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Abstract
Concept Bottleneck Models (CBMs) enhance in-
terpretability by explaining predictions through
human-understandable concepts but typically as-
sume that training and test data share the same
distribution. This assumption often fails under
domain shifts, leading to degraded performance
and poor generalization. To address these limita-
tions and improve the robustness of CBMs, we
propose the Concept-based Unsupervised Do-
main Adaptation (CUDA) framework. CUDA
is designed to: (1) align concept representations
across domains using adversarial training, (2)
introduce a relaxation threshold to allow minor
domain-specific differences in concept distribu-
tions, thereby preventing performance drop due
to over-constraints of these distributions, (3) infer
concepts directly in the target domain without re-
quiring labeled concept data, enabling CBMs to
adapt to diverse domains, and (4) integrate con-
cept learning into conventional domain adaptation
(DA) with theoretical guarantees, improving in-
terpretability and establishing new benchmarks
for DA. Experiments demonstrate that our ap-
proach significantly outperforms the state-of-the-
art CBM and DA methods on real-world datasets.

1. Introduction
Black-box models often lack interpretability, making them
difficult to trust in high-stakes scenarios. Concept Bottle-
neck Models (CBMs) (Koh et al., 2020; Ghorbani et al.,
2019) tackle this interpretability issue by using human-
understandable concepts. These models first predict con-
cepts from the input data and then use concepts to predict the
final label, thereby improving their interpretability, e.g., pre-
dicting concepts “black eyes” and “solid belly” to classify
and interpret the bird species “Sooty Albatross”. This also
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Figure 1. Illustration of our key idea. Left: Ground-truth (GT)
concept distributions (for each concept) (top) and data distributions
(bottom). Right: Uniform alignment (top) and relaxed alignment
(bottom) after adaptation. Our relaxed alignment allows for greater
differences between source and target concept distributions; such
flexibility leads to predicted concept distributions closer to the
ground truth and therefore higher final classification accuracy.

allows experts to understand misclassifications and make
necessary interventions when needed (Abid et al., 2022).
However, existing CBMs typically assume that the training
and test data share the same distribution, which limits their
effectiveness in real-world applications where domain shifts
between training and test sets are common. For example,
methods such as CBMs (Koh et al., 2020) and Concept
Embedding Models (Zarlenga et al., 2022) demonstrate a
significant drop in performance when tested under domain
shift conditions. These models achieve only around 66%
accuracy under background shifts, a notable drop compared
to their 80% accuracy on test sets that align with the training
distribution, as observed on the CUB dataset (Wah et al.,
2011) (Sec. 5). Despite these findings, the challenge of de-
signing interpretable models capable of handling real-world
domain shifts remains largely underexplored.

A straightforward approach is to combine CBMs with Do-
main Adaptation (DA) (Ben-David et al., 2010; Ganin et al.,
2016), which tackles domain shifts by utilizing labeled data
from source domains alongside unlabeled (or sparsely la-
beled) data from target domains. Specifically, a naive com-
bination of CBMs and DA would simply add concept learn-
ing into DA models. Unfortunately, this method performs
poorly (more results in Appendix C.2) for two reasons. First,
it enforces separate class-wise and concept-wise alignment,
failing to unify them into a single feature space, limiting
both interpretability and generalization. Second, existing
DA methods assume uniform (perfect) alignment between
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source and target concepts, overlooking domain-specific
variations that are essential for CBMs to capture meaningful
and interpretable concepts. As shown in Fig. 1 (upper-right),
while uniform (perfect) alignment can strictly align source
and target concepts, it overlooks the inherent differences
between concepts across domains. Such over-constraints
lead to significant performance drops.

One of our key ideas is therefore to introduce a degree of
relaxation. As shown in Fig. 1 (bottom-right), our relaxed
alignment allows for greater differences between source
and target concept distributions, e.g., allowing the propor-
tion of the concept “Primary Color: Brown” to be 19% in
the source domain and 17% in the targe domain for bird
classification; such flexibility leads to predicted concept
distributions closer to the ground truth and therefore higher
final classification accuracy. Specifically, we propose a
novel Concept-based Unsupervised Domain Adaptation
(CUDA) framework, a simple yet effective approach with
strong generalization capabilities. To achieve this, we in-
troduce a novel relaxed uniform alignment loss that adapts
more flexibly across domains. This approach enables the
learning of domain-invariant concept embeddings while
effectively preserving domain-specific variations. We sum-
marize our contributions as follows:

• We provide the first generalization error bound for
CBMs, with theoretical analysis on how concept em-
beddings can be utilized to align source and target dis-
tributions in DA.

• Inspired by the theoretical analysis, we propose the first
general framework for concept-based DA, providing
both cross-domain generalization and concept-based
interpretability.

• We improve generalization of CBMs and eliminate the
need for labeled concept data and retraining on the
target domain, enabling adaptation to diverse domains.

• Experiments on real-world datasets show that our
method significantly outperforms state-of-the-art CBM
and DA models, establishing new benchmarks for
concept-based domain adaptation.

2. Related Work
Concept Bottleneck Models (CBMs) (Koh et al., 2020) use
bottleneck models to map inputs into the concept space and
make predictions based on the extracted concepts. Concept
Embedding Models (CEMs) (Zarlenga et al., 2022) improve
performance by using a weighted mixture of positive and
negative embeddings for each concept. Energy-based Con-
cept Bottleneck Models (ECBMs) (Xu et al., 2024) unify
prediction, concept correction, and interpretation as condi-
tional probabilities under a joint energy formulation. Post-
hoc Concept Bottleneck Models (PCBMs) (Yuksekgonul
et al., 2022) employ a post-hoc explanation model with resid-

ual fitting, storing Concept Activation Vectors (CAVs) (Kim
et al., 2018) in a concept bank, which eliminates the need for
retraining on target domains. DISC (Wu et al., 2023) com-
plements this by building a comprehensive concept bank
that covers potential spurious concept candidates. CONDA
(Choi et al., 2024) further extends PCBMs by performing
test-time adaptation using pseudo-labels generated by foun-
dation models. Our approach combines the advantages of
these methods: it requires neither retraining nor concept
labels in the target domain, while retaining the complete
interpretability of the original concepts. Unlike PCBMs
and CONDA, our method supports direct evaluation of con-
cept learning performance, ensuring both interpretability
and strong performance in the target domain. Note that our
work is orthogonal to unsupervised concept interpretation
of foundation models (Wang et al., 2024a;b; Wang & Yeung,
2016; 2020).

Domain Adaptation. In domain adaptation, the task re-
mains the same across source and target domains, while
the data distributions differ across domains (Pan & Yang,
2009). Our work assumes unlabeled data in the target do-
main, falling under the category of unsupervised domain
adaptation (UDA) (Beijbom, 2012). Existing UDA methods
primarily focus on learning domain-invariant features, en-
abling a classifier trained on source to be applied to target
data. These methods can be broadly categorized into three
adaptation paradigms: input-level (Sankaranarayanan et al.,
2018; Hoffman et al., 2018), feature-level (Ganin et al.,
2016; Saito et al., 2018; Xu et al., 2022; Liu et al., 2023; Xu
et al., 2023; Huang et al., 2024), and output-level (Zhang
et al., 2019b; Tang et al., 2020; Hu et al., 2022). Input-level
adaptation stylizes data (e.g., images) from one domain to
match the style of another. This involves generating source-
like target data as regularization (Sankaranarayanan et al.,
2018) or target-like source data as training data (Hoffman
et al., 2018), often using GANs (Goodfellow et al., 2014).
Feature-level adaptation minimizes feature distribution dis-
crepancies between domains (Long et al., 2015) or employs
adversarial training at the domain (Ganin et al., 2016; Xu
et al., 2023) or class levels (Saito et al., 2018; Huang et al.,
2024). Output-level adaptation focuses on learning target-
discriminative features through self-training with pseudo-
labels (Zhang et al., 2019b; Tang et al., 2020; Hu et al.,
2022). None of the methods above provide concept-level
interpretability. In contrast, our approach, for the first time,
introduces the concept-level perspective for adaptation. By
leveraging concept learning, we bridge domain discrepan-
cies while achieving concept-based interpretable UDA.

3. Methodology
In this section, we begin by analyzing the generalization er-
ror bound for CBMs and then discuss our proposed method
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inspired by the analysis. A detailed theoretical analysis is
provided in Sec. 4.

Problem Setting and Notations. We consider the concept-
based UDA setting with Q classes and K concepts. The
input, label, and concepts are denoted as x ∈ X , y ∈ Y ⊂
{0, 1}Q, and c ∈ C = {0, 1}K , respectively; note that Y
represents the space of Q-dimensional one-hot vectors while
C does not. We use discrete domain indices (Wang et al.,
2020) u = 0 and u = 1 to denote source and target domains,
respectively. Given the labeled data {(xs

i ,y
s
i , c

s
i )}

n
i=1 from

source domain (u = 0), and unlabeled data {xt
i}

m
i=1 from

target domain (u = 1), the goal is to accurately predict both
the classification labels {yt

i}
m
i=1 and the unlabeled concepts

{cti}
m
i=1 in the target domain.

3.1. Generalization Error Bound for CBMs

Previous works on CBMs have primarily been evaluated
on background shift tasks (Koh et al., 2020), but they lack
theoretical analysis of the generalization error bound. To
address this limitation and provide deeper insights into our
proposed method, we begin by analyzing the generalization
error bound for CBMs. Although our primary focus is on
binary classification, our framework can extend to multi-
class classification following Zhang et al. (2019a; 2020),
which we leave for future work.

Generalization Bound without Concept Terms. Building
on the framework established in Ben-David et al. (2006;
2010), we formalize the data generation process for both
source domain and target domain using marginal (data) dis-
tribution and underlying labeling function pairs, denoted as
⟨DS , fS⟩ for the source domain and ⟨DT , fT ⟩ for the target
domain. Here, DS and DT denote the marginal distribu-
tions over the input space X , while fS : X → [0, 1] and
fT : X → [0, 1] represent the labeling functions that assign
the probability of an instance being classified as label 1 in
the source and target domains, respectively. We adopt a
concept embedding encoder E : X → V ⊂ RJ , a function
which maps inputs to concept embeddings. This induces
distributions D̃S and D̃T over the concept embedding space
V , as well as corresponding labeling functions:

f̃S(v) ≜ Ex∼DS
[fS(x) | E(x) = v],

f̃T (v) ≜ Ex∼DT
[fT (x) | E(x) = v].

