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Abstract

Speech accents pose a significant challenge to
state-of-the-art automatic speech recognition
(ASR) systems. Degradation in performance
across underrepresented accents is a severe de-
terrent to the inclusive adoption of ASR. In
this work, we propose a novel accent adap-
tation approach for end-to-end ASR systems
using cross-attention with a trainable set of
codebooks. These learnable codebooks capture
accent-specific information and are integrated
within the ASR encoder layers. The model is
trained on accented English speech, while the
test data also contained accents which were
not seen during training. On the Mozilla Com-
mon Voice multi-accented dataset, we show
that our proposed approach yields significant
performance gains not only on the seen English
accents (up to 37% relative improvement in
word error rate) but also on the unseen accents
(up to 5% relative improvement in WER). Fur-
ther, we illustrate benefits for a zero-shot trans-
fer setup on the L2Artic dataset. We also com-
pare the performance with other approaches
based on accent adversarial training.

1 Introduction

Accents in speech typically refer to the distinctive
way in which the words are pronounced by diverse
speakers. While a speaker’s accent may be pri-
marily derived from their native language, speech
accents are also influenced by various other fac-
tors related to the geographic location, educational
background, socio-economic and socio-linguistic
factors like race, gender and cultural diversity (Ben-
zeghiba et al., 2007). It is therefore infeasible to
build automatic speech recognition (ASR) systems
which comprehensively cover speech accents dur-
ing training. In such scenarios, novel speech ac-
cents continue to have an adverse effect on ASR
performance (Beringer et al., 1998; Aksënova et al.,
2022). While humans effectively recognize speech
from new and unseen accents (Clarke and Garrett,

2004), ASR systems show substantial degradation
in performance when dealing with new accents that
are unseen during training (Chu et al., 2021).

Prior works attempting to address accent-related
challenges for ASR can be categorized into three
groups: i) multi-accent training (Huang et al., 2014;
Elfeky et al., 2016), ii) accent-aware training us-
ing accent embeddings (Jain et al., 2018) or adver-
sarial learning (Sun et al., 2018), and iii) accent
adaptation using supervised (Rao and Sak, 2017;
Winata et al., 2020) or unsupervised techniques (Tu-
ran et al., 2020). While partial success has been
achieved using most of these approaches, the devel-
opment of robust speech recognition systems that
are invariant to accent differences in training and
test remains a challenging problem.

In this work, we propose a new codebook based
technique for accent adaptation of state-of-the-
art Conformer-based end-to-end (E2E) ASR mod-
els (Gulati et al., 2020). For each of the accents
observed in the training data, we define a codebook
with a predefined number of randomly-initialized
vectors. These accent codes are integrated with
the self-attended representations in each encoder
layer via the cross-attention mechanism, similar to
the perceiver framework (Jaegle et al., 2021). The
ASR model is trained on multi-accented data with
standard end-to-end (E2E) ASR objectives. The
codes capture accent-specific information as the
training progresses. During inference, we propose
a beam-search decoding algorithm that searches
over a combined set of hypotheses obtained by us-
ing each set of accent-specific codes (once for each
seen accent) with the trained ASR model. On the
Mozilla Common Voice (MCV) corpus, we observe
significant improvements on both seen and new ac-
cents at test-time compared to the baseline and
existing supervised accent-adaptation techniques.

Our main contributions are:

• We propose a new accent adaptation technique
for Conformer-based end-to-end ASR models



using cross-attention over a set of learnable
codebooks. Our technique comprises learn-
ing accent-specific codes during training and
a new beam-search decoding algorithm to per-
form an optimized combination of the codes
from the seen accents. We demonstrate signif-
icant performance improvements on both seen
and unseen accents over competitive baselines
on the MCV dataset.

• Even on a zero-shot setting involving a new
accented evaluation set, L2-Arctic (Zhao et al.,
2018), we show significant improvements us-
ing our codebooks trained using MCV.

• We publicly release our train/development/test
splits spanning different seen and unseen ac-
cents in the MCV corpus. Reproducible splits
on MCV have been entirely missing in prior
work and we hope this will facilitate fair
comparisons across existing and new accent-
adaptation techniques.1

2 Related Work

Traditional cascaded ASR systems (García-Moral
et al., 2007) handled accents by either modify-
ing the pronunciation dictionary (Humphries and
Woodland, 1997; Weninger et al., 2019) or modi-
fying the acoustic model (Fraga-Silva et al., 2014;
Yoo et al., 2019). More recent work on accented
ASR has focused on building end-to-end accent-
robust ASR models. Towards this, there are two
sets of prior works: Accent-agnostic approaches
and Accent-aware approaches.

Accent-agnostic ASR. Such approaches force
the model to disregard the accent information
present in the speech and focus only on the under-
lying content. Prior work based on this approach
uses adversarial training (Ganin et al., 2015) or sim-
ilarity losses. Using domain adversarial training,
with the discriminator being an accent classifier,
has shown significant improvements over standard
ASR models (Sun et al., 2018). Pre-training the
accent classifier (Das et al., 2021b) and clustering-
based accent relabelling (Hu et al., 2020) have also
led to further performance improvements. The use
of generative adversarial networks for this task has
also been explored (Chen et al., 2019). Rather than
being explicitly domain adversarial, other accent

1The MCV data splits and codebase are available at:
https://github.com/csalt-research/accented-codebooks-asr.

agnostic approaches use cosine losses (Unni et al.,
2020) or contrastive losses (Khosla et al., 2020;
Han et al., 2021) to make the model accent neutral.
These losses force the model to output similar rep-
resentations for inputs with the same underlying
transcript.

