
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCED MULTI-TASK LEARNING OF IMPUTATION
AND PREDICTION VIA FEATURE RELATIONSHIP GRAPH
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Missing values present significant challenges in machine learning, often degrading
predictive performance. Traditional and deep learning imputation methods often
overlook the relationships between features and their connections to downstream
tasks. To address these gaps, we propose PIG (multi-task learning of Prediction
and Imputation via feature-relationship Graph learning), a model that integrates
imputation and prediction by leveraging feature interdependencies. PIG utilizes
a graph-based approach to capture intricate feature relationships, thereby enhanc-
ing the accuracy of both imputation and downstream tasks. Our strategic train-
ing process begins with pre-training for both tasks, ensuring the model learns
effective representations. This is followed by fine-tuning the entire model to fur-
ther optimize imputation and downstream tasks simultaneously. We evaluated our
method using nine benchmark datasets, three for regression and six for classifica-
tion. Our method showed superior imputation and prediction performance across
nine datasets, achieving an average rank of 1.33 for both imputation and regres-
sion tasks and 1.83 for imputation and 1.17 for classification tasks. Additionally,
in sensitivity analysis with respect to missing rates, our method demonstrated its
robustness, especially in predictive performance, compared to other methods that
showed significant degradation.

1 INTRODUCTION

Missing values arise from various factors across diverse fields (Kim et al., 2018; Yoon et al., 2016;
Li et al., 2021; Koren et al., 2009), underscoring the importance of effective imputation. Tradi-
tionally, basic statistical methods, such as mean, median, or mode, have been used for imputation;
however, these approaches often yield inaccurate results. Matrix completion methods, commonly
employed in recommendation systems, have demonstrated significant improvements in missing data
imputation (MDI) (Koren et al., 2009; Hu et al., 2008; Rendle et al., 2014; Mazumder et al., 2010),
yet they have limitations in handling categorical features. Recently, deep learning methods have
been applied to MDI using AutoEncoders (AEs) and their variants (Gondara & Wang, 2018; Vin-
cent et al., 2008), enabling flexible processing of mixed-type data that includes both numeric and
categorical features. Furthermore, some studies have utilized generative models, such as Variational
AutoEncoders (VAEs) and Generative Adversarial Networks (GANs), to capture the underlying data
distribution and thereby generate plausible values for missing data (Nazabal et al., 2020; Yoon et al.,
2018).

Despite the advancements offered by the aforementioned methods, they exhibit notable limitations.
First, all these approaches focus solely on the imputation task, neglecting the downstream tasks,
which are the ultimate goal of the analysis. This oversight can result in sub-optimal performance in
downstream tasks. Second, while deep learning methods have demonstrated competitive accuracy
in imputation, they are often sensitive to irrelevant features that are commonly present in real-world
datasets (Grinsztajn et al., 2022). This sensitivity can lead to overfitting to noisy patterns of irrelevant
features, hindering the generalization of imputation performance. Consequently, these limitations
highlight a critical gap in both imputation and downstream tasks, necessitating the development of
more integrated approaches.
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More recent methods, such as GRAPE (You et al., 2020), have demonstrated the potential of Multi-
Task Learning (MTL) to address both imputation and downstream tasks. Additionally, by transform-
ing tabular data into a bipartite graph structure and using Graph Neural Networks (GNNs), GRAPE
implicitly captures feature relationships through edge-level prediction tasks for imputation, while
downstream tasks are framed as node-level predictions. However, despite its strong performance,
GRAPE still has limitations, such as an indirect representation of feature relationships through par-
tially observed data and challenges related to stability during MTL (Liu et al., 2021; Yu et al., 2020;
Chen et al., 2018).

To this end, we propose PIG, multi-task learning of Prediction and Imputation via feature-
relationship Graph learning. PIG incorporates a Graph Learning Layer (GLL) that explicitly learns
feature relationships, which are then fully utilized in a Graph Residual Imputation Layer (GRIL)
to consider only relevant features in imputation and thereby enhance its performance. Addition-
ally, PIG enhances the stability of MTL through a carefully designed training strategy. The training
process begins with the pre-training of the GLL and a Prediction Layer (PL), which is designed to
perform downstream tasks. This is followed by fine-tuning the entire model to simultaneously opti-
mize both imputation and downstream tasks. This approach, as demonstrated to be effective in recent
research (Qu et al., 2024), mitigates the complexities associated with multiple objectives, resulting
in stable performance improvements, particularly in downstream tasks. The main contributions of
this work are as follows.

• We present PIG, an MTL model that integrates imputation and prediction (classification or
regression) for mixed-type tabular data, leveraging their interdependencies to enhance both
tasks.

• We propose a GLL which identifies feature relationships, and a GRIL, which utilizes these
relationships to optimize both imputation and downstream tasks.

• We propose a training strategy to optimize PIG for both imputation and prediction tasks,
which begins with the pre-training of a GLL and a PL, followed by fine-tuning the entire
model.

Through extensive experiments across diverse datasets that encompass both regression and classifi-
cation downstream tasks, we rigorously evaluated the effectiveness of the proposed method. Several
ablation studies further explains the significant impact of individual components within our model,
thereby showing comprehensive and deliberate design of the proposed method.

2 RELATED WORK

MDI methods have evolved significantly over time, transitioning from simple statistical methods to
more advanced machine learning and deep learning methods.

Statistical Methods. Early MDI methods included simple statistical methods such as mean, median,
and mode imputation. While these methods are easy to implement, they often overlook relationships
between features, leading to poor performance.

Machine Learning Methods. More sophisticated methods have emerged, such as multiple impu-
tation by chained equations (MICE) (Van Buuren & Groothuis-Oudshoorn, 2011), k-nearest neigh-
bors (KNN) (Troyanskaya et al., 2001), and matrix completion methods. MICE iteratively predicts
missing values using estimators like Bayesian ridge or random forests, while KNN imputes missing
values based on similar data points. Matrix completion methods, commonly employed in recom-
mendation systems (Koren et al., 2009), have demonstrated strong performance in MDI by identi-
fying and leveraging latent structures among samples and features. However, both MICE and KNN
can face scalability issues and may struggle with large, complex datasets, and matrix completion
methods are generally limited to numeric data, posing challenges with categorical variables.

Deep Learning Methods. Recently, deep learning methods have emerged as powerful alterna-
tives for MDI. AEs (Gondara & Wang, 2018) and VAEs (Nazabal et al., 2020) project incomplete
data into a latent space to reconstruct missing values. GAN-based methods, such as generative
adversarial imputation networks (GAIN) (Yoon et al., 2018), utilize adversarial learning to gen-
erate plausible imputed data, reporting strong performance across various settings. Building on
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Table 1: Summary of previous studies.

Method Datasets Problem addressed Missing rates (setting)

VAE (Nazabal et al., 2020) 6 UCI datasets Generative model, mixed-type data handling 10% ∼ 50%
GAIN (Yoon et al., 2018) 5 UCI datasets Accurate generative model 20% (ablation: 10% ∼ 80%)
GRAPE (You et al., 2020) 9 UCI datasets Fully exploit information 30% (ablation: 10% ∼ 70%)

MIRACLE (Kyono et al., 2021) 10 UCI datasets Causality preservation 30%
HyperImpute (Jarrett et al., 2022) 12 UCI datasets Automatic model selection 10% ∼ 70%

Figure 1: Overall process of PIG. The input data matrix X, with missing entries indicated by the
missing indicator M, undergoes initial imputation to generate the complement matrix X̃. The Graph
Learning Layer (GLL) refines an initial feature relationship Aprior into a learned relationship matrix
A. The Graph Residual Imputation Layer (GRIL) leverages A and X̃ to produce the imputed matrix
X̂. Finally, the Prediction Layer (PL) uses X̂ for downstream tasks, yielding predictions Ŷ .

these advancements, GRAPE (You et al., 2020) leverages MTL to simultaneously tackle imputa-
tion and downstream tasks. Also, by applying GNNs to the tabular data represented as a bipartite
graph, GRAPE implicitly captures meaningful feature relationships, enhancing imputation perfor-
mance and facilitates improved outcomes in downstream tasks. MIRACLE (Kyono et al., 2021) is
proposed to preserve the causal structure of data for more accurate imputation. It refines initial im-
putation from traditional methods by using neural networks while maintaining data dependencies.
However, due to the specific purpose for data dependencies, MIRACLE suffers from performance
degradation in inappropriate scenarios. At last, HyperImpute (Jarrett et al., 2022), a generalized
iterative imputation framework, combines iterative imputation and recent powerful models; for each
feature, it adaptively and automatically selects proper parameters and models, ranging from simple
ML-based models to boosting trees and neural networks.

3 METHODS

3.1 OVERVIEW

This section briefly introduces the overall process of PIG from the original data matrix with missing
values to the imputed data matrix and predicted values (Figure 1). Suppose an incomplete input
data matrix X ∈ RN×d and a missing indicator matrix M ∈ {0, 1}N×d where N is the number of
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observations and d is the number of features. Each element Mij equals 1 if Xij is observed, and 0
if it is missing, for i = 1, . . . , N and j = 1, . . . , d.

Initially, missing values in X should be filled using any simple imputation method. This initial
imputation usually employs statistical and ML-based methods, yielding the complement matrix X̃ ∈
RN×d that contains no missing values. However, the imputed values can be further improved by
utilizing informative feature relationships and considering both imputation and downstream task
together.

