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ABSTRACT

Implicit Neural Representations (INRs) are increasingly recognized as a versatile
data modality for representing discretized signals, offering benefits such as infinite
query resolution and reduced storage requirements. Existing signal compression
approaches for INRs typically employ one of two strategies: 1. direct quantization
with entropy coding of the trained INR; 2. deriving a latent code on top of the INR
through a learnable transformation. Thus, their performance is heavily dependent
on the quantization and entropy coding schemes employed. In this paper, we in-
troduce CoINR, an innovative compression algorithm that leverages the patterns
in the vector spaces formed by weights of INRs. We compress these vector spaces
using a high-dimensional sparse code within a dictionary. Further analysis reveals
that the atoms of the dictionary used to generate the sparse code do not need to be
learned or transmitted to successfully recover the INR weights. We demonstrate
that the proposed approach can be integrated with any existing INR-based sig-
nal compression technique. Our results indicate that CoINR achieves substantial
reductions in storage requirements for INRs across various configurations, out-
performing conventional INR-based compression baselines. Furthermore, CoINR
maintains high-quality decoding across diverse data modalities, including images,
occupancy fields, and Neural Radiance Fields.

1 INTRODUCTION

Despite the fact that all naturally occurring signals observed by humans are continuous, captur-
ing these signals through digital devices requires their discretization. For example, an image of a
mountain is processed and stored in a discretized format. A primary reason for this approach is to
conserve storage space; storing signals with high precision in an almost continuous manner would
necessitate a substantial amount of storage. Consequently, the digital representation of signals in a
discretized form is both practical and essential. For instance, it is estimated that over 400TB of data
is created every day (Duarte, 2024). Moreover, humans share their captured signals through various
mediums on a daily basis. Therefore, data compression becomes essential for efficient and reliable
transmission.

Traditional signal compression techniques often rely on classic signal processing methods and are
typically unimodal. For example, JPEG (Wallace, 1992), designed for photographic images, and is
unsuitable for audio files. Similarly, audio compression standards like MP3 or AAC (Brandenburg,
1999) are optimized for sound and are not applicable to images. With the advancements of neu-
ral networks, researchers have explored compressing signals using neural methods, predominantly
through mechanisms based on autoencoders (Alexandre et al., 2018; Cheng et al., 2019; Theis et al.,
2022). In these systems, the encoder transforms the signal into a latent vector, which the decoder
then uses to reconstruct the original signal. While autoencoder-based methods effectively encode
signals into latent vectors, they are generally designed for images or another single modality. Adapt-
ing these methods to different data modalities not only requires training on a large corpus of data
specific to those modalities but also a specialized autoencoder architecture tailored to handle the
data effectively.

In recent years, there has been a significant surge in interest in representing signals through Implicit
Neural Representations (INRs). Unlike large models based on autoencoders, INRs typically consist
of multi-layer perceptrons (MLPs) equipped with specialized nonlinearities that differ from the con-
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ventional nonlinearities used in deep learning. This simplicity and versatility allow INRs to unify
signal representations across diverse data modalities. When signals are represented by INRs, they
are encoded in the MLP’s weights and biases. For instance, in image transmission, instead of using
conventional JPEG encoding, the weights and biases of the MLP are transmitted by a transmitter
(TX). A receiver (RX) can then feed the coordinates into the MLP and decode the image. The pri-
mary advantage of INRs lies in their ability to represent signals with high fidelity while utilizing
fewer parameters than parameter-heavy autoencoder-based mechanisms.

Recent advances in INR-based signal compression include COIN (Dupont et al., 2021), COIN++
(Dupont et al., 2022), and INRIC (Strümpler et al., 2022). COIN pioneered the application of INRs
for image compression. Building on this, COIN++ and INRIC introduced quantization and entropy
coding to improve compression efficiency. Both approaches also focus on enhancing the general-
ization capabilities of INRs through meta-learning techniques. Additionally, COIN++ incorporates
latent modulations discovered via a learnable transformation applied on top of the INR model. How-
ever, COIN++ requires transmitting the base INR and the learned transformation apriori, in addition
to the latent modulations for signal decoding. None of the existing methods, however, have explored
fundamentally compressing the INR by identifying patterns within its parameter space before ap-
plying standard techniques such as quantization and entropy coding.

