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ABSTRACT

An increasing number of autoregressive (AR) models, such as MAR, FlowAR,
xAR, and Harmon adopt diffusion sampling to improve the quality of image
generation. However, this strategy leads to low inference efficiency, because it
usually takes 50 to 100 steps for diffusion to sample a token. This paper explores
how to effectively address this issue. Our key motivation is that as more tokens
are generated during the AR process, subsequent tokens follow more constrained
distributions and are easier to sample. To intuitively explain, if a model has
generated part of a dog, the remaining tokens must complete the dog and thus are
more constrained. Empirical evidence supports our motivation: at later generation
stages, the next tokens can be well predicted by a multilayer perceptron, exhibit
low variance, and follow closer-to-straight-line denoising paths from noise to
tokens. Based on our finding, we introduce diffusion step annealing (DiSA), a
training-free method that gradually uses fewer diffusion steps as more tokens are
generated, e.g., using 50 steps at the beginning and gradually decreasing to 5 steps
at later stages. Because DiSA is derived from our finding specific to diffusion in
AR models, it is complementary to existing acceleration methods designed for
diffusion alone. DiSA can be implemented in only a few lines of code on existing
models, and albeit simple, achieves 5→10↑ faster inference for MAR and Harmon
and 1.4→ 2.5↑ for FlowAR and xAR, while maintaining the generation quality.

1 INTRODUCTION

Recent autoregressive (AR) models introduce diffusion sampling to generate continuous tokens, such
as MAR (Li et al., 2024), FlowAR (Ren et al., 2024), xAR (Ren et al., 2025), and Harmon (Wu et al.,
2025), which significantly improves generation quality. As illustrated in Figure 1(a-d), these models
take generated tokens as input and adopt a diffusion process to sample the next tokens.

Although the diffusion process yields higher image quality for autoregressve models, it suffers from
low inference efficiency because tens of denosing steps are needed to generate each token. For
example, MAR (Li et al., 2024) denoises 100 times while xAR (Ren et al., 2025) does 50 times. Our
preliminary experiments show that the many-step diffusion process accounts for about 50% inference
latency in MAR and 90% in xAR. Naively reducing the number of diffusion steps can accelerate
these models but will significantly degrade generation quality. With 10 diffusion steps, the Fréchet
Inception Distance (FID) of xAR-L on ImageNet 256↑256 increases shapely from 1.28 to 8.6, and
MAR-L even fails to generate meaningful images. We thus aim to address the efficiency issue.

We are motivated by the finding that as more tokens are generated, token distributions become more
constrained, and tokens become easier to sample. In other words, early generation stages are reliant
on stronger distribution modeling and token sampling, while late stages are less so.

Three pieces of empirical evidence are provided to support our finding. First, we train a multilayer
perceptron (MLP) or repurpose the original model head, based on the hidden representation of
generated tokens, to predict the outcomes of the diffusion process. As shown in Figure 2, in early
stages of generation, the prediction is inaccurate and lacks details. But as more tokens are generated,
the prediction becomes increasingly accurate, indicating that the AR model now provides stronger
conditions for the diffusion head. Second, variance in diffusion sampling gradually decreases during
generation, indicating that the distribution of the next token becomes increasingly constrained. Third,
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Figure 1: Overview. Architecture of four “AR + diffusion” models included in this study: (a)
MAR (Li et al., 2024); (b) FlowAR (Ren et al., 2024); (c) xAR (Ren et al., 2025); (d) Harmon (Wu
et al., 2025). (e) This paper improves the efficiency of these models by reducing diffusion steps
gradually in the AR process without compromising generation quality.

based on the straightness metric (Liu et al., 2022b), we show that denoising paths from noise to
tokens become closer to straight lines, suggesting that we could take larger step sizes.

