
Adaptive Hyperparameter Optimization for Continual Learning Scenarios

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu
Department of Computer Science, University of Pisa

Abstract

Hyperparameter selection in continual learning
scenarios is a challenging and underexplored as-
pect, especially in practical non-stationary envi-
ronments. Traditional approaches, such as grid
searches with held-out validation data from all
tasks, are unrealistic for building accurate life-
long learning systems. This paper aims to ex-
plore the role of hyperparameter selection in
continual learning and the necessity of continu-
ally and automatically tuning them according to
the complexity of the task at hand. Hence, we
propose leveraging the nature of sequence task
learning to improve Hyperparameter Optimiza-
tion efficiency. By using the functional analy-
sis of variance-based techniques, we identify the
most crucial hyperparameters that have an im-
pact on performance. We demonstrate empir-
ically that this approach, agnostic to continual
scenarios and strategies, allows us to speed up
hyperparameters optimization continually across
tasks and exhibit robustness even in the face of
varying sequential task orders. We believe that
our findings can contribute to the advancement of
continual learning methodologies towards more
efficient, robust and adaptable models for real-
world applications.

1 Introduction

Hyperparameters play a critical role in the success of ma-
chine learning algorithms, allowing practitioners to train
or fine-tune models and optimize performance [9]. Un-
like model parameters, which are learned from data during
the training process, hyperparameters are set before train-
ing begins and determine the model’s architecture and opti-
mization settings. Traditional hyperparameter optimization

Proceedings of the 1st ContinualAI Unconference, 2023, Virtual.
PMLR Volume 249. Copyright 2023 by the author(s).

(HPO) solutions are typically designed to operate under the
assumption of independent and identically distributed sam-
ples obtained all at once. However, it is often difficult to
meet these assumptions in real-world environments, espe-
cially when the training data arrives incrementally.

Continual learning (CL) [24], which facilitates the pro-
gressive training of machine learning models on dynamic
and non-stationary data streams [16], holds promise for
enabling companies innovative trend towards Continual
Learning [28, 12]. However, deploying continual learn-
ing to real-world applications remains challenging. Cru-
cially, the role of hyperparameters in continual learning
significantly impacts model performance, affecting its abil-
ity to generalize and adapt to new tasks while preventing
catastrophic forgetting. Selecting, adapting, and optimiz-
ing hyperparameters are vital to retaining relevant informa-
tion from past tasks while efficiently acquiring new knowl-
edge. Nevertheless, the proper selection of hyperparame-
ters is poorly investigated for continual strategies. These
last are in many cases found via a grid search, using held-
out validation data from all tasks [6] but are unrealistic for
building accurate lifelong learning machines [11].

In this research, we explore relatively uncharted territory
with limited prior works, delving into unexplored hypothe-
ses that require further validation. Our effort is focused
on addressing the following research questions, which
we categorize into the dimensions of performance, effi-
ciency, and robustness. (RQ1) How important is each
of the hyperparameters, and how do their values affect
performance in sequence learning? Which hyperparam-
eter interactions matter? How do the values of the hy-
perparameters differ across different incremental learning
steps? How do the answers to these questions depend on
the tasks similarity of the sequence under consideration?
(RQ2) Given that conducting HPO on each individual ex-
perience leads to improved performance but comes at the
expense of computational resources, how can we enhance
efficiency by leveraging hyperparameter importance infor-
mation? (RQ3) What is the effect of HPO for each model
update in relation to its robustness to the sequence order?

A primary objective of this paper is to delve into the piv-
otal role of hyperparameters optimization in the context of
continual learning and examine possible strategies for their

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

effective management. To summarize, we expect that our
main contributions should be:

1. Introducing and defining the problem of optimising
hyperparameters through the learning experience with
a realistic evaluation protocol, thereby enabling com-
prehensive study in this field.

2. To quantitatively assess the significance of individ-
ual hyperparameters and their interactions within each
task, we propose to use the functional analysis of the
variance (fANOVA) technique, outlined in [13, 30],
for a sequence of learning tasks. The expected result
should provide a quantitative basis to focus efforts on
automated adaptive hyperparameter optimization for
continual learning strategies.

3. To present a novel hyperparameter update rule that
significantly enhances the rapid adaptation process
over streaming data. Our approach introduces
an adaptive policy that automatically selects task-
conditioned hyperparameters on a per-step basis,
thereby greatly improving the optimization effective-
ness.

4. Through experiments on well-established benchmarks
and baseline, we want to explore and compare our
results with significant improvements in terms of av-
erage accuracy and computational cost (performance-
efficiency trade-off).

5. To examine our proposal solution with existing base-
line approaches in terms of robustness to the sequence
order. The expected result should provide an improve-
ment of this dimension.

2 Background

2.1 Hyperparameter Optimization (HPO)

Hyperparameter optimization (HPO) is a critical process
in machine learning and statistical modelling, aimed at
finding the optimal values for hyperparameters that gov-
ern the behaviour of a learning algorithm [9]. The goal
is to find the hyperparameter configuration that maximizes
the model’s performance on a validation set or minimizes a
chosen objective function.

Given a learning algorithm A with a set of hyperparam-
eters H and a performance metric M, the hyperparameter
optimization problem aims to find the optimal hyperparam-
eter configuration h∗ ∈ H that maximizes the performance
metric M on a validation set. Formally, the problem can
be defined as:

h∗ = argmax
h∈H

M(A(Dtr,h),Dval) (1)

where Dtr is the training dataset, A(Dtr,h) represents the
trained model obtained by applying algorithm A on the
training dataset with hyperparameter configuration h, and
M(·) measures the performance of the model on the vali-
dation dataset Dval.

2.1.1 Hyperparameter Importance

Past knowledge about hyperparameter importance is
mainly based on a combination of intuition, own experi-
ence and folklore knowledge. However, a more data-driven
and quantitative approach has been introduced through the
functional ANOVA framework (fANOVA), as presented in
the work by Hutter et al. [13]. This framework enables the
analysis of hyperparameter importance, offering valuable
insights into the factors influencing performance.

