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ABSTRACT

In the face of uncertainty, the ability to seek information is of fundamental im-
portance. In many practical applications, such as medical diagnosis and trou-
bleshooting, the information needed to solve the task is not initially given, and
has to be actively sought by asking follow-up questions (for example, a doctor
asking a patient for more details about their symptoms). In this work, we introduce
Uncertainty of Thoughts (UoT), an algorithm to augment large language models
with the ability to actively seek information by asking effective questions. UoT
combines 1) an uncertainty-aware simulation approach which enables the model to
simulate possible future scenarios and how likely they are to occur, 2) uncertainty-
based rewards motivated by information gain which incentivizes the model to seek
information, and 3) a reward propagation scheme to select the optimal question
to ask in a way that maximizes the expected reward. In experiments on medical
diagnosis, troubleshooting and the ‘20 Questions’ game, UoT achieves an average
performance improvement of 57.8% in the rate of successful task completion across
multiple LLMs compared with direct prompting, and also improves efficiency (i.e.,
the number of questions needed to complete the task). Our benchmark and code
are publicly released1.

1 INTRODUCTION

As the capabilities of large language models
(LLMs) grow, they are being increasingly deployed
in challenging real-world settings involving uncer-
tainty and ambiguity. In particular, recent work
aims to develop LLM agents or assistants Xi et al.
(2023); Park et al. (2023) that effectively com-
plete tasks in interactive environments, leading to
a growing need for LLMs that can actively seek
the information they need to solve a task by asking
questions in conversational settings. For example,
in medical diagnosis, patients often do not initially
report their symptoms in full detail. In such sit-
uations, the ability of the doctor to ask effective
questions is crucial, as a successful diagnosis of-
ten depends on revealing important details that the
patient did not initially provide (Figure 1).

Have you observed any vision changes, or
sensitivity to light?

I've been having a bad headache since yesterday

Oh, now you mention it, I have been more
sensitive to light recently.

Ah, I did hit my head a few days ago, but it
didn’t seem serious.

Patient Doctor

Have you injured your head recently?

You may have post-concussion syndrome.

Figure 1: The importance of information seek-
ing in medical diagnosis. The patient initially
only complains of a headache, but by asking the
right questions, the doctor uncovers the critical
information needed for a correct diagnosis.

Recent techniques aim to improve LLMs’ reasoning or planning abilities using the given information
rather than urging LLMs to seek information efficiently. For example, Chain-of-Thought (Wei et al.,

∗Correspondence to zhiyuan hu@u.nus.edu
1https://github.com/zhiyuanhubj/UoT/
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2022) and Tree-of-Thoughts (Yao et al., 2023) allow LLMs to express middle ‘thoughts’ and reason
over them. Unlike these methods, we focus on enabling LLM to ask questions effectively by explicitly
guiding the model toward reducing uncertainty, which they do not consider. Thus, they lack effective
signals for what questions can better reduce model uncertainty by uncovering critical information.

To enhance LLMs in actively seeking information, we introduce Uncertainty of Thoughts (UoT),
a plug-and-play approach that improves LLMs’ abilities to ask useful questions by modeling their
own uncertainty. UoT is a principled approach relying on uncertainty-based rewards motivated by
information gain, which incentivizes a model to seek information in a way that maximally reduces the
amount of information it does not know. To utilize these rewards, we develop an uncertainty-aware
simulation framework, enabling the model to simulate possible future scenarios along with how likely
they are to occur. Given these scenarios, we utilize a reward propagation scheme to select the optimal
question to ask in a way that maximizes the expected reward.

Additionally, most standard benchmarks for LLMs, particularly in question answering, assume that
all necessary information to solve a task is provided at the outset, and thus do not evaluate the model’s
active information-seeking capabilities. To close this gap, we first introduce a benchmark comprising
5 datasets2 on 3 tasks: 20 Questions, a simplified medical diagnosis task, and a basic troubleshooting
task. These tasks are designed to measure the model’s ability to ask questions effectively to gather
the information they need. For example, the 20 Questions game, also studied by Noever & McKee
(2023), requires the model to ask ‘yes’ or ‘no’ questions to determine an unknown object or entity.
This scenario serves as a clear and easily analyzed test case, isolating the model’s ability to recognize
its own uncertainty, and to ask questions that guide it to the correct answer.

Our work is a step toward LLMs that can effectively operate in settings with high uncertainty and
ambiguity, beyond conventional QA settings where all the information needed to solve the task
is provided to the model at the outset. To the best of our knowledge, UoT is the first approach
for enabling LLMs to ask effective questions by explicitly modeling and seeking to reduce their
uncertainty. Our key contributions are as follows:

1. We introduce Uncertainty of Thoughts (UoT), a plug-and-play approach enabling LLMs to
explicitly model and seek to reduce their uncertainty. UoT utilizes a principled approach
based on an uncertainty-aware framework for simulating possible futures, rewards motivated
by information gain, and a reward propagation scheme to select the optimal question to ask.

2. We introduce a benchmark of 3 tasks and 5 datasets, designed to evaluate the ability of
LLMs to seek the information they need by asking questions.

3. Experiments show that UoT improves the success rate of multiple LLMs by 57.8% on
average compared with direct prompting, achieving top performance on both task success
and efficiency. Our benchmark and code are publicly available.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

The problem setting involves two roles: the Questioner and the Answerer, performed by the LLM and
a human, respectively. Questioner aims to deduce an unknown piece of information. We formulate
this using a possibility space Ω, which is the set of all possible options, of which a single element
ω ∈ Ω, is the true option in each given scenario3. For example, in a medical diagnosis setting, Ω is
the set of all possible diseases relevant in the context, e.g., Ω = {Bronchitis,Flu, . . . ,Hypertension},
and for each patient, ω is the disease that the patient actually has.