The above finding dictates that fewer diffusion steps are needed in late generation stages than in early
stages, forming the proposal of the diffusion step annealing (DiSA) method. Instead of using the
same number of diffusion steps throughout the generation process, DiSA uses more diffusion steps
(e.g., 50) for early tokens and gradually fewer steps (e.g., from 50 to 5) for later tokens.

DiSA is training-free and can be easily implemented on top of existing AR diffusion models that
share similar token generation mechanisms, such as those in Figure 1(a-d). Moreover, because DiSA
comes from our finding specific to diffusion in AR models, it can be effectively used together with
existing acceleration methods specifically designed for diffusion. Experiments show that DiSA is
very useful: it consistently improves the inference efficiency of MAR by 5→ 10↑ and FlowAR and
xAR by 1.4→ 2.5↑ without sacrificing image generation quality.

In summary, this paper covers three main points. First, we reveal that the role of diffusion in AR
models is different along the generation process. Second, based on this insight, we design a new
sampling strategy, DiSA, for scheduling diffusion steps in AR image generation. Third, DiSA delivers
significant inference acceleration while exhibiting competitive generation quality.

2 RELATED-WORK

AR models meet diffusion. A common practice for AR image generation is to quantize an image
into discrete tokens (Esser et al., 2021; Razavi et al., 2019) and train AR models on the tokens (Sun
et al., 2024; Chen et al., 2025; Wang et al., 2025). A main bottleneck is that discrete tokens introduce
quantization errors, limiting the generation quality (Tschannen et al., 2023; Li et al., 2024; Han et al.,
2024). To address this, MAR (Li et al., 2024) uses continuous tokens and adopts a diffusion model
head to sample the next tokens in AR models. Other “AR + diffusion” design appears later (Ren et al.,
2024; 2025; Wu et al., 2025). These methods have good generation quality but low efficiency.

Acceleration techniques for diffusion models. It is a well-established area in diffusion. Fast
sampling processes have been proposed, such as DDIM (Song et al., 2020a), DPM-Solver (Lu
et al., 2022b), and DPM-Solver++ (Lu et al., 2022a), to name a few. These methods are designed
specifically for diffusion and can be used together with our approach. In comparison, less attention
has been paid to accelerating diffusion in AR models. LazyMAR (Yan et al., 2025) introduces two
caching techniques, while CSpD (Wang et al., 2024) applies speculative decoding for speeding up
the inference of MAR. These works mainly focus on the AR part of MAR, without modifying the
diffusion process, so are orthogonal to our approach. Besides, FAR (Hang et al., 2025) replaces the
diffusion head of MAR with a short-cut model, achieving 2.3↑ acceleration. Note that FAR is trained
from scratch, while our method is training-free.
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Figure 2: Image prediction results at different stages of generation. In each image pair, the left
image shows the currently generated tokens, while the right shows the final image we predict based
on the generated tokens. The prediction results are inaccurate and lack details in early stages but
become increasingly accurate as more tokens are generated. This is consistent across the four models.
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3 OBSERVATION ON AR + DIFFUSION MODELS

3.1 REVISITING EXISTING MODELS

With an image tokenizer, an image can be represented as a sequence of tokens ↓x1,x2, . . . ,xn↔. For
example, we can use VAE (Kingma et al., 2013; Rombach et al., 2022b) to encode an image to 256
tokens. Image generation can be framed as sampling from the joint distribution of image tokens
p(x1,x2, . . . ,xn). Sampled tokens are decoded by the tokenizer back into images.

An AR model formulates the generation of an image as a next-token prediction task:

p(x1,x2, . . . ,xn) =
n∏

i=1

p(xi | x1, . . . ,xi→1) where xi ↗ p(xi | x1, . . . ,xi→1). (1)

Note that new AR paradigms, such as next-scale prediction (Tian et al., 2024), generate a group of
tokens in each AR step. For these models, xi represents a group of tokens. We interchangeably use
xi to denote a single token or a group of tokens for simplicity.