Specifically, PIG uses residual learning (He et al., 2016) and feature relationships via graph con-
volution (Kipf & Welling, 2016) to correct X̃ . Then, PIG outputs the final imputation matrix
X̂ ∈ RN×d, which is derived from the combination of observed values in X and imputed val-
ues for missing ones.

This final imputation matrix X̂ is fed to PL for downstream tasks. For simplicity, assume one
downstream task, either a classification or regression. Then we can denote the target feature as Y ∈
RN×c and its predicted values as Ŷ ∈ RN×c, where c is the number of classes in the classification
task and 1 in the regression task.

3.2 THE DETAILED MODEL ARCHITECTURE

PIG has three main layers (Figure 1): GLL, GRIL, and PL. The GLL learns the feature relationships,
represented as a matrix A ∈ Rd×d, that help both imputation and prediction. The GRIL takes X̃

and A to correct the imputation residuals, then returns X̂ by filling in missing values of X . Then,
PL takes X̂ and predicts targets Y in downstream tasks. Each main layer will be described in the
following subsections.

3.2.1 GLL: GRAPH LEARNING LAYER

Motivated by graph construction in various studies (Shi et al., 2019; Li et al., 2017; Wu et al., 2020;
Yan et al., 2018), we devised GLL to adaptively infer feature relationships, which are typically un-
known in real-world datasets. GLL utilizes independent representations: the destination-embedding
matrix E1 ∈ Rd×dE and the source-embedding matrix E2 ∈ Rd×dE where dE is the dimensionality
of feature embedding.

First, each embedding matrix is projected using P1 ∈ RdE×dE and P2 ∈ RdE×dE and activated
with a scaled hyperbolic tangent function as Z1 = α tanh (E1P1) and Z2 = α tanh (E2P2) where
α is a hyperparameter that controls sensitivity. Then, the feature relationship matrix A is computed
by applying the sigmoid function to the inner product of the projected embeddings:

A = sigmoid
(
Z1Z

T
2

)
, (1)

where each Aij indicates the informativeness of feature j for imputing feature i. This relationship
matrix A enables PIG to exploit feature dependencies for accurate imputation and prediction.

3.2.2 GRIL: GRAPH RESIDUAL IMPUTATION LAYER

GRIL takes the relationship matrix A and the complement matrix X̃ as inputs and returns the final
imputation matrix X̂ . Initially, GRIL normalizes A as Ã = D−1A, where D is a diagonal matrix
such that Dii =

∑d
j=1 Aij , i ∈ {1, . . . , d}, and then uses Ã to aggregate relevant features for every

feature. This aggregation step, called relationship graph convolution (RGC), is

H = X̃ÃW1 + b1, (2)

where W1 ∈ Rd×d and b1 ∈ Rd are trainable parameters. Unlike usual graph convolu-
tion (Veličković et al., 2017; Hamilton et al., 2017), parameters of the features are directly ag-
gregated. Then, residual connection (He et al., 2016) adds X̃ to H ∈ RN×d as X̄ = σ

(
X̃ +H

)
where σ can be tanh for numeric features and sigmoid for categorical features. With the use of
residual learning at this layer, H serves as corrections that addresses the errors remaining in X̃ .
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Figure 2: An example of random masking strategy. Observed values (white boxes) in the original
mini-batch are randomly masked with probability pmask.

At last, GRIL calculates the final imputation matrix X̂ by maintaining observed values in X and
replacing missing values in X with imputed values in X̄ , as

X̂ = X ⊙M + X̄ ⊙ (1−M) , (3)

where ⊙ is an element-wise multiplication.

3.2.3 PL: PREDICTION LAYER

After GRIL, PL uses the final imputation matrix X̂ to conduct downstream tasks. Depending on
the downstream task, the prediction is Ŷ = softmax(X̂W2 + b2) if the downstream task is
classification, and Ŷ = X̂W2 + b2 if it is regression, where W2 ∈ Rd×c and b2 ∈ Rc are trainable
parameters. Here, PL uses a one-layer fully-connected network (FCN) for the prediction, but the
structure can be extended to increase complexity.

3.2.4 OBJECTIVE FUNCTION

The core idea of PIG is to use appropriate feature relationships to improve the solution for both
imputation and prediction. The objective function is constructed over the three main layers (Figure 8
in Appendix E).

First, GLL computes the regularization loss Lreg to ensure that the inferred relationship matrix A
align with prior knowledge Aprior about feature relationships. Specifically, it uses binary cross-
entropy to assess how much A deviates from Aprior. This loss encourages the model to deviate
from Aprior if deviations significantly enhance both imputation and prediction.

Second, GRIL computes the two types of losses: reconstruction loss Lrec and imputation loss Limp.
The reconstruction loss ensures that the model accurately restores the actual values of the observed
ones, whereas the imputation loss ensures that the model accurately guess true values of the missing
ones. The imputation loss cannot be calculated directly because true values for unobserved ones
are unknown. To solve this problem, observed values are randomly masked with probability pmask

to simulate missing values. Then, the imputation loss is computed using these artificially masked
values and the reconstruction loss is computed using only observed and unmasked values (Figure 2).

Specifically, GRIL distinguishes between numeric and categorical features by applying proper
losses: squared differences for numeric features and cross-entropy loss for categorical features.
This approach enables PIG to flexibly and accurately process mixed-type datasets.

Lastly, PL computes the downstream task loss Ldt. Depending on whether the task is classification
or regression, the last loss is calculated differently. It uses cross-entropy loss between the predicted
labels Ŷ and the true labels Y for classification task, whereas it utilizes mean squared error (MSE)
between the predicted values Ŷ and the actual values Y for regression task.

Finally, the total loss L of PIG is

L = λLreg + Lrec + Limp + Ldt, (4)

where λ is a term that adjusts the regularization penalty.

5
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Figure 3: Two-step training of PIG. Orange boxes represent pre-training and red boxes represent the
completion of training.

3.3 HEURISTIC ALGORITHM TO FIND PRIOR FEATURE RELATIONSHIPS

The feature relationships are unknown in many real-world data, so we propose a heuristic algorithm
to estimate the prior feature relationships Aprior (Algorithm 1). Imputation can be considered as
a supervised learning task in which each feature is predicted by the others. If the i-th feature X·i
helps to predict another feature X·j , then a reasonable assumption is that X·i is relevant in imputing
X·j .

This relevance can be decently inferred using the feature importance of the decision tree algo-
rithm (Hastie et al., 2009). Thus, we propose to use d decision trees, each of which is fitted to
predict each feature in data X . In this process, only complete data instances that have no missing
values are used. Specifically, each decision tree is trained to predict Xc

·i using Xc
·−i, which is ob-

tained by excluding the i-th feature Xc
·i. Here, the superscript c indicates the subset of X in which

all features are observed.

In this case, the feature importance of j-th feature for predicting i-th feature, denoted as FIij , is the
mean decrease in impurity of X·i. After the feature importance of every pair is computed, Aprior is
constructed as

Aprior
ij =

{
1, if FIij ≥ Average(FIi·)

0, otherwise
, (5)

where Average(FIi·) =
1

d−1

∑
j ̸=i FIij . All diagonal elements Aii are set to 0.

These prior relationships may be a strong assumption on data, so A will be updated during the
training process only if a deviation from the prior is advantageous for reconstruction, imputation, or
downstream tasks. The detailed steps of the algorithm are provided in Appendix D.

3.4 TRAINING STRATEGY

If parameter values were inappropriately initialized, then gradients of tightly related losses would
have different directions. We carefully designed the two-step optimization strategy for PIG (Fig-
ure 3) to avoid this ‘conflicting gradients’ problem via pre-training. In step 1, the strategy pre-trains
GLL and PL separately, and finds prior feature relationships Aprior. In this process, only complete
data instances are used, so the pre-trained parameters may be sub-optimal. In step 2, GLL and PL are
initialized with the pre-trained parameters and then all the parameters in PIG are jointly optimized
using the total loss L. This strategy succesfully guides PIG to an improved solution (see Table 3).

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS

To evaluate the performance of PIG, we conducted various experiments using nine benchmark
datasets from the UCI Machine Learning Repository (Lichman, 2013), as in previous studies on
MDI for tabular datasets (Table 1); Among them, three datasets involve the regression downstream
task and six involve the classification downstream task (Table 4). In a few datasets, we removed
data instances with missing values to make these datasets evaluable. We then randomly generated
missing values in the datasets to simulate data that have missing values. Finally, we pre-processed
all the numeric features to be scaled to [−1, 1], and categorical features to be one-hot encoded.
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We first evaluated imputation and prediction accuracy. For this experiment, we randomly removed
20% of elements and used them as originally-missing values, and then calculated the performance.

For the imputation task, we measured MSE for numeric features and CE for categorical features.
For the regression downstream task, we assessed mean absolute error (MAE) and MSE, while for
the classification downstream task, we assessed accuracy, precision, recall, and F1 score.

We conducted an ablation study to test the effect of GLL, the initial imputation strategy for X̃ ,
and the pre-training strategy. At last, We also conducted the sensitivity analysis to test how PIG is
sensitive to missing rates, adjusting the ratio from 5% to 50% (see Appendix K).

We repeated every experiment 10 times and reported the average accuracy on the test set. For each
repetition, We first randomly divided the datasets into 70% for training, 20% for validation, and 10%
for testing. Then, we introduced random missing values into the training dataset.