We define a hypothesis h : V → [0, 1] as a predictor operat-
ing over the concept embedding space V . For any embed-
ding v ∈ V , h(v) outputs the predicted probability that the
classification label is 1. The error of h on the source and
target domains is then defined as:

ϵS(h) ≜ ϵS(h, f̃S) = Ev∼D̃S

[∣∣∣f̃S(v)− h(v)
∣∣∣] ,

ϵT (h) ≜ ϵT (h, f̃T ) = Ev∼D̃T

[∣∣∣f̃T (v)− h(v)
∣∣∣] .

For any h ∈ H withH as the hypothesis space, Ben-David
et al. (2006; 2010) present a theoretical upper bound on the
target error ϵT (h):

ϵT (h) ≤ ϵS(h) +
1
2dH∆H(D̃S , D̃T ) + η, (1)

where η = minh∈H (ϵS(h) + ϵT (h)) denotes the error of
a joint ideal hypothesis on both source and target domains,
and the H∆H divergence dH∆H(D̃S , D̃T ) represents the
worst-case source-target domain discrepancy over concept
embedding space (different from Ben-David et al. (2010),
which is in the input space).

Concept Embeddings vi. Given that using scalar repre-
sentations for concepts can significantly degrade predictive
performance in realistic settings (Mahinpei et al., 2021;
Dominici et al., 2024), we choose to use a more robust
approach that constructs positive and negative semantic em-
beddings for each concept (Zarlenga et al., 2022; Xu et al.,
2024). Specifically, the concept embedding v is represented
as a concatenation of sub-embeddings for K concepts, i.e.
v = [vi]

K
i=1 ∈ RJ , where each sub-embedding vi is a com-

bination of its positive and negative embeddings weighted
by the predicted concept probability ĉi

vi ≜ ĉi · v(+)
i + (1− ĉi) · v(−)

i , (2)

where ĉ = [ĉi]
K
i=1 ∈ RK .

Ideal Concept Embeddings vc
i . Note that ground-truth

concepts c = [ci]
K
i=1 ∈ {0, 1}K are only accessible in

the source domain, which allows us to define an idealized
scenario for analyzing the source error. In this scenario,
we replace the predicted concept probabilities ĉ with the
ground-truth concepts c to construct the ideal concept em-
beddings vc = [vc

i ]
K
i=1 ∈ RJ , with each vc

i defined as:

vc
i ≜ ci · v(+)

i + (1− ci) · v(−)
i ,

where ci denotes the ground truth of the i-th concept. This
eliminates the noise introduced by the prediction, providing
a minimal-error baseline that isolates the inherent limitations
of the model itself.

Source Error with Ideal Concept Embeddings. To quan-
tify performance under this noise-free baseline, we define
the source error for vc:

ϵcS(h) ≜ ϵcS(h, f̃
c
S) = Evc∼D̃c

S

[∣∣∣f̃c
S(v

c)− h(vc)
∣∣∣] ,

where D̃c
S denotes the marginal distribution over vc, and f̃c

S

is the corresponding induced labeling function, defined as:

f̃c
S(v

c) ≜ Ex∼DS
[fS(x) | E(x) = vc].

Generalization Bound with Concept Terms. With this
setup, we are ready to perform a generalization error anal-
ysis of concept-based models for the binary classification
task. A complete proof can be found in Appendix B.1.
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Figure 2. Overview of our CUDA framework. The framework takes source and target domain images as inputs to first learn feature
embeddings. Positive embeddings v(+)

i and negative embeddings v(−)
i are then derived from these feature embeddings. These are passed

through the neural network Gconcept to obtain concept predictions ĉ, which are subsequently combined to construct the final concept
embeddings v. During training, adversarial training is employed: the domain classifier (discriminator) is trained first, followed by the
concept embedding encoder and label predictor. These two steps are alternated throughout the training process.

By comparing the noise-free source error ϵcS (which serves
as the theoretical baseline for evaluating performance un-
der ideal conditions) with the actual source error ϵS that
incorporates noisy predicted probabilities, we can directly
quantify the additional error introduced by prediction noise.
This relationship is formalized in the following lemma.

Lemma 3.1 (Source Error with Predicted Concept Em-
beddings). LetH be a hypothesis space where all hypothe-
ses h ∈ H are L-Lipschitz continuous under the Euclidean
norm ∥ · ∥2 for some constant L > 0. Assume that for all
v ∈ V , ∥v∥2 is bounded. Then, for any h1, h2 ∈ H, there
exists a finite constant r > 0 such that

ϵS(h1, h2) ≤ ϵcS(h1, h2) + r · ES [∥ĉ− c∥2] ,

where ϵS(h1, h2) = Ev∼D̃S
[|h1(v)− h2(v)|] and

ϵcS(h1, h2) = Evc∼D̃c
S
[|h1(v

c)− h2(v
c)|] are the dis-

agreement between hypotheses h1 and h2 w.r.t. distributions
D̃S and D̃c

S , respectively, and ES denotes the expectation
taken over the source distribution.

Lemma 3.1 quantitatively connects the concept prediction
performance to the source error. Specifically, ES [∥ĉ− c∥2]
quantifies the discrepancy between the predicted concepts
ĉ and ground-truth concepts c, serving as a measure of the
accuracy of concept prediction. We defer the discussion
of the validity of the L-Lipschitz continuity assumption to
Appendix C.2. With this foundation, we are now ready to
derive a bound on the target error for concept-based models.

Theorem 3.1 (Target-Domain Error Bound for Concep-
t-Based Models). Under the assumption of Lemma 3.1, for
any h ∈ H, we have:

ϵT (h) ≤ ϵcS(h) +
1
2dH∆H

(
D̃c

S , D̃T

)
+ ηc

+R · ES [∥ĉ− c∥2] ,
(3)

where R > 0 is a finite constant, ηc = min
h∈H

ϵcS(h) + ϵT (h),

and dH△H(D̃c
S , D̃T ) denotes theH∆H divergence between

distribution D̃c
S and distribution D̃T .

Theorem 3.1 implies that the target error ϵT can be mini-
mized by reducing the source error with ground-truth con-
cepts ϵcS , the H∆H divergence dH△H(D̃c

S , D̃T ), and the
discrepancy ES [∥ĉ− c∥2] simultaneously, thereby achiev-
ing high classification accuracy on the target domain.

3.2. Concept-Based Unsupervised Domain Adaptation

Inspired by Theorem 3.1, we propose a game-theoretic
framework, dubbed Concept-based Unsupervised Domain
Adaptation (CUDA). Fig. 2 provides an overview of CUDA,
which involves four players:

• a concept embedding encoder E which generates the
concept embedding v = E(x) given the input x,

• a concept probability encoder Eprob which predicts
concepts ĉ = Eprob(x) (though Eprob is part of E, we
treat them separately for analysis purposes),

• a discriminator D which identifies the domain û using
the concept embedding v, i.e. û = D(v), and

• a predictor F which predicts the classification label ŷ
based on the concept embedding ŷ = F (v).

The Need for Relaxed Alignment. Before introducing
the game, note that the adversarial interaction between E
and D forces E to strip all domain-specific information
from the concept embedding v at the optimal point, mak-
ing v effectively domain-invariant. Intuitively, since the
concept probability ĉ is part of v, ĉ should also become
domain-invariant, achieving perfect (uniform) alignment
across domains. However, the concepts in the source and tar-
get domains are often inconsistent due to differences in data
distributions in practice (Xu et al., 2022; Liu et al., 2023);
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such discrepancies make the uniform alignment overly re-
strictive, as it may impose unnecessary constraints on ĉ,
therefore harming performance in the target domain. To
address this gap, we draw inspiration from (Xu et al., 2022;
Liu et al., 2023) and propose a relaxed alignment mecha-
nism on v, which naturally translates to tolerating smaller
discrepancies in ĉ between the source and target domains.

Overall Objective Function. Formally, CUDA solves the
following optimization problem:

min
D
Ld(E,D), (4)

min
E,Eprob,F

Lp(E,F ) + λcLc(Eprob)− λdL̃d(E,D), (5)

where Lp is the prediction loss, L̃d and Ld are the discrimi-
nator loss with and without relaxation, respectively (more
details below), and Lc is the concept loss. The hyperparame-
ters λd and λc balance Lp(E,F ), Lc(Eprob) and L̃d(E,D).
Below, we discuss each term in detail.

Prediction Loss Lp and Predictor F . The prediction loss
Lp(E,F ) in Eqn. 5 is defined as:

Lp(E,F ) ≜ ES [Lp(F (E(x)),y)] , (6)

where Lp is the cross-entropy loss, F (E(x)) ∈ RQ and
each element F (E(x))i is the predicted probability for class
i, and ES denotes the expectation taken over the source data
distribution pS(x,y, c); note that the label y and ground-
truth concepts c are only accessible in the source domain.

Concept Embedding Encoder E. The concept embedding
encoder E generates both concept predictions ĉ and concept
embeddings v. As presented in Fig. 2, positive and negative
embeddings for the i-th concept are firstly constructed as:
[v

(+)
i ,v

(−)
i ] = φi(Φ(x)), where Φ(·) is a pretrained back-

bone and φi(·) is the linear layer. Then the concatenated
embeddings [v(+)

i ,v
(−)
i ] are passed through Gconcept to pre-

dict the concept probability: ĉi = Gconcept([v
(+)
i ,v

(−)
i ]).

Thus, we have:

ĉ = Eprob(x) = [Gconcept([v
(+)
i ,v

(−)
i ])]Ki=1,

where Eprob(·) is the concept probability encoder compos-
ing Φ(·), φ(·) and Gconcept(·).

As mentioned in Eqn. 2, we then use the full concept em-
bedding encoder E to compute the concept embedding v:

v = E(x) = [vi]
K
i=1 = [ĉi · v(+)

i + (1− ĉi) · v(−)
i ]Ki=1

= [(Eprob(x))i · v
(+)
i + (1− (Eprob(x))i) · v

(−)
i ]Ki=1.

Note that the concept probability encoder Eprob is part of
the full concept embedding encoder E. We separate con-
cept probability encoder Eprob out to facilitate theoreti-
cal analysis. Specifically, Eprob is optimized to minimize

ES [∥ĉ− c∥2], ensuring accurate concept probability esti-
mation. Meanwhile, E collaborates with the predictor F
to reduce the source error ϵcS , and “fools” the discrimina-
tor D to minimize the H∆H divergence dH∆H(D̃c

S , D̃T ).
Together, they jointly optimize the upper bound of the target-
domain error, i.e., Eqn. 3 of Theorem 3.1.