Recent AR models adopt a diffusion process to sample xi ↗ p(xi | x1, . . . ,xi→1).

MAR (Li et al., 2024) uses an encoder-decoder backbone f , which takes generated tokens as input
and predicts a condition vector zi = f(x1,x2, . . . ,xi→1) for the next token. A diffusion model head
ωω, conditional on zi, denoises noise to a token via reverse process. At training time, parameters in
ωω and f are updated based on the diffusion loss (Ho et al., 2020; Nichol & Dhariwal, 2021).

FlowAR (Liu et al., 2022b) uses VAR (Tian et al., 2024) as the backbone f and flow matching (Liu
et al., 2022b; Ma et al., 2024) as the the model head vω. Similar to MAR, the backbone f takes tokens
previous generated as input, and predicts a condition vector zi for each next token. With a sampled
noise token, the flow matching head predicts velocity for denoising the token. During training, the
model is optimized with the flow matching loss (Lipman et al., 2022; Liu et al., 2022b).

xAR (Ren et al., 2025) takes both previously generated tokens and sampled noise as input. The model
runs tens of times for denoising the noise into tokens and continues to sample the next tokens.

Harmon (Wu et al., 2025) is a unified model for both text-to-image (T2I) and image-to-text generation.
This study focuses on its T2I ability. The backbone in Harmon takes the text prompt and generated
tokens as input and produces a condition vector for the next token. A diffusion head, conditional on
the vector, denoises sampled noise to the next token.

3.2 MORE TOKENS GENERATED, STRONGER CONSTRAINTS ON LATER TOKENS

The diffusion process in the four models samples the next token from the condition distribution
xi ↗ p(xi | x1, . . . ,xi→1). Our key motivation is that, as more tokens are generated, the condition
becomes stronger, making the distribution more constrained and the next tokens easier to sample. We
will show empirical evidence to support the motivation.

First, next tokens can be well predicted at later AR generation stages. We probe the condition from
the generated tokens, i.e., we use a model to predict the sampled xi based on the hidden representation
of the generated tokens {x1, . . . ,xi→1}. For MAR and Harmon, we train a MLP model to replace the
original model head. The MLP predicts xi directly based on the condition from the generated tokens
zi. For FlowAR and xAR, we repurpose the original model head for flow matching. Specifically,
we feed sampled noise with t = 1 into the model, obtain the estimated velocity vω(xi

t | t = 1, zi),
and predict the next token as xi

0 = xi
t=1 → v. Since xi

t=1 is purely noisy, the model has to directly
predict the xi only based on the information in zi.

As shown in Figure 2, in the early stage of generation, the predicted tokens and the generated images
are blurry and in low quality. But as more tokens have been generated, the MLP predictions become
increasingly more accurate, suggesting that stronger conditions are provided by the generated tokens.

Second, next tokens have lower variance at later AR steps. We explore the variance in the distribu-
tion of the next tokens. Specifically, we use MAR to generate 10K images. When generating each xi,
we sample 100 possible xi and calculate the variance in sampling. The generated examples and the
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Figure 3: Diffusion processes in later generation stages show (a-b) lower variance and (c) closer-
to-straight-line denoising paths. (a) Two examples. In each example, the AR step increases from top
to bottom rows. 0%, 10%, 20% of tokens have been generated, respectively, as shown in the first
column. We observe that the variance of sampled images drops from top to bottom rows. (b) Variance
of diffusion-sampled tokens decreases along the AR steps. The y-axis uses a logarithmic scale and
each line represents a different token dimension. (c) Straightness of denoising paths increases from
early to late stages. All results are obtained from the MAR-B model.

average variance are shown in Figure 3(a-b). As seen, as more tokens are generated, the distribution
of the next token becomes increasingly constrained.