We set hyperparameters of PIG as follows. The initial imputation method is Soft-Impute (SI), as
described by Mazumder et al. (2010), unless otherwise stated. We set the dimensionality dE of
feature embeddings to ⌊d/2⌋ differently according to datasets, where ⌊·⌋ is the floor function. The
scaling parameter α that controls the sensitivity in GLL was set to 5 and the regularization parameter
λ (Equation 4) that controls the penalty of the regularization loss to 0.01. We trained PIG for 60
epochs using Adam optimizer (Kingma & Ba, 2014) with learning rate 0.01, and applied early
stopping of 10-epoch-patience. We set a random masking probability pmask to 20% for all datasets.

We compared PIG with some existing imputation methods and their MTL versions (if extendable)
to see whether the improvement of our method is attributed to only MTL. MTL versions of existing
models are implemented by modifying each method to learn imputation and prediction simultane-
ously as in PIG. In addition, a model without the MTL structure first learns imputation with a com-
plete matrix and then trains PL by using imputed data, where the prediction layer is one-layer FCN
as in PIG. As baseline models, we used SI (Mazumder et al., 2010), AE, VAE, GRAPE (You et al.,
2020), MIRACLE (Kyono et al., 2021), and HyperImpute (Jarrett et al., 2022). A brief description
of these baseline models is in Appendix C.

4.2 IMPUTATION AND PREDICTION ACCURACY

We conducted experiments on nine benchmark datasets and measured the accuracies of the impu-
tation and downstream tasks. Three datasets (i.e., “Energy”, “Abalone”, and “Diabetes”) have a re-
gression downstream task and the rest (i.e., “Spam”, “Mobile”, “Pulsar”, “Breast Cancer”, “Faults”,
and “Wine”) have a classification downstream task.

Figure 4: The imputation performance across three regression datasets. Each chart displays the
results for a specific dataset. To reduce complexity, only numerical imputations are visualized.

PIG showed the best imputation and regression accuracy for three regression datasets (Figure 4 and
5). PIG consistently showed best performance, except for a second-place on the “Diabetes” dataset.
In this dataset, GAIN outperformed our methods in both imputation and regression performance;
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Figure 5: The regression performance for three datasets. Each chart displays the results for a specific
dataset.

however, it was unstable in that its imputation performance was worse than that of traditional meth-
ods like SI and MissForest in other datasets. All experimental results are detailed in Appendix I.

Figure 6: The imputation performance for six classification datasets. Each chart displays the results
for a specific dataset. To reduce complexity, only numerical imputations are visualized.

In addition, PIG showed superior performance for the six classification datasets (Figure 6 and 7).
PIG achieved first place in all classification datasets, with the exception of the “Wine” dataset, where
PIG ranked second in terms of classification performance despite the best imputation performance.
All experimental results are detailed in Appendix J.

In both imputation and prediction tasks, regardless of regression or classification, PIG demonstrated
superior performance while achieving the top average ranking among all baseline models (Table 5
in Appendix F). Especially, the gap with the runner-up method is fairly large in prediction tasks
compared to imputation tasks. Additionally, methods with MTL demonstrated similar or slightly
degraded imputation performance compared to other methods, but exhibited superior predictive per-
formance in both regression and classification. This implies that considering downstream tasks is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: The classification performance for six datasets. Each chart displays the results for a
specific dataset.

crucial when imputation is necessary due to missing data. Among the MTL methods, PIG outper-
formed the other methods, which means that considering feature relationships is crucial for address-
ing tabular data with missing values. In both regression and classification tasks, PIG demonstrated
significantly improved imputation performance compared to SI, which is used to generate initial im-
putation matrix in PIG. This means that PIG greatly contributed to the enhancement of imputation
performance by utilizing graph convolution with adaptive feature relationships.

4.3 ABLATION STUDY

We conducted a few ablation studies to evaluate the individual effect of the GLL, initial imputation
strategies, and pre-training strategies. We explored their effects on both types of downstream tasks,
regression and classification, using “Diabetes” and “Mobile” datasets, respectively. Due to space
constraints, the ablation study on initial imputation strategies is provided in Appendix H, and the
experimental settings beyond the focus of each ablation study are detailed in Section 4.2.

4.3.1 THE EFFECT OF GLL

We compared PIG with and without GLL and showed that the feature relationships changed after
training PIG ended. We visualized the difference in feature relationships between A and Aprior

(Figure 9 in Appendix G). The prevalence of consistent relationships (black arrows, Figure 9) high-
lights the stability of our heuristic approach (Section 3.3). Furthermore, the presence of red and blue
arrows implies that GLL facilitates adaptive learning of feature relationships. These changes also
led to improvement of performance in both imputation and downstream tasks (Table 2), demonstrat-
ing that GLL contributed the improvement of imputation and downstream tasks by adjusting feature
relationships in a data-driven manner.

4.3.2 THE EFFECT OF PRE-TRAINING STRATEGY

Finally, we assessed the impact of our pre-training strategy by comparing the performance of impu-
tation and prediction tasks with and without pre-training (Table 3). It appears that the pre-training
strategy is not as effective for imputation tasks, as PIG with pre-training showed more accurate per-
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Table 2: Ablation results to measure the impact of GLL for two datasets: Mobile (classification) and
Diabetes (regression).

Dataset Models Imputation Task Regression Task
MSE MSE MAE

Diabetes PIG 0.034 ± 0.009 0.122 ± 0.027 0.280 ± 0.035

PIG w/o GLL 0.041 ± 0.006 0.125 ± 0.024 0.288 ± 0.037

Dataset Models Imputation Task Classification Task
MSE CE Accuracy Recall Precision F1-score

Mobile PIG 0.084 ± 0.007 0.222 ± 0.042 0.952 ± 0.017 0.951 ± 0.018 0.952 ± 0.017 0.950 ± 0.018

PIG w/o GLL 0.101 ± 0.005 0.344 ± 0.016 0.938 ± 0.014 0.940 ± 0.014 0.938 ± 0.014 0.938 ± 0.014

Table 3: Ablation results to measure the impact of pre-training.

Data Models Imputation Task Regression Task
MSE CE MSE MAE

Energy PIG 0.046 ± 0.005 - 0.031 ± 0.006 0.126 ± 0.015

PIG w/o pre-train 0.043 ± 0.007 - 0.080 ± 0.065 0.194 ± 0.084

Abalone PIG 0.004 ± 0.002 0.100 ± 0.013 0.027 ± 0.005 0.118 ± 0.009

PIG w/o pre-train 0.007 ± 0.007 0.124 ± 0.013 0.029 ± 0.007 0.121 ± 0.009

Diabetes PIG 0.034 ± 0.009 - 0.122 ± 0.027 0.280 ± 0.035

PIG w/o pre-train 0.028 ± 0.006 - 0.136 ± 0.026 0.299 ± 0.037

Data Models Imputation Task Classification Task
MSE CE Accuracy Recall Precision F1-score

Spam PIG 0.006 ± 0.001 - 0.899 ± 0.020 0.823 ± 0.022 0.901 ± 0.020 0.892 ± 0.022

PIG w/o pre-train 0.005 ± 0.001 - 0.849 ± 0.017 0.823 ± 0.022 0.859 ± 0.017 0.828 ± 0.021

Mobile PIG 0.084 ± 0.007 0.222 ± 0.042 0.952 ± 0.017 0.951 ± 0.018 0.952 ± 0.017 0.950 ± 0.018

PIG w/o pre-train 0.061 ± 0.006 0.393 ± 0.011 0.712 ± 0.034 0.719 ± 0.034 0.712 ± 0.037 0.691 ± 0.036

Pulsar PIG 0.046 ± 0.002 - 0.923 ± 0.018 0.923 ± 0.018 0.926 ± 0.017 0.922 ± 0.018

PIG w/o pre-train 0.014 ± 0.002 - 0.909 ± 0.027 0.909 ± 0.025 0.913 ± 0.029 0.906 ± 0.029

Breast Cancer PIG 0.010 ± 0.006 - 0.962 ± 0.029 0.956 ± 0.033 0.966 ± 0.025 0.960 ± 0.030

PIG w/o pre-train 0.020 ± 0.006 - 0.714 ± 0.138 0.536 ± 0.157 0.567 ± 0.264 0.473 ± 0.182

Faults PIG 0.085 ± 0.134 - 0.692 ± 0.026 0.714 ± 0.048 0.690 ± 0.042 0.686 ± 0.042

PIG w/o pre-train 0.153 ± 0.219 - 0.693 ± 0.042 0.705 ± 0.055 0.755 ± 0.051 0.668 ± 0.064

Wine PIG 0.013 ± 0.003 - 0.561 ± 0.020 0.405 ± 0.078 0.775 ± 0.037 0.397 ± 0.080

PIG w/o pre-train 0.009 ± 0.002 - 0.569 ± 0.056 0.546 ± 0.059 0.810 ± 0.035 0.517 ± 0.068

formance in only four out of nine datasets. However, the pre-training strategy significantly enhanced
regression or classification performance in almost all datasets, with the exception of the “Wine”
dataset. This implies that pre-training effectively stabilizes the two different objectives, imputation
and prediction, by properly setting the initial parameters in GLL and PL.