Accent-aware ASR. Accent-aware approaches
feed the model additional information about the
accent of the input speech. Early work in this
category focused on using the multi-task learning
(MTL) paradigm (Zheng et al., 2015; Jain et al.,
2018; Das et al., 2021a) that jointly trains accent-
specific auxiliary tasks with ASR. Different types
of embeddings like i-vectors (Saon et al., 2013;
Chen et al., 2015), dialect symbols (Li et al., 2017),
embeddings extracted from TDNN models (Jain
et al., 2018) or from wav2vec2 models trained as
classifier (Li et al., 2021a; Deng et al., 2021) have
also been explored for accented ASR. Many simple
ways of fusing accent information with the input
speech have been previously investigated. This fu-
sion can either be a sum (Jain et al., 2018; Viglino
et al., 2019; Li et al., 2021a), a weighted sum (Deng
et al., 2021) or a concatenation (Li et al., 2021a,b).
Few works also explore the possibility of merg-
ing both accent-aware and accent-agnostic tech-
niques within the same model (Zhou et al., 2023).
Our work also proposes an accent-aware approach.
However, unlike prior work that focuses on pre-
fetched accent information, we learn accent infor-
mation embedded within codebooks during train-
ing. Additionally, instead of simply concatenating
input speech with accent embeddings, we propose
a learned fusion of accent information with speech
representations using cross-attention. Prior work
by Deng et al. (2021) demonstrates fine-grained
integration of accent information. However, our
proposed framework integrates accent information
as part of end-to-end training resulting in robust
adaptation.

3 Methodology

Base model. Our base architecture uses the stan-
dard joint CTC-Attention framework (Kim et al.,
2016) with an encoder (ENC), a decoder (DEC-
ATT), and a Connectionist Temporal Classification
(CTC) (Graves et al., 2006) module (DEC-CTC).
For a given speech input x = {x1, . . . , xT }, the
encoder ENC generates contextualized representa-
tions h = ENC(x) = {h1, . . . , hT }. The encoder
representations h are further used by DEC-ATT

https://github.com/csalt-research/accented-codebooks-asr
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Figure 1: Overview of our proposed architecture inte-
grating accent codebooks into encoder layers via cross-
attention. A represents the accent label for a training
instance and {c1, c2, . . . cM} is the collection of accent-
specific codebooks .

and DEC-CTC to jointly predict the output token
sequence y = {y1, . . . , yj , . . . , yU}. DEC-ATT is
an autoregressive decoder that maximizes the con-
ditional likelihood of producing an output token yj
given h and the previous labels y1, . . . , yj−1. In
contrast, DEC-CTC uses CTC to maximize the like-
lihood of y given h by marginalizing over all align-
ments. The encoder is implemented using Con-
former layers (Gulati et al., 2020) and the decoder
is implemented using Transformer layers (Vaswani
et al., 2017).

For our proposed technique, we introduce the
following three essential modifications to the base
architecture: i) Constructing codebooks that can
encode accent-specific information (Section 3.1).
ii) Enabling fine-grained integration of accent infor-
mation with a Conformer-based ASR model using
cross-attention (Section 3.2). iii) Modifying beam
search decoding for inference in the absence of
accent labels at test-time (Section 3.3).

3.1 Codebook Construction

Consider M seen accents, which are observed dur-
ing training. We generate M codebooks, one per
accent, where the ith codebook learns latent codes
specific to the ith accent. During training, we use a

deterministic gating scheme to select the codebook
specific to the underlying accent of the training ex-
ample. To support the selection of a single accent
codebook during inference, when the accent labels
for the test utterances are unknown, we modify the
beam-search decoder to search across all seen ac-
cents. We found such a hard gating to be critical
to achieve ASR performance improvements. In
Section 6, we compare the proposed model with a
soft gating mechanism that works with a standard
beam-search decoding.

Each codebook contains P d-dimensional vec-
tors that we refer to as codebook entries. The en-
tries belonging to the ith codebook are generated
as:
ci = {ci1, . . . , ciP } = Embedding([1, 2, . . . , P ])

where Embedding is a standard embedding layer.
In the following sections, we use c = {c1, . . . , cP }
to refer to the codebook corresponding to the un-
derlying accent label for a given training example.

3.2 Encoder with Accent Codebooks
Figure 1 illustrates the overall architecture with
the proposed integration of a codebook into each
encoder layer via a cross-attention sub-layer. We
will refer to this new accent-aware encoder mod-
ule as ENCa = {ENC1

a, . . . , ENCL
a } that consists

of a stack of L identical Conformer layers. The
ith encoder layer ENCi

a takes both hi−1 and c as
inputs, and produces hi as output. Codebook c is
shared across all the encoder layers. All the vectors
involved in the computation of attention scores are
d = 256 dimensional.

A cross-attention sub-layer integrates accent in-
formation from codebook c into each encoder layer.
This sub-layer takes both self-attended contextual-
ized representations H and the codebook c as its in-
puts and generates codebook-specific information
relevant to the speech frames of this contextual rep-
resentation. More formally, the operations within
encoder layer ENCi

a can be written as follows:

Ĥ = MultiHeadAttnself(h
i−1,hi−1,hi−1)

H = NormLayerself(h
i−1 + Ĥ)

Ĉ = MultiHeadAttncb(H, c, c)

C = NormLayercb(H+ Ĉ)

Ĵ = Convolution(C)

J = NormLayerconv(C+ Ĵ)

ĥi = Linearpw(J)

hi = NormLayerlinear(J+ ĥi)



where the equations colored in purple highlight
our changes to the standard Conformer encoder
layer. The above equations can be viewed as a
stack of four independent blocks, each having a
residual connection and being separated by layer
normalization.
MultiHeadAttn(Q,K, V ) refers to a standard

multi-head attention module (Vaswani et al., 2017)
with Q, K and V denoting queries, keys and values
respectively. MultiHeadAttnself is a self-attention
module where each frame of hi−1 attends to every
other frame, thus adding contextual information.
Convolution is a stack of three convolution lay-
ers: a depth-wise convolution sandwiched between
two point-wise convolutions, each having a single
stride. The input and output of the Convolution
block are d-dimensional vectors. A position-wise
feed-forward layer Linearpw is made up of two lin-
ear transformations with a ReLU activation. This
takes a d-dimensional output from the convolution
module as input and produces a d-dimensional out-
put vector with a hidden layer of 2048 dimensions.