Concept Loss Lc. In Eqn. 5, the concept loss is defined as:

Lc (Eprob) ≜ ES [Lc (Eprob(x), c)] , (7)

where Lc is the binary cross-entropy loss, Eprob(x) ∈ RK ,
where each dimension (Eprob(x))i is the predicted concept
probability for concept i; the corresponding ground-truth
concept is ci (note that c = [ci]

K
i=1 ∈ RK).

Discriminator Loss without Relaxation Ld and Discrimi-
nator D. The discriminator D identifies the domain u from
the concept embedding v. Given E, the discriminator loss

Ld(E,D) ≜E [Ld(D(E(x)), u)] , (8)

where Ld is the binary cross-entropy loss, u is the domain
label which indicates whether x comes from the source
(u = 0) or target (u = 1) domain, E denotes the expectation
taken over the entire data distribution p(x, u), and D(E(x))
denotes the probability of x belonging to the target domain.

Relaxed Discriminator Loss L̃d. Ld is only used to learn
the discriminator D (Eqn. 4). To learn the encoder E
in Eqn. 5, we introduce a relaxed discriminator loss:

L̃d(E,D) ≜ min {Ld(E,D), τ}, (9)

where 0 < τ ≤ maxLd(E,D) is a relaxation threshold, ef-
fectively controlling the tolerance for domain discrepancies
in the concept embedding v.

Relaxed Discriminator Loss for Relaxed Alignment. By
capping the domain classification loss at τ , this relaxation
intentionally sacrifices a small amount of domain align-
ment, corresponding to the second term 1

2dH∆H(D̃c
S , D̃T )

of Eqn. 3, to reduce the concept prediction error in the
fourth term ES [∥ĉ− c∥2] of Eqn. 3. This trade-off enables
a more flexible optimization of the concept embedding en-
coder E, balancing domain alignment and concept predic-
tion accuracy. Besides, it allows the encoder E to retain
domain-specific information stemming from intrinsic dif-
ferences between source and target concepts, crucial for
downstream tasks (see Sec. 4 for a comprehensive analysis).
We summarize CUDA’s training procedure in Algorithm 1
of Appendix C.3. Essentially, it alternates between Eqn. 4
and 5 with adversarial training using Eqn. 6∼9.

4. Theoretical Analysis for CUDA
In this section, we provide the theoretical guarantees for
CUDA. All proofs are provided in Appendix B.2.
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Simplified Game. We start by analyzing a simplified game
which does not involve the concept probability encoder
Eprob and the predictor F . Specifically, we focus on

min
D
Ld(E,D), (10)

max
E
L̃d(E,D) ≜ min{Ld(E,D), τ}, (11)

where the discriminator loss without relaxationLd is defined
in Eqn. 8, and 0 < τ ≤ maxLd(E,D) is a relaxation
threshold that quantifies the allowed deviation from uniform
alignment of v. Solving this game ensures that D learns
to distinguish domain representations, while E can “fool”
the discriminator with the relaxation threshold τ , thereby
flexibly aligning concept embeddings across domains.

Lemma 4.1 below analyzes the optimal discriminator D in
Eqn. 10 with the concept embedding encoder E fixed.
Lemma 4.1 (Optimal Discriminator). For E fixed, the
optimal discriminator D is

D∗
E(v) =

pv
T (v)

pv
S(v)+pv

T (v) ,

where pvS(v) and pvT (v) are the probability density function
of v in source and target domains, respectively.

Analyzing the Relaxed Discriminator Loss. Given the
optimal discriminator D∗

E in Lemma 4.1, we define the
relaxed discriminator objective in Eqn. 11 as:

C̃d(E) ≜ L̃d(E,D∗
E)

=min{Ld(E,D∗
E), τ} = min{Cd(E), τ},

(12)

where Cd(E) ≜ Ld(E,D∗
E). Theorem 4.1 below shows

that the global optimum of the game in Eqn. 10∼11 corre-
sponds to relaxed alignment of concept embeddings v and
concept predictions ĉ between source and target domains.
Theorem 4.1 (Relaxed Alignment). If the discriminator
D have enough capacity to be trained to reach optimum,
the relaxed optimization objective C̃d(E) defined in Eqn. 12
achieves its global maximum if and only if the concept em-
bedding encoder satisfies the following conditions:

JSD(pvS(v)∥pvT (v)) = log 2− τ, (13)

JSD(pĉS(ĉ)∥pĉT (ĉ)) = log 2− τ − I(v, u|ĉ), (14)

where I(·, ·|·) is the conditional mutual information, pĉS(ĉ)
and pĉT (ĉ) are the probability density function of ĉ in source
and target domains, respectively.

Theorem 4.1 links the relaxation threshold τ in CUDA to
the alignment of concept embedding v’s distributions and
concept prediction ĉ’s distributions across domains:

• When τ ∈ (0, log 2), CUDA achieves relaxed align-
ment, and the degree of relaxation for ĉ is guaranteed
to be no greater than that of v.

• When τ = log 2, CUDA achieves uniform alignment,
which is defined in Definition 4.1 below.

Definition 4.1 (Uniform Alignment). A concept-based DA
model achieves uniform alignment if its encoder satisfies

pvS(v) = pvT (v), pĉS(ĉ) = pĉT (ĉ),

or equivalently, v ⊥ u and ĉ ⊥ u.

Relaxed alignment ensures that CUDA is robust to concept
differences across domains while maintaining alignment
(more empirical results in Sec. 5).

Full Game. For any given E, we then derive the property
of the optimal predictor F and establish a tight lower bound
for the prediction loss.
Lemma 4.2 (Optimal Predictor). Given the concept em-
bedding encoder E, the prediction loss Lp(E,F ) has a
tight lower bound

Lp(E,F ) ≜ ES [Lp(F (E(x)),y)] ≥ H(y | E(x)),

where H(·|·) denotes the conditional entropy. The optimal
predictor F ∗ that minimizes the prediction loss is

F ∗(E(x)) = [P (yi = 1 | E(x))]Qi=1,

where yi denotes the i-th element of y.

Assuming the discriminator D and the predictor F are
trained to achieve their optimum by Lemma 4.1 and Lemma
4.2, Eqn. 4 and Eqn. 5 can then be rewritten as:

min
Eprob

Lc(Eprob), (15)

min
E

H(y | E(x))− λd · C̃d(E), (16)

where C̃d(E) is defined in Eqn. 12. With Eqn. 15∼16 above,
Theorem 4.2 below analyzes our optimal concept probability
and embedding encoders E and Eprob.
Theorem 4.2 (Optimal Concept Embedding Encoder).
Assuming u ⊥ y, if the concept embedding encoder E,
concept probability encoder Eprob, the predictor F and
the discriminator D have enough capacity and are trained
to reach optimum, any global optimal concept embedding
encoder E∗ and its corresponding global optimal concept
probability encoder E∗

prob have the following properties:

E∗
prob(x) = [P(ci = 1|x)]Ki=1 , (17)

H (y | E∗(x)) = H(y | x), (18)

C̃d (E
∗) = maxE′ C̃d (E

′) . (19)

Theorem 4.2 shows that, at equilibrium, (1) the optimal
concept probability encoder E∗

prob recovers the conditional
distribution of the ground-truth concepts, and (2) the optimal
concept embedding encoder E∗ preserves all the informa-
tion about label y contained in the data x.
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Table 1. Performance of concept-based methods on both concept learning and classification across different datasets. CEM (w/o R.)
indicates “without RandInt”. I-II, III-IV and V-VI indicate different skin tone scale in the Fitzpatrick dataset. We mark the best result with
bold face and the second best results with underline. Average accuracy is calculated over every three datasets of the same type images.

Datasets Waterbirds-2 Waterbirds-200 Waterbirds-CUB AVG

Metrics Concept Concept F1 Class Concept Concept F1 Class Concept Concept F1 Class ACC

CEM 94.14±0.13 81.74±0.39 70.27±1.70 93.68±0.10 81.22±0.64 62.26±1.11 93.64±0.08 80.08±0.34 66.48±0.81 66.34
CEM (w/o R.) 94.17±0.14 81.96±0.30 69.45±2.15 93.76±0.20 81.04±0.82 63.56±1.25 93.66±0.14 79.80±0.36 65.89±0.51 66.30
CBM 93.60±0.20 83.89±0.49 74.81±2.16 93.50±0.16 83.14±0.98 63.89±1.16 93.40±0.14 82.10±0.48 63.89±1.00 67.53
CUDA (Ours) 94.63±0.05 84.97±0.15 92.90±0.31 95.15±0.05 85.06±0.19 75.87±0.31 94.58±0.07 82.81±0.19 74.66±0.19 81.15

Datasets MNIST→MNIST-M SVHN→MNIST MNIST→ USPS AVG

Metrics Concept Concept F1 Class Concept Concept F1 Class Concept Concept F1 Class ACC

CEM 86.55±1.01 72.97±1.46 50.81±1.46 89.20±1.01 78.99±2.19 67.58±2.91 93.08±0.60 85.27±0.69 73.71±3.35 64.03
CEM (w/o R.) 86.40±1.01 72.58±1.01 49.36±2.39 89.89±2.20 80.22±4.31 69.76±5.30 92.65±1.98 83.75±3.83 72.92±8.65 64.01
CBM 86.28±0.22 72.86±0.22 49.66±2.18 89.63±0.93 79.51±1.70 65.03±2.94 90.67±2.78 79.34±6.35 61.79±14.24 58.82
CUDA (Ours) 98.51±0.02 97.20±0.02 95.24±0.13 95.22±0.24 90.95±0.24 82.49±0.27 98.78±0.03 97.46±0.09 96.01±0.13 91.25

Datasets I-II→ III-IV III-IV→ V-VI III-IV→ I-II AVG

Metrics Concept Concept F1 Class Concept Concept F1 Class Concept Concept F1 Class ACC

CEM 93.81±0.16 52.04±0.26 73.41±0.93 93.05±0.02 56.46±0.19 76.27±0.17 93.85±0.16 54.32±0.22 71.31±0.50 73.67
CEM (w/o R.) 93.78±0.17 51.98±0.27 73.13±0.63 93.05±0.02 56.47±0.15 76.86±1.19 93.80±0.13 54.26±0.18 71.72±0.38 73.91
CBM 94.11±0.43 52.17±0.68 72.37±0.00 92.27±0.57 56.21±0.57 78.82±0.00 94.16±0.34 54.27±0.20 70.49±0.00 73.89
CUDA (Ours) 95.37±0.07 79.91±0.16 78.85±0.31 94.62±0.01 79.57±0.25 80.58±0.72 95.45±0.06 80.17±0.22 76.53±0.49 78.65

Table 2. Classification accuracy across different datasets. Zero-shot predictor is one of the baselines and components of CONDA. We
mark the best result with bold face and the second best results with underline. Average accuracy is calculated over every three datasets of
the same type images. Note that these baselines do not have concept accuracy and F1 because they cannot predict concepts directly.