The fundamental idea underlying hyperparameter impor-
tance lies in the extent to which a particular hyperparam-
eter contributes to the variance in performance. Hyperpa-
rameters that significantly affect performance outcomes re-
quire careful tuning to achieve optimal results. Conversely,
hyperparameters with minimal impact are considered less
crucial and may warrant less attention during tuning. Func-
tional ANOVA not only attributes variance to individual
hyperparameters but also explores the interaction effects
among sets of hyperparameters. This analysis sheds light
on which hyperparameters can be tuned independently and
which exhibit interdependence, necessitating joint tuning
for optimal performance.

The study by Hutter et al. [13] applies functional ANOVA
to the outcomes of a single hyperparameter optimization
procedure conducted on a single dataset. Building upon
this framework, Van Rijn et al. [30] extended the concept
of hyperparameter importance to assess the general impor-
tance of hyperparameters across multiple datasets, provid-
ing broader insights into their significance.

2.2 Continual Learning (CL)

Continual Learning strategies are efficient incremental
training strategies [28, 6]. An alternative approach would
be to fine-tune the previous model on the new sequence
of data. However, this could lead to so-called catastrophic
forgetting, where performance on older data deteriorates
while training on new data. The incremental learner has
two goals to address this issue: to effectively learn the cur-
rent task (plasticity) while retaining performance on all pre-
vious tasks (stability). Continual learning solutions have to
strike a compromise between these two extremes.

Following the definitions in [6], the goal of Continual
Learning is to train a model over a – possibly infinite –
sequence of tasks or experiences. Each task can be repre-
sented as dataset D(x(t), y(t)) sample from a distribution
D(t) in time t, were x(t) is the set of samples for task t,

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu

and y(t) the corresponding label. As a result, the learner
function should be able to model the cumulative probabil-
ity distribution of the data P(Y |X) where X is the set of all
samples for all tasks and Y , are their corresponding labels.
Since this probability distribution is intractable, continual
strategies perform indirect optimization by minimizing the
following:

T∑
t=1

Ex(t),y(t) [L(ACL
t (x(t); θ), y(t))] (2)

with limit or no access to previous data (x(t′), y(t
′)) when

training tasks t > t′. Then, Continual Learning methods
seek to optimize the parameters θ by minimizing the loss
expectancy for all tasks in the sequence T .

2.3 HPO in Continual Learning Scenarios

2.3.1 Problem Formulation

In continual learning, models are trained and applied for
prediction without having all training data beforehand. The
process that generates the data may change over time, lead-
ing to concept drift, a usually unpredictable shift over time
in the underlying distribution of the data. It is crucial to un-
derstand the dynamics of concept drift and its effect on the
search strategy used by the HPO technique in order to de-
sign a successful strategy in a non-stationary sequence data
stream. Considering the equation 1 designed for station-
ary environments, HPO for a particular task t in sequence
learning T = t0, ..., tM = {t} can be described as the fol-
lowing optimization problem:

h∗
t = argmax

h∈H
M(ACL

t (D(t)
tr ,h),Dval) (3)

Here Dval is the subset of the validation set for the cur-
rent task and previous tasks and ACL

t is the continual
learner achieved so far with hyperparameter configuration
h sought only on currently available dataset D(t)

tr .

2.3.2 Related Works

Hyperparameters play a significant role in continual learn-
ing by influencing the model’s ability to adapt to new tasks
while retaining knowledge from previous tasks. Note that
strategies tackling the continual learning problem typically
involve extra hyperparameters to balance the stability plas-
ticity trade-off. These hyperparameters are in many cases
found via a grid search, using held-out validation data from
all tasks [6]. In particular, the typical assumption is to have
access to the entire stream at the end of training for model
selection purposes. After that, as a common practice, the
hyperparameters are set to a fixed value throughout all in-
cremental learning sessions. One simple motivation is that
tuning hyperparameters is a major burden and is no dif-
ferent in the continual setting. Another motivation is the

simplicity of implementation. Nevertheless, this inherently
violates the main assumption in continual learning, namely
no access to previous task data and in practical scenarios is
unrealistic for building accurate lifelong learning machines
[11, 5]. In the following, we present a comprehensive sum-
mary of related works concerning adaptive HPO and CL,
categorizing them into three classes.

Dynamic Task-Specific Adaptation. Real-world learning
presents a dynamic environment where the optimal hyper-
parameter configuration may evolve over time. In response
to this challenge, recent work by Gok et al. [10] focuses on
continual learning and investigates the necessity of adap-
tive regularization in Class-Incremental Learning. This
approach dynamically adjusts the regularization strength
based on the specific learning task, avoiding the unrealis-
tic assumption of a fixed regularization strength throughout
the learning process. Empirical evidence from their experi-
ments highlights the significance of adaptive regularization
in achieving enhanced performance in visual incremental
learning. Concurrently, Wistuba et al. [31] address the
challenge of practical HPO for continual learning. They
propose adjusting hyperparameters such as learning rates,
regularization strengths, or architectural choices for dif-
ferent tasks, allowing the model to adapt its behaviour to
each task’s specific requirements. Their empirical findings
demonstrate improvements in performance through this ap-
proach. However, it is worth noting that despite the demon-
strated performance gains, Wistuba et al. [31] do not fully
leverage the inherent nature of continual learning problems
or exploit the potential knowledge transfer from previous
HPOs. Incorporating transfer learning techniques and cap-
italizing on insights from prior tasks could further enhance
the model’s performance and overall efficiency in continual
learning scenarios.

Transfer Learning and Knowledge Distillation. [29]
has explored the idea of adapting hyperparameters to op-
timize performance for individual tasks, facilitating auto-
matic knowledge transfer from previous HPO endeavours
across datasets. Furthermore, hyperparameters and dy-
namical architecture chance can facilitate transfer learn-
ing, where knowledge and hyperparameters learned from
previous tasks are leveraged to improve performance on
new tasks. Knowledge distillation techniques can be ap-
plied [27, 26], where hyperparameters guide the transfer
of knowledge from a larger or more accurate model to a
smaller or more specialized model.