MultiHeadAttncb(H, c, c) is our proposed
cross-attention module over codebook entries,
where each frame of input H attends to all the en-
tries in the codebook c to generate attention scores.
These attention scores are further used to gener-
ate frame-relevant information Ĉ as a weighted
average of codebook entries. We elaborate further
on the attention computation for a single attention
head in Ĉ.2 Let Hj refer to the jth frame in H.
The attention distribution {αj,1, . . . αj,P }, where
αj,k is the attention probability given by Hj to the
kth codebook entry, is computed as:

{αj,1, αj,2, . . . , αj,P } =

softmax

(
(W i

qHj)(W
i
kc)

T

√
d

)
(W i

v · c)

where W i
q , W i

k and W i
v ∈ Rd×d are learned pro-

jection matrices. These attention scores are further
used to generate the weighted average of codebook
entries in Ĉ:

Ĉj =

P∑
k=1

αj,k · ck

The cross-attention sublayer is further modified
with a residual connection and layer normalization
to generate the final codebook-infused representa-
tions in C.

2In our experiments, self-attention uses four attention
heads for the encoder and cross-attention with the codebook
uses a single attention head.

Algorithm 1: Inference algorithm that per-
forms joint beam-search over all accents.
Our modifications to the standard beam
search (Meister et al., 2020) are highlighted .
Each beam entry is a triplet ⟨s, y, A⟩ where A
refers to a seen accent. scoreA() is a modified
scoring function which uses the codebook for
accent A during the forward pass.
Input : x: speech input

V: list of vocabulary tokens
nmax: maximum hypothesis length
k: maximum beam width
y: output prediction so far
scoreA(., ., .): scoring function

1 B0 = {⟨0, <sos>, 1⟩ . . . , ⟨0, <sos>,M⟩}
2 for t ∈ {1, . . . , nmax − 1} do
3 B ← ϕ

4 for ⟨s, y, A⟩ ∈ Bt−1 do
5 if y.last() == <eos> then
6 B.add(⟨s, y, A⟩)
7 continue
8 for v ∈ V do
9 s← scoreA(x, y ◦ v,A)

10 B.add(⟨s, y ◦ v,A⟩)
11 Bt = B.top(k)
12 return B

3.3 Modified Beam-Search Algorithm

Since we do not have access to accent labels at
test-time, we rely on either using a classifier to
predict the accent or modifying beam-search to
accommodate the prediction streams generated by
all seen accent choices. Due to a large imbalance in
the accent distribution during training with certain
seen accents dominating the training set, we find
the classifier to be ineffective during inference. We
elaborate on this further in Section 6.

Figure 1 shows our inference algorithm that per-
forms a joint beam search over all the seen accents.
Each beam entry is a triplet that expands each hy-
pothesis using each seen accent. Scores for each
seen accent are computed using a forward pass
through our ASR model by invoking the codebook
specific to the accent. The beam width threshold k
is then applied to expanded predictions across all
seen accents.



4 Experimental Setup

4.1 Datasets

All our experiments are conducted on the
MCV_ACCENT dataset extracted from the “vali-
dated" split of the Mozilla Common Voice English
(en) corpus (Ardila et al., 2019). Overall, 14 En-
glish accents present in MCV_ACCENT are divided
into two groups of seen and unseen accents. Table 1
lists the accents belonging to each of these groups.

Seen Accents Unseen Accents
Australia (AUS) Africa (AFR) Malaysia (MAL)

Canada (CAN) New
Zealand

(NWZ) Hong
Kong

(HKG)

England (GBR) Philippines (PHL) India (IND)

Scotland (SCT) Singapore (SGP) Ireland (IRL)

US (USA) Wales (WLS)

Table 1: List of 5 seen and 9 unseen accents in
MCV_ACCENT corpus.

We create train, dev, and test splits that are
speaker-disjoint. We construct two train sets,
MCV_ACCENT-100 and MCV_ACCENT-600, com-
prising approximately 100 hours and 620 hours
of labeled accented speech, respectively. Since
MCV_ACCENT consists of many utterances that
correspond to the same underlying text prompts,
a careful division into dev/test sets that are dis-
joint in transcripts from the train set was performed.
We train and validate the ASR models only on the
seen accents, while the test data consists of both
seen and unseen accents. The detailed statistics
of our datasets are given in Table 2. For a quick
turnaround, most of our experiments were con-
ducted on MCV_ACCENT-100. For experiments in
Section 5.3, we use the 620-hour MCV_ACCENT-
600. All the data splits mentioned above are avail-
able in our codebase, which should enable direct
comparisons across accent adaptation techniques.
More details about the construction of the datasets
are provided in Appendix A.

4.2 Models and Implementation Details

We use the ESPnet toolkit (Watanabe et al., 2018)
for all our ASR experiments. As is standard prac-
tice, we further add 3-way speed perturbation to
our dataset before training. We use the default con-
figurations specified in the train_conformer.yaml

file provided in the ESPnet toolkit3 to train a
Conformer model comprising 12 encoder layers

3https://tinyurl.com/2wexthds

Accent
Train

(in hours)
Dev

(in hours)
Test

(in hours)
MA-100 MA-600

Australia 6.95 45.36 4.33 0.46

Canada 6.79 41.13 1.16 1.21

England 19.51 119.9 3.22 1.65

Scotland 2.69 16.21 0.23 0.16

US 64.12 400.1 8.32 4.87

Africa – – 1.71

Hongkong – – 0.52

India – – 0.58

Ireland – – 1.94

Malaysia – – 0.39

Newzealand – – 2.11

Philippines – – 0.90

Singapore – – 0.64

Wales – – 0.27

Table 2: Data splits for experiments. MA-100 and
MA-600 refers to datasets MCV_ACCENT-100 and
MCV_ACCENT-600 datasets respectively.

and 6 decoder layers using joint CTC-Attention
loss (Kim et al., 2016). We use four attention
heads to attend over 256-dimensional tensors. The
position-wise linear layer operates with 2048 di-
mensions. We train the model for 50 epochs using
80-dimensional filter-bank features with pitch. In
all our experiments, we apply a stochastic depth
rate of 0.3 which we found to yield an absolute
2% WER improvement, compared to a baseline
system without this regularization enabled. Dur-
ing inference, we use a two-layer RNN language
model (Mikolov et al., 2010) trained for 20 epochs
with a batch size of 64. We conducted all our ex-
periments on NVIDIA RTX A6000 GPUs.