Third, diffusion paths at later stages are closer to straight lines. Rectified Flow (Liu et al., 2022b)
proposes that straight paths from noise to data distribution are preferred, because they can be
simulated with coarse time discretization and hence need fewer steps at inference time. Inspired by
this, we measure the straightness of denoising paths in each AR step. As shown in Figure 3(c), in the
later stage of generation, the diffusion paths in MAR become closer to a straight line, indicating that
we can use larger step sizes and fewer diffusion steps (Liu et al., 2022b). The results on FlowAR,
xAR, and Harmon and details of implementation are shown in Section A.1.

3.3 DIFFUSION STEP ANNEALING

Based on the observation, we propose a training-free sampling strategy, DiSA. In the early stage of
generation, the distribution of the next tokens is diverse so we allow the diffusion process to run more
times, e.g., 50 steps. In the later stage, as the distribution of the next token is more constrained, we
assign gradually fewer steps to diffusion, e.g., 5 steps.

We introduce and compare three different time schedulers in DiSA: two-stage, linear, and cosine. Let
T (k) denote the number of diffusion steps when the AR step is k. Tearly and Tlate are two parameters
to control the number of steps. In short, the two-stage method is just cutting the generation into the
early and late stages. In the early stage, the diffusion process runs Tearly while in the late stage, runs
Tlate times. The linear and cosine methods transition smoothly from Tearly to Tlate in the generation
process. Specifically, they are defined as follows,

Two-stage: T (k) =
{
Tearly, k < K/2
Tlate, otherwise

, (2)

Linear: T (k) = Tearly + (Tlate → Tearly)↑ k/K, (3)

Cosine: T (k) = Tlate + (Tearly → Tlate)↑
1

2

(
cos(

k

K
ω) + 1

)
, (4)

where K is the total number of the AR steps and T (k) is rounded to the nearest integer.

A preliminary experiment based on MAR is conducted to validate our method. We implement
three time schedulers on MAR-B and MAR-L, modify values of Tearly and Tlate, and evaluate the
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Figure 4: Impact of different numbers of diffusion steps in early generation stages Tearly and in
late stages Tlate on (a) MAR-B; (b) MAR-L. In the first and third columns, we fix Tlate = 50 and
reduce Tearly , which significantly degrades generation quality. But as shown in the second and fourth
columns, if we fix Tearly = 50 and decrease Tlate, the degradation in generation quality is marginal.

model on ImageNet 256↑256 generation. Fréchet Inception Distance (FID) (Heusel et al., 2017)
and Inception scores (Salimans et al., 2016) on 50K sampled images are reported to measure the
generation quality. The number of AR step is set to 64, and the default values of Tearly and Tlate

are both 50. In Figure 4, reducing number of diffusion steps in early stages degrades the generation
quality, but using fewer diffusion steps in later stages does not, which supports our motivation again.
We use the linear scheduler in subsequent experiments, which has slightly better performance.

We find that reducing Tlate to less than 20 leads to poor generation results in MAR. The main reason
is that the diffusion head has inaccurate prediction around t = 999. Thus, we let the diffusion start
with t = 950, i.e., adding an initial time offset, following the practice in diffusion models (Song
et al., 2020a; Liu et al., 2022a; Lin et al., 2024; von Platen et al., 2022). This allows us to further
reduce the diffusion steps in MAR. For FlowAR and xAR, we do not observe this phenomenon and
the sampling process starts with t = 1.0. We discuss this further in Section 4.2.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS, DATASETS, AND METRICS

Experiments mainly includes four pretrained models: MAR (Li et al., 2024), FlowAR (Ren et al.,
2024), xAR (Ren et al., 2025), and Harmon (Wu et al., 2025). MAR, FlowAR, and xAR are evaluated
on the ImageNet 256↑ 256 generation task. We report FID (Heusel et al., 2017), IS (Salimans et al.,
2016), Precision, and Recall, following common practice in image generation (Dhariwal & Nichol,
2021). We also measure the inference time of generating a batch of 256 images for these models.
Harmon is evaluated on the T2I benchmark GenEval (Ghosh et al., 2023). Averaged accuracy and
inference time are reported. All experiments are run on 4 NVIDIA A100 PCIe GPUs.