In our work, named CoINR, we build upon the observed behaviors of the vector spaces generated
by the weights in an INR. We integrate compressed sensing algorithms into the INR-based compres-
sion pipeline, proposing a mechanism that obtains a higher-dimensional sparse code for the weight
vectors without requiring any learnable transformations. Furthermore, based on the Central Limit
Theorem (CLT) (Zhang et al., 2022), we show that the transformation matrix need not be transmit-
ted for successful decoding of weight spaces. This further enhances and simplifies the decoding
process. Consequently, CoINR, as a fundamental compression technique built on the observations
of weights spaces, achieves superior compression and higher decoding quality for each data modal-
ity compared to the baselines. Moreover, it can be easily embedded into any INR-based signal
compression algorithm.

2 RELATED WORKS

2.1 IMPLICIT NEURAL REPRESENTATIONS

INRs have recently gained considerable attention in the computer vision community due to their
streamlined network architectures and improved performance in various vision tasks compared to
traditional, parameter-heavy models (Sitzmann et al., 2020; Saragadam et al., 2023; Hao et al.,
2022). This surge in interest followed the advent of Neural Radiance Fields (NeRF) (Mildenhall
et al., 2021), which has inspired a plethora of subsequent studies (Zhu et al., 2023; Rabby & Zhang,
2023). Further research has explored the pivotal role of different activation functions in INRs (Sitz-
mann et al., 2020; Saragadam et al., 2023; Ramasinghe & Lucey, 2022; Tancik et al., 2020). More-
over, INRs have transformed into a unified data modality that integrates various types of visual
information into a consistent format. More recent studies have investigated the use of INRs for im-
age classification by transforming standard image formats into INRs and training classifiers directly
on the INRs’ weights and biases (Shamsian et al., 2024). These innovative approaches have show-
cased the potential of INRs to significantly reduce the dimensionality and computational complexity
typically associated with conventional image processing techniques.

2.2 SIGNAL COMPRESSION

Signal compression is crucial for reducing bandwidth needs and saving storage space. With the
rise of deep learning, signal compression has evolved into two main approaches: rule-based (tradi-
tional) and learning-based methods. Traditional compression methods, such as JPEG for images and
MP3 for audio, rely on algorithmic techniques tailored to specific signal types. JPEG minimizes re-
dundancies using the discrete cosine transform (Raid et al., 2014), while MP3 (Brandenburg, 1999)
employs a psycho-acoustic model that enhances compression by removing inaudible sounds through
auditory masking. On the other hand, deep learning-based techniques use models trained on vast
datasets, adapting to a wide range of signals without predefined algorithms. These methods offer
flexibility but require different architectures for each data modality, presenting unique challenges.
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In this landscape, INRs stand out as a potential universal signal representor. INRs can handle var-
ious data types through a unified framework, promising a versatile solution in the realm of signal
compression.

2.3 COMPRESSED SENSING

Compressed sensing is a field that capitalizes on the inherent sparsity of data to capture information
efficiently. In digital imaging, not every pixel is crucial for accurate image reconstruction. Although
images appear dense in pixel space, they exhibit considerable redundancy when transformed into
different basis functions. This sparsity is exploited by compressed sensing algorithms to recon-
struct the original image from fewer sampled data points. These algorithms employ optimization
techniques and linear algebra to solve underdetermined systems, revolutionizing data acquisition in
areas such as medical imaging and signal processing. Dictionary learning, integral to compressed
sensing, seeks sparse representations of data using dictionary elements or atoms that capture the
data’s intrinsic structure. These atoms are either predefined or adaptively learned. Compressed
sensing’s versatility is evident in its applications across various domains, such as image and video
compression (Zhou & Yang, 2024), medical image encryption (Jiang et al., 2024), and classification
tasks (Liu & Fieguth, 2010; Kapoor et al., 2012; Hsu et al., 2009; Hu & Tan, 2018). It also addresses
inverse vision problems like image inpainting (Seemakurthy et al., 2020), deblurring (Ma et al.,
2013; Hu et al., 2010), and super-resolution (Ayas & Ekinci, 2020). Recent efforts have merged
dictionary learning with deep learning to tackle more complex computer vision challenges, includ-
ing image recognition (Tang et al., 2020), denoising (Zheng et al., 2021), and scene recognition
(Liu et al., 2018). These developments underscore compressed sensing’s transformative impact on
computer vision.