5 Experiments and Results

Table 3 shows word error rates (WERs) compar-
ing our best system (codebook attend (CA) sys-
tem) with five approaches: 1. Transformer base-
line (Dong et al., 2018). 2. Conformer baseline (Gu-
lati et al., 2020). 3. Adding i-vector features (Chen
et al., 2015)4 to the filterbank features, as input
to the Conformer baseline. 4. Conformer jointly
trained with an accent classifier using multi-task
learning (Jicheng et al., 2021). 5. Conformer with
Domain Adversarial Training (DAT) (Das et al.,
2021b), with an accent classifier at the 10th encoder
layer.

4Every frame in i-vectors represents a second. Since the
input filterbank features span 25msec, we repeat the same
i-vector frame for four consecutive feature frames. Adding, as
opposed to concatenating, the i-vector frames was found to
perform better.

https://tinyurl.com/2wexthds


Method
Aggregated Seen Accents Unseen Accents

All Seen Unseen AUS CAN UK SCT US AFR HKG IND IRL MAL NWZ PHL SGP WLS

Trans. (Dong et al., 2018) 22.7 17.3 28.0 18.1 17.8 19.7 18.5 16.3 25.9 32.0 35.4 25.3 36.2 23.8 31.5 38.8 21.0

Conf. (Gulati et al., 2020) 18.9 14.0 23.7 13.8 15.0 15.7 13.4 13.3 21.5 27.2 29.4 21.4 32.2 19.9 26.1 34.7 17.9

I-vector (Chen et al., 2015) 18.9 14.1 23.6 13.9 15.0 16.1 14.6 13.3 21.7 27.2 29.5 21.2 31.7 19.3 27.2 33.8 18.0

MTL (Jicheng et al., 2021) 18.9 14.1 23.7 14.7 15.1 16.1 13.7 13.2 21.8 28.1 29.1 21.5 33.0 19.4 26.5 34.2 18.1

DAT (Das et al., 2021b) 18.7 14.0 23.4 13.3 15.3 15.7 15.5 13.1 21.1 27.0 29.5 21.1 32.2 19.2 26.0 34.4 17.9
CA 18.2† 13.6 22.9 11.5 14.8 14.9 9.7 13.1 21.0 25.7 29.1 20.7 30.9 18.5 25.8 33.7 17.9

Table 3: Comparison of the performance (WER % ) of our architecture (codebook attend (CA)) with baseline and
other techniques on the MCV-ACCENT-100 dataset. Numbers in bold denote the best across baselines, and the
green highlighting denotes the best WER across all experiments. Ties are broken using overall WER. CA:
Codebook attend - cross-attention applied at all layers with 50 entries in each learnable codebook. † indicates
statistically significant results compared to DAT (at p <0.001 using MAPSSWE test (Gillick and Cox, 1989)).

From Table 3, we observe that the Conformer
baseline performs significantly better than the
Transformer baseline. Adding i-vectors and multi-
task training with an auxiliary accent classifier ob-
jective perform equally well and are comparable
to the Conformer baseline, while using DAT im-
proves over the Conformer baseline. Our system
significantly outperforms DAT (at p < 0.001 us-
ing the MAPSSWE test (Gillick and Cox, 1989))
and achieves the lowest WERs across all the seen
and unseen accents. We use 50 codebook entries
for each accent and incorporate accent codebooks
into each of the 12 encoder layers. Unless speci-
fied otherwise, we will use this configuration in all
subsequent experiments. Further ablations of these
choices will be detailed in Section 5.5.

5.1 Zero-shot Transfer

Method All
Accents

ARA HIN KOR MAN SPA VIA

Conformer 33.3 30.4 30.4 26.9 37.9 30.3 43.5

I-vector 33.6 31.0 31.2 27.2 38.0 30.4 43.9

MTL 33.4 30.4 30.6 26.9 38.7 30.1 43.7

DAT 33.5 30.7 30.8 26.8 38.3 30.1 43.9

CA 32.6† 29.5 30.4 26.2 37.1 29.3 42.8

Table 4: Comparison of the zero-shot performance
(WER %) of our architecture with other techniques on
L2Arctic dataset. † indicates a statistically significant
improvement (p <0.001 using MAPSSWE test) using
codebook attend (CA) w.r.t. the Conformer baseline.

To further validate the efficacy of our proposed
approach using accent-specific codebooks, we per-
form zero-shot evaluations on the L2Arctic dataset.
We note here that we do not use any L2Arctic
data for finetuning; our ASR model is trained on
MCV_ACCENT-100. Such a zero-shot evaluation
helps ascertain whether our codebooks transfer
well across datasets. The L2Arctic dataset (Zhao
et al., 2018) comprises English utterances span-

ning six non-native English accents namely Ara-
bic (ARA), Hindi (HIN), Korean (KOR), Mandarin
(MAN), Spanish (SPA), and Vietnamese (VIA). Ta-
ble 4 shows WERs achieved by our system in
comparison to the baseline and other techniques.
Our proposed method significantly outperforms all
these approaches on every single accent (p < 0.001
using the MAPSSWE test (Gillick and Cox, 1989)).

5.2 Effect of Training Data Size

Method Overall Seen Unseen
Conf. (Gulati et al., 2020) 9.75 6.04 13.46

I-vector (Chen et al., 2015) 10.05 6.40 13.69

MTL (Jicheng et al., 2021) 10.02 6.33 13.70

DAT (Das et al., 2021b) 9.73 6.12 13.33

CAL∈(1,...,12)(P = 50) 9.63 6.22 13.03

CAL∈(1,...,12)(P = 200) 9.59 6.20 12.98

CAL∈(1,...,12)(P = 500) 9.55 6.19 12.92

Table 5: Comparison of the performance (WER
%) of our approach with other methodologies on
MCV_ACCENT-600 dataset.

Table 5 compares our proposed system with DAT
and Conformer on the 600-hour MCV_ACCENT

dataset. Compared to the Conformer baseline and
the DAT, the proposed CA approach shows a steady
improvement over unseen accents, while resulting
in a minor drop in performance on the seen accents.

5.3 Effect of Number of Parameters

Method # of params Overall Seen Unseen
Conf. 43M 18.87 14.05 23.67

Conf. w/ ↑ encoder units 46M 18.89 14.02 23.74

Conf. w/ ↑ attention dim 46M 18.77 14.02 23.51

CAL∈(1,...,12)(P = 50) 46M 18.22 13.57 22.86

Table 6: Comparison of the performance (WER %) of
our approach with parameter-equivalent variants of the
Conformer baseline on MCV_ACCENT-100.