Empirical Studies. Hyperparameters can govern the use
of memory replay or experience replay mechanisms to mit-
igate catastrophic forgetting. The hyperparameters deter-
mine aspects such as the importance of past data samples,
the frequency of replay, or the balance between old and new
data, thereby influencing the impact of replay on model
performance as highlighted in [23, 6, 11].

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

3 Adaptive Hyperparameter Optimization
for Continual Learning Scenarios

3.1 Methodology and Key Assumptions

We hypothesize that the assumption of hyperparameters
constancy in all sequence stream data is unrobust and inef-
fective in continual learning settings. Firstly, the common
practice of using held-out validation data from all tasks
inherently violates the main assumption of having no ac-
cess to previous task data. Secondly, the assumption of
fixed hyperparameters in all sequence stream data is unre-
alistic for building effective continual learning real-world
systems. Finally, assuming to work on more practical sce-
narios, optimizing hyperparameters over the entire data se-
quence is not possible and real solutions involve changing
or not the hyperparameter when it detects a distribution
shift or model’s performance decay.

Algorithm 1 Adaptive Hyperparameters Tuning for Con-
tinual Learning

Require: H = {Hn} configuration space with hyperpa-
rameters N ; T = {t} sequence tasks; ACL continual
learner

1: Initialization
2: for (t, i) in T do
3: if i < m then ▷ First m tasks
4: h∗

t = hpo(H, t,ACL
t)

5: {Hn, v} = get param imp(f ANOVA, hpo,H)
6: Hk = top k hp({Hn, v}, k)
7: else ▷ Rest of other tasks
8: h∗

t = hpo warm start(Hk, h∗
t−1, t,ACL

t)
9: end if

10: end for
11: return h∗

T best configuration in all the sequence tasks

The idea behind Adaptive Hyperparameters Tuning for
Continual Learning (Algorithm 1) is simple. In the first m
tasks, we select the best configuration in H as in a typically
stationary setting. Exploiting the fANOVA evaluator, we
compute parameter importances based on completed trials
in the given HPO and associated continual learner ACL

t . In
the remaining tasks, we speed up the optimization process
based on the importance of each parameter. The proposal
method automatically selects the k most important param-
eters to be changed and keeps fixed the others with the op-
timal value computed in the previous task. Note that this
policy selection of the parameters to tune is automatic and
agnostic to CL strategies and sequence tasks (and their or-
der).

hpo: Implement a specific HPO for each model update,
i.e. grid search, population-based training or Bayesian op-
timization. The latter should speed up the HPO if we start
from the best configuration in the previous task. For this

reason, we want to use Bayesian Optimization and Hyper-
band (BOHB) [8] that performs robust and efficient hyper-
parameter optimization at scale by combining the speed of
Hyperband searches with the guidance and guarantees of
convergence of Bayesian Optimization among tasks.

get param imp: Evaluate parameter importances based on
fANOVA evaluator in the given HPO and ACL

t . The func-
tion returns the parameter importances as a dictionary
{Hn, v} where the keys consist of specific parameter Hn

and values importance v ∈ {0, 1}.

top k hp: function that return Hk as a subspace of H after
ordering the parameters by importance.

hpo warm start: the idea is to speed up the tuning process
among the sequence tasks by starting from the optimal pa-
rameters found in the previous task h∗

t−1. Furthermore,
knowing the importance of each parameter we select the
subspace of H with the most k important to be tuned and
keep fixed the others.

We believe that the tasks in the sequence, even if they have
different distributions, have enough task similarity to be
exploited in the sequence HPO to efficiently tune the pa-
rameters on the current task. To do this, our idea is to
exploit the hyperparameter importance information to au-
tomatically select the parameters to be tuned and which
could be fixed dynamically in the non-stationary learning
sequence.

3.2 Experimental protocol

The goal of this section is to describe the protocol, bench-
marks, baseline, and continual strategies that we plan to use
in the experiments.

3.2.1 Benchmarks and Metric

Continual learning algorithms are evaluated by bench-
marks: they specify how the stream of data is created by
defining the originating dataset(s), the number of samples,
the criteria to split the data into different tasks and so on. In
literature, different benchmarks are used to evaluate results.

In this paper, we would conduct experiments using bench-
marks from two distinct scenarios: Class Incremental,
where each task introduces new classes without revisit-
ing old ones in the training stream, and Domain Incre-
mental, where each task presents new instances for exist-
ing classes without reusing old instances in the training
stream [16]. We have selected three for Class Incremen-
tal Learning: Split-CIFAR10 [32], Split-TinyImageNet
[22] and CORe50-NC [19]. These benchmarks are derived
respectively from CIFAR-10 [14] and TinyImagenet [15]
datasets while CORe50-NC is a benchmark specifically de-
signed for continual learning. For Domain Incremental
Learning we have selected Rotated-MINIST derived from

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu

the MNIST dataset [7] and CORe50-NI. Each dataset ex-
hibits visual classification learning. We will train all the
models with Split-CIFAR10 and Rotated-MINIST online,
while the others will be in batch mode. We will resort to the
standard metrics for evaluation, i.e. accuracy, which mea-
sures the final performance averaged over all tasks (also
defined as stream accuracy, SA) [16]. In both incremental
scenarios, higher values indicate better performance.

3.2.2 Baselines

We intend to compare our solution with two opposite ap-
proaches used both in literature [31] and more practical sce-
narios for hyperparameter optimization for sequence task
learning.

• The upper bound in terms of performance and lower
bound for computational cost is HPO for each model
update as used in [31]. We plan to use grid search
or Bayesian optimization as an HPO technique to im-
prove as possible the performance comparison. The
computational cost expected to achieve is |H| ∗ |T |
which is the worst case.

• The lower bound in terms of performance and upper
bound for computational cost is to perform HPO only
in the first experience and keep fixed the configuration
for the rest of the sequence learning. The computa-
tional cost expected to achieve is |H| which is the best
case.