5 CONCLUSION

This paper has presented PIG, a framework for MTL of imputation and prediction as a downstream
task. We also proposed a heuristic method to easily find feature relationships that may be helpful
to imputation and downstream tasks. The framework can exploit these relationships in graph con-
volution to correct the initial imputation, then updates the relationships if necessary to improve the
accuracy of both tasks. To achieve the mentioned purposes, the objective function of PIG has several
loss terms, which are difficult to optimize simultaneously; thus, we suggested first pre-training GLL
and PL and then jointly optimizing the whole PIG. This training strategy successfully balances sev-
eral tasks. Empirically, PIG achieved the best performance in imputation and prediction tasks across
nine datasets, leading to the average rank of 1.78 for imputation task and 1.22 for downstream tasks.
Consequently, PIG can be the robust and versatile approach in handling tabular data with missing
values with specific downstream tasks.

6 REPRODUCIBILITY

The hyperparameters, data preprocessing steps, and experiment settings are provided in Section 4.1
of the main paper, while the details of the datasets are summarized in Table 4 in the appendix. For
reproducibility, we will make the source code publicly available.
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A TYPES OF MISSINGNESS

Missing data are of three types: Missing At Random (MAR), Missing Not At Random (MNAR),
and Missing Completely At Random (MCAR). MAR refers to the case that missingness depends
on the observed features, MNAR refers to the case that missingness depends on both observed and
unobserved data. In MCAR case, missingness is independent of both observed and unobserved data.
For example, consider two observed input features x1 and x2, and an unobserved feature z. If the
missingness of x1 depends only on x2 or vice versa, the data is MAR. If the missingness of x1 or
x2 additionally depends on z, the data is MNAR. Finally, if missingness is independent of other
features, it is MCAR.

Among the three types, MCAR represents the simplest type of missing data and thus enables the
evaluation of imputation models without the introduction of biases unlike MAR and MNAR. Due
to this simplicity, most existing studies on MDI are based on the MCAR assumption as a stepping
stone towards more complex scenarios of MAR and MNAR. Therefore, this study also focuses on
the MCAR case to make our results be directly comparable with those studies.

B DETAILS OF DATASETS.

Table 4: Details of datasets.

Task Dataset # instances # features
Numeric Categorical

Regression
Energy 1,296 28 0

Abalone 4,177 7 1
Diabetes 442 10 0

Classification

Spam 4,601 57 0
Mobile 2,000 14 6
Pulsar 12,528 9 0

Breast Cancer 569 30 0
Faults 1,941 33 0
Wine 1,143 12 0

C BASELINE MODEL DESCRIPTION

• Soft-Impute (SI) (Mazumder et al., 2010): a matrix completion method that uses the nuclear
norm as a regularization loss.

• Auto-Encoder (AE): A traditional DL method that focuses on the reconstruction loss to
impute missing values.

• Variational Auto-Encoder (VAE): A deep generative method that has a similar model struc-
ture to AE but trains the model weights by maximizing the evidence lower bound

• GRAPE (You et al., 2020): A GNN-based representation learning method to impute miss-
ing values. This method constructs a bipartite graph of N data instance nodes and d feature
nodes. This method can be itself an MTL approach.

• MIRACLE (Kyono et al., 2021): A neural network-based imputation method that refines
imputation results by incorporating data dependencies.

• HyperImpute (Jarrett et al., 2022): A generalized iterative imputation framework that adap-
tively selects the most suitable model, ranging from traditional to recent models, for each
feature.

MTL versions of AE, VAE, and GRAPE are denoted as AE (MTL), VAE (MTL), and GRAPE
(MTL), respectively. Both PIG and MTL versions of baseline models used a one-layer FCN for fair
comparisons. AE and VAE require a complete matrix as an input, so SI first initializes an incomplete
matrix X for those two methods. Hyperparameters were set to as suggested by their authors (You
et al., 2020) or determined experimentally.
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D HEURISTIC ALGORITHM FOR PRIOR RELATIONSHIPS

Algorithm 1 The proposed heuristic algorithm for prior relationships

Inputs:
Xc: a subset of X that contains only data instances with no missing values.

1: Initialize prior feature relationship matrix Aprior ∈ Rd×d

2: for i = 1, . . . , d do
3: Xc

·i ← i-th column of Xc

4: Xc
·−i ← a subset of Xc derived by excluding i-th column Xc

·i
5: Fit a decision tree DTi that predicts Xc

·i from Xc
·−i

6: FIi· ← feature importance derived from DTi ▷ FIii is set to zero.
7: for j = 1, . . . , d do

8: Aprior
ij ←

{
1, if FIij ≥ Average(FIi·)

0, otherwise
9: end for

10: end for

11: return Aprior

E OBJECTIVE FUNCTION DESIGN OF PIG

Figure 8: Objective function design of PIG.
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F AVERAGE RANKINGS OF IMPUTATION AND PREDICTION

Table 5: Average rankings of imputation and prediction.

Task Method
Imputation Regression Classification

MSE CE MSE MAE Accuracy F1 score

Regression

SI 5.00 7.00 5.00 5.33 - -
MICE 7.33 10.00 6.67 6.67 - -
MissForest 3.33 11.00 6.33 5.67 - -
AE 7.67 2.00 7.67 8.67 - -
VAE 8.33 4.00 7.67 8.67 - -
AE (MTL) 7.00 5.00 6.00 7.00 - -
VAE (MTL) 10.33 6.00 7.00 8.00 - -
GRAPE (MTL) 9.33 3.00 4.33 5.33 - -
GRAPE 12.00 8.00 11.00 7.67 - -
MIRACLE 13.00 13.00 13.00 13.00 - -
HyperImpute 2.33 12.00 8.00 9.00 - -
GAIN 3.67 9.00 5.33 4.00 - -
PIG 1.33 1.00 1.33 1.33 - -

Classification

SI 3.67 3.00 - - 5.17 4.67
MICE 8.00 8.00 - - 9.00 9.83
MissForest 2.83 9.00 - - 7.33 8.67
AE 7.67 3.00 - - 6.67 6.00
VAE 7.67 2.00 - - 5.33 5.33
AE (MTL) 5.83 6.00 - - 3.67 4.50
VAE (MTL) 7.83 12.00 - - 5.83 5.17
GRAPE (MTL) 10.33 7.00 - - 5.00 5.00
GRAPE 11.83 12.00 - - 10.00 8.83
MIRACLE 13.00 5.00 - - 13.00 12.33
HyperImpute 2.83 10.00 - - 9.00 9.67
GAIN 6.67 11.00 - - 8.33 9.17
PIG 1.83 1.00 - - 1.17 1.17
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G THE VISUALIZATION OF CHANGES IN FEATURE RELATIONSHIPS BY GLL

Figure 9: The visualization of changes in feature relationships by GLL (Upper section: “Mobile”
dataset, lower section: “Diabetes” dataset). Circles represent features in each dataset, and arrows
indicate the asymmetric relationships between these features, where the features at the tail of arrows
significant affect the features at the head. Black arrows represent feature relationships that are
consistent in both Aprior and A. The blue arrows indicate feature relationships that were present
in Aprior but deleted in A, while red arrows represent feature relationships that were not in Aprior

but have been newly added to A. We created the feature relationship graph by thresholding A at a
value of 0.5.
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H ABLATION STUDY: THE EFFECT OF THE INITIAL IMPUTATION METHOD

We tested the performance of PIG using different initial imputation methods (Table 6). We compared
four simple imputation strategies: SI, MEAN, MEDIAN, and CONSTANT. MEAN and MEDIAN
use each feature’s mean or median value to fill in the missing values, and CONSTANT replaces miss-
ing values with zeros. We first measured the imputation accuracy of these four imputation methods
and tested downstream task accuracy using the data imputed by these methods (the prediction model
is trained in a separate step). Then we trained four PIG models that used different initial imputation
methods and measured their imputation and downstream task accuracy. Each model is denoted as
PIG (imputation method), such as PIG (MEAN).

The results of Mobile dataset show that initial imputation methods can make meaningful differences
in both classification performance and imputation accuracy of categorical features. In the results
of Diabetes dataset, imputation accuracy of numerical features varied according to initial imputa-
tion methods. However, PIG increased the performance of both imputation and downstream tasks
regardless of initial imputation methods, compared to two-phase training methods that use four sim-
ple imputation strategies.

We also compared PIG with four simple imputation methods to other baseline models. PIG achieved
accuracy much higher than the baseline models regardless of the initial imputation method. This
means that PIG greatly contributed to the enhancement of imputation performance from the initial
imputation matrix by utilizing graph convolution with adaptive feature relationship.

Table 6: Comparison of PIG models with different initial imputation methods for two datasets:
Diabetes (regression) and Mobile (classification).