Model
Dataset WB-2 WB-200 WB-CUB AVG M→M-M S→M M→ U AVG I-II→ III-IV III-IV→ V-VI III-IV→ I-II AVG

Zero-shot 59.27±0.00 1.93±0.00 2.11±0.00 21.10 11.60±0.00 13.16±0.00 13.15±0.00 12.64 69.84±0.00 72.50±0.00 72.50±0.00 71.61
PCBM 53.08±1.89 28.99±0.53 34.60±0.45 38.89 29.66±1.02 21.32±2.12 15.55±0.12 22.18 72.13±0.33 72.64±0.14 72.64±0.14 72.47

CONDA 70.23±0.17 0.79±0.05 0.43±0.02 23.82 9.75±0.00 9.80±0.00 17.89±0.00 12.48 13.12±0.00 14.58±0.00 14.58±0.00 14.09

DANN 48.08±0.89 67.19±0.80 64.52±0.23 59.93 37.57±1.13 78.05±2.89 73.96±2.66 63.19 75.76±0.34 79.16±0.11 73.29±0.29 76.07
MCD 55.96±2.63 64.87±0.37 64.31±0.18 61.71 51.08±2.53 80.20±2.08 93.90±0.25 75.06 75.12±0.24 78.14±0.11 72.34±0.16 75.20
SRDC 48.49±0.54 73.29±0.73 69.42±0.77 63.73 30.35±0.88 78.99±0.72 93.71±0.54 67.68 73.70±0.29 78.69±0.40 72.91±0.16 75.10
UTEP 43.50±0.33 69.09±0.42 35.28±0.25 49.29 65.98±2.26 66.35±0.91 95.04±0.63 75.79 76.34±0.34 80.34±0.29 74.66±0.27 77.11
GH++ 45.65±1.13 79.87±0.35 79.46±0.43 68.33 59.40±0.86 79.12±0.86 93.35±0.59 77.29 75.98±0.57 78.76±0.69 75.04±0.68 76.59

CUDA (Ours) 92.90±0.31 75.87±0.31 74.66±0.19 81.15 95.24±0.13 82.49±0.27 96.01±0.13 91.25 78.85±0.31 80.58±0.72 76.53±0.49 78.65

5. Experiments
We evaluate CUDA across eight real-world datasets.

5.1. Evaluation Setup

Datasets. The original Waterbirds dataset (Sagawa et al.,
2019) is split into a source domain and a target domain
(Waterbirds-shift), by selecting images with opposite label
and background; it only includes binary labels and does not
have any concept information. To evaluate concept-based
DA, we augment the Waterbirds dataset by incorporating
concepts from the CUB dataset (Wah et al., 2011), leading
to three datasets:

• Waterbirds-2 is similar to the original Waterbirds with
binary classification, i.e., landbirds/waterbirds,

• Waterbirds-200 is the augmented version of Water-
birds with 200-class labels from CUB, and

• Waterbirds-CUB contains CUB training data as the
source domain and Waterbirds-shift as the target.

We also use digit image datasets, including MNIST (Le-
Cun et al., 1998), MNIST-M (Ganin et al., 2016), SVHN

(Netzer et al., 2011), and USPS (Hull, 1994), as different
source and target domains. Since the target labels represent
the digits 0-9, we design 11 topology concepts based on
these datasets. Besides, we use SkinCON (Daneshjou et al.,
2022b) to evaluate our approach in the medical domain.
SkinCON includes 48 concepts selected by two dermatolo-
gists, annotated on the Fitzpatrick 17k dataset (Groh et al.,
2021). For our experiments, we use one skin tone as the
source domain and another as the target domain. Additional
details are provided in Appendix C.1.

Baselines and Implementation Details. For concept-based
baselines, we include CBMs (Koh et al., 2020), CEMs
(Zarlenga et al., 2022), and PCBMs (Yuksekgonul et al.,
2022). Additionally, we use state-of-the-art unsupervised
domain adaption methods as baselines, including DANN
(Ganin et al., 2016), MCD (Saito et al., 2018), SRDC (Tang
et al., 2020), UTEP (Hu et al., 2022), and GH++ (Huang
et al., 2024). We also include CONDA (Choi et al., 2024),
which performs test-time adaptation on PCBMs. Collec-
tively, these methods define a comprehensive benchmark for
domain adaptation in the context of concept learning. We
summarize the implementation details in Appendix C.2.

7



Concept-Based Unsupervised Domain Adaptation
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Figure 3. Concept intervention performance with different ratios
of intervened concepts on Watebirds datasets. The intervention
ratio denotes the proportion of provided correct concepts.

Evaluation Metrics. We calculate concept accuracy and
the related concept F1 score to assess the concept learning
process. Note that only concept-based methods, i.e., CEM,
CBM, and CUDA, have concept accuracy and concept F1.
We also use class accuracy to evaluate the model’s prediction
accuracy. All metrics are computed on the target domain.

5.2. Results

Prediction. Tables 1 and 2 summarize the results. Table 1
shows that our CUDA performs exceptionally well within
the CBM category, achieving state-of-the-art performance
across all metrics. Notably, it outperforms other CBMs by a
significant margin on the Waterbirds and MNIST datasets,
while demonstrating consistent improvements on SkinCON.
These results highlight the effectiveness of our method in
learning concepts and adapting to domain shifts.

The upper section of Table 2 shows results for PCBM meth-
ods. Although PCBMs utilize concept banks to improve
the efficiency of concept learning, their applicability to real-
world domain adaptation tasks is limited, with performance
falling short of standard CBMs. While CONDA incorpo-
rates test-time adaptation, its effectiveness is inconsistent,
and its robustness is inferior to that of vanilla PCBMs. This
underscores the importance of learning meaningful concept
embeddings – merely compressing concepts does not work
well for domain adaptation tasks.

The lower section of Table 2 shows results for DA methods
and our concept-based CUDA. While DA models outperform
some concept-based baselines, CUDA remains competitive,
achieving the highest average accuracy across each type of
the datasets. Note that existing DA methods cannot learn
interpretable concepts, making them challenging to apply in
high-risk scenarios. Our CUDA addresses this limitation, en-
suring interpretability without compromising performance.
Limitations and future works are discussed in Appendix D.

Concept Intervention. Concept intervention is a key task
to evaluate concept-based interpretability, where users in-

Concept Index = 54 Concept Index = 97
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Figure 4. The kernel density estimation (KDE) plots compare the
distributions of two selected concept indices under three different
scenarios: Ground-truth (GT), without relaxation (w/o Relax), and
with relaxation (w/ Relax).

tervene on (modify) specific predicted concepts to correct
model predictions. Our CUDA is also capable of concept
intervention while traditional DA is not. Similar to CBMs
and CEMs (Koh et al., 2020; Zarlenga et al., 2022), we use
ground-truth concepts with varying proportions at test-time
to conduct interventions. Fig. 3 shows the performance of
different methods after intervening on (correcting) varying
proportions of concepts, referred to as intervention ratios.
Our CUDA significantly outperforms the baselines across all
intervention ratios in terms of both concept accuracy and
classification accuracy.

Alignment Relaxation. In Theorem 4.1, we discussed the
relaxation on the discriminator loss to account for concept
differences. Fig. 4 illustrates the distributions of two se-
lected concept indices under three scenarios: ground-truth
(GT), without relaxation (w/o Relax), and with relaxation
(w/ Relax). The GT distribution serves as a reference to
evaluate the impact of relaxation on concept representations.
The curves demonstrate how the relaxation process influ-
ences the density distribution of the concepts. Specifically,
our relaxed alignment allows for greater differences between
source and target concept distributions; such flexibility leads
to predicted concept distributions closer to the ground truth
and therefore higher final classification accuracy.

6. Conclusion
In this work, we proposed the Concept-based Unsuper-
vised Domain Adaptation (CUDA) framework to address
the challenges of generalization problem in Concept Bot-
tleneck Models (CBMs). By aligning concept embeddings
across domains through adversarial training and relaxing
strict uniform alignment assumptions, CUDA enables CBMs
to generalize effectively without requiring labeled concept
data in the target domain. Our approach establishes new
benchmarks for concept-based domain adaptation, signifi-
cantly outperforming state-of-the-art CBM and DA methods
while enhancing both interpretability and robustness.
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Impact Statement
This paper presents work whose goal is to advance the field
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consequences of our work, none which we feel must be
specifically highlighted here.

References
Abid, A., Yuksekgonul, M., and Zou, J. Meaningfully de-

bugging model mistakes using conceptual counterfactual
explanations. In International Conference on Machine
Learning, pp. 66–88. PMLR, 2022.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Beijbom, O. Domain adaptations for computer vision appli-
cations. arXiv preprint arXiv:1211.4860, 2012.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. Anal-
ysis of representations for domain adaptation. Advances
in neural information processing systems, 19, 2006.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. Machine Learning, pp. 151–175, May
2010. doi: 10.1007/s10994-009-5152-4. URL http://
dx.doi.org/10.1007/s10994-009-5152-4.

Choi, J., Raghuram, J., Li, Y., and Jha, S. Adaptive concept
bottleneck for foundation models under distribution shifts.
arXiv preprint arXiv:2412.14097, 2024.

Daneshjou, R., Vodrahalli, K., Novoa, R. A., Jenkins, M.,
Liang, W., Rotemberg, V., Ko, J., Swetter, S. M., Bailey,
E. E., Gevaert, O., et al. Disparities in dermatology
ai performance on a diverse, curated clinical image set.
Science advances, 8(31):eabq6147, 2022a.

Daneshjou, R., Yuksekgonul, M., Cai, Z. R., Novoa, R.,
and Zou, J. Y. Skincon: A skin disease dataset densely
annotated by domain experts for fine-grained debugging
and analysis. Advances in Neural Information Processing
Systems, 35:18157–18167, 2022b.