Our work, CoINR, is pioneering the application of compressed sensing principles to INRs. By
leveraging these principles alongside the structural distributions of INR weights, CoINR identifies
redundancies in these spaces, resulting in substantial compression improvements.

3 METHOD

3.1 SIGNAL REPRESENTATION THROUGH INRS

Mathematically, an INR can be defined by a function Gθ, where θ are the optimizable parameters
of the neural network. The input and output dimensions of Gθ vary for different data modalities.
In general, Gθ acts as a mapping from an a-dimensional input coordinate space to a b-dimensional
output signal space, described mathematically as:

Gθ : Ra → Rb.

For instance, for RGB images, a = 2 and b = 3, while for audio signals, a = 1 and b = 1. In
this architecture, the output of the ith layer, which feeds into the (i+ 1)th layer, can be expressed as
σ(W (i)y(i) + b(i)). Here, σ denotes the activation function, and y(i) represents the output from the
preceding layer. Furthermore, the choice of activation function (σ) plays a critical role in shaping
the neural network’s ability to model complex functions, as explored in various studies (Sitzmann
et al., 2020; Ramasinghe & Lucey, 2022; Saragadam et al., 2023; Tancik et al., 2020).

3.2 EXPLORING THE COMPRESSIBILITY

According to compressed sensing theory, most real-world signals display sparsity when transformed
into an appropriate domain, meaning they can be accurately represented with fewer measurements
than traditionally required. Furthermore, real-world signals can be compressed through a set of
basis functions, and the coefficients of these functions are derived by minimizing the reconstruction
loss. The core concept of INRs involves encoding signals into the weights and biases of an MLP.
This process can be viewed as a classical domain transformation technique where pixel values are
reconstructed by feeding the corresponding coordinates through the MLP. Unlike predefined signal
transformers like Fourier (Chandrasekharan, 2012) and DCT (Khayam, 2003), the MLP attempts to
minimize the reconstruction loss through backpropagation to find the transformation. The learned
representation of the signal resides in another domain. Given that real-world signals inherently
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(a) Layer 2, and 3 weight distributions when hidden
neuron count is 64

(b) Layer 4, and 5 weight distributions when the hidden
neuron count is 256

Figure 1: Weight distribution of INRs follows a Gaussian distribution: A randomly choosen
image from Kodak dataset was fitted through an INR.

Figure 2: The proposed CoINR compression algorithm Standard compression techniques for
INRs typically involve direct quantization and entropy coding of their weights. However, since
natural signals exhibit inherent compressibility in a dictionary, the characteristics that aid in the
compressibility of the weight space of an INR are discovered through the Gaussian nature of the
weight space. Therefore, CoINR employs L1 minimization to identify a higher-dimensional sparse
code. Furthermore, based on the weight space observations and the Central Limit Theorem (CLT),
we simplify the encoding and decoding process using a random sensing matrix controlled by a seed.
Subsequently, only the non-zero (NZ) values and their corresponding indices are quantized and
entropy coded.

exhibit sparsity in transformed domains, we hypothesize that this sparsity can be explored within
the MLP’s weights. If we can identify where this sparse nature is hidden within the weight space,
we could achieve further compression on INRs compared to the baselines. However, identifying
this sparse representation within the weights is not straightforward. We believe there are two main
approaches to achieving a sparser representation, each with its own challenges and considerations.