Data Models Imputation Task Regression Task
MSE MSE MAE

Diabetes

PIG (CONSTANT) 0.047 ± 0.007 0.127 ± 0.017 0.289 ± 0.021

PIG (MEAN) 0.044 ± 0.010 0.130 ± 0.021 0.289 ± 0.030

PIG (MEDIAN) 0.063 ± 0.015 0.119 ± 0.016 0.281 ± 0.027

PIG (SI) 0.034 ± 0.009 0.122 ± 0.027 0.280 ± 0.035

CONSTANT 0.251 ± 0.031 0.156 ± 0.024 0.324 ± 0.031

MEAN 0.230 ± 0.050 0.135 ± 0.021 0.302 ± 0.030

MEDIAN 0.305 ± 0.067 0.119 ± 0.022 0.280 ± 0.027

SI 0.207 ± 0.029 0.146 ± 0.018 0.315 ± 0.020

AE 0.214 ± 0.026 0.144 ± 0.033 0.309 ± 0.042

VAE 0.216 ± 0.035 0.155 ± 0.026 0.325 ± 0.031

AE (MTL) 0.220 ± 0.032 0.140 ± 0.027 0.308 ± 0.028

VAE (MTL) 0.227 ± 0.034 0.141 ± 0.029 0.302 ± 0.033

GRAPE (MTL) 0.226 ± 0.019 0.123 ± 0.022 0.285 ± 0.028

Data Models Imputation Task Classification Task
MSE CE Accuracy Recall Precision F1-score

Mobile

PIG (CONSTANT) 0.081 ± 0.004 0.278 ± 0.009 0.922 ± 0.022 0.924 ± 0.021 0.921 ± 0.023 0.921 ± 0.022

PIG (MEAN) 0.078 ± 0.004 0.202 ± 0.023 0.922 ± 0.019 0.923 ± 0.017 0.920 ± 0.023 0.920 ± 0.021

PIG (MEDIAN) 0.079 ± 0.004 0.319 ± 0.021 0.911 ± 0.016 0.912 ± 0.020 0.912 ± 0.015 0.909 ± 0.018

PIG (SI) 0.084 ± 0.007 0.222 ± 0.042 0.952 ± 0.017 0.951 ± 0.018 0.952 ± 0.017 0.950 ± 0.018

CONSTANT 0.382 ± 0.014 0.693 ± 0.000 0.598 ± 0.031 0.601 ± 0.032 0.594 ± 0.033 0.592 ± 0.035

MEAN 0.346 ± 0.014 0.710 ± 0.019 0.594 ± 0.038 0.590 ± 0.036 0.591 ± 0.034 0.586 ± 0.035

MEDIAN 0.346 ± 0.011 0.725 ± 0.032 0.599 ± 0.065 0.597 ± 0.063 0.601 ± 0.064 0.592 ± 0.065

SI 0.334 ± 0.015 0.676 ± 0.012 0.590 ± 0.041 0.594 ± 0.038 0.588 ± 0.040 0.582 ± 0.041

AE 0.348 ± 0.015 0.676 ± 0.008 0.609 ± 0.047 0.610 ± 0.048 0.605 ± 0.053 0.601 ± 0.052

VAE 0.336 ± 0.013 0.665 ± 0.009 0.616 ± 0.077 0.611 ± 0.070 0.606 ± 0.076 0.603 ± 0.077

AE (MTL) 0.336 ± 0.009 0.695 ± 0.026 0.758 ± 0.036 0.760 ± 0.034 0.791 ± 0.030 0.763 ± 0.032

VAE (MTL) 0.343 ± 0.015 0.727 ± 0.034 0.750 ± 0.021 0.750 ± 0.020 0.777 ± 0.022 0.754 ± 0.022

GRAPE (MTL) 0.371 ± 0.006 0.697 ± 0.001 0.757 ± 0.033 0.756 ± 0.030 0.785 ± 0.034 0.758 ± 0.030
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I EXPERIMENTAL RESULTS FOR THREE REGRESSION DATASETS

Table 7: The regression and imputation performance for three datasets. MAE stands for mean
absolute error. Bold: best score. Underline: runner-up.

Data Models Regression Task Imputation Task
MSE MAE MSE CE

Energy

SI 0.045 ± 0.011 0.152 ± 0.016 0.213 ± 0.029 -
MICE 0.074 ± 0.004 0.185 ± 0.005 0.443 ± 0.018 -

MissForest 0.041 ± 0.002 0.145 ± 0.001 0.206 ± 0.025 -
AE 0.082 ± 0.018 0.214 ± 0.029 0.502 ± 0.021 -

VAE 0.082 ± 0.018 0.214 ± 0.029 0.502 ± 0.021 -
GRAPE 0.278 ± 0.044 0.145 ± 0.053 0.915 ± 0.384 -
GAIN 0.044 ± 0.011 0.153 ± 0.006 0.297 ± 0.002 -

MIRACLE 0.953 ± 0.025 0.706 ± 0.019 14.963 ± 0.142 -
HyperImpute 0.205 ± 0.015 0.376 ± 0.013 0.136 ± 0.029 -
AE (MTL) 0.062 ± 0.017 0.184 ± 0.025 0.388 ± 0.071 -

VAE (MTL) 0.081 ± 0.014 0.213 ± 0.016 0.516 ± 0.044 -
GRAPE (MTL) 0.042 ± 0.006 0.163 ± 0.016 0.468 ± 0.043 -

PIG 0.031 ± 0.006 0.126 ± 0.015 0.046 ± 0.005 -

Abalone

SI 0.033 ± 0.007 0.132 ± 0.015 0.022 ± 0.028 0.699 ± 0.010

MICE 0.033 ± 0.001 0.124 ± 0.000 0.009 ± 0.0000 0.825 ± 0.026

MissForest 0.035 ± 0.004 0.125 ± 0.008 0.007 ± 0.000 0.831 ± 0.002

AE 0.045 ± 0.008 0.154 ± 0.011 0.083 ± 0.017 0.606 ± 0.033

VAE 0.040 ± 0.003 0.151 ± 0.007 0.090 ± 0.009 0.648 ± 0.017

GRAPE 0.428 ± 0.197 0.422 ± 0.326 1.062 ± 0.651 0.807 ± 0.102

GAIN 0.050 ± 0.050 0.147 ± 0.007 0.015 ± 0.001 0.824 ± 0.001

MIRACLE 0.939 ± 0.123 0.745 ± 0.057 11.370 ± 0.174 1.085 ± 0.011

HyperImpute 0.032 ± 0.002 0.126 ± 0.002 0.005 ± 0.000 0.836 ± 0.000

AE (MTL) 0.045 ± 0.005 0.152 ± 0.009 0.072 ± 0.013 0.689 ± 0.013

VAE (MTL) 0.045 ± 0.007 0.158 ± 0.010 0.098 ± 0.008 0.693 ± 0.000

GRAPE (MTL) 0.044 ± 0.011 0.150 ± 0.024 0.157 ± 0.058 0.617 ± 0.065

PIG 0.027 ± 0.005 0.118 ± 0.009 0.004 ± 0.002 0.100 ± 0.013

Diabetes

SI 0.146 ± 0.018 0.315 ± 0.02 0.207 ± 0.029 -
MICE 0.205 ± 0.008 0.364 ± 0.008 0.250 ± 0.032 -

MissForest 0.214 ± 0.006 0.383 ± 0.001 0.173 ± 0.014 -
AE 0.144 ± 0.033 0.309 ± 0.042 0.214 ± 0.026 -

VAE 0.155 ± 0.026 0.325 ± 0.031 0.216 ± 0.035 -
GRAPE 0.185 ± 0.055 0.332 ± 0.050 0.605 ± 0.408 -
GAIN 0.047 ± 0.006 0.146 ± 0.008 0.014 ± 0.001 -

MIRACLE 1.071 ± 0.128 0.792 ± 0.053 13.457 ± 0.135 -
HyperImpute 0.206 ± 0.013 0.375 ± 0.017 0.132 ± 0.016 -
AE (MTL) 0.140 ± 0.027 0.308 ± 0.028 0.220 ± 0.032 -

VAE (MTL) 0.141 ± 0.029 0.302 ± 0.033 0.227 ± 0.034 -
GRAPE (MTL) 0.123 ± 0.022 0.285 ± 0.028 0.226 ± 0.019 -

PIG 0.122 ± 0.027 0.280 ± 0.035 0.034 ± 0.009 -
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J EXPERIMENTAL RESULTS FOR SIX CLASSIFICATION DATASETS

Table 8: The classification and imputation performance for six datasets. Bold: best score. Underline:
runner-up.

Data Model Classification Task Imputation Task
Accuracy Recall Precision F1 score MSE CE

Spam

SI 0.831 ± 0.025 0.805 ± 0.031 0.838 ± 0.022 0.814 ± 0.029 0.016 ± 0.003 -
MICE 0.803 ± 0.007 0.783 ± 0.013 0.796 ± 0.006 0.787 ± 0.012 0.043 ± 0.003 -

MissForest 0.850 ± 0.007 0.829 ± 0.010 0.856 ± 0.001 0.837 ± 0.009 0.014 ± 0.002 -
AE 0.828 ± 0.020 0.795 ± 0.026 0.848 ± 0.016 0.807 ± 0.025 0.020 ± 0.003 -

VAE 0.818 ± 0.032 0.783 ± 0.043 0.846 ± 0.021 0.793 ± 0.044 0.018 ± 0.003 -
GRAPE 0.816 ± 0.063 0.805 ± 0.060 0.810 ± 0.061 0.807 ± 0.061 0.032 ± 0.015 -
GAIN 0.858 ± 0.017 0.828 ± 0.020 0.878 ± 0.018 0.842 ± 0.020 0.019 ± 0.002 -

MIRACLE 0.596 ± 0.001 0.581 ± 0.000 0.579 ± 0.001 0.580 ± 0.001 7.029 ± 0.037 -
HyperImpute 0.850 ± 0.007 0.830 ± 0.009 0.852 ± 0.006 0.838 ± 0.008 0.014 ± 0.001 -
AE (MTL) 0.883 ± 0.011 0.866 ± 0.013 0.890 ± 0.010 0.874 ± 0.012 0.017 ± 0.007 -