Dominici, G., Barbiero, P., Zarlenga, M. E., Termine, A.,
Gjoreski, M., and Langheinrich, M. Causal concept em-
bedding models: Beyond causal opacity in deep learning.
arXiv preprint arXiv:2405.16507, 2024.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., March, M., and Lempitsky, V. Domain-
adversarial training of neural networks. Journal of ma-
chine learning research, 17(59):1–35, 2016.

Ghorbani, A., Wexler, J., Zou, J. Y., and Kim, B. Towards
automatic concept-based explanations. Advances in neu-
ral information processing systems, 32, 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Groh, M., Harris, C., Soenksen, L., Lau, F., Han, R., Kim,
A., Koochek, A., and Badri, O. Evaluating deep neu-
ral networks trained on clinical images in dermatology
with the fitzpatrick 17k dataset. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1820–1828, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Jun 2016. doi: 10.1109/cvpr.2016.90. URL http://
dx.doi.org/10.1109/cvpr.2016.90.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko,
K., Efros, A., and Darrell, T. Cycada: Cycle-consistent
adversarial domain adaptation. In International confer-
ence on machine learning, pp. 1989–1998. Pmlr, 2018.

Hu, J., Zhong, H., Yang, F., Gong, S., Wu, G., and Yan, J.
Learning unbiased transferability for domain adaptation
by uncertainty modeling. In European Conference on
Computer Vision, pp. 223–241. Springer, 2022.

Huang, F., Song, S., and Zhang, L. Gradient harmonization
in unsupervised domain adaptation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

Hull, J. J. A database for handwritten text recognition
research. IEEE Transactions on pattern analysis and
machine intelligence, 16(5):550–554, 1994.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning,
pp. 2668–2677. PMLR, 2018.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
E., Kim, B., and Liang, P. Concept bottleneck models.
In International Conference on Machine Learning, pp.
5338–5348. PMLR, 2020.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Liu, T., Xu, Z., He, H., Hao, G., Lee, G.-H., and Wang, H.
Taxonomy-structured domain adaptation. In ICML, 2023.

9

http://dx.doi.org/10.1007/s10994-009-5152-4
http://dx.doi.org/10.1007/s10994-009-5152-4
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90


Concept-Based Unsupervised Domain Adaptation

Long, M., Cao, Y., Wang, J., and Jordan, M. Learning
transferable features with deep adaptation networks. In
International conference on machine learning, pp. 97–
105. PMLR, 2015.

Mahinpei, A., Clark, J., Lage, I., Doshi-Velez, F., and Pan,
W. Promises and pitfalls of black-box concept learning
models. arXiv preprint arXiv:2106.13314, 2021.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 4. Granada, 2011.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. Max-
imum classifier discrepancy for unsupervised domain
adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3723–3732,
2018.

Sankaranarayanan, S., Balaji, Y., Castillo, C. D., and Chel-
lappa, R. Generate to adapt: Aligning domains using
generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 8503–8512, 2018.

Shen, J., Qu, Y., Zhang, W., and Yu, Y. Wasserstein distance
guided representation learning for domain adaptation. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Speer, R., Chin, J., and Havasi, C. Conceptnet 5.5: An
open multilingual graph of general knowledge. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

Tang, H., Chen, K., and Jia, K. Unsupervised domain
adaptation via structurally regularized deep clustering. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8725–8735, 2020.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Wang, H. and Yeung, D.-Y. Towards bayesian deep learning:
A framework and some existing methods. TDKE, 28(12):
3395–3408, 2016.

Wang, H. and Yeung, D.-Y. A survey on bayesian deep
learning. CSUR, 53(5):1–37, 2020.

Wang, H., He, H., and Katabi, D. Continuously indexed
domain adaptation. In ICML, 2020.

Wang, H., Tan, S., Hong, Z., Zhang, D., and Wang, H.
Variational language concepts for interpreting pretrained
language models. arXiv preprint, 2024a.

Wang, H., Tan, S., and Wang, H. Probabilistic conceptual
explainers: Towards trustworthy conceptual explanations
for vision foundation models. In ICML, 2024b.

Wu, S., Yuksekgonul, M., Zhang, L., and Zou, J. Discover
and cure: Concept-aware mitigation of spurious correla-
tion. In International Conference on Machine Learning,
pp. 37765–37786. PMLR, 2023.

Xu, X., Qin, Y., Mi, L., Wang, H., and Li, X. Energy-based
concept bottleneck models: unifying prediction, con-
cept intervention, and conditional interpretations. arXiv
preprint arXiv:2401.14142, 2024.

Xu, Z., Lee, G.-H., Wang, Y., Wang, H., et al. Graph-
relational domain adaptation. In ICLR, 2022.

Xu, Z., Hao, G., He, H., and Wang, H. Domain indexing
variational bayes: Interpretable domain index for domain
adaptation. In ICLR, 2023.

Yuksekgonul, M., Wang, M., and Zou, J. Post-hoc concept
bottleneck models. arXiv preprint arXiv:2205.15480,
2022.

Zarlenga, M. E., Barbiero, P., Ciravegna, G., Marra, G., Gi-
annini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci,
S., Weller, A., et al. Concept embedding models. arXiv
preprint arXiv:2209.09056, 2022.

Zhang, Y., Liu, T., Long, M., and Jordan, M. Bridging theory
and algorithm for domain adaptation. In International
conference on machine learning, pp. 7404–7413. PMLR,
2019a.

Zhang, Y., Tang, H., Jia, K., and Tan, M. Domain-symmetric
networks for adversarial domain adaptation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5031–5040, 2019b.

10



Concept-Based Unsupervised Domain Adaptation

Zhang, Y., Deng, B., Tang, H., Zhang, L., and Jia, K. Un-
supervised multi-class domain adaptation: Theory, algo-
rithms, and practice. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(5):2775–2792, 2020.

Zhao, M., Yue, S., Katabi, D., Jaakkola, T. S., and Bianchi,
M. T. Learning sleep stages from radio signals: A con-
ditional adversarial architecture. In International confer-
ence on machine learning, pp. 4100–4109. PMLR, 2017.

11



Concept-Based Unsupervised Domain Adaptation

A. Notation Table

Table 3. Main notations used in the method section. Click here to return to the main paper.

Notation Meaning

X Input space
Y Label space
C Concept space
V Concept embedding space
H Hypothesis space
n Number of source domain data
m Number of target domain data
K Number of concepts
Q Number of classes
J Dimension of concept embedding
c Ground-truth concepts
ĉ Concept predictions
v
(+)
i / v(−)

i The positive/ negative concept embedding of the i-th concept ci
v Concept embedding with predicted concepts
vc Concept embedding with ground-truth concepts

E Concept embedding encoder
Eprob Concept probability encoder
F Label predictor
D Domain discriminator

DS / DT Source/Target domain distribution over X
fS / fT Source/Target domain labeling function over X
D̃S / D̃T Source/Target domain distribution over V
f̃S / f̃T Source/Target domain labeling function over V
D̃c

S Source domain distribution over V with ground-truth concepts
f̃c
S Source domain labeling function over V with ground-truth concepts
h Hypothesis function
ϵS Source error
ϵT Target error
ϵcS Source error with ground-truth concepts

B. Proof
B.1. Proof of Generalization Error Bound for CBMs

Lemma 3.1 (Source Error with Predicted Concept Embeddings). LetH be a hypothesis space where all hypotheses
h ∈ H are L-Lipschitz continuous under the Euclidean norm ∥ · ∥2 for some constant L > 0. Assume that for all v ∈ V ,
∥v∥2 is bounded. Then, for any h1, h2 ∈ H, there exists a finite constant r > 0 such that

ϵS(h1, h2) ≤ ϵcS(h1, h2) + r · ES [∥ĉ− c∥2] ,

where ϵS(h1, h2) = Ev∼D̃S
[|h1(v)− h2(v)|] and ϵcS(h1, h2) = Evc∼D̃c

S
[|h1(v

c)− h2(v
c)|] are the disagreement be-

tween hypotheses h1 and h2 w.r.t. distributions D̃S and D̃c
S , respectively, and ES denotes the expectation taken over the

source distribution.

Proof. Note that the concept embedding with the ground-truth concepts vc and the concept embedding with the predicted
concepts v are defined as follows:

vc =

[(
c1v

(+)
1 + (1− c1)v

(−)
1

)T

, . . . ,
(
cKv

(+)
K + (1− cK)v

(−)
K

)T
]T

,

v =

[(
ĉ1v

(+)
1 + (1− ĉ1)v

(−)
1

)T

, . . . ,
(
ĉKv

(+)
K + (1− ĉK)v

(−)
K

)T
]T

,

12
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where v and vc share the same v(+) =

[
v
(+)
1

T
, . . . ,v

(+)
K

T
]T

and v(−) =

[
v
(−)
1

T
, . . . ,v

(−)
K

T
]T

. Then, ϵS(h1, h2) with

respect to arbitrary concept embedding v can be upper bounded by

ϵS(h1, h2) = Ev∼D̃S
[|h1(v)− h2(v)|]

= Ev∼D̃S ,vc∼D̃c
S
[|h1(v)− h1(v

c) + h1(v
c)− h2(v

c) + h2(v
c)− h2(v)|]

≤ Ev∼D̃S ,vc∼D̃c
S
[|h1(v)− h1(v

c)|+ |h1(v
c)− h2(v

c)|+ |h2(v
c)− h2(v)|]

(i)

≤ 2L · Ev∼D̃S ,vc∼D̃c
S
[∥vc − v∥2] + Evc∼D̃c

S
[|h1(v

c)− h2(v
c)|]

= 2L · Ev∼D̃S ,vc∼D̃c
S
[∥vc − v∥2] + ϵcS(h1, h2),

(20)

where (i) is due to the Lipschitz continuity of h1, h2 ∈ H with a constant L > 0, and ϵcS(h1, h2) ≜

Evc∼D̃c
S
[|h1(v

c)− h2(v
c)|]. Note that for the i-th concept, vi = ĉiv

(+)
i + (1− ĉi)v

(−)
i and vc

i = civ
(+)
i + (1− ci)v

(−)
i .