The first approach involves either promoting or enforcing a specified level of sparsity in the weights
during the training of an INR. Promoting sparsity can generally be achieved by incorporating L1
regularization on the model parameters, which encourages the model to set as many weights as pos-
sible to zero, thereby creating a sparse representation. Enforcing a specified level of sparsity can
be achieved through model pruning, where weights deemed insignificant are pruned or eliminated
during the training process. Despite our efforts using these techniques, we observed that L1 regular-
ization results in a higher level of sparsity within the weights but fails to showcase a clear pattern of
sparsity levels for natural images. When it comes to model pruning, we employed both structured
and unstructured pruning of weights. We noted that both methods led to significant performance
degradation for certain data modalities, particularly for occupancy fields. Moreover, only a small
pruning percentages resulted in satisfactory performance for signal representation. For applications
that require a high level of generalization, such as NeRFs, the pruning approach did not generalize
well, indicating its limitations in achieving a balance between sparsity and performance.
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The second approach seeks to uncover the inherent structures within the weights that aid in INR
compression. This involves identifying patterns or regularities that can be exploited to reduce the
dimensionality of the representation without sacrificing performance. We examined this from a
dimensionality reduction perspective; however, the weight space in reduced dimensions did not
reveal clear patterns, even across different natural images. However, we observed that the weight
space of an INR follows a normal distribution for every instance of every data modality. Figure 1
shows the weight distribution of hidden layers of an INR when an image is encoded into it. Our
observations are further confirmed by analysis done in Sitzmann et al. (2020). This suggests that
INRs share a common pattern across different data modalities, showcasing a potential pathway for
a fundamental compression.

Given that each weight vector of an INR exhibits Gaussian behavior, we seek a higher-dimensional
but sparse equivalent through a dictionary learning-based approach. Let us denote w ∈ Rk1 as
a hidden weight vector, A ∈ Rk1×k2 as a dictionary, and x ∈ Rk2 as the corresponding sparse
vector. In search of a sparse representation, according to standard compressed sensing, we can write
w = Ax, where ∥x∥0 < k1. To discover the sparse code x, the best and most efficient choice
is L1 minimization, as L0 minimization iterates through all possible combinations and is therefore
not efficient. However, the problem arises with the sensing matrix, commonly referred to as the
dictionary A. Although we could use either a dictionary learning-based approach for learning basis
functions for the dictionary or a deep learning-based learnable transformation, these approaches
would be time-consuming. Furthermore, a TX needs to transmit the learned dictionary alongside
the obtained sparse codes. Further exploration of the weight space revealed that the dictionary does
not need to be learned or even transmitted.

As we have confirmed, the weights are normally distributed. According to the Central Limit Theo-
rem (CLT), a normally distributed random variable can be produced through a finite linear combi-
nation of any random variables. In summation form, this can be expressed as: wi =

∑k2

j=1 Aijxj ,
where wi is the i-th element of the weight vector w, Aij is the element in the i-th row and j-th
column of the sensing matrix A, and xj is the j-th element of the vector x. To satisfy the CLT, the
number of terms in the summation, which is k2, should be sufficiently large. Therefore, considering
all elements of the weight vector w, this can be compactly written as w = Ax. As we now under-
stand the structure of the sensing matrix, which is a random matrix, the appropriate coefficients of
those random vectors can be learned through the L1 minimization discussed earlier by leveraging
dictionary learning algorithms such as matching pursuit or its variants. Therefore, the optimization
problem can be written as, min ∥x∥1 subject to w = Ax. For convenience, let us denote ∥x∥0 as
s. A further constraint to the above optimization procedure is that when the sparse code x is found,
we need to store not only its non-zero elements but also the corresponding indices. Therefore, the
above L1 minimization is solved with 2s < k1. We do not apply our compression algorithm to the
biases on the INR as the size of bias vectors is very small compared to those of the weight matrices.

Instead of saving k1 floating-point numbers for w, we now only need to save 2s elements: s elements
are floating-point numbers representing the non-zero values in the sparse code, and the remaining
s elements are integers that give the indices of those non-zero values. The indices can often be
represented with 16-bit precision, unlike the non-zero values in the sparse code, which require 32-
bit floating-point precision. At the RX end, x must be converted back to w. This requires the
sensing matrix A, which is random and must be controlled by a seed to reproduce the exact w using
w = Ax. Thus, the receiver only needs x to obtain w.