To discount the possibility that improvements



using our proposed model could be attributed to an
increase in the number of parameters, in Table 6,
we compare our proposed system with multiple
variants of the baseline Conformer model (referred
to as Conf. in Table 3) where parameters are in-
creased to be commensurate with our proposed
model by either (1) Increasing the number of en-
coder units (from 2048 → 2320) or (2) Increas-
ing the dimension used for attention computation
(from 256 → 272). We observe a slight improve-
ment over the standard baseline when the attention
dimension is increased. However, compared to all
these baselines, our proposed model still shows a
statistically significant improvement at p <0.001.

5.4 Balanced versus Imbalanced Dataset

Method Overall Seen Unseen
Conformer 19.30 14.73 23.86

CAL∈(1,...,12)(P = 50) 18.88 14.61 23.13

Table 7: Comparison of the performance (WER %) of
our approach with Conformer baseline on an accent
balanced MCV_ACCENT-100 dataset.

To check the effectiveness of our approach on
a balanced dataset, in Table 7, we compare our
proposed system with the Conformer baseline on
a 100-hour accent-balanced data split. Even on
such a balanced dataset, our architecture shows a
statistically significant improvement (at p=0.005)
compared to the baseline.

5.5 Ablation Studies

We present two ablation analyses examining the
effect of changing the number of accent-specific
codebook entries (P ) and the effect of applying
cross-attention at different encoder layers.

The first five rows in Table 8 refer to the addi-
tion of codebooks to all encoder layers via cross-
attention with varying accent-specific codebook
sizes (P ) ranging from 25 to 500. As P increases,
the experiments show improved performance on
seen accents but degrades on the unseen accents,
indicating that the codebooks begin to overfit to
the seen accents. Our best-performing system with
P = 50 performs well on seen accents while also
generalizing to the unseen accents. As expected,
using lower-capacity codebooks (P = 25) shows
performance degradation.

The next five rows in Table 8 refer to codebooks
with cross-attention introduced at varying encoder
layers. The number of codebook entries is fixed at

Method Overall Seen Unseen
CAL∈(1,...,12)(P = 25) 18.33 13.76 22.89

CAL∈(1,...,12)(P = 50) 18.22 13.57 22.86
CAL∈(1,...,12)(P = 100) 18.36 13.85 22.86

CAL∈(1,...,12)(P = 200) 18.41 13.69 23.12

CAL∈(1,...,12)(P = 500) 18.39 13.68 23.09

CAL∈(1,...,4)(P = 50) 18.30 13.95 22.64
CAL∈(1,...,8)(P = 50) 18.31 13.86 22.75

CAL∈(9,...,12)(P = 50) 18.92 14.24 23.59

CAL∈(5,...,12)(P = 50) 18.45 13.84 23.05

CAL∈(1,...,12)(Prand = 50) 18.30 13.65 22.95

Table 8: Comparison of the performance (WER %) of
different variants of our architecture. CAL∈(i,...,j)(P =
k): Codebook attention applied at all layers
from i to j with k entries per accent codebook.
CAL∈(i,...,j)(Prand = k): Similar to the previous setup,
but with codebooks frozen during training. Accent-wise
WER is shown in Appendix B and a few select examples
are highlighted in Appendix C.

50. Since accent effects can be largely attributed to
acoustic differences, we see that the early encoder
layers closer to the speech inputs benefit most from
the codebooks. Adding codebooks only to the last
four or eight encoder layers is not beneficial.

Randomly initialized codebooks were observed
to be as useful as learnable codebooks for self-
supervised representation learning in Chiu et al.
(2022). Motivated by this result, we experiment
with randomly-initialized accent-specific code-
books that are not learned during training. The last
row of Table 8 shows that random codebooks only
cause a slight degradation in performance com-
pared to the best performing system, echoing the
observations in Chiu et al. (2022).

5.6 Inference with a Single Accent

To understand the effectiveness of accent-specific
codebooks, we conduct five experiments by com-
mitting to a single seen accent during inference.
That is, we decode all the test utterances using a
fixed accent label. Table 9 shows results from in-
ferring with a single accent across both seen and
unseen accents. For the seen accents, the diago-
nal contains the lowest WERs indicating that the
information learned in our codebooks benefits the
accented samples. Furthermore, similar accents,
from geographically-close regions, benefit each
other. The New Zealand accented English speech
achieves the best WERs using Australian accent
specific codebooks, Hong Kong, Indian, Philip-
pines and Singapore accented test utterances prefer



Accent used
Seen Accents Unseen Accents

AUS CAN UK SCT US AFR HKG IND IRL MAL NWZ PHL SGP WLS

Australia 11.5 19.5 17.0 18.1 17.4 22.0 29.8 32.5 24.3 33.7 18.7 30.1 37.8 21.1

Canada 20.5 14.7 20.0 15.7 13.5 24.5 27.4 29.6 21.4 32.7 25.7 26.6 35.4 21.8

England 13.8 17.7 15.0 14.4 16.2 21.5 27.0 29.9 22.0 32.3 21.1 27.1 34.8 18.0
Scotland 20.7 17.8 19.1 10.2 16.4 24.4 28.2 33.5 22.6 34.4 25.7 29.0 36.6 21.3

US 20.2 14.7 19.4 15.5 13.2 23.4 27.0 28.1 21.7 32.4 24.7 25.8 34.3 22.2

Table 9: Comparison of the performances (WER%) of inferences done using fixed accent labels.

US accented codebooks, and Wales accent achieves
its best results using England-specific codebooks.

The WER results achieved by our best-
performing system in Table 3 are much lower than
the best WER results achieved in these single-
accent experiments. This indicates that one cannot
directly map an unseen accent to an appropriate
seen accent and therefore, making this decision in-
dependently for each utterance (as we propose to
do in the joint beam search) is crucial.