4.2 EVALUATION

DiSA consistently improves the effiency of baseline AR+Diffusion models. We apply DiSA to
MAR, xAR, and FlowAR and compare the performance on the ImageNet 256 ↑ 256 generation
task in Table 1. Overall, DiSA consistently enhances the efficiency of the baseline models while
maintaining competitive generation quality.

For MAR, the original best performance is achieved with 256 AR steps and 100 diffusion steps. After
integrating DiSA to MAR, e.g., 50 ↘ 5, we report speed-up of 5.7↑ on MAR-B, 5.1↑ on MAR-L,
and 4.8↑ on MAR-H, respectively. The generation quality change is minor: DiSA results in the same
FID on MAR-B and increases FID by 0.02 on MAR-H.

If we further reduce MAR to 32 AR steps and 25 ↘ 5 diffusion steps, DiSA results in 9.3-11.3↑
speed-ups on MAR with slightly degraded generation quality. For example, DiSA achieves 11.3↑
faster inference on MAR-B while increasing FID by 0.04.
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Table 1: System-level method comparison on ImageNet 256!256 Our method significantly improves
the inference efficiency of MAR, FlowAR, and xAR, while maintaining their generation quality.
Diffusion steps “a ↘ b” means starting with a steps and transition to b steps via Eq. (3). The average
inference time per image and speed-ups of different methods are reported.

Model #Params AR steps Diff steps FID↑ IS↓ Pre.↓ Rec.↓ Time (s)↑ Speed-Up↓

D
iff LDM-4† (Rombach et al., 2022a) 400M - - 3.60 247.7 0.87 0.48 - -

DiT-XL/2 (Peebles & Xie, 2023) 675M - 250 2.27 278.2 0.83 0.57 1.859 -

A
R

GIVT (Tschannen et al., 2023) 304M 256 - 3.35 - 0.84 0.53 - -
MAR-B (Li et al., 2024) 208M 256 100 2.31 281.7 0.82 0.57 0.650 1.0↔

64 50 2.39 (+0.08) 281.0 (-0.7) 0.82 0.57 0.134 4.8↔
LazyMAR-B (Yan et al., 2025) 208M 64 100 2.45 (+0.14) 281.3 (-0.4) - - 0.061→ 10.6↔

32 100 2.64 (+0.33) 276.0 (-5.7) - - 0.045→ 14.3↔
FAR-B (Hang et al., 2025) 172M 256 8 2.37 (+0.06) 265.5 (-16.2) - - - 2.3↔
MAR-B + DiSA 208M 64 50↗5 2.31 (+0.00) 282.3 (+0.6) 0.83 0.56 0.114 5.7↔

32 25↗5 2.35 (+0.04) 282.9 (+1.2) 0.83 0.56 0.057 11.3↔
MAR-L (Li et al., 2024) 479M 256 100 1.78 296.0 0.81 0.60 1.102 1.0↔

64 50 1.86 (+0.08) 294.0 (-2.0) 0.80 0.61 0.250 4.4↔
LazyMAR-L (Yan et al., 2025) 479M 64 100 1.93 (+0.15) 297.4 (+1.4) - - 0.106→ 10.4↔

32 100 2.11 (+0.33) 284.4 (-11.6) - - 0.080→ 13.8↔
FAR-L (Hang et al., 2025) 406M 256 8 1.99 (+0.21) 293.0 (-3.0) - - - 1.4↔
MAR-L + CSpD (Wang et al., 2024) - - - 1.81 (+0.03) 303.7 (+7.7) - - - 1.5↔
MAR-L + DiSA 479M 64 50↗5 1.77 (-0.01) 298.3 (+2.3) 0.81 0.61 0.216 5.1↔