This process can be viewed as a method of uncovering the inherent sparsity within natural signals, as
represented through the weight space of INRs. As we hypothesized, the ability to condense natural
signals into a dictionary hinges on identifying specific patterns encoded within the weights of INRs.
Once the non-zero elements of the sparse vector are pinpointed, the resulting procedure is virtually
the same across different INR-based baselines. Our method fundamentally achieves compression by
delving into the weight spaces to uncover patterns, a step not typically taken by existing baselines.
A summarization of CoINR is illustrated in figure 2. As can be seen from figure 2, CoINR is only
dependent on the weights of the INR and is applied prior to any quantization or entropy coding
schemes. Therefore, CoINR can be applied to any existing INR compression baselines to improve
their compressibility.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 HOW MUCH FUNDAMENTAL COMPRESSION DOES COINR ACHIEVE COMPARED TO THE
BASELINES?

3.3.1 STANDARD INRS

Consider an INR with l hidden layers, yielding l + 2 total layers. For simplicity, assume k neurons
per hidden layer. If the input dimension is a and the output dimension is b, the total number of
weight parameters is given by Ts = a×k+ l×k2+ b×k. However, CoINR modifies this structure
by reducing the parameters from Ts in the original network to TsCoINR = a×2s+k× l×2s+b×2s,
where s ≪ k. Additionally, unlike COIN++, CoINR does not require transmitting any additional
data to recover the original INR weights.

3.3.2 TINY INRS

Let us define an INR as “tiny” if the number of neurons in a hidden layer, denoted by k, is less
than 50. In such cases, we aim to achieve a sparse representation where 2s < k and ∥x∥0 = s.
However, achieving a sparse representation that satisfies 2s < k is often extremely challenging and
typically does not result in effective compression. To overcome this, we exploit the fact that the
weight matrix connecting the ith layer to the (i + 1)th layer is of dimensions k × k. By vectorizing
this weight matrix, we obtain a vector of dimension k2×1. Given that k2 is significantly larger than
k, we can apply our CoINR procedure directly to the flattened weight matrix. This strategy leads to
a sparser representation, thereby enhancing compression efficiency for tiny INRs.

3.3.3 COIN++

In the COIN++ framework, modulation parameters are stored instead of traditional weights and bi-
ases, under the assumption that the base network parameters can be transmitted beforehand. For
n test images, each segmented into m patches with a latent dimension of size d, COIN++ necessi-
tates the transmission of m × d parameters for reconstructing each image. As the base network in
COIN++ conforms to a standard INR structure, it is amenable to further compression via the CoINR
technique. By implementing CoINR principles on the modulations in COIN++, the parameter trans-
mission requirement per image can be reduced from m × d to just 2s × d, where s ≪ m. As the
size of each test image and the number of images in the test dataset grow, COIN++ would typically
require the transmission of numerous parameters. However, by leveraging CoINR, both the modu-
lations and the base network can be significantly compressed, achieving enhanced compression.

3.4 QUANTIZATION AND ENTROPY CODING

After an INR is trained, its parameters are not immediately saved but are first subject to quantization
(Gray & Neuhoff, 1998). This involves reducing the bitwidths below typical floating-point precision.
Following quantization, the parameters are processed through entropy coding, inour experiments we
utilize Brotli coding (Jones & Jones, 2012; Alakuijala et al., 2018), which allows the compressed
data to be stored or transmitted efficiently. To retrieve the original parameters, the decoder must
reverse the entropy coding and then perform dequantization. In the case of CoINR, the compression
process is intensified by utilizing the sparsity induced in the model parameters by natural signals.
Once the sparse code is established, the parameters are quantized and subjected to entropy coding.
The decoder then reverses the entropy coding and dequantizes the data. Finally, the model parame-
ters are reconstructed by multiplying them with a random Gaussian matrix, which is determined by
a specific seed.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