5.7 Beam-Search Decoding Variants

All the results reported thus far use a joint beam
search decoding. Table 10 shows a comparison
of our proposed joint beam search (elaborated in
Section 3.3) with other beam-search variants incur-
ring varying inference overheads. B0 in Table 10

Method All Seen Unseen Inference Time
B0: Standard beam search 18.87 14.05 23.67 1.0
B1: M full beam searches 18.10 13.48 22.71 5.02
B2: M split beam searches 18.30 13.61 22.97 1.14
B3: Joint beam search 18.22 13.57 22.86 1.16

Table 10: WER (%) of various inference algorithms
described in section 5.7 on MCV_ACCENT-100 setup.
Inference time gives a relative comparison of the time
taken by each decoding variant with the standard beam
search as the reference.

refers to a standard beam-search decoding over the
Conformer baseline with a beam width of k. The
setting B1 and B2 refer to running beam-search
M times, once for each seen accent and picking
the best-scoring hypothesis among all predictions.
For B1 setting, we use a beam width of k for each
seen accent. Naturally, this incurs a large decoding
overhead with a factor of M increase in inference
time and changes the effective beam width to Mk.
In the B2 setting, we divide the beam width into
M parts, each occupied by a specific accent, thus
making the effective beam width k/M . The setting
B1 performs the best, but significantly increases
inference overhead. The B2 setting is efficient but
under-performs due to all accents being given an

Figure 2: Heatmap showing which codebooks are cho-
sen during inference across seen and unseen accents.
For example, the third cell in the first row shows that
92 out of 413 Australian-accented utterances used the
codebook belonging to England during decoding.

equal number of beam slots leading to eventual
under-utilization of beam slots. Our proposed joint
inference in the B3 setting is an effective compro-
mise of B1 and B2, incurring similar inference over-
heads as B2 and achieving a performance closer to
the B1 setting.

6 Discussion and Analysis

Codebook Utilization: Figure 2 is a heatmap
showing which accent codebook is used by the
joint beam-search algorithm in generating the best
ASR hypothesis for the test utterances. Across seen
accents, we see a diagonal dominance, indicating
that seen accents show a preference for their respec-
tive codebooks. This effect is especially strong for
Australia, England and Scotland accents. US and
Canada, on the other hand, have examples evenly



divided among each other. Among unseen accents,
the Australia-specific codebook is picked up most
by New Zealand test utterances.

Figure 3: Progression of average test entropy of the
probability distribution across seen accents.

Active Accents during Joint Beam-search:
Using joint beam-search decoding, it is possible
for samples from different accents to get pruned
in early iterations and only one or two dominant
accents to be active from the start. To check for
this, we compute the distribution of samples in
the beam across the five seen accents and plot
the average entropy of this distribution across
all test instances in Figure 3. It is clear that four
to five seen accents are active until time-step 20,
after which certain accents gain more prominence.
Figure 4 shows both the probabilities across seen
accents appearing in the beam for a single Wales-
accented test sample, along with the entropy of this
distribution. This shows how nearly all accents are
active at the start of the utterance, with England
becoming the dominant accent towards the end.

Alternatives to Joint Beam-search: We also
explore two alternatives to learning accent labels
within the ASR model itself: i) We jointly trained
an accent classifier with ASR. During inference,
this classifier provides pseudo-accent labels across
seen accents that we use to choose the codebook.
ii) We adopted a gating mechanism inspired
by Zhang et al. (2021) that adds a learnable gate to
each codebook entry. Unlike our current determin-
istic policy of picking a fixed subset of codebook
entries, the learned gates are trained jointly with
ASR to pick a designated codebook entry corre-
sponding to the underlying accent of the utterance.
During inference, the learned gates determine the
codebook entries to be used for each encoder layer.
Both these techniques performed better than the
Conformer baseline but were equivalent in perfor-
mance to the DAT approach (Das et al., 2021b).

Figure 4: Progression of the probability/entropy across
seen accents for a single Wales-accented test sample.

We hypothesize that this could be due to the lack of
a strong accent classifier (or a lack of appropriate
learning in the gates to capture accent information).
Our joint beam-search decoding bypasses this
requirement by searching across all seen accents.

Why do we see Performance Improvements on
Unseen Accents? For test utterances from un-
seen accents, our model is designed to choose
(seen) accent codebooks that best fit the underlying
(unseen) accent. It is somewhat analogous to how
humans use familiar accents to tackle unfamiliar
ones (Anderson, 2018; Levy et al., 2019). During
inference, our model searches through seen accent
codebooks and chooses entries that are most like
the unseen accents in the test instances.

7 Conclusion

In this work, we propose a new end-to-end tech-
nique for accented ASR that uses accent-specific
codebooks and cross-attention to achieve signifi-
cant performance improvements on seen and un-
seen accents at test time. We experiment with the
Mozilla Common Voice corpus and show detailed
ablations over our design choices. We also em-
pirically analyze whether our codebooks encode
information relevant to accents. The effective use
of codebooks for accents opens up future avenues
to encode non-semantic cues in speech that affect
ASR performance, such as types of noise, dialects,
emotion styles of speech, etc.
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8 Limitations

We identify a few key limitations of our proposed
approach:

• The codebook size is a hyperparameter that
needs to be finetuned for each task.

• We currently employ accent-specific code-
books, one for each accent. This does not
scale very well and also does not enable shar-
ing of codebook entries across accent code-
books. Instead, we could use a single (large)
codebook and use learnable gates to pick a
subset of codebook entries corresponding to
the underlying accent of the utterance.

• Our proposed joint beam-search leads to a
16% increase in computation time at inference.
This can be made more efficient as part of
future work.

• Our joint beam-search allows for each utter-
ance at test-time to commit to a single seen
accent. However, parts of an utterance might
benefit from one seen accent, while other parts
of the same utterance might benefit from a dif-
ferent seen accent. Such a mix-and-match
across seen accents is currently not part of our
approach. Accommodating for such effects
might improve our model further.
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Kanishka Rao and Haşim Sak. 2017. Multi-accent
speech recognition with hierarchical grapheme based
models. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 4815–4819.

George Saon, Hagen Soltau, David Nahamoo, and
Michael Picheny. 2013. Speaker adaptation of neural
network acoustic models using i-vectors. In 2013
IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 55–59. IEEE.