32 25↗5 1.88 (+0.10) 295.1 (-0.9) 0.81 0.61 0.108 10.2↔
MAR-H (Li et al., 2024) 943M 256 100 1.55 303.7 0.81 0.62 1.957 1.0↔

64 50 1.65 (+0.10) 299.8 (-3.9) 0.80 0.62 0.462 4.2↔
LazyMAR-H (Yan et al., 2025) 943M 64 100 1.69 (+0.14) 299.2 (-4.5) - - 0.191→ 10.2↔

32 100 1.94 (+0.39) 284.1 (-19.6) - - 0.145→ 13.5↔
MAR-H + CSpD (Wang et al., 2024) - - - 1.60 (+0.05) 301.6 (-2.1) - - - 2.3↔
MAR-H + DiSA 943M 64 50↗5 1.57 (+0.02) 303.1 (-0.6) 0.80 0.62 0.404 4.8↔

32 25↗5 1.72 (+0.17) 303.4 (-0.3) 0.80 0.61 0.209 9.3↔

VA
R

VAR-d30 (Tian et al., 2025) 2.0B 10 - 1.92 323.1 0.82 0.59 0.039† -
FlowAR-S (Ren et al., 2024) 170M 5 25 3.70 235.1 0.81 0.51 0.024 1.0↔
FlowAR-S + DiSA 170M 5 25↗15 3.74 (+0.04) 235.2 (+0.01) 0.81 0.51 0.018 1.4↔
FlowAR-L (Ren et al., 2024) 589M 5 25 1.87 273.1 0.80 0.62 0.124 1.0↔
FlowAR-L + DiSA 589M 5 25↗15 1.90 (+0.03) 274.8 (+1.7) 0.80 0.61 0.082 1.5↔
FlowAR-H (Ren et al., 2024) 1.9B 5 50 1.67 276.3 0.80 0.62 0.423† 1.0↔
FlowAR-H + DiSA 1.9B 5 50↗15 1.69 (+0.02) 273.8 (-2.5) 0.80 0.62 0.167† 2.5↔

xA
R

xAR-B (Ren et al., 2025) 172M 4 50 1.67 265.2 0.80 0.62 0.130 1.0↔
xAR-B + DiSA 172M 4 50↗15 1.68 (+0.01) 265.5 (+0.3) 0.79 0.62 0.084 1.6↔
xAR-L (Ren et al., 2025) 608M 4 50 1.28 292.5 0.82 0.62 0.394 1.0↔
xAR-L + DiSA 608M 4 50↗15 1.23 (-0.05) 287.3 (-5.2) 0.79 0.66 0.255 1.5↔
xAR-H (Ren et al., 2025) 1.1B 4 50 1.24 301.6 0.83 0.64 0.896† 1.0↔
xAR-H + DiSA 1.1B 4 50↗15 1.23 (-0.01) 300.5 (-1.1) 0.79 0.66 0.577† 1.6↔

† We test the latency of generating a batch of 128 images instead of 256 to reduce memory usage. → Estimated based on their paper.

Table 2: Text-to-image generation of Harmon on GenEval benchmark. The accuracy on each task
and the average inference time per image are reported.

AR steps Diff steps Single Obj. Two Obj. Counting Colors Position Color Attri. Overall Time per image (s)

32 50 0.99 0.86 0.64 0.87 0.43 0.49 0.71 12
50↗5 0.99 0.85 0.69 0.86 0.48 0.52 0.73 8

64 25 0.05 0.00 0.00 0.00 0.00 0.00 0.01 17
25↗5 0.99 0.89 0.74 0.86 0.46 0.54 0.75 14
50 0.99 0.88 0.71 0.88 0.48 0.53 0.74 24
50↗5 0.99 0.89 0.68 0.87 0.41 0.55 0.73 17
100 0.99 0.86 0.69 0.89 0.48 0.50 0.73 40
100↗5 0.99 0.90 0.68 0.86 0.49 0.51 0.74 24

Similarly, FlowAR-H with DiSA achieves a 2.5↑ speed-up while maintaining a competitive FID of
1.69 and IS of 273.8. In the case of xAR models, DiSA provides up to 1.6↑ speed-up with negligible
impact on performance metrics. Interestingly, xAR-L shows 1.6↑ speed-up and even improved FID
from 1.28 to 1.23 with DiSA. These results clearly indicate the usefulness of DiSA.