Thus, vi − vc
i = (ĉi − ci)

(
v
(+)
i − v

(−)
i

)
. Because we assume for all v = [vi]

K
i=1 ∈ V , ∥v∥2 is bounded. There exists a

sufficiently large M , such that max
i

∥∥∥v(+)
i − v

(−)
i

∥∥∥
2
≤M . Then, the difference between the concept embedding with the

ground-truth concepts and that with the predicted concepts under the Euclidean norm has the following upper bound:

∥v − vc∥2 =

∥∥∥∥[(v1 − vc
1)

T
, . . . , (vK − vc

K)
T
]T∥∥∥∥

2

=

∥∥∥∥∥
[
(ĉ1 − c1) ·

(
v
(+)
1 − v

(−)
1

)T

, . . . , (ĉK − cK) ·
(
v
(+)
K − v

(−)
K

)T
]T∥∥∥∥∥

2

≤M · ∥ĉ− c∥2 .

(21)

Plugging Eqn. 21 into Eqn. 20 and then we can get

ϵS(h1, h2) ≤ 2L · Ev∼D̃S ,vc∼D̃c
S
[∥vc − v∥2] + ϵcS(h1, h2)

≤ 2LM · ES [∥ĉ− c∥2] + ϵcS(h1, h2),

where c is only available in the source domain. Letting r = 2LM , we complete the proof.

Theorem 3.1 (Target-Domain Error Bound for Concept-Based Models). Under the assumption of Lemma 3.1, for any
h ∈ H, we have:

ϵT (h) ≤ ϵcS(h) +
1
2dH∆H

(
D̃c

S , D̃T

)
+ ηc

+R · ES [∥ĉ− c∥2] ,
(3)

where R > 0 is a finite constant, ηc = min
h∈H

ϵcS(h) + ϵT (h), and dH△H(D̃c
S , D̃T ) denotes the H∆H divergence between

distribution D̃c
S and distribution D̃T .

Proof. Let h∗ = argmin
h∈H

ϵcS(h) + ϵT (h) and ηc = min
h∈H

ϵcS(h) + ϵT (h) = ϵcS(h
∗) + ϵT (h

∗). By the triangle inequality for

classification error, i.e. ϵ (h1, h2) ≤ ϵ (h1, h3) + ϵ (h2, h3), we have

ϵT (h) ≤ ϵT (h∗) + ϵT (h, h∗)

≤ ϵT (h∗) + ϵS (h, h∗) + |ϵS (h, h∗)− ϵT (h, h∗)| .
(22)

We define the source error for concept embedding constructed using ground-truth concepts as:

ϵcS(h) ≜ ϵcS(h, f̃
c
S) = Evc∼D̃c

S

[∣∣∣f̃c
S(v

c)− h(vc)
∣∣∣] ,

13
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where D̃c
S is the marginal distribution over vc and f̃c

S(v
c) ≜ Ex∼DS

[fS(x) | E(x) = vc] is the corresponding induced
labeling function. Note that f̃c

S can also be a hypothesis. Then for the second term ϵS (h, h∗), we can bound it by the source
error with ground-truth concepts:

ϵS (h, h∗) ≤ ϵS

(
h, f̃c

S

)
+ ϵS

(
h∗, f̃c

S

)
≤

(∣∣∣ϵS (
h, f̃c

S

)
− ϵcS

(
h, f̃c

S

)∣∣∣+ ϵcS

(
h, f̃c

S

))
+

(∣∣∣ϵS (
h∗, f̃c

S

)
− ϵcS

(
h∗, f̃c

S

)∣∣∣+ ϵcS

(
h∗, f̃c

S

))
(i)

≤ (r1 · ES [∥ĉ− c∥2] + ϵcS (h)) + (r2 · ES [∥ĉ− c∥2] + ϵcS (h∗)) ,

(23)

where ϵcS

(
h, f̃c

S

)
= ϵcS (h) and ϵcS

(
h∗, f̃c

S

)
= ϵcS (h∗), and (i) is due to Lemma 3.1: there exists finite constant r1, r2

such that
∣∣∣ϵS (

h, f̃c
S

)
− ϵcS

(
h, f̃c

S

)∣∣∣ ≤ r1 · ES [∥ĉ− c∥2] and
∣∣∣ϵS (

h∗, f̃c
S

)
− ϵcS

(
h∗, f̃c

S

)∣∣∣ ≤ r2 · ES [∥ĉ− c∥2]. By the
definition ofH∆H divergence (Ben-David et al., 2010):

dH∆H

(
D̃c

S , D̃T

)
≜ 2 sup

h,h′∈H

∣∣∣Pv∼D̃T
[h(v) ̸= h′(v)]− Pvc∼D̃c

S
[h(vc) ̸= h′(vc)]

∣∣∣ ,
the last term of Eqn. 22 is bounded by

|ϵS (h, h∗)− ϵT (h, h∗)| ≤ |ϵS (h, h∗)− ϵcS (h, h∗)|+ |ϵT (h, h∗)− ϵcS (h, h∗)|
(ii)

≤ r3 · ES [∥ĉ− c∥2] + |ϵT (h, h∗)− ϵcS (h, h∗)|
≤ r3 · ES [∥ĉ− c∥2] + sup

h,h′∈H
|ϵT (h, h′)− ϵcS (h, h′)|

≤ r3 · ES [∥ĉ− c∥2] + sup
h,h′∈H

∣∣∣Pv∼D̃T
[h(v) ̸= h′(v)]− Pvc∼D̃c

S
[h(vc) ̸= h′(vc)]

∣∣∣
= r3 · ES [∥ĉ− c∥2] +

1
2dH∆H

(
D̃c

S , D̃T

)
.

(24)

where (ii) is also due to Lemma 3.1 with the constant r = r3. Plugging Eqn. 23 and Eqn. 24 into Eqn. 22, then we can
obtain the final upper bound of target error for CBMs:

ϵT (h) ≤ ϵT (h∗) + ϵS (h, h∗) + |ϵS (h, h∗)− ϵT (h, h∗)|

≤ ϵT (h∗) + (r1 · ES [∥ĉ− c∥2] + ϵcS (h)) + (r2 · ES [∥ĉ− c∥2] + ϵcS (h∗)) + r3 · ES [∥ĉ− c∥2] +
1
2dH∆H

(
D̃c

S , D̃T

)
= ϵcS (h) + ϵcS (h∗) + ϵT (h∗) +R · ES [∥ĉ− c∥2] +

1
2dH∆H

(
D̃c

S , D̃T

)
= ϵcS (h) + ηc +R · ES [∥ĉ− c∥2] +

1
2dH∆H

(
D̃c

S , D̃T

)
,

where R = r1 + r2 + r3 and ηc = ϵcS (h∗) + ϵT (h∗), completing the proof.

B.2. Proof of Theoretical Analysis for CUDA

Lemma 4.1 (Optimal Discriminator). For E fixed, the optimal discriminator D is

D∗
E(v) =

pv
T (v)

pv
S(v)+pv

T (v) ,

where pvS(v) and pvT (v) are the probability density function of v in source and target domains, respectively.
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Proof. With E fixed, the optimal D should be

D∗
E = argmin

D
E(x,u)∼p(x,u) [Ld(D(E(x)), u)]

= argmin
D

E(x,u)∼p(x,u)

[
u log 1

D(E(x)) + (1− u) log 1
1−D(E(x))

]
= argmin

D
Ev∼p(v)

[
Eu∼p(u|v)

[
u log 1

D(v) + (1− u) log 1
1−D(v))

]]
= argmin

D
Ev∼p(v)

[
E [u|v] · log 1

D(v) + (1− E [u|v]) · log 1
1−D(v))

]
= argmax

D
Ev∼p(v) [E [u|v] · logD(v) + (1− E [u|v]) · log (1−D(v))] ,

where v = E(x). Note that for any (a, b) ∈ R2\(0, 0), the function y → a log(1− y) + b log(y) achieves its maximum in
[0, 1] at b

a+b . Note that P(u = 0) = P(u = 1) = 1
2 , thus we have

D∗
E(v) = E [u|v] = P (u = 1|v)

(i)
= p(v|u=1)P(u=1)

p(v|u=1)P(u=1)+p(v|u=0)P(u=0)

= p(v|u=1)
p(v|u=1)+p(v|u=0)

=
pv
T (v)

pv
S(v)+pv

T (v) ,

where (i) is due to the Bayes rule, and the discriminator does not need to be defined outside of Supp(pvS(v))∪Supp(pvT (v)).

Theorem 4.1 (Relaxed Alignment). If the discriminator D have enough capacity to be trained to reach optimum, the
relaxed optimization objective C̃d(E) defined in Eqn. 12 achieves its global maximum if and only if the concept embedding
encoder satisfies the following conditions:

JSD(pvS(v)∥pvT (v)) = log 2− τ, (13)

JSD(pĉS(ĉ)∥pĉT (ĉ)) = log 2− τ − I(v, u|ĉ), (14)

where I(·, ·|·) is the conditional mutual information, pĉS(ĉ) and pĉT (ĉ) are the probability density function of ĉ in source
and target domains, respectively.

Proof. If D always achieves its optimum w.r.t E during the training, we have

Cd(E) ≜ min
D
Ld(E,D) = Ld (E,D∗

E)

= E [Ld(D
∗
E(E(x)), u)]

= E(v,u)∼p(v,u)

[
u log 1

D∗
E(v) + (1− u) log 1

1−D∗
E(v)

]
= Ev∼p(v)

[
Eu∼p(u|v) [u] · log 1

Eu∼p(u|v)[u]
+
(
1− Eu∼p(u|v) [u]

)
· log 1

1−Eu∼p(u|v)[u]

]
= Ev∼p(v)

[
P (u = 1|v) · log 1

P(u=1|v) + P (u = 0|v) · log 1
P(u=0|v)

]
= H(u|v) = H(u)− I(v, u).