Sining Sun, Ching-Feng Yeh, Mei-Yuh Hwang, Mari
Ostendorf, and Lei Xie. 2018. Domain adversarial
training for accented speech recognition.

https://doi.org/10.48550/ARXIV.1505.07818
https://doi.org/10.1109/ICASSP.1989.266481
https://doi.org/10.1109/ICASSP.1989.266481
https://doi.org/10.1109/ICASSP.1989.266481
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.48550/ARXIV.2005.08100
https://doi.org/10.48550/ARXIV.2005.08100
https://doi.org/10.48550/ARXIV.2107.00921
https://doi.org/10.48550/ARXIV.2107.00921
https://doi.org/10.48550/ARXIV.2012.07353
https://doi.org/10.48550/ARXIV.2012.07353
https://doi.org/10.48550/ARXIV.2012.07353
http://dx.doi.org/10.21437/Interspeech.2018-1864
http://dx.doi.org/10.21437/Interspeech.2018-1864
https://doi.org/10.21437/Interspeech.2021-1495
https://doi.org/10.21437/Interspeech.2021-1495
https://doi.org/10.21437/Interspeech.2021-1495
https://doi.org/10.48550/ARXIV.2004.11362
https://doi.org/10.48550/ARXIV.2004.11362
https://doi.org/10.48550/ARXIV.1609.06773
https://doi.org/10.48550/ARXIV.1609.06773
https://doi.org/10.1017/S030500091800051X
https://doi.org/10.1017/S030500091800051X
https://doi.org/10.1017/S030500091800051X
http://arxiv.org/abs/1712.01541
http://arxiv.org/abs/1712.01541
http://arxiv.org/abs/1712.01541
https://doi.org/10.48550/ARXIV.2110.03520
https://doi.org/10.48550/ARXIV.2110.03520
https://doi.org/10.48550/ARXIV.2110.03520
https://doi.org/10.1109/ICASSP39728.2021.9414833
https://doi.org/10.1109/ICASSP39728.2021.9414833
https://doi.org/10.1109/ICASSP39728.2021.9414833
https://doi.org/10.1162/tacl_a_00346
https://doi.org/10.1109/ICASSP.2017.7953071
https://doi.org/10.1109/ICASSP.2017.7953071
https://doi.org/10.1109/ICASSP.2017.7953071
https://doi.org/10.48550/ARXIV.1806.02786
https://doi.org/10.48550/ARXIV.1806.02786
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Figure 5: Illustration of the transcript-wise overlap be-
tween the train, test, and dev sets in terms of dura-
tions. (1) represents the duration of the group of utter-
ances whose transcripts are present in all three splits. (7)
denotes duration of examples having transcripts found
only in the train set.

A Dataset Curation

To build MCV_ACCENT-600, we group the exam-
ples from MCV_ACCENT into seven buckets while
preserving speaker disjointedness across the train,
dev, and test sets.

The buckets are visualized in Figure 5; bucket
(4) refers to utterances that have exactly the same
transcript but different speakers appearing across
the train and dev sets. We wanted to include some
transcript overlap across all combinations of train,
test, and dev splits, since the model could learn
accent information from samples with the same
transcripts and different underlying accents. We
note that a majority of the dev and test samples are
disjoint in both speakers and transcripts from the
training set for a true evaluation that does not ben-
efit from having seen the same transcripts during
training.

To create such a split, we loop over all the ac-
cents, and for every seen accent aseen, we first
filter out examples with transcripts that have been
previously dealt with and then split the remaining
unique transcripts from aseen into seven buckets.
For every bucket b, transcripts from b are further
divided into n groups where n is the number of
benefactors for that bucket. As an example, for
bucket (1) the value of n is 3. Let xi be an utter-
ance spoken by speaker sj , which is put into the
train set by bucket (1). Then to maintain speaker
disjointedness, we put all utterances spoken by sj

into the train set. The transcripts of these utter-
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Accent Ground Truth Experiment Sentence

Australia where is your father
Base where is youfada

DAT where is youfada

CA where is your father

Canada
putting a pool under this
floor was a great idea

Base put it a pool into this floor was a greek of idea

DAT put his pool under this floor was a great of itea

CA putting a pool under this floor was a great idea

England will you breakfast with me
Base will you break for swimming

DAT will you bright for study

CA will you breakfast with me

Scotland elsa knitted furiously
Base elsa knitted futiously

DAT elsa knitted fudiously

CA elsa knitted furiously

US
how long since weve seen

each other

Base a long since weve seen each other

DAT our longsons would seen each other

CA how long since weve seen each other

Africa this made them even richer
Base this might them even richer

DAT this might them even richard

CA this made them even richer

Hongkong
he won a worldwide

reputation in his special
field

Base he won a world white we potason in his special field

DAT he won a world white repetition in his special field

CA he won a worldwide reputation in his special field

India
can you play nineties
music from paul kelly

Base canuble nadis music from policy

DAT canuple ninety is music from policy

CA can you play nineties music from pole kelly

Ireland
this award is given in

three different
categories

Base this award is given in the dream different categories

DAT this award is given in the tree giffins categords

CA this award is given in three gifting categories

Malaysia
it just entered my mind at
that moment isaac said

Base they just enter my mind at that moment eyes accid

DAT it just enter my mind at that moment eyes accid

CA it just entered my mind at that moment isac said

Newzealand
a content delivery network

is necessary

Base a content delivery mid luke and disincessary

DAT a content delivery night blue and businecessary

CA a content delivery network does necessary

Singapore
apple google amazon and

facebook are often
described as tech giants

Base appal google amazon and face book are often described as the giants

DAT appalo google amazon and face book are often described as tack giants

CA apple google amazon and facebook are often described as tech giants

Philippines
how many layers of irony

are you on

Base how many layers of iron are you on

DAT how many layers of ironea you are

CA how many layers of irony are you on

Wales
nine rows of soldiers

stood in a line

Base minros of soldiers stood in a line

DAT miners of soldiers stood in a line

CA nine rows of soldiers stood in a line

Table 11: Comparison of the predictions from the Conformer (labeled as Base), DAT, and our proposed system on a
few test utterances. is used to highlight words that are correctly predicted, whereas highlights predictions
that are correct but contain minor mistakes such as unwanted spaces. Similarly, denotes incorrectly predicted
words, whereas is used to indicate words that are incorrect but are somewhat closer to the underlying transcript
such as having similar prefixes.

ances are ignored while processing the remaining
buckets and accents. For unseen accent aunseen,
all the examples with transcripts that are not yet
processed are put into bucket (6).