3.2.3 Continual Learning strategies

We selected five strategies among the most popular and
promising rehearsal and regularization approaches.

In particular, for rehearsal, we intend to use the following.

Experience Replay (ER). We selected Replay [4, 23] be-
cause it is an effective continual strategy for practical sce-
narios. In particular, it is a simple way to prevent catas-
trophic forgetting, and it performs better with respect to
more complicated strategies. In our future experiments, we
plan to explore different buffers with different policies to
select-discard samples.

Greedy Sampler and Dumb Learner (GDumb) [25] is a
simple approach that is surprisingly effective. Compared to
other rehearsal methods, with the same memory size, this
strategy is more efficient, in terms of execution time and
resources. In a particular setting, this simple strategy can
outperform other approaches.

Dark Experience Replay (DER/DER++) [3], as a more
recent replay method, relies on dark knowledge for dis-
tilling past experiences, sampled over the entire training
trajectory. With respect to ER, DER converges to flatter
minima and achieves better model calibration at the cost of
limited memory and training time overhead.

For well-established regularization methods, we intend to
employ the following category of continual learners be-
cause we believe they are more sensitive to hyperparam-
eter selection and necessitate hyperparameters that adapt
dynamically throughout the learning sequence.

Learning-without-Forgetting (LwF) [17] is a knowledge-
distillation approach where the teacher branch is the model
from the previous task, and the student branch is the current
model. The aim is to match the activations of the teacher
and student branches, either at the feature or logit layer.

Synaptic Intelligence (SI). [32] introduces intelligent
synapses that bring some of this biological complexity into
artificial neural networks. Each synapse accumulates task-
relevant information over time and exploits this informa-
tion to rapidly store new memories without forgetting old
ones.

Table 1: The continual strategies with their specific and
general hyperparameters. mem size: replay buffer size;
(*) both the optimizer and model could have further pa-
rameters.

Strategy Hyperparameters

ER (replay) mem size
buffer type
storage policy

GDumb mem size

DER/DER++ mem size
alpha
beta = 0 (DER)
with beta ̸= 0 (DER++)

LwF alpha
temperature

SI lambda
eps

General Hyperparameters optimizer*
lr
training epochs
batch size
model*

We report in Table 1 the selected ad-priori most interesting
hyperparameters for each continual method and additional
hyperparameters less specific to the learner. This selection
for the experiments has a twofold intention. Primarily, we
aim to spotlight parameters specific to individual continual
learners, particularly pertinent to addressing RQ1. Addi-
tionally, we recognize the significance of general parame-
ters like learning rate, which should impact overall perfor-
mance. Therefore, we intend to showcase their inclusion as
a demonstration of the adaptability of our solution across a
wide array of incremental scenarios and strategy types.

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

3.2.4 Implementation details

We will run experiments on three different seeds and report
their average. For each benchmark, the evaluation proto-
col will be split by pattern. First, we will split the overall
dataset into 90% model selection and 10% model assess-
ment patterns. Then, we will use 15% of model section
data as a validation set and a batch size of 32 examples.
For the experimental part, we intend to use Avalanche [20]
the reference continual learning framework based on Py-
Torch and Ray Tune for the hyperparameter optimization
[18]. To quantitatively assess the significance of individual
hyperparameters and their interactions within each task, we
will leverage various metrics, as outlined in [13, 30], and
will implement them within the Optuna framework [1].

Finally, for the analysis of the robustness with respect to se-
quence order, we will conduct experiments across three dis-
tinct orders on the benchmarks defined in Subsection 3.2.1
and subsequently report their average with associated stan-
dard deviations. We intend to employ the stream accuracy
metric for each model update, the outcomes of which will
be visually presented in plots that facilitate a comparative
analysis of our solution against all baseline methods.

4 Expected Results and Discussion

Our objective is to empirically demonstrate that:

• The hypothesis of automatically adjusting the most
effective continuous parameters for each update can
significantly expedite the accuracy of the overall se-
quence task.

• The quite task-independent hyperparameters can be
computed from the initial tasks in a similar sequence
of streamed data and can considerably accelerate the
hyperparameter processes in practical scenarios while
maintaining an advantageous performance-efficiency
tradeoff.

• By striking a favourable balance between perfor-
mance and efficiency, we hypothesize that our pro-
posal method will greatly enhance robustness, partic-
ularly in terms of sequence order.

4.1 Important and Adaptive Hyperparameters for
CL Analyses

(RQ1) How important is each of the hyperparameters, and
how do their values affect performance in sequence learn-
ing? Which hyperparameter interactions matter? How do
the values of the hyperparameters differ across different
incremental learning steps? How do the answers to these
questions depend on the task similarity of the sequence un-
der consideration?

We want to demonstrate that performance variability is of-
ten largely caused by a few hyperparameters that define a
subspace to which we can restrict configuration. Moreover,
given a specific continual learner and sequence of similar
tasks, we believe that this small set of hyperparameters re-
sponsible for the most variation in performance is the same
set of hyperparameters across the sequence.

4.2 Performance-efficiency Analyses

(RQ2) Given that conducting HPO on each individual ex-
perience leads to improved performance but comes at the
expense of computational resources, how can we enhance
efficiency by leveraging hyperparameter importance infor-
mation?

According to similar work like [30], we want to demon-
strate empirically that the hyperparameters determined as
the most important ones indeed are the most important ones
to optimize also in sequence task learning. In particular,
given a continual learner, only a small set of hyperparame-
ters are responsible for most variation in performance and
this is the same for all tasks in a sequence. As a result, we
only perform hyperparameter optimization in H for the ini-
tial m tasks with m < |T | and speed up the hyperparameter
optimization through the remaining data stream.

4.3 Robustness Analyses

(RQ3) What is the effect of HPO for each model update on
robustness to the sequence order?