VAE (MTL) 0.883 ± 0.019 0.869 ± 0.024 0.887 ± 0.015 0.875 ± 0.021 0.017 ± 0.002 -
GRAPE (MTL) 0.843 ± 0.025 0.814 ± 0.029 0.858 ± 0.022 0.825 ± 0.027 0.021 ± 0.003 -

PIG 0.899 ± 0.020 0.887 ± 0.022 0.901 ± 0.020 0.892 ± 0.022 0.006 ± 0.001 -

Mobile

SI 0.590 ± 0.041 0.594 ± 0.038 0.588 ± 0.040 0.582 ± 0.041 0.334 ± 0.015 0.676 ± 0.012
MICE 0.505 ± 0.015 0.514 ± 0.018 0.520 ± 0.016 0.495 ± 0.015 0.616 ± 0.002 0.699 ± 0.003

MissForest 0.612 ± 0.025 0.620 ± 0.028 0.622 ± 0.030 0.601 ± 0.024 0.339 ± 0.002 0.707 ± 0.000
AE 0.609 ± 0.047 0.610 ± 0.048 0.605 ± 0.053 0.601 ± 0.052 0.348 ± 0.015 0.676 ± 0.008

VAE 0.616 ± 0.077 0.611 ± 0.070 0.606 ± 0.076 0.603 ± 0.077 0.336 ± 0.013 0.665 ± 0.009
GRAPE 0.653 ± 0.034 0.658 ± 0.030 0.724 ± 0.038 0.649 ± 0.036 1.431 ± 0.231 0.727 ± 0.041
GAIN 0.581 ± 0.025 0.579 ± 0.020 0.573 ± 0.016 0.566 ± 0.026 0.397 ± 0.016 0.717 ± 0.001

MIRACLE 0.367 ± 0.006 0.374 ± 0.001 0.468 ± 0.003 0.316 ± 0.002 14.271 ± 0.545 0.690 ± 0.000
HyperImpute 0.582 ± 0.007 0.589 ± 0.010 0.584 ± 0.004 0.577 ± 0.011 0.343 ± 0.004 0.714 ± 0.009
AE (MTL) 0.758 ± 0.036 0.760 ± 0.034 0.791 ± 0.030 0.763 ± 0.032 0.336 ± 0.009 0.695 ± 0.026

VAE (MTL) 0.750 ± 0.021 0.750 ± 0.020 0.777 ± 0.022 0.754 ± 0.022 0.343 ± 0.015 0.727 ± 0.034
GRAPE (MTL) 0.757 ± 0.033 0.756 ± 0.030 0.785 ± 0.034 0.758 ± 0.030 0.371 ± 0.006 0.697 ± 0.001

PIG 0.952 ± 0.017 0.951 ± 0.018 0.952 ± 0.017 0.95 ± 0.018 0.084 ± 0.007 0.222 ± 0.042

Pulsar

SI 0.906 ± 0.026 0.904 ± 0.026 0.909 ± 0.026 0.905 ± 0.026 0.043 ± 0.006 -
MICE 0.903 ± 0.007 0.897 ± 0.009 0.915 ± 0.003 0.901 ± 0.008 0.049 ± 0.006 -

MissForest 0.891 ± 0.003 0.885 ± 0.006 0.902 ± 0.000 0.888 ± 0.004 0.020 ± 0.004 -
AE 0.899 ± 0.022 0.899 ± 0.023 0.901 ± 0.021 0.899 ± 0.022 0.148 ± 0.027 -

VAE 0.883 ± 0.026 0.885 ± 0.025 0.885 ± 0.025 0.882 ± 0.026 0.157 ± 0.017 -
GRAPE 0.827 ± 0.048 0.829 ± 0.046 0.831 ± 0.047 0.827 ± 0.048 0.281 ± 0.084 -
GAIN 0.863 ± 0.009 0.861 ± 0.009 0.880 ± 0.005 0.861 ± 0.009 0.053 ± 0.004 -

MIRACLE 0.626 ± 0.028 0.635 ± 0.024 0.642 ± 0.024 0.623 ± 0.028 9.823 ± 0.136 -
HyperImpute 0.849 ± 0.012 0.828 ± 0.015 0.852 ± 0.007 0.836 ± 0.014 0.014 ± 0.001 -
AE (MTL) 0.910 ± 0.026 0.909 ± 0.025 0.911 ± 0.025 0.910 ± 0.026 0.114 ± 0.017 -

VAE (MTL) 0.880 ± 0.012 0.880 ± 0.013 0.881 ± 0.011 0.879 ± 0.012 0.160 ± 0.016 -
GRAPE (MTL) 0.912 ± 0.023 0.912 ± 0.023 0.916 ± 0.022 0.911 ± 0.024 0.164 ± 0.011 -

PIG 0.923 ± 0.018 0.923 ± 0.018 0.926 ± 0.017 0.922 ± 0.018 0.046 ± 0.002 -

Breast Cancer

SI 0.962 ± 0.033 0.949 ± 0.047 0.970 ± 0.026 0.957 ± 0.040 0.021 ± 0.005 -
MICE 0.771 ± 0.029 0.486 ± 0.046 0.453 ± 0.158 0.455 ± 0.068 0.071 ± 0.007 -

MissForest 0.762 ± 0.000 0.474 ± 0.009 0.448 ± 0.144 0.432 ± 0.000 0.061 ± 0.009 -
AE 0.943 ± 0.029 0.923 ± 0.041 0.959 ± 0.020 0.936 ± 0.034 0.086 ± 0.019 -

VAE 0.945 ± 0.024 0.928 ± 0.035 0.959 ± 0.016 0.939 ± 0.029 0.088 ± 0.020 -
GRAPE 0.888 ± 0.066 0.882 ± 0.057 0.899 ± 0.059 0.880 ± 0.065 0.501 ± 0.522 -
GAIN 0.800 ± 0.029 0.500 ± 0.000 0.900 ± 0.014 0.444 ± 0.009 0.286 ± 0.046 -

MIRACLE 0.752 ± 0.029 0.474 ± 0.009 0.443 ± 0.130 0.429 ± 0.010 9.879 ± 0.233 -
HyperImpute 0.771 ± 0.029 0.474 ± 0.009 0.453 ± 0.159 0.435 ± 0.009 0.055 ± 0.019 -
AE (MTL) 0.947 ± 0.021 0.932 ± 0.029 0.953 ± 0.020 0.939 ± 0.024 0.077 ± 0.011 -

VAE (MTL) 0.943 ± 0.019 0.932 ± 0.025 0.946 ± 0.025 0.937 ± 0.022 0.102 ± 0.016 -
GRAPE (MTL) 0.940 ± 0.036 0.912 ± 0.048 0.959 ± 0.024 0.928 ± 0.042 0.136 ± 0.027 -

PIG 0.962 ± 0.029 0.956 ± 0.033 0.966 ± 0.025 0.960 ± 0.030 0.010 ± 0.006 -

Faults

SI 0.631 ± 0.022 0.609 ± 0.088 0.672 ± 0.040 0.591 ± 0.080 0.094 ± 0.012 -
MICE 0.583 ± 0.009 0.457 ± 0.009 0.561 ± 0.017 0.465 ± 0.010 0.302 ± 0.010 -

MissForest 0.617 ± 0.022 0.472 ± 0.022 0.721 ± 0.005 0.475 ± 0.023 0.079 ± 0.002 -
AE 0.617 ± 0.032 0.534 ± 0.058 0.629 ± 0.095 0.553 ± 0.062 0.241 ± 0.054 -

VAE 0.635 ± 0.035 0.558 ± 0.061 0.693 ± 0.062 0.576 ± 0.052 0.290 ± 0.104 -
GRAPE 0.437 ± 0.087 0.435 ± 0.090 0.415 ± 0.098 0.378 ± 0.081 1.174 ± 0.625 -
GAIN 0.612 ± 0.005 0.467 ± 0.006 0.616 ± 0.006 0.469 ± 0.000 0.079 ± 0.004 -

MIRACLE 0.354 ± 0.000 0.287 ± 0.007 0.287 ± 0.006 0.262 ± 0.002 9.029 ± 0.193 -
HyperImpute 0.606 ± 0.002 0.463 ± 0.016 0.723 ± 0.005 0.468 ± 0.017 0.085 ± 0.010 -
AE (MTL) 0.525 ± 0.029 0.462 ± 0.050 0.550 ± 0.105 0.470 ± 0.055 0.200 ± 0.015 -

VAE (MTL) 0.544 ± 0.033 0.465 ± 0.068 0.576 ± 0.087 0.477 ± 0.069 0.263 ± 0.010 -
GRAPE (MTL) 0.565 ± 0.027 0.546 ± 0.055 0.547 ± 0.050 0.505 ± 0.044 0.513 ± 0.148 -

PIG 0.692 ± 0.026 0.714 ± 0.048 0.690 ± 0.042 0.686 ± 0.042 0.085 ± 0.134 -

Wine

SI 0.554 ± 0.048 0.393 ± 0.101 0.759 ± 0.071 0.383 ± 0.105 0.067 ± 0.011 -
MICE 0.543 ± 0.016 0.230 ± 0.045 0.697 ± 0.045 0.210 ± 0.045 0.061 ± 0.004 -

MissForest 0.539 ± 0.026 0.213 ± 0.014 0.828 ± 0.040 0.192 ± 0.012 0.047 ± 0.006 -
AE 0.541 ± 0.030 0.395 ± 0.108 0.800 ± 0.055 0.381 ± 0.109 0.080 ± 0.018 -

