Accented Speech Recognition With Accent-specific Codebooks

Darshan Prabhu?, Preethi Jyothi’, Sriram Ganapathy?, Vinit Unni

‘Indian Institute of Technology Bombay, Mumbai, India
$Indian Institute of Science, Bangalore, India

{darshanp,pjyothi,vinit}@cse.iitb.ac. int, sriramgeiisc.ac.in®

Abstract

Speech accents pose a significant challenge to
state-of-the-art automatic speech recognition
(ASR) systems. Degradation in performance
across underrepresented accents is a severe de-
terrent to the inclusive adoption of ASR. In
this work, we propose a novel accent adap-
tation approach for end-to-end ASR systems
using cross-attention with a trainable set of
codebooks. These learnable codebooks capture
accent-specific information and are integrated
within the ASR encoder layers. The model is
trained on accented English speech, while the
test data also contained accents which were
not seen during training. On the Mozilla Com-
mon Voice multi-accented dataset, we show
that our proposed approach yields significant
performance gains not only on the seen English
accents (up to 37% relative improvement in
word error rate) but also on the unseen accents
(up to 5% relative improvement in WER). Fur-
ther, we illustrate benefits for a zero-shot trans-
fer setup on the L2Artic dataset. We also com-
pare the performance with other approaches
based on accent adversarial training.

1 Introduction

Accents in speech typically refer to the distinctive
way in which the words are pronounced by diverse
speakers. While a speaker’s accent may be pri-
marily derived from their native language, speech
accents are also influenced by various other fac-
tors related to the geographic location, educational
background, socio-economic and socio-linguistic
factors like race, gender and cultural diversity (Ben-
zeghiba et al., 2007). It is therefore infeasible to
build automatic speech recognition (ASR) systems
which comprehensively cover speech accents dur-
ing training. In such scenarios, novel speech ac-
cents continue to have an adverse effect on ASR
performance (Beringer et al., 1998; Aksénova et al.,
2022). While humans effectively recognize speech
from new and unseen accents (Clarke and Garrett,

2004), ASR systems show substantial degradation
in performance when dealing with new accents that
are unseen during training (Chu et al., 2021).

Prior works attempting to address accent-related
challenges for ASR can be categorized into three
groups: 1) multi-accent training (Huang et al., 2014;
Elfeky et al., 2016), ii) accent-aware training us-
ing accent embeddings (Jain et al., 2018) or adver-
sarial learning (Sun et al., 2018), and iii) accent
adaptation using supervised (Rao and Sak, 2017;
Winata et al., 2020) or unsupervised techniques (Tu-
ran et al., 2020). While partial success has been
achieved using most of these approaches, the devel-
opment of robust speech recognition systems that
are invariant to accent differences in training and
test remains a challenging problem.

In this work, we propose a new codebook based
technique for accent adaptation of state-of-the-
art Conformer-based end-to-end (E2E) ASR mod-
els (Gulati et al., 2020). For each of the accents
observed in the training data, we define a codebook
with a predefined number of randomly-initialized
vectors. These accent codes are integrated with
the self-attended representations in each encoder
layer via the cross-attention mechanism, similar to
the perceiver framework (Jaegle et al., 2021). The
ASR model is trained on multi-accented data with
standard end-to-end (E2E) ASR objectives. The
codes capture accent-specific information as the
training progresses. During inference, we propose
a beam-search decoding algorithm that searches
over a combined set of hypotheses obtained by us-
ing each set of accent-specific codes (once for each
seen accent) with the trained ASR model. On the
Mozilla Common Voice (MCV) corpus, we observe
significant improvements on both seen and new ac-
cents at test-time compared to the baseline and
existing supervised accent-adaptation techniques.

Our main contributions are:

* We propose a new accent adaptation technique
for Conformer-based end-to-end ASR models

using cross-attention over a set of learnable
codebooks. Our technique comprises learn-
ing accent-specific codes during training and
a new beam-search decoding algorithm to per-
form an optimized combination of the codes
from the seen accents. We demonstrate signif-
icant performance improvements on both seen
and unseen accents over competitive baselines
on the MCV dataset.