Based on the insights from [31], we intend to conduct fur-
ther experiments to emphasize the importance of perform-
ing HPO for each model update and emphasize its robust-
ness concerning the sequence order. We anticipate observ-
ing enhanced performance trends across the stream and re-
duced variance.

5 Changes and Additions to the
pre-registered proposal

Given the time constraints and our obtained results, we
have chosen to conduct a comprehensive analysis of hy-
brid and traditional continual learning strategies, emphasiz-
ing their robustness in per-task performance in conjunction
with HPO. This decision involved focusing on four bench-
marks, i.e. Rot-MNIST, Split-CIFAR10, Split-Tiny and
CORe50 within a DIL setting. Moreover, the effort made
in exploring the importance of hyperparameters for these
four benchmarks has improved the analysis of how to tune
the parameters better for hybrid and traditional continual
learning strategies. Moreover, we have decided to change
the optimizer, specifically the Tree-structured Parzen Esti-
mator (TPE) [2], instead of BOHB. The main reason for
this change is that TPE is highly efficient in searching for

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu

hyperparameters and can find good sets with relatively few
evaluations compared to BOHB. Finally, we have named
the two baselines. The first baseline, which represents the
upper bound in terms of accuracy but comes with a high
computational cost, is called HPO while the second base-
line is called Fixed.

6 Results and Discussion

In this section, we provide the results of the experiments
with analysis and discussion. We use Rot-MNIST and
CIFAR10 for Online Incremental Scenarios (single epoch
over the same task) while Tiny and CORe50 for Batch In-
cremental Scenarios (multiple epochs).

Experimental Setup

This subsection covers additional information on the exper-
iment setting not covered in the 3.2.

HW usage. To guarantee a fair comparison among all the
methods, we conduct all tests under the same conditions,
running each benchmark on a Multi-GPU NVIDIA-SMI
server with 80-core Intel Xeon CPU E5-2698 v4 and 4
Tesla V100 GPUs 11.2 CUDA Version.

Architecture. For the experiments in Rot-MNIST bench-
mark, we employ a fully connected network with two hid-
den layers of 126 units each, followed by a ReLU layer.
For CIFAR10, Tiny ImageNet and CORe50, we use Slim-
ResNet18 (not pre-trained). Both these models are avail-
able in the Avalanche library.

Training and Hyperparameter Optimization. To pro-
vide a fair comparison among all the methods, we train all
the networks using the Adam with decoupled weight decay
(AdamW) [21] optimizer. For Rot-MNIST and CIFAR10
settings, we conduct experiments with one epoch per task
(online) and a buffer memory size of 500. Conversely, we
increase the number of epochs to 50 for Tiny and 20 for
CORe50 with early stopping and 5120 as buffer memory
for the batch incremental scenario. We use TPE as the Hy-
perparameter optimization method for all the experiments.

6.1 Important and Adaptive Hyperparameters for
Continual Learning Analyses

This section delves into the discussion of experimental re-
sults achieved for (RQ1), with further discussion on our
early hypotheses provided in Subsection 4.1. By study-
ing how important is each of the hyperparameters, and how
their values affect performance in sequence learning, we
explore how their contribution differs on overall sequence
and across different tasks.

6.1.1 Hyperparameter Importance on Overall
Sequence Performance

Currently, the family of methods with the best performance
are memory-based methods. Due to this, we perform ex-
periments using the ER and DER strategies for all the con-
tinual benchmarks presented in Subsection 3.2.1. The per-
formance variability primarily hinges on one or two hyper-
parameters, as we expected. As shown in Figure 1, the
learning rate plays a crucial role in the overall sequence ac-
curacy performance in most incremental settings. In all the
scenarios, the least important hyperparameter for final ac-
curacy appears to be weight decay and changing it does not
lead to significantly better results. Despite DER having a
larger hyperparameter space than ER, similarities in hyper-
parameter importance are observed, as depicted in Figure
1. Contrary to expectations, specific continual hyperpa-
rameters in DER show a modest impact on performance,
with beta significantly affecting only the Tiny benchmark.
Moreover, the experiments do confirm that by using the
fANOVA approach we can have quantitative information
on the most important hyperparameters that capture the po-
tential for performance improvement over the sequence.

We already know that the choice of learning rate is a crit-
ical aspect that significantly influences the model’s ability
to adapt to new tasks without forgetting previously learned
information. In Tiny and Rot-MNIST benchmarks, with
more number of tasks, we note that the learning rate de-
creases over the sequence. Furthermore, in Rot-MNIST,
we note that the learning rate is more stable at the end of
the sequence. The intuition of the latter results is that the
learning rate can balance the learning and forgetting of the
sequence. In continual learning scenarios, decreasing the
learning rate can mitigate catastrophic forgetting on future
tasks, due to the reduction in the modification of weights,
causing an equilibrium between plasticity and stability. In
CORe50 benchmark, a prevalent observation is the incli-
nation towards increasing learning rate values. We believe
that this tendency is motivated by the need for the model to
swiftly adapt to new tasks without compromising its perfor-
mance on previously learned ones. Choosing a DIL bench-
mark with no high number of tasks, the tendency to learn
more in the new tasks seems reasonable.

This empirical trend highlights the importance of dynamic
hyperparameter tuning, emphasizing the balance between
adaptability and stability in the face of evolving data distri-
butions.

6.1.2 Hyperparameter Importance on Per Task
Performance

Online Incremental Scenarios

In this analysis, we provide an in-depth study of hyperpa-
rameter importance per task on ER, ER combined with SI

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

(a) ER and DER, Split-CIFAR10 (b) ER and DER, Rot-MNIST

(c) ER and DER, Split-Tiny (d) ER and DER, CORe50-NI

Figure 1: Importance of hyperparameters averaged over the four continual learning benchmarks. We report the results
for ER and DER continual strategies. The performance variability, estimated by fANOVA, is largely caused by a few
hyperparameters that help define a subspace to which we can restrict configuration search space.

and LwF to our selected online benchmarks CIFAR10 and
Rot-MNIST. We are interested in how the importance of
a selected configuration of hyperparameters differs across
different one-epoch learning tasks.