(25)

Note that P(u = 1) = P(u = 0) = 1
2 , then we have

H(u) = P(u = 1) · log 1
P(u=1) + P(u = 0) · log 1

P(u=0) = log 2,
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and
I(v, u) ≜ E(v,u)

[
log p(u,v)

p(u)·p(v)

]
= Eu∼p(u)

[
Ev∼p(v|u)

[
log p(v|u)

p(v)

]]
= Eu∼p(u) [KL(p(v | u)∥p(v))]
= KL(p(v | u = 1)∥p(v)) · P(u = 1) + KL(p(v | u = 0)∥p(v)) · P(u = 0)

= 1
2

(
KL

(
p(v | u = 1)∥p(v|u=1)+p(v|u=0)

2

)
+KL

(
p(v | u = 0)∥p(v|u=1)+p(v|u=0)

2

))
= JSD (p(v|u = 1)∥p(v|u = 0))

= JSD (pvT (v)∥pvS(v)) ,

where p(v) = p(v|u = 1) · P(u = 1) + p(v|u = 0) · P(u = 0) = p(v|u=1)+p(v|u=0)
2 , and JSD is short for Jensen–Shannon

divergence, which is both non-negative and zero if and only if the two distributions are equal. Then Eqn. 25 can be rewritten
as

Cd(E) = log 2− JSD (pvT (v)∥pvS(v)) .
To obtain the maximum of Cd(E), E should satisfy

pvS(v) = pvT (v),

and the corresponding maximum value equals log 2. Thus, the relaxed objective C̃d(E) defined in Eqn. 12:

C̃d(E) ≜ L̃d(E,D∗
E) = min{Ld(E,D∗

E), τ} = min{Cd(E), τ}
=min{log 2− JSD (pvT (v)∥pvS(v)) , τ}

achieves its global maximum if and only if the concept embedding encoder satisfies:

JSD (pvT (v)∥pvS(v)) = log 2− τ. (26)

Similarly, we can also obtain I(ĉ, u) = JSD
(
pĉT (ĉ)∥pĉS(ĉ)

)
. For the i-th concept, v(+)

i and v
(−)
i are first mapped to ĉi,

which is then used to combine them into vi as follows:

vi = ĉiv
(+)
i + (1− ĉi)v

(−)
i .

This indicates that v contains all the information of ĉ, and H(u|v) = H(u|v, ĉ). Thus, we have

I(v, u) = H(u)−H(u|v)
= H(u)−H(u|v, ĉ)
= H(u)−H(u|ĉ) +H(u|ĉ)−H(u|v, ĉ)
= I(ĉ, u) + I(v, u|ĉ),

which is equivalent to
JSD (pvT (v)∥pvS(v)) = JSD(pĉT (ĉ)∥pĉS(ĉ)) + I(v, u|ĉ). (27)

Plugging Eqn. 26 into Eqn. 27, we finally obtain

JSD(pĉT (ĉ)∥pĉS(ĉ)) = log 2− τ − I(v, u|ĉ),

completing the proof.

As for the special case for the theorem above, τ = log 2, it follows that

JSD (pvT (v)∥pvS(v)) = 0,

which implies v ⊥ u. Thus, in Eqn. 27 the last term I(v, u|ĉ) = 0, and

JSD
(
pĉT (ĉ)∥pĉS(ĉ)

)
= log 2− τ − I(v, u|ĉ) = 0− 0 = 0,

which is equivalent to ĉ ⊥ u.
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Lemma 4.2 (Optimal Predictor). Given the concept embedding encoder E, the prediction loss Lp(E,F ) has a tight lower
bound

Lp(E,F ) ≜ ES [Lp(F (E(x)),y)] ≥ H(y | E(x)),

where H(·|·) denotes the conditional entropy. The optimal predictor F ∗ that minimizes the prediction loss is

F ∗(E(x)) = [P (yi = 1 | E(x))]Qi=1,

where yi denotes the i-th element of y.

Proof. With E fixed, the prediction loss Lp(E,F ) can be rewritten as

Lp(E,F ) = E [Lp(F (E(x)),y)]

= E(x,y)∼p(x,y)

[
Q∑
i=1

yi log
1

(F (E(x)))i

]

= E(v,y)∼p(v,y)

[
Q∑
i=1

yi log
1

(F (v))i

]

= Ev∼p(v)

[
Q∑
i=1

Eyi∼P(yi|v)

[
yi log

1
(F (v))i

]]

= Ev∼p(v)

[
Q∑
i=1

E [yi|v] log 1
(F (v))i

]
,

where F (E(x)) = F (v) ∈ RQ, and we denote the i-th component of F (v) as (F (v))i. Note that F (v) must satisfy the
following constraints: (1) (F (v))i ≥ 0 for all i ∈ {1, . . . , Q}, (2)

∑Q
i=1(F (v))i = 1. Thus, minimizing the prediction loss

Lp(E,F ) w.r.t. F is equivalent to solve the following constrained optimization problem:

max
F (v)

Q∑
i=1

E [yi|v] log(F (v))i

s.t.
∑Q

i=1(F (v))i= 1
(F (v))i≥ 0, i ∈ {1, . . . , Q}.

To solve this constrained problem, we first define the Lagrangian function:

l(F (v), λ,µ) =

Q∑
i=1

E [yi|v] · log(F (v))i + λ

1−
Q∑

j=1

(F (v))j

+

Q∑
k=1

µk · (F (v))k,

where λ ≥ 0 and µi ≥ 0 for i ∈ {1, . . . , Q}. By the first-order Karush-Kuhn-Tucker (KKT) conditions:

∂l
∂λ = 1−

Q∑
i=1

(F (v))i = 0,

∂l
∂Fi

= E[yi|v]
(F (v))i

− λ+ µi = 0, i ∈ {1, . . . , Q},
∂l
∂µi

= (F (v))i ≥ 0, i ∈ {1, . . . , Q},

µi ≥ 0, i ∈ {1, . . . , Q},
µi · (F (v))i = 0, i ∈ {1, . . . , Q},

we can derive the optimal (F (v))i for i ∈ {1, . . . , Q} as:

(F ∗(v))i = E [yi|v] = P (yi = 1|v) ,

17



Concept-Based Unsupervised Domain Adaptation

and
F ∗(v) = F ∗(E(x)) = [P(yi = 1|v)]Qi=1 ∈ RQ.

At that point, Lp(E,F ) achieves its minimum value:

Lp(E,F ∗) = E [Lp(F
∗(E(x)),y)]

= Ev∼p(v)

[
Q∑
i=1

E [yi|v] log 1
(F∗(v))i

]

= Ev∼p(v)

[
Q∑
i=1

P(yi = 1|v) log 1
P(yi=1|v)

]
= H(y|v) = H(y|E(x)),

completing the proof.

Theorem 4.2 (Optimal Concept Embedding Encoder). Assuming u ⊥ y, if the concept embedding encoder E, concept
probability encoder Eprob, the predictor F and the discriminator D have enough capacity and are trained to reach optimum,
any global optimal concept embedding encoder E∗ and its corresponding global optimal concept probability encoder E∗

prob

have the following properties:

E∗
prob(x) = [P(ci = 1|x)]Ki=1 , (17)

H (y | E∗(x)) = H(y | x), (18)

C̃d (E
∗) = maxE′ C̃d (E

′) . (19)

Proof. We first prove the optimal concept probability encoder in Eqn. 17. Because Eprob(x) = [(Eprob(x))i]
K
i=1 ∈ RK ,

and Lc is the average binary cross entropy:

Lc(Eprob(x), c) =
1
K

K∑
i=1

ci log
1

(Eprob(x))i
+ (1− ci) log

1
1−(Eprob(x))i

,

then we have

ES [Lc(Eprob(x), c)] =
1
K

K∑
i=1

ES

[
ci log

1
(Eprob(x))i

+ (1− ci) log
1

1−(Eprob(x))i

]
= 1

K

K∑
i=1

E(x,c)∼p(x,c)

[
ci log

1
(Eprob(x))i

+ (1− ci) log
1

1−(Eprob(x))i

]
= 1

K

K∑
i=1

Ex∼DS

[
Eci∼p(ci|x)

[
ci log

1
(Eprob(x))i

+ (1− ci) log
1

1−(Eprob(x))i

]]
= 1

K

K∑
i=1

Ex∼DS

[
E(ci|x) log 1

(Eprob(x))i
+ (1− E(ci|x)) log 1

1−(Eprob(x))i

]
.

Thus, the optimal concept probability encoder (Eprob)i for i ∈ {1, . . . ,K} should be

(E∗
prob)i = argmin

(Eprob)i

ES [Lc(Eprob(x), c)]

= argmin
(Eprob)i

1
K

K∑
j=1

Ex∼DS

[
E(cj |x) log 1

(Eprob(x))j
+ (1− E(cj |x)) log 1

1−(Eprob(x))j

]
= argmin

(Eprob)i

Ex∼DS

[
E(ci|x) log 1

(Eprob(x))i
+ (1− E(ci|x)) log 1

1−(Eprob(x))i

]
.

18



Concept-Based Unsupervised Domain Adaptation

For any (a, b) ∈ R2\(0, 0), the function y → a log(1− y) + b log(y) achieves its maximum in [0, 1] at b
a+b . Applying this

result, we derive the optimal value of (Eprob(x))i for i ∈ {1, . . . ,K} as:

(E∗
prob(x))i = E (ci|x) = P(ci = 1|x),

and the optimal Eprob(x) is given by

E∗
prob(x) = [(E∗

prob(x))1, . . . , (E
∗
prob(x))K ]T

= [P(c1 = 1|x), . . . ,P(cK = 1|x)]T,

completing the proof for Eqn. 17.

Since E(x) is a function of x, by the data processing inequality, we have

H(y|E(x)) ≥ H(y|x).

The objective function mentioned in Eqn. 16 has the following lower bound:

C(E) ≜ H(y | E(x))− λdC̃d(E)

≥ H(y | x)− λd max
E′

C̃d (E
′) .

This equality holds if and only if H (y | E(x)) = H (y | x) and C̃d(E) = maxE′ C̃d (E
′). Therefore, we only need to

prove that the optimal value of C(E) is equal to H(y | x)− λd maxE′ C̃d (E
′) in order to prove that any global encoder

E∗ satisfies Eqn. 18, and Eqn. 19.

We show that C(E) can achieve its lower bound by considering the following encoder E0: E0(x) = Py(·|x) (Zhao
et al., 2017; Wang et al., 2020). It can be checked that H (y | E0(x)) = H (y | x) and E0(x) ⊥ u which leads to
C̃d(E0) = maxE′ C̃d (E

′), completing the proof.

C. Experiments
C.1. Dataset Details

Waterbirds Datasets (Sagawa et al., 2019). First, we incorporate the concepts from the CUB (Wah et al., 2011) dataset
into the original Waterbirds dataset to make it compatible with concept-based models. Since the original Waterbirds dataset
is a binary classification task (landbirds are always associated with land and waterbirds with water as source domain), we
construct the target domain, Waterbirds-shift (backgroud shift data, the same construct method as CONDA (Choi et al.,
2024) Waterbirds dataset), by selecting images with opposite attributes (e.g., landbirds in water and waterbirds on land).
This results in Waterbirds-2, a binary classification domain adaptation dataset. Additionally, because the CUB dataset is
inherently a multi-class classification task, we construct Waterbirds-200 by replacing the labels in the Waterbirds-2 dataset
with the multi-class labels from CUB without modifying the data itself. Finally, as the CUB dataset represents a natural
domain shift relative to Waterbirds-200, we use the CUB training data as the source domain and retain the Waterbirds-shift
images as the target domain to construct Waterbirds-CUB.