CoINR, a novel INR compression algorithm, is predicated on the idea that if natural signals are com-
pressible through a dictionary, then INRs should be similarly compressible. This concept underpins
CoINR’s goal to efficiently reduce INR storage requirements while maintaining high fidelity. Our
experiments, conducted using the PyTorch framework following WIRE (Saragadam et al., 2023)
codebase on an NVIDIA RTX A5000 GPU with 24 GB of memory, spanned various data types
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including images, occupancy fields, audio, and neural radiance fields. Image encoding metrics in-
volved file size, bits per pixel (bpp) and Peak Signal-to-Noise Ratio (PSNR). Occupancy fields were
evaluated using file size and Intersection over Union (IoU), and neural radiance fields were assessed
using file size and PSNR. Other than the network configurations mentioned in the paper, for oc-
cupancy field evaluation, we utilized an MLP with 128 hidden neurons, and 3 hidden layers. For
INRIC, we applied the network hyperparameters specified in its paper. In COIN++, we followed
the guidelines in its paper but modified the hidden neuron size to 300. All experiments used Brotli
entropy coding with a 16-bitwidth (65536 levels) uniform quantizer.

4.2 HOW DO WE FIND S ?

We implemented L1 minimization using the Orthogonal Matching Pursuit (OMP) algorithm (Tropp
& Gilbert, 2007). The OMP algorithm requires the pre-determination of s before obtaining x, and it
must adhere to the condition 2s < k1. If 2s is set too low, it results in inaccurate representations of
w within the weight space. Therefore, we incrementally increased s from a low value until 2s = k1
for all KODAK images in the C1 experiment, as outlined in section 4.3. Our findings suggest that
the optimal value of s for successfully reconstructing the weight space does not depend on the
specific image but on the number of neurons in a hidden layer. By adjusting the neuron count, we
identified an optimal s that accurately reconstructs the weight space while satisfying the specified
constraint. Extending these experiments to natural signals outside the KODAK dataset confirmed the
consistency of our results. Consequently, we have included a regression plot in the supplementary
material that details how to determine the optimal s based on the number of neurons.

4.3 IMAGE ENCODING

Representing an image through the weights and biases of a neural network serves as a method of
encoding. For our image encoding task, we utilized the KODAK dataset, which includes 24 natural
RGB images, each measuring 768 × 512 pixels. We conducted five types of experiments, denoted
as Ci, where i ranges from 1 to 5, to demonstrate the effectiveness of our proposed method.

Experiment C1 involved encoding each image in the KODAK dataset using an INR without posi-
tional embedding, by varying the number of neurons in each hidden layer. Experiment C2 mirrored
C1, but with the variation in the number of hidden layers instead. Experiments C3 and C4 im-
plemented the meta-learning approach for INRs proposed in INRIC, without and with positional
embedding for the input layer, respectively. For these meta-learning-based experiments, we used
the first 12 images of the KODAK dataset for meta-learning and the remaining 12 images for fine-
tuning.

Experiment C5 involved the COIN++ framework, testing both with and without patching. When
using patching, we adopted 32 × 32 patches as suggested by COIN++. However, we observed
that without patching, even as the latent modulation dimension increased, the average Peak Signal-
to-Noise Ratio (PSNR) obtained by COIN++ remained nearly constant. For all image encoding
experiments, we used the sinusoidal activation function (see supplementary).

Let us define h and m as the number of hidden layers and the number of neurons per hidden
layer in an INR, respectively. For experiment C1, we configured the INR with settings (h,m) as
(2, 32), (3, 64), (3, 128). Experiment C1 aims to assess the effectiveness of CoINR by varying the
number of hidden neurons. The results, depicted in figure 3, demonstrate how effectively CoINR
identifies the compressibility of the weight space. This is indicated by the bits-per-pixel (bpp) val-
ues, which reflect the size of the model parameters. For example, representing the KODAK dataset
with an average PSNR of 30 dB requires about 3.7 bpp for COIN and 2.0 bpp for INRIC. However,
CoINR significantly reduces the bpp to approximately 1.7 using the same quantizer and entropy
coder. The first configuration in C1 falls under the category of tiny INRs, underscoring the proposed
method’s effectiveness even for compact INRs. As illustrated in figure 3, CoINR achieves the same
level of PSNR as baselines with a lower bpp for any network configuration. This substantial reduc-
tion of bpp across the C1 experiment showcases the efficiency and compactness achieved by CoINR.
From C1, it can be established that greater compressibility of an INR into a dictionary is possible
with an increased number of hidden neurons. Following the conclusions drawn from experiment C1,
experiment C2 was designed to explore the impact of increasing the number of hidden layers on the
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Figure 3: Experiments C1 and C2: Iden-
tifying compressible INR combinations.
The CoINR approach demonstrates that con-
figurations in C1 are more compressible than
those in C2. Furthermore, in both configura-
tions CoINR achieves lower bpp while main-
taining the PSNR values.