Following previous results, only a small set of hyperparam-
eters is responsible for the most variation in performance,
as shown in Figure 2. In this set of experiments, the most
important parameter is the same which is the learning rate.
The fact that the proposed methods recovered this known
most important hyperparameter also verifies that the pro-
posed methodology works as expected. However, the set
of most important parameters is not the same over the se-
quences which does not validate our pre-experimental idea.
These results pose that having a method to change adap-
tively the hyperparameters during the sequence is a crucial
aspect to take into account and fixing all the hyperparame-
ters in all the sequences could hurt performance. Moreover,
not all hyperparameters change at the same rate, that why it
is important to use an incremental HPO method that knows
how to mitigate the problem of testing all of them.

Batch Incremental Scenarios

The conducted experiments for batch incremental scenar-
ios (Tiny, CORe50) are shown in Figure 3 with the same

continual strategies chosen for online cases. The results
seem to demonstrate also in batch cases that performance
variability is often largely caused by a few hyperparameters
that define a subspace to which we can restrict configura-
tion.

In Tiny, the learning rate is the most important and plays a
crucial role in all the continual strategies under study. We
believe that in this benchmark, with more classes per task,
it is reasonable that the learning rate decreases over the se-
quence to reduce catastrophic forgetting and have a high
impact on performance as the fANOVA has quantified. In
CORe50, the dropout hyperparameters play a crucial role
in most cases followed by the learning rate. We believe
that how the importance of hyperparameters in Tiny and
CORe50 benchmarks change could be attributed to differ-
ences in scenarios (CIL and DIL), dataset sizes, and task
complexities. The learning rate seems to dominate in sce-
narios where data or epochs are scarce, while dropout hy-
perparameters become crucial in handling the intricacies
of diverse tasks in larger datasets preventing overfitting by
randomly deactivating some neurons during training, en-
hancing the model’s ability to generalize across various
tasks. To conclude, our findings highlight that, akin to
an online setting, the quantitative importance evaluation ef-

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu

(a) ER, Split-CIFAR10 (b) ER, Rot-MNIST

(c) ER+SI, Split-CIFAR10 (d) ER+SI, Rot-MNIST

(e) ER+LwF, Split-CIFAR10 (f) ER+LwF, Rot-MNIST

Figure 2: Importance values for incremental per-task learning using ER and combined ER with SI and LwF; AdamW
optimizer and TPE as Hyperparameter optimization (hpo). The results reported on the Online benchmarks show that a
small set of hyperparameters is responsible for the most variation in performance. The learning rate plays an important
role in online incremental scenarios.

fectively automates the selection of a hyperparameter sub-
space for each update step.

6.2 Performance-Efficiency Analyses

This section delves into the discussion of experimental re-
sults achieved for (RQ2), with further discussion on our
early hypotheses provided in Subsection 4.2. First, we
study the final stream accuracy of the Fixed and HPO then
we investigate Adaptive-HPO (our solution) to compare
with the two baselines. The results are presented in Ta-
ble 2. The results of the efficiency analysis are in Figure 4
and Figure 5.

6.2.1 Performance Analyses

We can observe that both Adaptive HPO and HPO outper-
form Fixed baseline in terms of performance for all four
benchmarks. In Tiny our method outperforms the Fixed
baseline by +20% for all the continual strategies under
study. In CORe50, the Fixed baseline presents a high
variance in performance over different seeds showing a
high sensitivity to the hyperparameters selection and that a
wrong selection and keeping fixed them over the sequence
have a high impact on performance. The results maintain
equal increasing the number of random seeds. We can ar-
gue that doing per-task HPO increase the overall accuracy
of methods, as we have expected.

Interestingly, Adaptive-HPO appears to surpass HPO in

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

(a) ER, Split-Tiny (b) ER, CORe50-NI

(c) ER+SI, Split-Tiny (d) ER+SI, CORe50-NI

(e) ER+LwF, Split-Tiny (f) ER+LwF, CORe50-NI

Figure 3: Importance values for incremental per-task learning using ER and combined ER with SI and LwF; AdamW
optimizer and TPE as Hyperparameter optimization (hpo). The results reported on the Batch benchmarks show that a small
set of hyperparameters is responsible for the most variation in performance.

some benchmarks or continual strategies. For instance, in
Rot-MNIST experiments, we achieve the highest accuracy
score in ER, ER+SI and DER. Superior performance re-
sults appear in most cases also for ER strategy. It is perti-
nent to consider that HPO operates as a greedy algorithm,
seeking the best hyperparameters for the current task. The
optimal hyperparameters identified through HPO for a spe-
cific task may not necessarily be the most optimal for the
entire sequence of tasks. This suggests that the ideal set of
hyperparameters can dynamically shift between tasks, de-
viating from what might be deemed optimal for the entire
sequence. By employing a quantitative assessment of hy-
perparameter importance through fANOVA, we know that
not all hyperparameters change at the same variance. This
underscores the significance of avoiding greedy HPO meth-
ods to address the challenge of selecting optimal configu-
rations incrementally within expansive search spaces.

6.2.2 Efficiency Analyses

When facing up with an incremental stream, one often
cares about reducing the overall processing training time
otherwise, training would not keep up with the rate at which
data are made available to the stream. We extend this
analysis to perform training and HPO jointly given a se-
quence of learning tasks. In particular, our Adaptive-HPO
is compared with the baselines with empirical results in our
most time-consuming benchmarks, Tiny in Figure 4 and
CORe50 in Figure 5. We draw two main remarks. First,
we note that DER processes stream data slowly making it
hardly viable in practical batch HPO scenarios. Second,
in Tiny the time complexity for our Adaptive-HPO is con-
stant over all the tasks and reduces the baseline HPO time
demand by 53% for ER, 39% for ER+SI, 47% for ER+LwF
and 27% for DER. In CORe50 the time complexity for our
Adaptive-HPO is reduced by the baseline HPO time de-
mand by 16% for ER, 28% for ER+SI, 55% for ER+LwF
and 44% for DER.