MNIST Concepts. We selected 11 topology concepts [Ring, Line, Arc, Corner, Top-Curve, Semicircles, Triangle, Bottom-
Curve, Top-Line, Wedge, Bottom-Line] (initially generated by GPT-4 (Achiam et al., 2023) and refined through manual
screening) for the MNIST (LeCun et al., 1998), MNIST-M(Ganin et al., 2016), SVHN (Netzer et al., 2011), and USPS (Hull,
1994) digit datasets to evaluate the performance of our method. In addition, PCBMs (Yuksekgonul et al., 2022) can utilize
the CLIP model (we tested with CLIP:RN50) (Radford et al., 2021) to automatically generate concepts. To evaluate
its effectiveness, we compare the concepts generated by CLIP with our predefined set of concepts. However, since the
PCBM-generated concepts are stored in a concept bank and lack explicit relationships between classes and concepts, they
cannot be directly used to evaluate our model.
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Table 4. Performance comparison across MNIST datasets using different concepts. The numbers 11 and 13 represent the concepts
generated by PCBMs through once and twice recursive exploration of the ConceptNet (Speer et al., 2017) graph.

Dataset MNIST→MNIST-M SVHN→MNIST MNIST→ USPS

Concepts 11 13 Ours 11 13 Ours 11 13 Ours

PCBM 13.795±0.549 11.906±0.286 29.660±1.020 11.350±0.000 11.350±0.000 21.323±2.116 13.337±0.183 14.117±0.963 15.54±0.115

CONDA 9.754±0.000 9.754±0.000 9.754±0.000 9.800±0.000 9.800±0.000 9.800±0.000 17.887±0.000 17.887±0.000 17.887±0.000

CUDA (Ours) - - 95.24±0.13 - - 82.49±0.27 - - 96.01±0.13

SkinCON Datasets (Daneshjou et al., 2022b). The SkinCON dataset is constructed using two existing datasets: Fitzpatrick
17k (Groh et al., 2021) and Diverse Dermatology Images (DDI) (Daneshjou et al., 2022a). Both datasets are publicly
available for scientific, non-commercial use. Fitzpatrick 17k, which was scraped from online atlases, contains a higher level
of noise compared to DDI, making domain adaptation on Fitzpatrick 17k more challenging. However, due to the small size
of the DDI dataset, we exclusively use Fitzpatrick 17k while excluding non-skin images (those with unknown skin tone
types or labels not consider by SkinCON).

C.2. Experimental Details

Model and Optimization Details. We use ResNet-50 (He et al., 2016) for the Waterbirds dataset and ResNet-18 for the
MNIST and SkinCON datasets. The hyperparameters are summarized in Table 5. All DA baselines, CBMs (Koh et al.,
2020), and CEMs (Zarlenga et al., 2022) share the same backbone as our approach for fair comparison. Zero-shot serves as
the naive baseline for CONDA (Choi et al., 2024), where it uses the prompt “an image of [class]” to generate predictions.
CONDA improves upon this by combining the zero-shot predictor with a linear-probing predictor to obtain pseudo-labels for
the test batch, followed by test-time adaptation. Both PCBM and CONDA require pretrained models to construct the concept
bank. Therefore, we utilize CLIP:ViT-L-14 (Radford et al., 2021) for the Waterbirds dataset consistent with CONDA, and
CLIP:RN50 for the MNIST and SkinCON datasets. Our code will be available at https://github.com/xmed-lab/CUDA.

Table 5. Hyper-parameters of CUDA during training.

Leaning Rate Weight Decay λc λd Relax Threshold

Waterbirds-2 1e-3 4e-5 5 0.3 0.5
Waterbirds-200/CUB 1e-3 4e-5 5 0.3 0.7
MNIST→MNIST-M/USPS 1e-3 1e-5 5 0.1 0.6
SVHN→MNIST 1e-3 1e-5 5 0.1 0.7
I-II→ III-IV 1e-3 4e-5 10 0.1 0.3
III-IV→ V-VI/I-II 1e-3 4e-5 10 0.1 0.7

Naive Baseline. DA methods and the concept-driven paradigm of CBMs cannot be naively combined. In our naive baseline,
we extend the DA model by adding a linear layer to its feature output layer to predict concepts, incorporating the concept
loss into the original DA loss. However, as shown in Table 6, this approach fails to effectively capture concept information
and performs worse than the original CBMs method. This highlights that the standard DA structure is not inherently suited
for learning concepts and fails to leverage the benefits of concepts to improve domain alignment.

Lipschitz Continuity. Lemma 3.1 assumes that all hypotheses are L-Lipschitz continuous for some constant L > 0. While
this assumption might seem restrictive at first glance, it is actually quite reasonable. In practice, hypotheses are often
implemented using neural networks (e.g., our label predictor), where the fundamental components – such as linear layers
and activation functions are naturally Lipschitz continuous. Therefore, this assumption is not overly strong and is typically
satisfied (Shen et al., 2018).

C.3. Framework Details and Training Algorithm

Our adversarial training process consists of two main steps. First, we optimize the domain discriminator using the original
discriminator loss (Eqn. 8) and then calculate the relaxed discriminator loss (Eqn. 9). Second, we optimize the concept
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Table 6. Performance of concept-based methods on both concept learning and classification across different datasets. CEM (w/o R.)
indicates without RandInt. Naive refers our naive combination baseline. We mark the best result with bold face and the second best
results with underline. Average accuracy is calculated over every three datasets of the same type images.

Datasets Waterbirds-2 Waterbirds-200 Waterbirds-CUB AVG

Metrics Concept Concept F1 Class Concept Concept F1 Class Concept Concept F1 Class ACC

CEM 94.14±0.13 81.74±0.39 70.27±1.70 93.68±0.10 81.22±0.64 62.26±1.11 93.64±0.08 80.08±0.34 66.48±0.81 66.34
CEM (w/o R.) 94.17±0.14 81.96±0.30 69.45±2.15 93.76±0.20 81.04±0.82 63.56±1.25 93.66±0.14 79.80±0.36 65.89±0.51 66.30
CBM 93.60±0.20 83.89±0.49 74.81±2.16 93.50±0.16 83.14±0.98 63.89±1.16 93.40±0.14 82.10±0.48 63.89±1.00 67.53
Naive 85.41±0.17 71.86±0.19 66.83±2.96 88.20±0.04 73.96±0.16 63.51±0.32 88.11±0.05 73.56±0.09 60.72±0.27 63.69
CUDA (Ours) 94.63±0.05 84.97±0.15 92.90±0.31 95.15±0.05 85.06±0.19 75.87±0.31 94.58±0.07 82.81±0.19 74.66±0.19 81.15

embedding encoder and label predictor. The overall framework is illustrated in Fig. 5, and the detailed training process is
outlined in Algorithm 1. The objective is to learn both the labels and concepts in the target domain, given source and target
domain images as input. The training procedure alternates between Eqn. 4 and 5 with adversarial training using Eqn. 6∼9.
During inference, we predict the target domain class label ŷ = F (E(x)) and concepts ĉ = Eprob(x). The code will be
released upon the acceptance of this work.
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Figure 5. The full CUDA framework. It processes source and target domain images to learn feature embeddings, from which positive v(+)
i

and negative v(−)
i embeddings are derived. These embeddings are passed through Gconcept to compute concept predictions ĉ and construct

final concept embeddings v. Adversarial training alternates between optimizing the domain classifier (discriminator) with Eqn. 4 and
optimizing the concept embedding encoder and label predictor with Eqn. 5, guided by adversarial training using Eqn. 6∼9.

D. Limitations and Future Works
Our approach falls short of the state-of-the-art UDA method GH++ (Huang et al., 2024) on the Waterbirds 200 classification
task. This may be attributed to GH++’s use of gradient harmonization, which balances the classification and domain
alignment tasks, particularly benefiting scenarios with a large number of categories. Exploring how to leverage gradient
harmonization to balance concept learning in our framework is an interesting direction for future work. We plan to
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investigate the related theoretical foundations and explore how it can be effectively integrated into our method in future
work. Additionally, our approach achieves competitive results and stable performance without using the most advanced DA
backbone. We believe that plugging our method into a more sophisticated backbone could lead to even more remarkable
performance, which we leave as future work. Lastly, the domain shift studied in this work primarily involves shifts related to
background or other label-agnostic factors. In the future, we aim to extend our method to address other types of domain
shifts, broadening its applicability to other scenarios.

Algorithm 1 Pseudocode of CUDA Training
Input: Source domain data S = {(xs

i ,y
s
i , c

s
i )}ni=1, target domain data T = {xt

j}mj=1, feature extractor Φ, concept
embedding generator φ, concept probability network Gconcept, label predictor F , domain discriminator D, learning rates α1,
α2, concept loss weight λc, domain discriminator loss weight λd, concept number K, relaxation threshold τ .
Output: Predicted target labels and concepts {ŷt, ĉt}.

1: while not converged do
2: Sample minibatches Xs ⊂ S and Xt ⊂ T .
3: for each domain d ∈ {s, t} (source or target) do
4: Extract feature embeddings: zd ← Φ(xd).
5: for k = 1 to K do
6: Generate positive and negative concept embeddings: [v(+)

d,k ,v
(−)
d,k ]← φk(zd).

7: Predict concept probabilities:
ĉd,k ← Gconcept([v

(+)
d,k ,v

(−)
d,k ]).

8: Combine positive and negative embeddings:
vd,k ← ĉd,k · v(+)

d,k + (1− ĉd,k) · v(−)
d,k .

9: end for
10: end for
11: Predict source class labels: ŷs ← F (vs).
12: Predict domain labels: ûs ← D(vs), ût ← D(vt).
13: Compute Lp(ŷs,ys) based on Eqn. 6.
14: Compute Lc(ĉs, cs) based on Eqn. 7.
15: Compute Ld(ûθ, uθ), θ ∈ {s, t} based on Eqn. 8.
16: Relax the domain discriminator loss to get L̃d based on Eqn. 9.
17: Ltotal ← Lp + λcLc − λdL̃d

18: Update D to minimize Ld with learning rate α1.
19: Update Φ, φ, Gconcept, and F to minimize Ltotal with learning rate α2.
20: end while
21: return {ŷt, ĉt}
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