Comparison with other acceleration methods on MAR. DiSA is faster than CSpD (Wang et al.,
2024) and FAR (Hang et al., 2025), and is competitive to LazyMAR (Yan et al., 2025). Note that
LazyMAR works on caching techniques for MAR, without modifying the diffusion process, and is
orthogonal to DiSA. It is interesting to combine LazyMAR and DiSA in future work.
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Figure 5: Speed-quality trade-off for (a) MAR-B with {16, 32, 64, 128} AR steps; (b) MAR-B with
{25, 50, 100} diffusion steps; (c) MAR-L with {16, 32, 64, 128} AR steps; (d) MAR-L with {25, 50,
100} diffusion steps; (e) FlowAR-L with {8, 10, 15, 20, 25 } flow steps; (f) xAR-B and (g) xAR-L
with {15, 20, 25, 40, 50} flow steps; and (h) Harmon-1.5B with different AR and diffusion steps.

DiSA is also useful on T2I generation models. As shown in Table 2, DiSA can also speed up
Harmon on T2I generation tasks on GenEval. As seen, Harmon with DiSA uses 8 seconds per image,
5↑ faster than the original implementation, while achieving a comparable performance.

Table 3: Existing methods speed up
MAR sampling and can be used together
with DiSA for further speed-up. The
number of AR steps is 64.

Method #Steps FID↑ IS↓ Time (s)↑

Original 25 6.78 148.8 17.0
50 4.30 174.5 21.9
100 4.38 173.7 30.6

Time offset 25 4.61 171.0 16.8
50 4.64 171.1 20.7

+ DiSA 50↗5 4.17 173.7 17.0

DDIM 25 4.16 178.2 17.7
50 4.06 176.6 22.1

+ DiSA 50↗5 4.00 179.3 17.9

DPM-Solver 15 4.58 179.4 17.4
25 4.35 176.1 20.6

+ DiSA 25↗10 4.37 177.1 17.9

DPM-Solver++ 15 4.57 179.5 18.5
25 4.34 176.1 22.0

+ DiSA 25↗10 4.37 177.2 19.0

DiSA is complementary to existing diffusion accelera-
tion methods. We implement several existing diffusion
acceleration techniques on MAR-B. Time offset: We start
the diffusion process from t = 950 instead of t = 999.
Faster samplers: We include DDIM (Song et al., 2020a),
DPM-Solver (Lu et al., 2022b), and DPM-Solver++ (Lu
et al., 2022a). Note that FlowAR uses the Euler sampler
while xAR uses the Euler-Maruyama sampler (Maruyama,
1955; Higham, 2001), so we omit the detailed discussions
of the two samplers here.

As shown in Table 3, existing techniques designed for dif-
fusion can accelerate sampling in AR models. Time offset
reduces the number of diffusion steps but suffers from a
slight quality degradation. DDIM achieves a remarkable
FID of 4.06 at 50 steps and 4.16 at 25 steps. DPM-Solver
and DPM-Solver++ show comparable performance and
reduce the number of diffusion steps to 25.

Our method is complementary to these diffusion acceler-
ation approaches. If we combine time offset with DiSA,
inference time can be reduced to 17.0 and FID is improved to 4.17. With a similar inference speed,
time offset uses 25 steps and FID is 4.61. For the other three solvers, combining with DiSA also
improves the inference speed while maintaining a comparable generation quality.

