.1101/2021.02.12.430858. URL <https://www.biorxiv.org/content/early/2021/02/13/2021.02.12.430858>.

660 Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. HHblits: lightning-fast
 661 iterative protein sequence searching by HMM-HMM alignment. *Nature Methods*, 9(2):173–
 662 175, February 2012. ISSN 1548-7091, 1548-7105. doi: 10.1038/nmeth.1818. URL <https://www.nature.com/articles/nmeth.1818>.

663 Stefan Seemayer, Markus Gruber, and Johannes Söding. Ccmpred—fast and precise prediction of
 664 protein residue–residue contacts from correlated mutations. *Bioinformatics*, 30(21):3128–3130, 07
 665 2014. ISSN 1367-4803. doi: 10.1093/bioinformatics/btu500. URL <https://doi.org/10.1093/bioinformatics/btu500>.

666 Martin Steinegger and Johannes Söding. MMseqs2 enables sensitive protein sequence searching
 667 for the analysis of massive data sets. *Nature Biotechnology*, 35(11):1026–1028, November 2017.
 668 ISSN 1087-0156, 1546-1696. doi: 10.1038/nbt.3988. URL <https://www.nature.com/articles/nbt.3988>.

669 ByteDance AML AI4Science Team, Xinshi Chen, Yuxuan Zhang, Chan Lu, Wenzhi Ma, Jiaqi
 670 Guan, Chengyue Gong, Jincai Yang, Hanyu Zhang, Ke Zhang, Shenghao Wu, Kuangqi Zhou,
 671 Yanping Yang, Zhenyu Liu, Lan Wang, Bo Shi, Shaochen Shi, and Wenzhi Xiao. Protenix -
 672 advancing structure prediction through a comprehensive alphafold3 reproduction. *bioRxiv*, 2025.
 673 doi: 10.1101/2025.01.08.631967. URL <https://www.biorxiv.org/content/early/2025/01/11/2025.01.08.631967>.

674 Timothy Truong Jr and Tristan Bepler. Poet: A generative model of protein families as sequences-of-
 675 sequences. *Advances in Neural Information Processing Systems*, 36:77379–77415, 2023.

676 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 677 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 678 systems*, 30, 2017.

679 Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,
 680 Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion
 681 models via reward optimization with applications to dna and protein design. *arXiv preprint
 682 arXiv:2410.13643*, 2024.

683 Fang Wu, Tinson Xu, Shuting Jin, Xiangru Tang, Zerui Xu, James Zou, and Brian Hie. D-flow:
 684 Multi-modality flow matching for d-peptide design. *arXiv preprint arXiv:2411.10618*, 2024.

685 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
 686 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
 687 pp. 38592–38610. PMLR, 2023.

688 Jason Yim, Marouane Jaakik, Ge Liu, Jacob Gershon, Karsten Kreis, David Baker, Regina Barzilay,
 689 and Tommi Jaakkola. Hierarchical protein backbone generation with latent and structure diffusion.

702 Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao. Enzyme
703 function prediction using contrastive learning. *Science*, 379(6639):1358–1363, March 2023.
704

705 Le Zhang, Jiayang Chen, Tao Shen, Yu Li, and Siqi Sun. Msa generation with seqs2seqs
706 pretraining: Advancing protein structure predictions. In A. Globerson, L. Mackey, D. Bel-
707 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-*
708 *formation Processing Systems*, volume 37, pp. 57324–57348. Curran Associates, Inc.,
709 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/694be3548697e9cc8999d45e8d16fe1e-Paper-Conference.pdf.

710

711 Le Zhang, Jiayang Chen, Tao Shen, Yu Li, and Siqi Sun. MSA generation with seqs2seqs pretraining:
712 Advancing protein structure predictions, 2024b. URL <https://openreview.net/forum?id=bM6LUC21ec>.

713

714 Rongchao Zhang, Yu Huang, Yiwei Lou, Yi Xin, Haixu Chen, Yongzhi Cao, and Hanpin Wang.
715 Exploit your latents: Coarse-grained protein backmapping with latent diffusion models. In
716 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 1111–1119, 2025.
717

718 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
719 language models are protein designers. In *International conference on machine learning*, pp.
720 42317–42338. PMLR, 2023.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 6 ADDITIONAL RESULTS
757758 6.1 DETAILS ON MSAFLOW TRAIN/TEST SPLIT
759