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu

Online Batch
Strategy Method Split-Cifar10 Rotated-MNIST S-Tiny-ImageNet CORe50-NI

ER
Fixed 43.66± 4.6 80.92± 4.9 4.47± 0.3 46.10± 9.4
HPO 53.67± 0.3 84.55± 0.6 24.40± 1.0 53.93± 0.3

Adaptive-HPO (our) 55.91± 1.4 84.92± 2.6 24.54± 0.6 53.92± 1.8

ER+SI
Fixed 43.34± 5.4 82.63± 2.6 4.01± 0.1 36.43± 4.3
HPO 57.32± 0.4 84.44± 0.7 25.36± 0.3 48.48± 0.9

Adaptive-HPO (our) 56.71± 2.6 85.14± 3.0 24.72± 0.8 45.74± 4.7

ER+Lwf
Fixed 44.50± 5.5 82.74± 3.4 4.45± 0.1 36.08± 4.4
HPO 55.03± 0.3 88.25± 0.9 26.00± 1.4 68.08± 0.6

Adaptive-HPO (our) 55.98± 2.5 85.37± 3.0 25.34± 0.7 59.98± 1.5

DER
Fixed 42.61± 6.0 81.2± 5.3 20.04± 4.6 31.97± 9.7
HPO 56.2± 0.8 86.42± 0.3 26.48± 0.4 53.02± 0.7

Adaptive-HPO (our) 55.71± 1.0 87.13± 2.1 25.75± 0.3 53.19± 3.8

GDumb
Fixed 11.96± 2.6 - 3.50± 5.0 -
HPO 22.44± 0.5 - 14.19± 0.9 -

Adaptive-HPO (our) 20.46± 1.6 - 14.60± 0.5 -

Table 2: Final stream accuracy results for all four CL benchmarks averaged across 3 runs. ‘-’ indicates experiments we were
unable to run or unimportant for our purposes (e.g. Gbumb in DIL benchmarks). Fixed: random choice of hyperparameters
in the first task and keep fixed in the remaining; HPO: use hpo for each task; Adaptive-HPO: our proposed solution. For
Online the buffer memory size is 500 while for batch 5120. Optimizing adaptively outperforms fixed tuning by a large
margin, especially in the most difficult benchmark Tiny. In all benchmarks, our solution achieves a small gap in the worst
case concerning the standard time-consuming greedy HPO approach.

Figure 4: Results for executing training and optimization
jointly in terms of the time demand on Tiny (over all the
sequence); [↓] lower is better

6.2.3 Final Remarks on Performance-Efficiency
Analyses

In our experiments, by executing a sophisticated HPO for
each model update, we note that the selection of a combina-
tion of continual strategies positively affects performance
accuracy and it is possible automatically. Moreover, the
results shown in Table 2 empirically demonstrate that the
hyperparameters determined as the most important ones in-
deed are the most important ones to optimize in sequence

Figure 5: Results for executing training and optimization
jointly in terms of the time demand on CORe50; [↓] lower
is better

task learning by further benefit on time demand. Perform-
ing hyperparameter optimization in all the sequences im-
proves the final accuracy in diverse scenarios, including
Online, Batch, CIL, and DIL.

6.3 Robustness Analyses

In our last analysis, we delve into the discussion of experi-
mental results achieved for (RQ3), with further discussion

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

(a) ER+SI, Split-CIFAR10 (b) ER+SI, Split-Tiny

(c) ER+LwF, Split-CIFAR10 (d) ER+LwF, Split-Tiny

Figure 6: Results for the model robustness analysis comparing Fixed baseline with our Adaptive-HPO solution on CIFAR-
10 and TinyImageNet for ER combined with SI and LwF. Optimizing adaptively outperforms fixed selection by a large
margin, across all incremental learning steps.

on our early hypotheses provided in Subsection 4.3. We
compare the Fixed baseline with our Adaptive-HPO ver-
sions on ER+SI and ER+LwF continual strategies. Results
are presented in Figure 6.

As can be seen, regardless of the strategies, adaptivity leads
to a significant increase in per-task accuracy, leading up to
13% for ER+SI and 12% for ER+LwF on CIFAR10, while
34% for ER+SI and 36% for ER+LwF on Tiny. This led
us to observe that tuning hyperparameters when we update
the model with new data improves the per-task accuracy
performance. Furthermore, this confirms our hypothesis
that incremental learners can benefit greatly from learning
and tuning hyperparameters jointly to the current task while
keeping fixed parameters leads to worse performance. The
results also confirm that performing HPO for each model
update improves the robustness concerning the sequence
order of tasks and enhances performance trends across the
stream.

7 Conclusion

In this paper, we study the critical challenge of hyper-
parameter selection in continual learning scenarios, es-
pecially within non-stationary environments. Employing
an innovative approach grounded in functional analysis
of variance (fANOVA), we identify automatically key hy-
perparameters that have an impact on performance. We
demonstrate empirically that this approach, agnostic to
continual scenarios and strategies, allows the speed up of
hyperparameters optimization adaptively across tasks.

Our experiments, conducted on CIFAR10, Rot-MNIST,
Tiny, and CORe50, have yielded three findings. First, dy-
namically adapting hyperparameters during the sequence
is crucial, underscoring the importance of an incremental
method for hyperparameter optimization brings significant
improvements in accuracy and transfer, regardless of the
continual strategy used. Second, the automatic selection of
hyperparameters has highlighted substantial improvements
in terms of average accuracy and computational cost, strik-
ing a balance between performance efficiency. Thirdly,

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, Davide Bacciu

tuning hyperparameters during model updates has proven
instrumental in enhancing per-task accuracy performance.
Notably, our strategy exhibits robustness even in the face
of varying sequential task orders.

These results suggest that incorporating the hyperparam-
eter update rule and automatic selection per task signifi-
cantly bolsters the adaptation process on streaming data.
We hope our work will inspire future research for fur-
ther contributing to the advancement of continual learning
methodologies and automating the customization of param-
eters in incremental learning. This progress aims at foster-
ing the development of more efficient, robust, and adapt-
able models for real-world applications.