The dev and test sets built this way contain
around 68 and 130 hours of data. We further ran-
domly sample 25% and 15% from these sets, re-
spectively. To generate MCV_ACCENT-100 split,
we randomly sample 14% from the MCV_ACCENT-
600 set.

B Additional Results

Table 12 shows word error rates (WERs) com-
paring all experiments done using MCV_ACCENT-
100 dataset. Similarly, Table 13 shows word er-
ror rates comparing all experiments done using
MCV_ACCENT-600 dataset.

C Comparison of Predictions

Table 11 highlights a few examples where our pro-
posed system performs significantly better than the
Conformer baseline and DAT systems.



Method
Aggregated Seen Accents Unseen Accents

Overall Seen Unseen AUS CAN UK SCT US AFR HKG IND IRL MAL NWZ PHL SGP WLS

Transformer 22.68 17.34 28.01 18.11 17.81 19.73 18.50 16.31 25.86 31.97 35.39 25.25 36.25 23.83 31.50 38.78 21.04

Conformer (Base) 18.87 14.05 23.67 13.82 15.02 15.74 13.36 13.30 21.47 27.18 29.39 21.38 32.20 19.86 26.13 34.69 17.88

I-vector sum 18.87 14.15 23.58 13.88 15.02 16.07 14.62 13.31 21.66 27.18 29.53 21.18 31.72 19.33 27.22 33.81 17.98

Base + Classifier 18.91 14.12 23.69 14.73 15.10 16.08 13.72 13.19 21.83 28.13 29.15 21.46 32.97 19.38 26.51 34.24 18.08

DAT 18.70 14.00 23.38 13.30 15.30 15.72 15.52 13.15 21.15 26.95 29.53 21.15 32.16 19.22 26.03 34.43 17.93
CAL∈(1,...,12)(P = 25) 18.33 13.76 22.89 13.05 14.90 15.33 10.92 13.12 20.82 26.41 29.29 20.70 31.55 18.56 26.10 33.30 16.58
CAL∈(1,...,12)(P = 50) 18.22 13.57 22.86 11.54 14.81 14.91 9.66 13.15 20.95 25.66 29.15 20.72 30.87 18.47 25.81 33.68 17.92

CAL∈(1,...,12)(P = 100) 18.36 13.85 22.86 12.89 14.91 15.46 10.92 13.24 20.77 25.89 28.87 20.41 32.44 18.76 26.24 32.93 17.77

CAL∈(1,...,12)(P = 200) 18.41 13.69 23.12 13.00 14.81 15.06 11.10 13.12 21.57 26.78 28.30 20.93 30.95 18.97 25.97 33.17 17.88

CAL∈(1,...,12)(P = 500) 18.39 13.68 23.09 12.04 14.93 15.40 11.10 13.05 21.22 26.52 28.77 20.57 33.13 18.78 25.97 33.81 18.39

CAL∈(1,...,4)(P = 50) 18.30 13.95 22.64 13.22 15.53 15.49 10.74 13.24 20.79 26.06 28.58 20.52 31.43 17.87 26.27 32.98 17.72

CAL∈(1,...,8)(P = 50) 18.31 13.86 22.75 13.14 15.07 15.76 10.56 13.12 20.50 25.52 28.70 21.03 30.70 18.53 25.59 33.10 18.03

CAL∈(9,...,12)(P = 50) 18.92 14.24 23.59 13.30 15.36 15.53 13.27 13.67 21.50 27.18 28.89 21.61 32.52 18.98 26.64 34.43 19.59

CAL∈(5,...,12)(P = 50) 18.45 13.84 23.05 12.37 15.43 15.42 10.92 13.18 21.08 26.75 28.40 20.60 31.76 18.68 26.52 34.00 18.13

CAL∈(1,...,12)(Prand = 50) 18.30 13.65 22.95 12.34 15.19 14.89 11.64 13.06 20.77 25.57 29.48 20.98 31.88 18.62 25.87 33.28 17.82

Table 12: Comparison of the performance(WER % ) of all the experiments mentioned for MCV_ACCENT-100.
Numbers in bold denote the best across baselines, and the green highlighting denotes the best across all the
experiments. Ties are broken using overall WER. CAL∈(i,...,j)(P = k): Codebook attend - Cross Attention applied
at all layers from i to j with k entries per accent codebook. CAL∈(i,...,j)(Prand = k): Similar to the previous setup,
but with codebooks frozen during training.

Method
Aggregated Seen Accents Unseen Accents

Overall Seen Unseen AUS CAN UK SCT US AFR HKG IND IRL MAL NWZ PHL SGP WLS

Conformer (Base) 9.75 6.04 13.46 4.95 6.81 7.15 4.42 5.64 11.81 16.50 14.90 12.61 20.43 10.49 15.74 21.26 7.98
I-vector 10.05 6.40 13.69 4.67 7.53 7.43 4.06 6.04 12.05 17.45 14.76 13.08 20.31 10.57 15.82 21.22 8.91

MTL 10.02 6.33 13.70 5.30 7.59 7.39 3.97 5.86 12.19 16.30 14.25 13.23 19.58 10.64 16.30 21.54 8.50

DAT 9.73 6.12 13.33 4.56 7.50 6.87 4.96 5.74 11.76 16.19 14.62 12.96 18.97 9.91 15.84 21.50 8.13

CAL∈(1,...,12)(P = 50) 9.63 6.22 13.03 4.67 7.36 7.11 3.07 5.90 11.63 15.64 14.06 12.48 18.97 9.73 15.60 21.05 8.29

CAL∈(1,...,12)(P = 200) 9.59 6.20 12.98 4.92 7.47 6.83 3.52 5.91 11.47 15.96 13.87 12.25 19.30 9.98 15.17 20.90 8.08
CAL∈(1,...,12)(P = 500) 9.55 6.19 12.92 4.40 7.60 6.67 2.62 5.99 11.57 15.18 14.13 12.20 17.84 10.00 15.34 20.71 8.39

Table 13: Comparison of the performance(WER % ) of all the experiments mentioned for MCV_ACCENT-600. We
follow the same notation as in Table 12.