* Even on a zero-shot setting involving a new
accented evaluation set, L2-Arctic (Zhao et al.,
2018), we show significant improvements us-
ing our codebooks trained using MCV.

* We publicly release our train/development/test
splits spanning different seen and unseen ac-
cents in the MCV corpus. Reproducible splits
on MCYV have been entirely missing in prior
work and we hope this will facilitate fair
comparisons across existing and new accent-
adaptation techniques.'

2 Related Work

Traditional cascaded ASR systems (Garcia-Moral
et al., 2007) handled accents by either modify-
ing the pronunciation dictionary (Humphries and
Woodland, 1997; Weninger et al., 2019) or modi-
fying the acoustic model (Fraga-Silva et al., 2014;
Yoo et al., 2019). More recent work on accented
ASR has focused on building end-to-end accent-
robust ASR models. Towards this, there are two
sets of prior works: Accent-agnostic approaches
and Accent-aware approaches.

Accent-agnostic ASR. Such approaches force
the model to disregard the accent information
present in the speech and focus only on the under-
lying content. Prior work based on this approach
uses adversarial training (Ganin et al., 2015) or sim-
ilarity losses. Using domain adversarial training,
with the discriminator being an accent classifier,
has shown significant improvements over standard
ASR models (Sun et al., 2018). Pre-training the
accent classifier (Das et al., 2021b) and clustering-
based accent relabelling (Hu et al., 2020) have also
led to further performance improvements. The use
of generative adversarial networks for this task has
also been explored (Chen et al., 2019). Rather than
being explicitly domain adversarial, other accent

'The MCV data splits and codebase are available at:
https://github.com/csalt-research/accented-codebooks-asr.

agnostic approaches use cosine losses (Unni et al.,
2020) or contrastive losses (Khosla et al., 2020;
Han et al., 2021) to make the model accent neutral.
These losses force the model to output similar rep-
resentations for inputs with the same underlying
transcript.

Accent-aware ASR. Accent-aware approaches
feed the model additional information about the
accent of the input speech. Early work in this
category focused on using the multi-task learning
(MTL) paradigm (Zheng et al., 2015; Jain et al.,
2018; Das et al., 2021a) that jointly trains accent-
specific auxiliary tasks with ASR. Different types
of embeddings like i-vectors (Saon et al., 2013;
Chen et al., 2015), dialect symbols (Li et al., 2017),
embeddings extracted from TDNN models (Jain
et al., 2018) or from wav2vec2 models trained as
classifier (Li et al., 2021a; Deng et al., 2021) have
also been explored for accented ASR. Many simple
ways of fusing accent information with the input
speech have been previously investigated. This fu-
sion can either be a sum (Jain et al., 2018; Viglino
etal., 2019; Lietal., 2021a), a weighted sum (Deng
et al., 2021) or a concatenation (Li et al., 2021a,b).
Few works also explore the possibility of merg-
ing both accent-aware and accent-agnostic tech-
niques within the same model (Zhou et al., 2023).
Our work also proposes an accent-aware approach.
However, unlike prior work that focuses on pre-
fetched accent information, we learn accent infor-
mation embedded within codebooks during train-
ing. Additionally, instead of simply concatenating
input speech with accent embeddings, we propose
a learned fusion of accent information with speech
representations using cross-attention. Prior work
by Deng et al. (2021) demonstrates fine-grained
integration of accent information. However, our
proposed framework integrates accent information
as part of end-to-end training resulting in robust
adaptation.

3 Methodology

Base model. Our base architecture uses the stan-
dard joint CTC-Attention framework (Kim et al.,
2016) with an encoder (ENC), a decoder (DEC-
ATT), and a Connectionist Temporal Classification
(CTC) (Graves et al., 2006) module (DEC-CTC).
For a given speech input x = {x1,..., 27}, the
encoder ENC generates contextualized representa-
tions h = ENC(x) = {hq,..., hr}. The encoder
representations h are further used by DEC-ATT