VAE 0.561 ± 0.046 0.428 ± 0.150 0.797 ± 0.069 0.415 ± 0.152 0.086 ± 0.019 -
GRAPE 0.511 ± 0.046 0.375 ± 0.111 0.606 ± 0.151 0.336 ± 0.123 0.286 ± 0.085 -
GAIN 0.537 ± 0.008 0.233 ± 0.045 0.847 ± 0.007 0.207 ± 0.046 0.050 ± 0.001 -

MIRACLE 0.491 ± 0.013 0.243 ± 0.043 0.807 ± 0.043 0.253 ± 0.043 9.623 ± 0.012 -
HyperImpute 0.534 ± 0.010 0.227 ± 0.055 0.843 ± 0.005 0.207 ± 0.055 0.043 ± 0.002 -
AE (MTL) 0.563 ± 0.042 0.290 ± 0.087 0.716 ± 0.084 0.282 ± 0.093 0.083 ± 0.008 -

VAE (MTL) 0.558 ± 0.049 0.374 ± 0.111 0.758 ± 0.058 0.352 ± 0.089 0.084 ± 0.013 -
GRAPE (MTL) 0.561 ± 0.029 0.358 ± 0.118 0.814 ± 0.071 0.337 ± 0.121 0.138 ± 0.050 -

PIG 0.561 ± 0.020 0.405 ± 0.078 0.775 ± 0.037 0.397 ± 0.080 0.013 ± 0.003 -
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K EXPERIMENTAL RESULTS FOR SENSITIVITY ANALYSIS

We measured how sensitive each model is to missing rates. We varied the missing rates from 5% to
50% and reported the results. The sensitivity analysis was implemented using the “Mobile” dataset.

PIG showed remarkable robustness to various missing rates compared to baseline models. Here, we
present the results of a sensitivity analysis for some representative methods, SI, GAIN, GRAPE, and
PIG (Figure 10). While PIG also exhibits performance degradation as missing rates increase, the
other methods quickly saturate to lower performance. Refer to Table 9 for more detail.

Figure 10: Sensitivity analysis on different missing rates. Left: classification performance (F1-
score). Center: imputation performance (MSE) for numeric features. Right: imputation perfor-
mance (CE) for categorical features.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Sensitivity analysis to different missing rates. Bold: best score. Underline: runner-up.

Missing rates Model Imputation Classification
MSE CE Accuracy Recall Precision F1-score

0.05

SI 0.319 ± 0.024 0.680 ± 0.027 0.679 ± 0.041 0.678 ± 0.038 0.675 ± 0.041 0.670 ± 0.042
MICE 0.622 ± 0.019 0.683 ± 0.012 0.532 ± 0.011 0.540 ± 0.013 0.548 ± 0.019 0.518 ± 0.011

MissForest 0.319 ± 0.017 0.686 ± 0.015 0.559 ± 0.003 0.567 ± 0.005 0.564 ± 0.005 0.545 ± 0.004
AE 0.344 ± 0.019 0.679 ± 0.019 0.656 ± 0.050 0.662 ± 0.048 0.658 ± 0.050 0.651 ± 0.050

VAE 0.328 ± 0.019 0.668 ± 0.019 0.677 ± 0.041 0.678 ± 0.044 0.674 ± 0.044 0.667 ± 0.044
AE (MTL) 0.339 ± 0.026 0.708 ± 0.050 0.892 ± 0.019 0.893 ± 0.018 0.892 ± 0.019 0.891 ± 0.019

VAE (MTL) 0.349 ± 0.023 0.754 ± 0.043 0.893 ± 0.025 0.892 ± 0.024 0.896 ± 0.023 0.892 ± 0.024
GRAPE (MTL) 0.367 ± 0.005 0.697 ± 0.005 0.897 ± 0.027 0.897 ± 0.030 0.902 ± 0.025 0.894 ± 0.030

GRAPE 1.272 ± 0.386 0.696 ± 0.087 0.893 ± 0.020 0.891 ± 0.022 0.902 ± 0.017 0.892 ± 0.021
MIRACLE 13.732 ± 0.030 0.691 ± 0.001 0.417 ± 0.024 0.424 ± 0.023 0.479 ± 0.027 0.394 ± 0.026

HyperImpute 0.340 ± 0.005 0.686 ± 0.012 0.568 ± 0.007 0.577 ± 0.008 0.568 ± 0.008 0.556 ± 0.007
GAIN 0.407 ± 0.008 0.407 ± 0.009 0.587 ± 0.005 0.588 ± 0.001 0.584 ± 0.001 0.581 ± 0.001
PIG 0.040 ± 0.001 0.169 ± 0.056 0.917 ± 0.018 0.918 ± 0.016 0.923 ± 0.019 0.917 ± 0.018

0.10

SI 0.318 ± 0.019 0.673 ± 0.023 0.671 ± 0.042 0.669 ± 0.040 0.671 ± 0.040 0.658 ± 0.043
MICE 0.613 ± 0.022 0.679 ± 0.006 0.564 ± 0.012 0.571 ± 0.006 0.578 ± 0.003 0.551 ± 0.012

MissForest 0.343 ± 0.003 0.680 ± 0.001 0.578 ± 0.007 0.585 ± 0.009 0.584 ± 0.010 0.566 ± 0.005
AE 0.344 ± 0.021 0.672 ± 0.019 0.642 ± 0.064 0.642 ± 0.064 0.637 ± 0.062 0.633 ± 0.064

VAE 0.342 ± 0.016 0.672 ± 0.017 0.644 ± 0.050 0.649 ± 0.044 0.642 ± 0.052 0.637 ± 0.052
AE (MTL) 0.340 ± 0.013 0.682 ± 0.042 0.853 ± 0.026 0.852 ± 0.026 0.860 ± 0.024 0.852 ± 0.026

VAE (MTL) 0.339 ± 0.017 0.738 ± 0.036 0.831 ± 0.024 0.831 ± 0.027 0.840 ± 0.022 0.831 ± 0.025
GRAPE (MTL) 0.367 ± 0.005 0.698 ± 0.001 0.841 ± 0.024 0.838 ± 0.025 0.853 ± 0.026 0.840 ± 0.025

GRAPE 1.085 ± 0.418 0.714 ± 0.028 0.802 ± 0.037 0.803 ± 0.038 0.815 ± 0.034 0.799 ± 0.039
MIRACLE 12.720 ± 0.521 0.691 ± 0.001 0.382 ± 0.008 0.391 ± 0.012 0.441 ± 0.017 0.335 ± 0.014

HyperImpute 0.319 ± 0.001 0.676 ± 0.015 0.575 ± 0.002 0.581 ± 0.006 0.578 ± 0.008 0.565 ± 0.004
GAIN 0.374 ± 0.002 0.700 ± 0.010 0.604 ± 0.019 0.605 ± 0.020 0.603 ± 0.020 0.598 ± 0.019
PIG 0.041 ± 0.002 0.171 ± 0.047 0.916 ± 0.018 0.915 ± 0.018 0.921 ± 0.019 0.915 ± 0.019

0.15

SI 0.339 ± 0.020 0.670 ± 0.014 0.631 ± 0.043 0.633 ± 0.045 0.630 ± 0.046 0.623 ± 0.045
MICE 0.737 ± 0.030 0.690 ± 0.016 0.506 ± 0.005 0.515 ± 0.001 0.504 ± 0.004 0.493 ± 0.008

MissForest 0.329 ± 0.001 0.680 ± 0.006 0.576 ± 0.002 0.581 ± 0.004 0.584 ± 0.005 0.568 ± 0.000
AE 0.336 ± 0.020 0.679 ± 0.007 0.629 ± 0.062 0.630 ± 0.056 0.625 ± 0.060 0.618 ± 0.061

VAE 0.344 ± 0.016 0.673 ± 0.012 0.628 ± 0.052 0.637 ± 0.050 0.629 ± 0.052 0.622 ± 0.051
AE (MTL) 0.342 ± 0.012 0.696 ± 0.020 0.796 ± 0.026 0.795 ± 0.022 0.809 ± 0.023 0.798 ± 0.022

VAE (MTL) 0.347 ± 0.014 0.744 ± 0.040 0.799 ± 0.026 0.797 ± 0.026 0.818 ± 0.025 0.800 ± 0.026
GRAPE (MTL) 0.366 ± 0.007 0.695 ± 0.010 0.779 ± 0.022 0.780 ± 0.022 0.797 ± 0.021 0.780 ± 0.021

GRAPE 1.380 ± 0.250 0.739 ± 0.049 0.757 ± 0.052 0.757 ± 0.049 0.791 ± 0.045 0.755 ± 0.055
MIRACLE 13.192 ± 0.363 0.692 ± 0.001 0.444 ± 0.003 0.447 ± 0.007 0.519 ± 0.007 0.406 ± 0.001

HyperImpute 0.312 ± 0.011 0.312 ± 0.000 0.552 ± 0.007 0.560 ± 0.008 0.565 ± 0.002 0.545 ± 0.008
GAIN 0.428 ± 0.002 0.691 ± 0.007 0.548 ± 0.010 0.553 ± 0.008 0.550 ± 0.011 0.544 ± 0.008
PIG 0.043 ± 0.003 0.204 ± 0.047 0.910 ± 0.018 0.910 ± 0.018 0.912 ± 0.019 0.909 ± 0.018