effectiveness of CoINR. The configurations tested in
C2 were (h,m) = {(3, 64), (5, 64), (7, 64)}. As il-
lustrated in figure 3, CoINR consistently achieved
PSNR levels comparable to baseline methods, but
with a reduced bpp. Given that C2 maintained a
constant neuron count at 64, the observed devia-
tions in compression between CoINR and INRIC
were less significant than those observed in C1. This
discrepancy can be attributed to the following: an
INR configuration with a higher number of neurons
(e.g., m = 128), even with fewer hidden layers (e.g.,
h = 2), possesses more trainable parameters. Con-
sequently, such a model is capable of learning a more
robust representation of the image compared to con-
figurations with a larger number of layers but fewer
neurons per layer. As a result, the compressible char-
acteristics of the images are more effectively trans-
ferred into the model parameters during the INR
training process. This leads to a more compressible
INR. These findings support the premise that if nat-
ural images can be efficiently compressed into a dictionary, the weight space of INRs can also be
effectively compressed.

Figure 4: Experiments C3, C4, and
C5: Identifying compressible INR com-
binations mnder Meta-Learning. Meta-
learning approaches have been introduced
for INRs to enhance their generalization abil-
ities and achieve faster convergence. When
assessing induced sparsity in the weight
space, CoINR demonstrates a significant
reduction in bpp values while maintaining
nearly the same PSNR performance as the
baselines.

As in previous experiments, each image required
separate training of an INR. Experiments C3 and C4

address this challenge through meta-learning, with
and without positional embedding, respectively. The
configuration for these INRs is given by (h,m) =
{(3, 32), (3, 64), (3, 96), (3, 128)}. For COIN++,
the number of layers was set to 5 with MLP’s hidden
dimension at 300. The latent dimension parameter
(d) varied as follows: d = {16, 32, 64, 96}. Fig-
ure 4 presents the experimental results for C3, C4,
and C5, illustrating significant compression capabil-
ities of the proposed CoINR within a meta-learning
framework. Notably, models using positional em-
bedding generally have more parameters than those
without.

Comparing the performance of INRIC and CoINR
without positional embedding schemes, the initial
INR configuration shows that CoINR exhibits a
lower bpp for the same average PSNR. Generally,
as bpp increases, the representation capacity of the
INR enhances, leading to more robust image repre-
sentation. At higher bpp values, the CoINR graphs
demonstrate a greater deviation from the INRIC
graphs, a phenomenon that can be explained by the
aforementioned logic.

In the case of COIN++, the approach focuses on fine-tuning only the modulations using their pro-
posed meta-learning method. However, since fine-tuning encodes natural signals within these mod-
ulations, they should be compressible via a dictionary. Due to patching, each KODAK test image
results in a d×384 matrix. Our experiments reveal that these modulations encode hidden redundan-
cies in natural signals. For instance, to achieve an average PSNR of approximately 24.2 dB, COIN++
requires more than 1.5 bpp; however, the same PSNR can be achieved with COIN++ using just under
1 bpp by exploiting the hidden sparsity in its modulations through our proposed approach. There-
fore, when a high-capacity model effectively represents a signal, it must encapsulate this sparsity
within its weight and bias spaces. CoINR explores and removes redundancies in these parameters,
retaining only essential information. Figure 5 showcases the decoded images by CoINR alongside
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with the INR based image compressors. Decoded PSNR, BPP, and file size are displayed in the first,
second, and third rows of the text boxes

Figure 5: Results for image encoding experiment. CoINR compresses the INR into a dictionary,
significantly reducing the storage required compared to baseline INR image compressors. The re-
sults demonstrate that the decoded representations undergo a very negligible loss in PSNR, which is
minimal considering the substantial storage space saved.