https://github.com/csalt-research/accented-codebooks-asr

CTC Loss Attention Loss

' ! ho
1 L .
| | ¢
‘: ‘: i
i
CTC Decoder Add & Norm - Accent
+ T H Specific
!
ik | Linear layer Codebooks
,,,,, S—
i £ {— Architecture
i :
Encoder T Add & Norm---
Layer 12 3 :
‘i ; Convolution el e €3--ci 7
Encoder : ''''''''''
N Q :
Layer e ~Add & Norm
Cross
i Attention
Encoder d
Layer 2 i VA y
i :
! ;
Encoder Add & Norm
Layer 1 1
fho ser | {HHH-HIHHE-H
e — Attention dug U
Convolution ; ¥
| Sub-sampling | Sl l
- '} ,,,,,,,,,,,, \ Code ctor
e T T
i i
{ct, ..., M} Fbank Feats h° A

Figure 1: Overview of our proposed architecture inte-
grating accent codebooks into encoder layers via cross-
attention. A represents the accent label for a training
instance and {c', ¢?,...cM} is the collection of accent-
specific codebooks .

and DEC-CTC to jointly predict the output token
sequence y = {y1,...,¥;,...,yu}. DEC-ATT is
an autoregressive decoder that maximizes the con-
ditional likelihood of producing an output token y;
given h and the previous labels y1,...,y;-1. In
contrast, DEC-CTC uses CTC to maximize the like-
lihood of y given h by marginalizing over all align-
ments. The encoder is implemented using Con-
former layers (Gulati et al., 2020) and the decoder
is implemented using Transformer layers (Vaswani
etal., 2017).

For our proposed technique, we introduce the
following three essential modifications to the base
architecture: i) Constructing codebooks that can
encode accent-specific information (Section 3.1).
ii) Enabling fine-grained integration of accent infor-
mation with a Conformer-based ASR model using
cross-attention (Section 3.2). iii) Modifying beam
search decoding for inference in the absence of
accent labels at test-time (Section 3.3).

3.1 Codebook Construction

Consider M seen accents, which are observed dur-
ing training. We generate M codebooks, one per
accent, where the i codebook learns latent codes
specific to the i™ accent. During training, we use a

deterministic gating scheme to select the codebook
specific to the underlying accent of the training ex-
ample. To support the selection of a single accent
codebook during inference, when the accent labels
for the test utterances are unknown, we modify the
beam-search decoder to search across all seen ac-
cents. We found such a hard gating to be critical
to achieve ASR performance improvements. In
Section 6, we compare the proposed model with a
soft gating mechanism that works with a standard
beam-search decoding.

Each codebook contains P d-dimensional vec-
tors that we refer to as codebook entries. The en-
tries belonging to the i codebook are generated
as:

c={c,...,
where Embedding is a standard embedding layer.
In the following sections, we use ¢ = {cy,...,cp}

to refer to the codebook corresponding to the un-
derlying accent label for a given training example.

¢} = Embedding([1,2,..., P])

3.2 Encoder with Accent Codebooks

Figure 1 illustrates the overall architecture with
the proposed integration of a codebook into each
encoder layer via a cross-attention sub-layer. We
will refer to this new accent-aware encoder mod-
ule as ENc, = {ENc.,... ENcE} that consists
of a stack of L identical Conformer layers. The
i™ encoder layer ENC!, takes both h*~! and c as
inputs, and produces h’ as output. Codebook c is
shared across all the encoder layers. All the vectors
involved in the computation of attention scores are
d = 256 dimensional.

A cross-attention sub-layer integrates accent in-
formation from codebook c into each encoder layer.
This sub-layer takes both self-attended contextual-
ized representations H and the codebook c as its in-
puts and generates codebook-specific information
relevant to the speech frames of this contextual rep-
resentation. More formally, the operations within
encoder layer ENC!, can be written as follows:

MultiHead Attnge(h*~!, h*~1 h'~1)
L)
MultiHead Attne, (H, ¢, c)
NormLayer, (H + C)
Convolution(C)
NormLayer,,,(C + J)
' = Linearpy (J)
NormLayer; ...(J + h?)

NormLayer.¢(h*~

1
H
C
C
J
J
h'
h' =

where the equations colored in purple highlight
our changes to the standard Conformer encoder
layer. The above equations can be viewed as a
stack of four independent blocks, each having a
residual connection and being separated by layer
normalization.