0.20

SI 0.334 ± 0.015 0.676 ± 0.012 0.590 ± 0.041 0.594 ± 0.038 0.588 ± 0.040 0.582 ± 0.041
MICE 0.561 ± 0.017 0.682 ± 0.005 0.567 ± 0.010 0.575 ± 0.011 0.569 ± 0.009 0.558 ± 0.011

MissForest 0.352 ± 0.013 0.683 ± 0.009 0.558 ± 0.008 0.566 ± 0.006 0.567 ± 0.010 0.547 ± 0.004
AE 0.348 ± 0.015 0.676 ± 0.008 0.609 ± 0.047 0.610 ± 0.048 0.605 ± 0.053 0.601 ± 0.052

VAE 0.336 ± 0.013 0.665 ± 0.009 0.616 ± 0.077 0.611 ± 0.070 0.606 ± 0.076 0.603 ± 0.077
AE (MTL) 0.336 ± 0.009 0.695 ± 0.026 0.758 ± 0.036 0.760 ± 0.034 0.791 ± 0.030 0.763 ± 0.032

VAE (MTL) 0.343 ± 0.015 0.727 ± 0.034 0.750 ± 0.021 0.750 ± 0.020 0.777 ± 0.022 0.754 ± 0.022
GRAPE (MTL) 0.371 ± 0.006 0.697 ± 0.001 0.757 ± 0.033 0.756 ± 0.030 0.785 ± 0.034 0.758 ± 0.030

GRAPE 1.431 ± 0.231 0.727 ± 0.041 0.653 ± 0.034 0.658 ± 0.030 0.724 ± 0.038 0.649 ± 0.036
MIRACLE 12.429 ± 0.107 0.691 ± 0.000 0.373 ± 0.006 0.377 ± 0.010 0.407 ± 0.004 0.327 ± 0.005

HyperImpute 0.340 ± 0.004 0.677 ± 0.009 0.572 ± 0.009 0.578 ± 0.016 0.579 ± 0.019 0.562 ± 0.015
GAIN 0.445 ± 0.004 0.692 ± 0.002 0.530 ± 0.032 0.523 ± 0.035 0.521 ± 0.036 0.518 ± 0.033
PIG 0.046 ± 0.002 0.222 ± 0.042 0.923 ± 0.018 0.923 ± 0.018 0.926 ± 0.017 0.922 ± 0.018

0.30

SI 0.343 ± 0.011 0.682 ± 0.011 0.565 ± 0.052 0.565 ± 0.048 0.562 ± 0.048 0.556 ± 0.052
MICE 0.630 ± 0.020 0.674 ± 0.005 0.521 ± 0.018 0.528 ± 0.015 0.518 ± 0.021 0.513 ± 0.018

MissForest 0.330 ± 0.006 0.687 ± 0.006 0.526 ± 0.018 0.535 ± 0.015 0.513 ± 0.021 0.506 ± 0.023
AE 0.335 ± 0.014 0.675 ± 0.009 0.570 ± 0.028 0.567 ± 0.028 0.565 ± 0.024 0.561 ± 0.026

VAE 0.340 ± 0.010 0.677 ± 0.006 0.576 ± 0.036 0.575 ± 0.039 0.571 ± 0.043 0.570 ± 0.038
AE (MTL) 0.339 ± 0.004 0.705 ± 0.023 0.679 ± 0.026 0.677 ± 0.028 0.731 ± 0.024 0.685 ± 0.026

VAE (MTL) 0.345 ± 0.010 0.716 ± 0.034 0.667 ± 0.024 0.669 ± 0.022 0.734 ± 0.025 0.677 ± 0.022
GRAPE (MTL) 0.367 ± 0.005 0.698 ± 0.001 0.694 ± 0.026 0.695 ± 0.024 0.745 ± 0.022 0.698 ± 0.027

GRAPE 1.434 ± 0.269 0.741 ± 0.040 0.562 ± 0.047 0.562 ± 0.049 0.668 ± 0.065 0.552 ± 0.056
MIRACLE 14.066 ± 0.116 0.692 ± 0.000 0.409 ± 0.001 0.416 ± 0.003 0.473 ± 0.008 0.391 ± 0.003

HyperImpute 0.336 ± 0.006 0.680 ± 0.009 0.560 ± 0.002 0.568 ± 0.005 0.550 ± 0.002 0.540 ± 0.002
GAIN 0.376 ± 0.001 0.697 ± 0.008 0.504 ± 0.003 0.507 ± 0.001 0.493 ± 0.000 0.494 ± 0.001
PIG 0.052 ± 0.003 0.295 ± 0.023 0.897 ± 0.018 0.897 ± 0.018 0.899 ± 0.017 0.896 ± 0.018

0.40

SI 0.347 ± 0.009 0.678 ± 0.009 0.534 ± 0.036 0.531 ± 0.036 0.536 ± 0.041 0.528 ± 0.039
MICE 0.611 ± 0.001 0.682 ± 0.004 0.549 ± 0.002 0.558 ± 0.002 0.546 ± 0.004 0.540 ± 0.003

MissForest 0.363 ± 0.009 0.687 ± 0.011 0.564 ± 0.004 0.573 ± 0.008 0.571 ± 0.004 0.552 ± 0.004
AE 0.337 ± 0.009 0.674 ± 0.005 0.520 ± 0.046 0.522 ± 0.044 0.530 ± 0.049 0.522 ± 0.045

VAE 0.339 ± 0.008 0.672 ± 0.006 0.522 ± 0.042 0.522 ± 0.037 0.523 ± 0.044 0.518 ± 0.042
AE (MTL) 0.337 ± 0.014 0.712 ± 0.015 0.618 ± 0.034 0.616 ± 0.033 0.699 ± 0.024 0.627 ± 0.033

VAE (MTL) 0.344 ± 0.012 0.734 ± 0.036 0.606 ± 0.037 0.606 ± 0.039 0.680 ± 0.036 0.615 ± 0.036
GRAPE (MTL) 0.366 ± 0.007 0.697 ± 0.001 0.600 ± 0.024 0.599 ± 0.022 0.690 ± 0.040 0.608 ± 0.025

GRAPE 1.220 ± 0.342 0.722 ± 0.033 0.507 ± 0.070 0.517 ± 0.066 0.617 ± 0.060 0.487 ± 0.081
MIRACLE 13.896 ± 0.318 0.692 ± 0.000 0.383 ± 0.009 0.386 ± 0.003 0.479 ± 0.007 0.361 ± 0.002

HyperImpute 0.336 ± 0.008 0.336 ± 0.007 0.627 ± 0.009 0.633 ± 0.021 0.641 ± 0.023 0.614 ± 0.017
GAIN 0.363 ± 0.019 0.688 ± 0.002 0.585 ± 0.000 0.585 ± 0.000 0.586 ± 0.003 0.581 ± 0.002
PIG 0.065 ± 0.003 0.392 ± 0.040 0.894 ± 0.022 0.892 ± 0.025 0.895 ± 0.022 0.892 ± 0.024

0.50

SI 0.355 ± 0.006 0.683 ± 0.005 0.473 ± 0.032 0.476 ± 0.033 0.481 ± 0.041 0.468 ± 0.037
MICE 0.594 ± 0.008 0.683 ± 0.009 0.536 ± 0.018 0.542 ± 0.014 0.548 ± 0.012 0.528 ± 0.016

MissForest 0.356 ± 0.006 0.686 ± 0.013 0.515 ± 0.015 0.522 ± 0.011 0.517 ± 0.010 0.500 ± 0.015
AE 0.343 ± 0.005 0.670 ± 0.005 0.470 ± 0.026 0.471 ± 0.026 0.495 ± 0.036 0.472 ± 0.028

VAE 0.336 ± 0.006 0.670 ± 0.008 0.469 ± 0.028 0.468 ± 0.027 0.483 ± 0.034 0.465 ± 0.030
AE (MTL) 0.337 ± 0.007 0.714 ± 0.024 0.534 ± 0.028 0.533 ± 0.025 0.649 ± 0.032 0.547 ± 0.027

VAE (MTL) 0.342 ± 0.007 0.720 ± 0.021 0.533 ± 0.024 0.528 ± 0.027 0.639 ± 0.024 0.536 ± 0.033
GRAPE (MTL) 0.368 ± 0.008 0.694 ± 0.010 0.521 ± 0.038 0.525 ± 0.031 0.639 ± 0.023 0.528 ± 0.034
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Missing rates Model Imputation Classification
MSE CE Accuracy Recall Precision F1-score

GRAPE 1.011 ± 0.467 0.705 ± 0.031 0.474 ± 0.061 0.478 ± 0.049 0.598 ± 0.045 0.453 ± 0.071
MIRACLE 13.425 ± 0.087 0.691 ± 0.001 0.361 ± 0.018 0.366 ± 0.012 0.412 ± 0.015 0.330 ± 0.012

HyperImpute 0.323 ± 0.001 0.684 ± 0.015 0.549 ± 0.002 0.557 ± 0.006 0.555 ± 0.008 0.539 ± 0.004
GAIN 0.432 ± 0.015 0.696 ± 0.007 0.599 ± 0.014 0.600 ± 0.014 0.598 ± 0.018 0.582 ± 0.015
PIG 0.083 ± 0.007 0.494 ± 0.012 0.863 ± 0.021 0.862 ± 0.022 0.864 ± 0.020 0.861 ± 0.021
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