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase,
Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 2623–2631, 2019.

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter opti-
mization. Advances in neural information processing
systems, 24, 2011.

[3] Pietro Buzzega, Matteo Boschini, Angelo Porrello,
Davide Abati, and Simone Calderara. Dark experi-
ence for general continual learning: a strong, simple
baseline. Advances in neural information processing
systems, 33:15920–15930, 2020.

[4] Pietro Buzzega, Matteo Boschini, Angelo Porrello,
and Simone Calderara. Rethinking experience re-
play: a bag of tricks for continual learning. In 2020
25th International Conference on Pattern Recogni-
tion (ICPR), pages 2180–2187. IEEE, 2021.

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420, 2018.

[6] Matthias De Lange, Rahaf Aljundi, Marc Masana,
Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learn-
ing survey: Defying forgetting in classification tasks.
IEEE transactions on pattern analysis and machine
intelligence, 44(7):3366–3385, 2021.

[7] Li Deng. The mnist database of handwritten digit
images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–
142, 2012.

[8] Stefan Falkner, Aaron Klein, and Frank Hutter.
BOHB: Robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, pages 1436–
1445, 2018.

[9] Matthias Feurer and Frank Hutter. Hyperparameter
optimization. Automated machine learning: Methods,
systems, challenges, pages 3–33, 2019.

[10] Elif Ceren Gok, Murat Onur Yildirim, Mert Kilick-
aya, and Joaquin Vanschoren. Adaptive regulariza-
tion for class-incremental learning. arXiv preprint
arXiv:2303.13113, 2023.

[11] Hamed Hemati, Andrea Cossu, Antonio Carta, Julio
Hurtado, Lorenzo Pellegrini, Davide Bacciu, Vin-
cenzo Lomonaco, and Damian Borth. Class-
incremental learning with repetition. arXiv preprint
arXiv:2301.11396, 2023.

[12] Julio Hurtado, Dario Salvati, Rudy Semola, Mattia
Bosio, and Vincenzo Lomonaco. Continual learning
for predictive maintenance: Overview and challenges.
Intelligent Systems with Applications, page 200251,
2023.

[13] Frank Hutter, Holger Hoos, and Kevin Leyton-
Brown. An efficient approach for assessing hyperpa-
rameter importance. In International conference on
machine learning, pages 754–762. PMLR, 2014.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.

[15] Ya Le and Xuan Yang. Tiny imagenet visual recogni-
tion challenge. CS 231N, 7(7):3, 2015.

[16] Timothée Lesort, Vincenzo Lomonaco, Andrei
Stoian, Davide Maltoni, David Filliat, and Natalia
Dı́az-Rodrı́guez. Continual learning for robotics:
Definition, framework, learning strategies, opportu-
nities and challenges. Information fusion, 58:52–68,
2020.

[17] Zhizhong Li and Derek Hoiem. Learning without for-
getting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

[18] Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A
research platform for distributed model selection and
training. arXiv preprint arXiv:1807.05118, 2018.

[19] Vincenzo Lomonaco and Davide Maltoni. Core50:
a new dataset and benchmark for continuous object
recognition. In Conference on robot learning, pages
17–26. PMLR, 2017.

Adaptive Hyperparameter Optimization for Continual Learning Scenarios

[20] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea
Cossu, Antonio Carta, Gabriele Graffieti, Tyler L
Hayes, Matthias De Lange, Marc Masana, Jary Pom-
poni, Gido M Van de Ven, et al. Avalanche: an end-
to-end library for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3600–3610, 2021.

[21] Ilya Loshchilov and Frank Hutter. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[22] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe,
Hyunwoo Kim, and Scott Sanner. Online continual
learning in image classification: An empirical survey.
Neurocomputing, 469:28–51, 2022.

[23] Gabriele Merlin, Vincenzo Lomonaco, Andrea
Cossu, Antonio Carta, and Davide Bacciu. Practical
recommendations for replay-based continual learning
methods. In International Conference on Image Anal-
ysis and Processing, pages 548–559. Springer, 2022.

[24] German I Parisi, Ronald Kemker, Jose L Part,
Christopher Kanan, and Stefan Wermter. Contin-
ual lifelong learning with neural networks: A review.
Neural networks, 113:54–71, 2019.

[25] Ameya Prabhu, Philip HS Torr, and Puneet K Doka-
nia. Gdumb: A simple approach that questions our
progress in continual learning. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part II 16,
pages 524–540. Springer, 2020.

[26] Andrea Rosasco, Antonio Carta, Andrea Cossu, Vin-
cenzo Lomonaco, and Davide Bacciu. Distilled re-
play: Overcoming forgetting through synthetic sam-
ples. In International Workshop on Continual Semi-
Supervised Learning, pages 104–117. Springer, 2021.

[27] Andrei A Rusu, Neil C Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

[28] Rudy Semola, Vincenzo Lomonaco, and Davide Bac-
ciu. Continual-learning-as-a-service (claas): On-
demand efficient adaptation of predictive models.
arXiv preprint arXiv:2206.06957, 2022.

[29] Danny Stoll, Jörg KH Franke, Diane Wagner, Si-
mon Selg, and Frank Hutter. Hyperparameter trans-
fer across developer adjustments. arXiv preprint
arXiv:2010.13117, 2020.

[30] Jan N Van Rijn and Frank Hutter. Hyperparameter im-
portance across datasets. In Proceedings of the 24th

ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2367–2376,
2018.

[31] Martin Wistuba, Martin Ferianc, Lukas Balles, Cédric
Archambeau, and Giovanni Zappella. Renate: A
library for real-world continual learning. arXiv
preprint arXiv:2304.12067, 2023.

[32] Friedemann Zenke, Ben Poole, and Surya Ganguli.
Continual learning through synaptic intelligence. In
International conference on machine learning, pages
3987–3995. PMLR, 2017.