MultiHeadAttn(Q, K, V') refers to a standard
multi-head attention module (Vaswani et al., 2017)
with), K and V denoting queries, keys and values
respectively. MultiHead Attngy is a self-attention
module where each frame of h'~! attends to every
other frame, thus adding contextual information.
Convolution is a stack of three convolution lay-
ers: a depth-wise convolution sandwiched between
two point-wise convolutions, each having a single
stride. The input and output of the Convolution
block are d-dimensional vectors. A position-wise
feed-forward layer Linearp,, is made up of two lin-
ear transformations with a ReL.U activation. This
takes a d-dimensional output from the convolution
module as input and produces a d-dimensional out-
put vector with a hidden layer of 2048 dimensions.

MultiHeadAttng, (H, c,c) is our proposed
cross-attention module over codebook entries,
where each frame of input H attends to all the en-
tries in the codebook c to generate attention scores.
These attention scores are further used to gener-
ate frame-relevant information C as a weighted
average of codebook entries. We elaborate further
on the attention computation for a single attention
head in C.2 Let H, refer to the 4™ frame in H.
The attention distribution {«;1,...a;p}, where
v . 1s the attention probability given by H; to the
k™ codebook entry, is computed as:

{oj, 050, ... a5p} =
(WiH;)(Wic)" <
softmax : W c
(Vd ()

where W{, W/ and W} € R¥ are learned pro-
jection matrices. These attention scores are further
used to generate the weighted average of codebook

entries in C:
P
Cj=> aji-c
k=1

The cross-attention sublayer is further modified
with a residual connection and layer normalization
to generate the final codebook-infused representa-
tions in C.

’In our experiments, self-attention uses four attention
heads for the encoder and cross-attention with the codebook
uses a single attention head.

Algorithm 1: Inference algorithm that per-
forms joint beam-search over all accents.
Our modifications to the standard beam
search (Meister et al., 2020) are highlighted .
Each beam entry is a triplet (s, y, A) where A
refers to a seen accent. scorey4() is a modified
scoring function which uses the codebook for
accent A during the forward pass.

Input : x: speech input

V: list of vocabulary tokens
Nmax: Maximum hypothesis length
k: maximum beam width
y: output prediction so far
score4(.,.,.): scoring function

1 Byp= {(0,<sos>1)...,(0,<sos> M)}

2 for t € {1,...,npax — 1} do

3 B+ ¢

4 | for (s,y,A) €Bi_ido

5 if y.last() == <eos> then

6 B.add((s,y, A))

7 continue

8 for v € V do

9 s < scorey(x,yov,A)
10 B.add((s,y o v, A))

1 B, = B.top(k)

12 return B

3.3 Modified Beam-Search Algorithm

Since we do not have access to accent labels at
test-time, we rely on either using a classifier to
predict the accent or modifying beam-search to
accommodate the prediction streams generated by
all seen accent choices. Due to a large imbalance in
the accent distribution during training with certain
seen accents dominating the training set, we find
the classifier to be ineffective during inference. We
elaborate on this further in Section 6.

Figure 1 shows our inference algorithm that per-
forms a joint beam search over all the seen accents.
Each beam entry is a triplet that expands each hy-
pothesis using each seen accent. Scores for each
seen accent are computed using a forward pass
through our ASR model by invoking the codebook
specific to the accent. The beam width threshold &
is then applied to expanded predictions across all
seen accents.

4 Experimental Setup

4.1 Datasets

All our experiments are conducted on the
MCV_ACCENT dataset extracted from the “vali-
dated" split of the Mozilla Common Voice English
(en) corpus (Ardila et al., 2019). Overall, 14 En-
glish accents present in MCV_ACCENT are divided
into two groups of seen and unseen accents. Table 1
lists the accents belonging to each of these groups.

Seen Accents Unseen Accents

Australia (AUS) Africa (AFR) Malaysia (MAL)

Canada (CAN) New (NWZ) Hong (HKG)
Zealand Kong

England (GBR) Philippines (PHL) India (IND)

Scotland (SCT) Singapore (SGP) Ireland (IRL)

usS (USA) Wales (WLS)

Table 1: List of 5 seen and 9 unseen accents in

MCV_ACCENT corpus.