Figure 6: Results for occupancy fields encoding experiment. The results clearly demonstrate that
CoINR achieves the smallest file size and the highest accuracy metric for every shape in the tested
dataset. The significant compression obtained by our algorithm suggests that occupancy fields, when
represented using an INR, can be more efficiently compressed into a dictionary compared to images.
This may be attributed due to the inherent redundancies present in the occupancy fields.

4.4 OCCUPANCY FIELDS ENCODING

Occupancy fields are represented by binary values, either 1 or 0, where 1 denotes that the signal
lies within a specified region and 0 indicates its absence. Another variant of occupancy volumes
stores not only the presence or absence of a signal but also the color at that location. Typically,
occupancy fields consume more space than other data modalities. However, they can be represented
with higher accuracy and lower storage requirements using INRs. In this experiment, we followed
the sampling procedure described in Saragadam et al. (2023). Occupancy fields can be thought of
as representations of three-dimensional objects, capturing natural signals. Despite following the
sampling procedure, redundancies may exist that are not essential for representing the occupancy
volume. Identifying these redundancies can reduce storage requirements. However, identifying
them in the spatial domain (xyz) requires domain-specific algorithms, as described in section 1.
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Figure 7: Results for NeRF compression: CoINR compresses the radiance field without any loss
in PSNR while significantly reducing storage requirements.

As INRs serve as unified data modality representators, these redundancies must be encapsulated
within its weights space. CoINR fundamentally compresses the INRs into a dictionary regardless
of the data modality; therefore, indeed it is equally applicable to occupancy fields. To validate this
hypothesis for occupancy fields, two experiments were conducted using shapes from the Stanford
shape dataset (Stanford University Computer Graphics Laboratory). Figure 6 showcases the de-
coded CoINR’s representations for ’Thai Statue’(first volume) and ’Lucy’ (fourth volume) datasets
alongside the existing INR-based occupancy compressor. We use the Gaussian activation function
for this task (see supplementary). The first value and second value in each text box represent the
IoU metric and storage requirement, respectively, except for GT.

4.5 NEURAL RADIANCE FIELDS ENCODING

NeRF can be considered a novel view generator when it is trained with a sufficient number of train-
ing views, along with their corresponding positions and directions. Fundamentally, once trained, a
NeRF is an INR. Therefore, the information encoded in its weights for generating novel views can
be compressed into a dictionary. Figure 7 presents the results obtained with the proposed CoINR.
As shown, CoINR achieves more than 50% compression while maintaining the same PSNR. These
results further confirm the applicability of CoINR for compressing INRs across different data modal-
ities. We used the ReLU-PE activation for encoding NeRFs.

4.6 ADDITIONAL MATERIALS

The pseudocode for CoINR, additional results, and ablation studies on finding s are available in the
supplementary material.

5 CONCLUSION

Implicit Neural Representations (INRs) have emerged as a promising framework for unified data
modality representation. Several studies have explored the potential for compressing images, occu-
pancy fields, and audio using INRs. However, none of these methods have investigated whether the
INR itself can be compressed prior to quantization and entropy coding. As natural signals can be
efficiently compressed in bases of transformed domains due to their sparsity—allowing for higher
accuracy and lower storage requirements—we hypothesize that a similar compressible nature must
also exist in the INR once it is trained. With the discovery that weight vectors in the weight space
tend to adhere to a Gaussian distribution, we propose CoINR, which compresses any INR in a dictio-
nary. Furthermore, we demonstrate that this dictionary does not need to be learned but can instead
be generated using a seed. We compare our findings with standard INR compressors for images,
occupancy fields, and neural radiance fields. CoINR achieves fundamental compression for any
INR, independent of other post-processing methods such as quantization and entropy coding, and it
showcases significantly lower storage requirements and higher fidelity across various data modal-
ities. Through our experiments, we observed that the INR can be more compressed when a more
robust representation of the signal is learned. Additionally, some data modalities exhibit greater
compressibility than others. We firmly believe this research will aid other researchers in exploring
more patterns in the weight spaces of INRs and in developing operators and transforms for INR.
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