760 The maximum sequence identity for sequences in our CAMEO reconstruction dataset to our training
761 set is 0.72, when run at 80% coverage against the consensus sequence for each MSA in the training
762 set (with the average maximum identity across all sequences in the test set being 0.55). This is an
763 even stricter threshold than MSAGPT (which uses 90% coverage instead). Furthermore, the MSAs
764 we used for training come from the OpenProteinSet, which consists of sequences searched from
765 UniClust30 v2018-8. The cutoff for AlphaFold3 training data is September of 2021, and the cutoff
766 for ESM2 training data is February of 2020. The CAMEO structures we used for reconstruction
767 evaluation, however, were all deposited in May of 2025. This rigorous separation ensures the novelty
768 of our test set. This is in line with ProfileBFN, which trains on the same corpus as ESM2, while
769 evaluating their model on CAMEO structures deposited in May of 2024. For the zero-shot/few-shot
770 augmentation task, we use the same test set as MSAGPT, which is also trained on the OpenProteinSet.
771 The authors ensure minimal data leakage between the train and test set during their experiments,
772 which implies the same for MSAFlow.

773 6.2 ADDITIONAL CASE STUDIES
774

775 To further validate the robustness of MSAFlow’s zero-shot predictions, we provide more cases for
776 comparison. From the table 5, we can observe that MSAFlow achieves improvement on cases with
777 different structural patterns as well as different families. We also provide the ground-truth zero-shot
778 prediction folding accuracy for the case studies in Figure ??.

PDB ID	Length	Description	GT	MSAGPT	MSAFlow
6NW8_A	27	Scorpion venom toxin	0.39	0.40	0.53
6WKK_X	280	Phage capsid	0.28	0.27	0.55
7EQB_B	80	Central spindle assembly	0.65	0.58	0.71
7QRR_L	153	Noumeavirus	0.31	0.61	0.83
7ZOL_A	151	Cas 7-11 regulator	0.33	0.34	0.67

786 Table 5: Performance comparison of MSAFlow with baseline methods on clinically relevant proteins
787 showing TM-Score improvements across different structural patterns and protein families.
788

PDB ID	GT	MSAGPT	MSAFlow
8OKH	0.47	0.64	0.89
8GI8	0.23	0.32	0.94
8B4K	0.43	0.44	0.91

795 Table 6: Performance comparison of MSAFlow with ground-truth for the case study in Figure ??.
796

797 6.3 INFERENCE SPEED AND MEMORY COST
798

799 In order to demonstrate that MSAFlow exhibits notable improvements in sampling efficiency com-
800 pared to other MSA-based generative models, We benchmark MSAFlow against existing tools,
801 attempting to generate 100 sequences conditioned on an existing MSA with 6 sequences on an
802 NVIDIA A40 GPU, and observe the following:
803

804 We find that MSAFlow has better sampling efficiency, both in terms of speed and memory. We can
805 attribute this to the fact that our model only has to deal with $L \times H$ embedding of the MSA, rather
806 than carry the quadratic cost of representing an MSA in the ambient space. The result shows that
807 MSAFlow has the potential to be a highly light-weight and accurate MSA designer.

808 Moreover, our pipeline utilizes outputs from tools like MMseqs and HMMER for Multiple Sequence
809 Alignment (MSA) reconstruction. A key advantage of this approach is its ability to generate high-
810 quality MSAs even when these standard homology search methods fail to find sufficient homologous

	Latency Per Sequence	Memory Consumption
MSAFlow	1.02s	5.8 GiB
ProfileBFN	8.49s	7.7 GiB
MSAGPT	62.46s	41.6 GiB
EvoDiff	478.24s	4.0 GiB

Table 7: Sampling efficiency comparison of MSAFlow with baseline methods showing latency per sequence and memory consumption on NVIDIA A40 GPU for generating 100 sequences conditioned on an MSA with 6 sequences.

information. To provide a quantitative comparison of computational cost, we evaluated our MSAFlow model against HMMER and MMseqs2 for generating an MSA from a single query sequence (PDB 9BCZ_A from CAMEO, 644 amino acids). The empirical results are detailed below.

Method	Wall Clock Time (s)
MSAFlow (100 seqs)	153.93
HMMER	310.92
MMseqs2	497.73

Table 8: Computational cost comparison for generating MSA from query sequence alone (PDB 9BCZ_A from CAMEO, 644 AA) showing wall clock time in seconds.

These results show that MSAFlow achieves over 2× speedups compared to HMMER and MMseqs2, while still providing the ability to operate in settings where homology search fails. This confirms that MSAFlow not only addresses the coverage gap but also offers computational efficiency advantages over traditional methods.

6.4 ABLATION STUDY OF RECONSTRUCTION SEQUENCES

We address using the additional ablation study on the reconstruction task with 2, 4, 8, 16, and 32 decoded MSA sequences, as well as the comparison with natural-MSA depth on 3 samples from the CAMEO reconstruction test set.