We create train, dev, and test splits that are
speaker-disjoint. We construct two train sets,
MCV_ACCENT-100 and MCV_ACCENT-600, com-
prising approximately 100 hours and 620 hours
of labeled accented speech, respectively. Since
MCV_ACCENT consists of many utterances that
correspond to the same underlying text prompts,
a careful division into dev/test sets that are dis-
joint in transcripts from the train set was performed.
We train and validate the ASR models only on the
seen accents, while the test data consists of both
seen and unseen accents. The detailed statistics
of our datasets are given in Table 2. For a quick
turnaround, most of our experiments were con-
ducted on MCV_ACCENT-100. For experiments in
Section 5.3, we use the 620-hour MCV_ACCENT-
600. All the data splits mentioned above are avail-
able in our codebase, which should enable direct
comparisons across accent adaptation techniques.
More details about the construction of the datasets
are provided in Appendix A.

4.2 Models and Implementation Details

We use the ESPnet toolkit (Watanabe et al., 2018)
for all our ASR experiments. As is standard prac-
tice, we further add 3-way speed perturbation to
our dataset before training. We use the default con-
figurations specified in the train_conformer.yaml
file provided in the ESPnet toolkit’ to train a
Conformer model comprising 12 encoder layers

3h'ctps ://tinyurl.com/2wexthds

. Train Dev Test

Accent (in hours) . .

(in hours) | (in hours)
MA-100 | MA-600

Australia 6.95 45.36 4.33 0.46
Canada 6.79 41.13 1.16 1.21
England 19.51 119.9 3.22 1.65
Scotland 2.69 16.21 0.23 0.16
Us 64.12 400.1 8.32 4.87
Africa - - 1.71
Hongkong - - 0.52
India - - 0.58
Ireland - - 1.94
Malaysia - - 0.39
Newzealand - - 2.11
Philippines - - 0.90
Singapore - - 0.64
Wales - - 0.27

Table 2: Data splits for experiments. MA-100 and
MA-600 refers to datasets MCV_ACCENT-100 and
MCV_ACCENT-600 datasets respectively.

and 6 decoder layers using joint CTC-Attention
loss (Kim et al., 2016). We use four attention
heads to attend over 256-dimensional tensors. The
position-wise linear layer operates with 2048 di-
mensions. We train the model for 50 epochs using
80-dimensional filter-bank features with pitch. In
all our experiments, we apply a stochastic depth
rate of 0.3 which we found to yield an absolute
2% WER improvement, compared to a baseline
system without this regularization enabled. Dur-
ing inference, we use a two-layer RNN language
model (Mikolov et al., 2010) trained for 20 epochs
with a batch size of 64. We conducted all our ex-
periments on NVIDIA RTX A6000 GPUs.

5 Experiments and Results

Table 3 shows word error rates (WERs) compar-
ing our best system (codebook attend (CA) sys-
tem) with five approaches: 1. Transformer base-
line (Dong et al., 2018). 2. Conformer baseline (Gu-
lati et al., 2020). 3. Adding i-vector features (Chen
et al., 2015)* to the filterbank features, as input
to the Conformer baseline. 4. Conformer jointly
trained with an accent classifier using multi-task
learning (Jicheng et al., 2021). 5. Conformer with
Domain Adversarial Training (DAT) (Das et al.,
2021b), with an accent classifier at the 10" encoder
layer.