Trade-off between efficiency and quality. We show the trade-off of speed and generation quality in
Figure 5. For MAR-B and MAR-L, we evaluate different AR and diffusion steps. FlowAR-L, xAR-B,
and xAR-L are evaluated with different flow matching steps. Harmon-1.5B runs with different
AR and diffusion steps on the GenEval benchmark. As seen, under different settings, DiSA can
significantly improve the inference speed of these models, while maintaining the generation quality.
We also present sample generation results in Figure 6. More results are provided in Section A.2.

4.3 DISCUSSION

MAR vs MAE. We show that an MLP can well predict the remaining tokens. This bridges the
underlying mechanism between MAR and masked auto-encoder (MAE) (He et al., 2022). The former
uses a generative method to unmask an image, while the latter uses a deterministic way to do so. This
is also consistent with recent findings where MAR encodes semantic information for an image (Wu
et al., 2025). See Section A.3 for further discussion.
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Figure 6: Sample image generation results. For MAR-H and Harmon-1.5B, we present the samples
generated using DiSA. For FlowAR and xAR, each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA helps
generate similar quality images while speeding up image generation by 2.5↑ and 1.6↑ respectively.

Difficulty level of token distribution modeling. Condition vectors in later generation stages offer
more information, making token distributions easier to model. This may also hold in other AR models.
For example, recent works use Gaussian Mixture Model to model token distribution (Tschannen
et al., 2023; Zhao et al., 2025). It is possible that the early stage needs more Gaussian components
while later stages require fewer. We leave this as future work.

Heuristics for Adjusting Diffusion Step Shedule Automatically adjusting the denoising schedule in
DiSA is a challenging but promising research direction. As a preliminary study, we explore three
heuristics to guide this process, based on our empirical experiments: the straightness of denoising
paths, the variance of diffusion-sampled tokens, and the uncertainty in predicting mask tokens. These
heuristics can be applied in two ways. (1) Offline. a fixed schedule is designed after analyzing the
heuristic values from 50,000 generated images. (2) Online. the heuristics dynamically adjust the
number of diffusion steps for subsequent tokens based on the current generation process. Our findings
indicate that these heuristics lead to comparable performance, with the uncertainty heuristic achieving
a 6.0↑ speed-up for MAR-B while maintaining similar quality.

Strong diffusion conditions in computer vision. It is intuitive to understand that the condition
vector which summarizes more previously generated tokens is more informative. Therefore, fewer
diffusion steps would still sample a good token. This is consistent with some existing works in image
contour detection and depth estimation using diffusion models: because of the strong image condition,
a few and even one diffusion step would yield competitive results (Liu et al., 2025; Song et al., 2025;
Zhou et al., 2024). In T2I generation, a text prompt seems a weak condition. Our prediction results
on Harmon in Figure 2 show that, a text prompt helps to determine the basic the structure of the
image, for example, the shape and color of the stop sign, leaving details for generation.

5 CONCLUSION

To sum up, this paper studies how to effectively reduce the number of diffusion steps in AR models.
We find that as more tokens are generated, the reliance on many diffusion steps is alleviated. Based on
this, we propose DiSA, a training-free strategy that gradually decreases the number of diffusion steps
during the AR generation process. This approach is easy to implement and significantly improves
inference speed while maintaining competitive image quality. Our study provides interesting insights
into the diffusion process in AR image generation, and our future work will investigate how our
insights can be generalized and applied to other AR models.
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ETHICS STATEMENT

Our research focuses on improving the efficiency of image generation models while maintaining
image quality. While we do not propose a new generation algorithm, we acknowledge that image
generation models, in general, may pose potential societal risks, including the creation of misleading
or synthetic content. Faster generation techniques may inadvertently lower the barrier for malicious
use. Possible mitigation strategies include integrating safeguards such as deepfake detection systems,
introducing watermarking techniques, and developing responsible use guidelines.
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