When we keep 2-4 sequences, the MSAFlow reconstructions beat the random ground-truth subsample. As we generate more sequences, the designed MSAs generally match that of the ground-truth samples (AlphaFold3 searched MSA), indicating that MSAFlow accurately captures structure patterns of protein families.

	PDB ID	2	4	8	16	32
Ground Truth Random Sample	9EJY	0.59	0.55	0.85	0.80	0.86
	9BIX	0.19	0.32	0.35	0.32	0.49
	9CVV	0.35	0.31	0.93	0.97	0.98
MSAFlow Reconstruction	9EJY	0.61	0.61	0.84	0.83	0.84
	9BIX	0.28	0.22	0.20	0.30	0.26
	9CVV	0.43	0.62	0.87	0.87	0.97

Table 9: Ablation study comparing MSAFlow reconstruction performance against ground truth random samples across different sequence counts on CAMEO reconstruction test set. Values represent performance metrics for MSA reconstruction quality. Numbers in the first row denotes the amounts of decoding MSA sequences.

864 6.5 ABLATION STUDY ON SYNTHETIC AND RECONSTRUCTED MSAs
865

866 The reconstruction pathway preserves the authentic signal from a limited, shallow MSA, while the
867 latentflow pathway generates evolutionary diversity generalized from other MSA-rich proteins. These
868 two tracks provide complementary signals that make the few-shot augmentation stronger. To provide
869 evidence for this, we detail the separate contributions of each track below:
870

Few-shot task	TM Score	Avg Per-position Entropy
Syn-16	0.54	2.23
Rec-16	0.52	1.33
Syn+Rec-32	0.57	2.69
Syn+Rec+GT	0.60	2.58
MSAGPT+GT	0.58	1.33
GT	0.58	2.16

871 Table 10: Ablation study showing the complementary contributions of synthetic and reconstructed
872 MSA pathways in few-shot tasks, demonstrating improved TM scores and entropy characteristics.
873 **Syn** represents Synthetic MSAs; **Rec** represents Reconstructed MSAs. The number denotes amount
874 of MSA sequences.
875

876 As shown in the table, the reconstruction path focuses on preserving crucial motif information within
877 the limited observed sequences, which is reflected in the lower entropy signals in the shallow MSA.
878 In contrast, the latentflow path generates synthetic MSAs that provide evolution-consistent diversity,
879 resulting in higher entropy.
880

881 The combination of both tracks leads to an improvement in TM score and an increase in entropy. This
882 observation confirms that the two tracks offer complementary signals, which synergistically improve
883 quality. Finally, by augmenting the shallow ground truth MSA with the combined generation output,
884 we improve prediction accuracy and achieve a better TM score than the MSAGPT baseline, which
885 is what we report in Table 1. As can be seen, MSAFlow is the only method to achieve a better TM
886 score than the ground truth, with an entropy value closest to it.
887

888 6.6 ABLATION STUDY ON ESM EMBEDDINGS
889

890 To clarify the individual contributions of the ESM embeddings and our proposed Statistical Flow-
891 matching decoding mechanism, we perform an ablation study on the zero-shot augmentation track of
892 MSAFlow. Specifically, we compare:
893

- 901 • A simple feature regression task that learns MSA embeddings from ESM2 features
902
- 903 • Replacing ESM2 embeddings with one-hot encodings of the query sequence
904
- 905 • Full ESM2 embeddings with our latent statistical flow-matching decoder
906

Method	TM Score
MSAGPT (3B)	0.53
MSAFlow Latent w/ ESM2 regression (128M)	0.54
MSAFlow Latent w/ one-hot (130M)	0.55
MSAFlow Latent w/ ESM2 (130M)	0.62

913 Table 11: Ablation study comparing the contribution of ESM embeddings versus one-hot sequence
914 encoding in MSAFlow’s zero-shot MSA augmentation performance.
915

916 The results demonstrate that the efficiency of our method. Moreover, ESM2 encoding provides more
917 useful signals to address the evolutionary information.
918

918 6.7 GENERATIVE SAMPLING PROCESS
919

920 To sample a synthetic MSA embedding, we convert the ODE flow into an SDE following Geffner
921 et al. (2025a), and integrate the reverse-time stochastic differential equation:

$$922 \quad 923 \quad dz_t = \left(v_t^\theta - \frac{1}{2} g_t^2 \cdot s_t^\theta(x_t) \right) dt + T \cdot g_t \cdot d\bar{W}_t, \quad t \in [0, 1] \quad (8)$$