*Every frame in i-vectors represents a second. Since the
input filterbank features span 25msec, we repeat the same
i-vector frame for four consecutive feature frames. Adding, as
opposed to concatenating, the i-vector frames was found to
perform better.

https://tinyurl.com/2wexthds

Method Aggregated Seen Accents Unseen Accents

All Seen Unseen | AUS CAN UK SCT Us AFR HKG IND IRL MAL NWZ PHL SGP WLS
Trans. (Dong et al., 2018) 22.7 173 280 18.1 178 197 185 163 | 259 320 354 253 362 238 315 388 210
Conf. (Gulati et al., 2020) 18.9 140 237 13.8 150 157 134 133 | 215 272 294 214 322 199 261 347 179
I-vector (Chen et al., 2015) 18.9 14.1 23.6 139 150 161 146 133 | 21.7 272 295 212 317 193 272 338 180
MTL (Jicheng et al., 2021) 18.9 14.1 23.7 147 151 16.1 137 132 | 21.8 281 291 215 330 194 265 342 181
DAT (Das et al., 2021b) 18.7 140 234 133 153 157 155 131 | 211 270 295 211 322 192 260 344 179
CA 1821 | 13.6 229 115 148 149 97 131 21.0 257 291 207 309 185 258 337 179

Table 3: Comparison of the performance (WER %) of our architecture (codebook attend (CA)) with baseline and
other techniques on the MCV-ACCENT-100 dataset. Numbers in bold denote the best across baselines, and the

green highlighting

denotes the best WER across all experiments. Ties are broken using overall WER. CA:

Codebook attend - cross-attention applied at all layers with 50 entries in each learnable codebook. } indicates
statistically significant results compared to DAT (at p <0.001 using MAPSSWE test (Gillick and Cox, 1989)).

From Table 3, we observe that the Conformer
baseline performs significantly better than the
Transformer baseline. Adding i-vectors and multi-
task training with an auxiliary accent classifier ob-
jective perform equally well and are comparable
to the Conformer baseline, while using DAT im-
proves over the Conformer baseline. Our system
significantly outperforms DAT (at p < 0.001 us-
ing the MAPSSWE test (Gillick and Cox, 1989))
and achieves the lowest WERs across all the seen
and unseen accents. We use 50 codebook entries
for each accent and incorporate accent codebooks
into each of the 12 encoder layers. Unless speci-
fied otherwise, we will use this configuration in all
subsequent experiments. Further ablations of these
choices will be detailed in Section 5.5.

5.1 Zero-shot Transfer

Accents
Method All

ARA HIN KOR MAN SPA VIA
Conformer | 33.3 | 304 304 269 379 303 435
I-vector 33.6 | 31.0 312 272 38.0 304 439
MTL 334 | 304 306 269 387 30.1 437
DAT 33,5 | 30.7 30.8 26.8 383 30.1 439
CA 32.67 | 29.5 304 262 371 293 428

Table 4: Comparison of the zero-shot performance
(WER %) of our architecture with other techniques on
L2Arctic dataset. T indicates a statistically significant
improvement (p <0.001 using MAPSSWE test) using
codebook attend (CA) w.r.t. the Conformer baseline.

To further validate the efficacy of our proposed
approach using accent-specific codebooks, we per-
form zero-shot evaluations on the L2Arctic dataset.
We note here that we do not use any L2Arctic
data for finetuning; our ASR model is trained on
MCV_ACCENT-100. Such a zero-shot evaluation
helps ascertain whether our codebooks transfer
well across datasets. The L2Arctic dataset (Zhao
et al., 2018) comprises English utterances span-

ning six non-native English accents namely Ara-
bic (ARA), Hindi (HIN), Korean (KOR), Mandarin
(MAN), Spanish (SPA), and Vietnamese (VIA). Ta-
ble 4 shows WERs achieved by our system in
comparison to the baseline and other techniques.
Our proposed method significantly outperforms all
these approaches on every single accent (p < 0.001
using the MAPSSWE test (Gillick and Cox, 1989)).

5.2 Effect of Training Data Size

Method Overall | Seen | Unseen
Conf. (Gulati et al., 2020) 9.75 6.04 13.46
I-vector (Chen et al., 2015) 10.05 6.40 13.69
MTL (Jicheng et al., 2021) 10.02 6.33 13.70
DAT (Das et al., 2021b) 9.73 6.12 13.33
CArcq,....12)(P =50) 9.63 6.22 13.03
CALcq,....12)(P = 200) 9.59 6.20 12.98
CALcq,...,12)(P = 500) 9.55 6.19 12.92
Table 5: Comparison of the performance (WER

%) of our approach with other methodologies on
MCV_ACCENT-600 dataset.