924 where $f_t = -\frac{z_t}{1-t}$ is the drift term of the forward rectified flow, $g_t = \sqrt{\frac{2t}{1-t}}$ is the diffusion coefficient,
925 $s_t^\theta = \nabla_{z_t} \log p_\theta(z_t|e, t)$ is the score function that can be converted from our predicted v^θ , $T \in [0, 1]$
926 is a temperature parameter, and $d\bar{W}_t$ is the standard Wiener process running backward in time.
927

928 We implement the sampling using the Euler-Maruyama discretization with steps of size Δt :

$$929 \quad 930 \quad z_{t-\Delta t} = z_t - \left(v_t^\theta - \frac{1}{2} g_t^2 \cdot s_t^\theta(z_t, e, t) \right) \Delta t - T \cdot g_t \sqrt{\Delta t} \cdot \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I) \quad (9)$$

932 where $v_\theta(z_t, e, t)$ is the time-dependent vector field predicted by the DiT. The temperature parameter
933 T controls the stochasticity of the generation: $T = 1$ reproduces the exact generative SDE used
934 during training, while $T \rightarrow 0$ suppresses the noise, approaching the deterministic probability-flow
935 ODE.

936 6.8 IMPLEMENTATION DETAILS
937938 6.8.1 DATASET PREPARATION
939

940 We use the OpenFold dataset Ahdriz et al. (2024), which consists of 16M MSAs in total. To filter
941 high-quality MSAs, we only use alignments which have at least 10 sequences where at most 10% of
942 the sequence consists of gaps, following Chen et al. (2024). This results in a dataset of 4M MSAs.
943 We then generate MSA embeddings for each MSA with Protenix Team et al. (2025). Specifically, we
944 truncate the inference framework to halt after the MSAModule step and dump the corresponding pair
945 representation of the query sequence. This results in an embedding of shape $(L \times 128)$, where L is
946 the length of the query sequence. We use the default parameters that are used for structure prediction
947 for this task.

948 6.8.2 TRAINING
949

950 We train a 130M parameter latent flow matching model and a 129M parameter conditional statistical
951 flow matching decoder model. Both the encoder and decoder model are in congruence with the
952 medium-size architecture of a diffusion transformer detailed in Peebles & Xie (2023). We detail
953 their architectures in Table 2. For the encoder, our objective is to reconstruct the MSA embedding
954 conditioned on the query sequence. For enhanced conditioning signal, we use the ESM2 650M
955 Lin et al. (2023a) to generate an embedding of the query sequence, resulting in a tensor of shape
956 $(L \times 1280)$. We train our encoder for 15 epochs on four H200 GPUs using the Adam optimizer with
957 a learning rate warmup of 3000 steps, learning rate of 2.6e-4, and a weight decay of 0.1. We use a
958 batch size of 32,768 maximum total sequence length for all sequences in the batch.

959 Our decoder model is conditioned on the MSA embedding and learns to reconstruct one-hot encoded
960 sequences from the original MSA. Our vocabulary includes the 20 standard amino acids, as well as
961 the gap token and the unknown amino acid token (X). We select only 32 sequences to reconstruct per
962 MSA, where each sequence is weighted to compensate for the data bias present in MSAs. Specifically,
963 each sequence's weight w_i is computed as follows:

$$964 \quad 965 \quad 966 \quad 967 \quad w_i = \left(1 + \sum_{j \neq i} \mathbf{1} \{ d_{\text{hamming}}(x_i, x_j) < 0.2 \} \right)^{-1}$$

968 This reweighting scheme reduces the influence of clusters of highly similar sequences, and is used
969 by Rao et al. (2021). We train our decoder for 7 epochs on four H200 GPUs with a learning rate
970 warmup of 5000 steps, learning rate of 1e-5, and a weight decay of 0.1. We use a batch size of 2,560
971 maximum total query sequence length for all MSAs in the batch, as each MSA has 32 sequences for
972 reconstruction as well.

972 6.8.3 EVALUATION
973974 For the folding task, we evaluate our MSAs by folding each sequence with the same seed, with 200
975 diffusion steps, 10 cycles, and 1 diffusion sampling trajectory. These are the default parameters
976 provided by Protenix. For evaluating ESMFold Lin et al. (2023a), we use the standard implementation
977 provided by the Transformers library.978
979 Table 12: Architecture parameters of MSAFlow
980

981	Latent FM Encoder	SFM Decoder
982	Input: FC(in = 128, out = 768)	Input: FC(in = 22, out = 768)
983	Conditioning: FC(in dim. = 1280, out dim. = 768)	Conditioning: FC(in = 128, out = 768)
984	12× DiTAdaLn(in = 768, heads = 12, cond. = 768)	12× DiTAdaLn(in = 768, heads = 12, cond. = 768)
985	Output: FC(in = 768, out = 128)	Output: FC(in = 768, out = 22)

986
987 6.9 ABLATION STUDY ON DECODER ARCHITECTURE AND CONDITIONING MECHANISM
988989 To further evaluate the flexibility of our framework and isolate the contributions of individual
990 architectural components, we introduce new ablation studies spanning (i) alternative discrete diffusion
991 formulations and (ii) alternative conditioning mechanisms.992
993 6.9.1 COMPATIBILITY WITH MDLM AND SUPERIORITY OF SFM
994995 We benchmarked MSAFlow against MDLM-based decoders under two architectural choices (DiT
996 vs. pretrained ESM) and two conditioning strategies (AdaLN vs. cross-attention). MDLM is a
997 discrete-state mask diffusion model that achieves state-of-the-art performance in natural language
998 generation and provides a strong non-flow-based baseline. Even when warm-started with pretrained
999 ESM weights, MDLM variants remain substantially weaker than our SFM formulation.1000
1001 Table 13: Ablation on the choice of discrete FM models for decoder
1002

1003	Model	pLDDT	TM-score
1004	MSAFlow–MDLM (ESM + cross-attn)	82.5	0.83
1005	MSAFlow–MDLM (DiT + AdaLN)	79.5	0.74
1006	MSAFlow (SFM, DiT, AdaLN)	89.0	0.86

1007 These results highlight two conclusions: (1) our generative framework is compatible with multiple
1008 discrete modeling paradigms, including MDLM; (2) SFM remains decisively superior, validating
1009 continuous-state discrete flow-matching with proper manifold geometry as effective mechanism for
1010 modeling evolutionary sequence distributions.1011
1012 6.9.2 POSITION-WISE VS. GLOBAL ADALN CONDITIONING
10131014 To assess the importance of spatially resolved conditioning, we compared global AdaLN against
1015 our proposed position-wise AdaLN. Global conditioning applies a single scale-shift pair across all
1016 positions, whereas position-wise AdaLN modulates each residue independently. Our ablations show
1017 that global conditioning is far too coarse to capture residue-level evolutionary constraints.1018
1019 Table 14: Ablation on position-wise vs. global AdaLN conditioning
1020

1023	Model	pLDDT	TM-score
1024	MSAFlow (DiT + global AdaLN)	42.9	0.32
1025	MSAFlow (DiT + position-wise AdaLN)	89.0	0.86

Figure 6: t-SNE projection of 10,000 latent MSA embeddings (mean across the first dimension).

The dramatic degradation under global AdaLN confirms that fine-grained, residue-level conditioning is essential for representing evolutionary constraints, and it empirically validates position-wise AdaLN as a crucial architectural component of MSAFlow.

6.9.3 DEPENDENCE ON PRETRAINED ENCODERS.

To quantify how much performance stems from the pretrained encoder versus the flow-matching framework, we conducted an ablation study replacing the AF3 encoder with a smaller, pretrained MSAPairformer encoder (111M params) on a smaller set of training data (100k MSAs).

Model	pLDDT	TM score
No MSA	47	0.33
MSAPairformer Embeddings (5 epochs)	70	0.53
AlphaFold3 Embeddings (5 epochs)	85	0.79

Table 15: Ablation comparing different pretrained encoders used within MSAFlow.

6.10 T-SNE VISUALIZATION OF LATENT MSA EMBEDDINGS

To further support the interpretability of our latent space, we include a t-SNE projection of 10,000 latent MSA embeddings (Fig. 6). The visualization reveals diffuse global structure with numerous small, locally coherent clusters, consistent with the hypothesis that the model organizes sequences according to shared evolutionary or functional patterns. While t-SNE is inherently qualitative, this emergent clustering aligns with prior findings that deep protein embeddings naturally reflect structural

1080 and phylogenetic constraints Alley et al. (2019); Marquet et al. (2022), even in the absence of explicit
1081 MSA conditioning. Combined with our strong performance across reconstruction, augmentation,
1082 and enzyme design tasks, these patterns suggest that MSAFlow’s latent representations meaningfully
1083 compress evolutionary variability into a compact and biologically informative manifold.
1084

1085 7 USAGE OF LANGUAGE MODELS

1086

1087 We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
1088 to editorial tasks, including proofreading for typographical errors, correcting grammar, and improving
1089 the clarity and readability of the text.
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133