Table 5 compares our proposed system with DAT
and Conformer on the 600-hour MCV_ACCENT
dataset. Compared to the Conformer baseline and
the DAT, the proposed CA approach shows a steady
improvement over unseen accents, while resulting
in a minor drop in performance on the seen accents.

5.3 Effect of Number of Parameters

Method # of params | Overall | Seen | Unseen
Conf. 43M 18.87 14.05 23.67
Conf. w/ T encoder units 46M 18.89 14.02 23.74
Conf. w/ 1 attention dim 46M 18.77 14.02 23.51
CALcq,...12) (P = 50) 46M 18.22 13.57 | 22.86

Table 6: Comparison of the performance (WER %) of
our approach with parameter-equivalent variants of the
Conformer baseline on MCV_ACCENT-100.

To discount the possibility that improvements

using our proposed model could be attributed to an
increase in the number of parameters, in Table 6,
we compare our proposed system with multiple
variants of the baseline Conformer model (referred
to as Conf. in Table 3) where parameters are in-
creased to be commensurate with our proposed
model by either (1) Increasing the number of en-
coder units (from 2048 — 2320) or (2) Increas-
ing the dimension used for attention computation
(from 256 — 272). We observe a slight improve-
ment over the standard baseline when the attention
dimension is increased. However, compared to all
these baselines, our proposed model still shows a
statistically significant improvement at p <0.001.

5.4 Balanced versus Imbalanced Dataset

Method Overall | Seen | Unseen
Conformer 19.30 14.73 23.86
CAreq,...,12)(P = 50) 18.88 14.61 23.13

Table 7: Comparison of the performance (WER %) of
our approach with Conformer baseline on an accent
balanced MCV_ACCENT-100 dataset.

To check the effectiveness of our approach on
a balanced dataset, in Table 7, we compare our
proposed system with the Conformer baseline on
a 100-hour accent-balanced data split. Even on
such a balanced dataset, our architecture shows a
statistically significant improvement (at p=0.005)
compared to the baseline.

5.5 Ablation Studies

We present two ablation analyses examining the
effect of changing the number of accent-specific
codebook entries (P) and the effect of applying
cross-attention at different encoder layers.

The first five rows in Table 8 refer to the addi-
tion of codebooks to all encoder layers via cross-
attention with varying accent-specific codebook
sizes (P) ranging from 25 to 500. As P increases,
the experiments show improved performance on
seen accents but degrades on the unseen accents,
indicating that the codebooks begin to overfit to
the seen accents. Our best-performing system with
P = 50 performs well on seen accents while also
generalizing to the unseen accents. As expected,
using lower-capacity codebooks (P = 25) shows
performance degradation.

The next five rows in Table 8 refer to codebooks
with cross-attention introduced at varying encoder
layers. The number of codebook entries is fixed at

Method Overall | Seen | Unseen
CArcq,...12)(P = 25) 18.33 13.76 | 22.89
CALcq,...12)(P = 50) 18.22 13.57 22.86
CALcq,...12)(P = 100) 18.36 13.85 22.86
CALcq,...12)(P = 200) 18.41 13.69 23.12
CALcq,...12)(P = 500) 18.39 13.68 23.09
CArcq,...q)(P = 50) 18.30 13.95 22.64
CArcq,...8)(P = 50) 18.31 13.86 22.75
CALco,...,12)(P = 50) 18.92 14.24 23.59
CALces,....12)(P =50) 18.45 13.84 23.05
CArcq,...12)(Pana = 50) | 18.30 13.65 | 2295

Table 8: Comparison of the performance (WER %) of
different variants of our architecture. CApc;,... 5 (P =
k): Codebook attention applied at all layers
from ¢ to j with k£ entries per accent codebook.
CALc(,....j)(Prana = k): Similar to the previous setup,
but with codebooks frozen during training. Accent-wise
WER is shown in Appendix B and a few select examples
are highlighted in Appendix C.

50. Since accent effects can be largely attributed to
acoustic differences, we see that the early encoder
layers closer to the speech inputs benefit most from
the codebooks. Adding codebooks only to the last
four or eight encoder layers is not beneficial.

Randomly initialized codebooks were observed
to be as useful as learnable codebooks for self-
supervised representation learning in Chiu et al.
(2022). Motivated by this result, we experiment
with randomly-initialized accent-specific code-
books that are not learned during training. The last
row of Table 8 shows that random codebooks only
cause a slight degradation in performance com-
pared to the best performing system, echoing the
observations in Chiu et al. (2022).

5.6 Inference with a Single Accent

To understand the effectiveness of accent-specific
codebooks, we conduct five experiments by com-
mitting to a single seen accent during inference.
That is, we decode all the test utterances using a
fixed accent label. Table 9 shows results from in-
ferring with a single accent across both seen and
unseen accents. For the seen accents, the diago-
nal contains the lowest WERs indicating that the
information learned in our codebooks benefits the
accented samples. Furthermore, similar accents,
from geographically-close regions, benefit each
other. The New Zealand accented English speech
achieves the best WERs using Australian accent
specific codebooks, Hong Kong, Indian, Philip-
pines and Singapore accented test utterances prefer

Seen Accents Unseen Accents

Accent used
AUS CAN UK SCT Us AFR HKG IND IRL MAL NWZ PHL SGP WLS
Australia 11,5 195 17.0 18.1 174 | 220 29.8 325 243 337 18.7 30.1 378 21.1
Canada 20.5 147 20.0 15.7 135 | 245 274 296 214 327 257 266 354 218
England 13.8 17.7 150 144 162 215 270 299 220 323 21.1 27.1 34.8 18.0
Scotland 20.7 17.8 19.1 10.2 164 | 244 282 335 226 344 257 290 366 213
us 20.2 147 194 155 13.2 | 234 270 281 21.7 324 247 258 343 222

Table 9: Comparison of the performances (WER%) of inferences done using fixed accent labels.

US accented codebooks, and Wales accent achieves
its best results using England-specific codebooks.

The WER results achieved by our best-
performing system in Table 3 are much lower than
the best WER results achieved in these single-
accent experiments. This indicates that one cannot
directly map an unseen accent to an appropriate
seen accent and therefore, making this decision in-
dependently for each utterance (as we propose to
do in the joint beam search) is crucial.

5.7 Beam-Search Decoding Variants

All the results reported thus far use a joint beam
search decoding. Table 10 shows a comparison
of our proposed joint beam search (elaborated in
Section 3.3) with other beam-search variants incur-
ring varying inference overheads. By in Table 10

Method All Seen | Unseen | Inference Time
Bo: Standard beam search 18.87 | 14.05 23.67 1.0
Bi: M full beam searches 18.10 | 1348 | 22.71 5.02
Ba: M split beam searches | 18.30 | 13.61 22.97 1.14
Bs: Joint beam search 18.22 | 13.57 | 22.86 1.16

Table 10: WER (%) of various inference algorithms
described in section 5.7 on MCV_ACCENT-100 setup.
Inference time gives a relative comparison of the time
taken by each decoding variant with the standard beam
search as the reference.

refers to a standard beam-search decoding over the
Conformer baseline with a beam width of k. The
setting B; and B refer to running beam-search
M times, once for each seen accent and picking
the best-scoring hypothesis among all predictions.
For B; setting, we use a beam width of k for each
seen accent. Naturally, this incurs a large decoding
overhead with a factor of M increase in inference
time and changes the effective beam width to M k.
In the By setting, we divide the beam width into
M parts, each occupied by a specific accent, thus
making the effective beam width k/M. The setting
B, performs the best, but significantly increases
inference overhead. The B, setting is efficient but
under-performs due to all accents being given an

Codebooks

AUS CAN GBR scT us
AUS 189 34 92 56 43
CAN 113 226 128 234 201
UK 317 199 437 363 174
sr 7 6 2 o
us 595 1015 518 1151 1016
AFR 340 160 264 282 167

0

g HKG 66 59 80 116 88

5

S IND 86 93 99 110 104

i
IRL 229 283 262 405 244
MAL 60 32 49 56 65
NWZ 659 156 342 282 1