The interaction between the Questioner and the Answerer occurs over multiple turns. For instance,
the Questioner may ask, “Do you have a fever?”, to which the Answerer responds, “Yes, I’ve had
a high fever for the past two days.” The Questioner then asks another question such as “Have you

2We also incorporate the efforts of prior datasets Srivastava et al. (2022); Xu et al. (2019); Liu et al. (2022);
Raghu et al. (2021), through further work and refinement to construct this benchmark. Details are introduced in
section 3 Experiments and Appendix 6.7.2.

3Under the measure-theoretic formulation of probability, the sample point ω is an element of the sample
space Ω, and all random variables are defined to be functions of ω. While we conform to this formulation, we try
to avoid unnecessary measure-theoretic background for ease of understanding; hence, it is sufficient for readers
to understand ω as the ‘true option’ in each scenario.
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What disease dose 
the patient have?

Do you 
have fever?

I already 
vomited twice

No, I do 
not have

Yes, severe

I'm fever-free

Gastritis, food 
poisoning… 

Enteritis, Flu, 
Anemia … 

Did you 
vomit?

Flu, Pneumonia, 
Rubella… 
Norovirus, 

Hypoglycemia, 
Anemia … 

…
…
…
…

Do you have 
stomach pain? …

…

…
…

(a) Question Generation and Simulation 

Simulate Possible Futures

(b) Uncertainty-based Reward

Gastritis, food 
poisoning, 

Enteritis, Flu…

Gastritis, 
food 

poisoning… 

Enteritis, 
Flu… 

Did you vomit?

Information Gain

Uncertainty Based Reward       : 0.8

(c) Reward Propagation Scheme

Expected RewardAccumulated Reward

Possible Question Generation

LLM
 as 

questioner

LLM simulate 
responses

Gastritis, Flu, 
Rubella, Anemia…

Questioner(LLM)
Estimate remaining 

candidates

Potential Disese 
Candidates

I already 
vomited 

twice

No, I do 
not heve

= 0.6

= 0.8

= 1.2 = 1.1

= + =1.4

= 0.7 = 0.6

=1.5Conditional Probability of Answer: 

Figure 2: UoT Overview: UoT includes three components: (a) Question Generation and Simulation,
where an LLM proposes candidate questions and simulates future scenarios; (b) Uncertainty-based
Rewards, measuring the uncertainty reduction from answers to a question, and (c) Reward Propagation
computing accumulated rewards Ra over past questions, and expected rewards Re capturing expected
future gains. This ends with choosing questions with the highest expected reward.

vomited?” This exchange continues either until the Questioner correctly determines the final answer,
or the conversation reaches a maximum number of turns. At this point, the interaction ends, and the
Questioner is successful if it has correctly determined the true option ω.

Most of the description of our approach focuses on the closed set scenario, in which we assume that
the Questioner starts with knowledge of the possibility space Ω, e.g., the set of all possible diseases
in medical diagnosis. In our extension section 2.7, we adapt our approach to the open set scenario,
in which this knowledge is absent. Moreover, as the questioning progresses, we use an LLM to
gradually refine this set of possibilities to those that are consistent with the current answers given so
far by the Answerer. Define the current possibility set Ωi as the subset of Ω that is consistent with all
answers given by the Answerer before the start of the ith interaction step.

As we discuss more later, we focus on applications where answers can be grouped into a small
number of semantically distinct categories (in our case, affirmative and negative responses), as this
allows us to compute meaningful uncertainty metrics in a simpler way. Conceptually, our framework
can straightforwardly be extended to allow for a wider selection of answers.

2.2 UNCERTAINTY OF THOUGHTS: OVERVIEW

As Figure 2 shows, to effectively reduce uncertainty, our UoT method first generates multiple
questions as candidates to ask, and simulates possible futures for each one in the form of a tree
structure. Next, uncertainty-based rewards, motivated by information gain, are used to assess the
questions within the simulation. Finally, a reward propagation scheme is used to compute the
expected reward from asking each candidate question, allowing us to select the one with highest
expected reward, to ask the Answerer.

2.3 QUESTION GENERATION AND SIMULATION

UoT starts by using an LLM to generate several candidate questions, then simulates future scenarios
for each one. This simulation process allows us to measure how much information we can expect to
gain in the next few steps from each question, and thus to choose the most suitable question.

Question Generation Recall that our setting involves sequential interactions between a Questioner
(e.g., a chatbot) and an Answerer (e.g., a human patient). During the ith interaction step, the
Questioner generates candidate questions, then selects one of these to ask, denoted as qi.

To generate candidate questions to ask, UoT uses two inputs: (1) the history of past interactions
hi = {q1, a1, q2, a2, . . . , qi−1, ai−1}, comprising the sequence of past questions and answers; and
(2) the current possibility set Ωi. These two inputs are combined to form a prompt that includes
instructions explaining the nature of the task (e.g., how the 20 Questions game works), provides the
current history hi and the current possibility set Ωi, and asks an LLM to generate m candidate next
questions, conditioned on the previous context. This prompt, denoted as Promptgen(hi,Ωi), is fed to
our generator LLMgen, which then generates m candidate questions, denoted q1i , q

2
i , . . . , q

m
i :

q1i , q
2
i , . . . , q

m
i = LLMgen(Promptgen(hi,Ωi)) (1)

Multistep Simulation As shown in Figure 2 (a), the Question Generation stage generates candidate
questions such as q1i = “Did you vomit?” Next, during Simulation stage, for each such generated
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candidate question, we simulate possible futures for a few steps, forming a tree of possibilities. This
process enables us to compute rewards for each question, helping us to decide which question to ask.

Each node of the tree can be one of two types: Answerer Nodes where it is the Answerer’s turn to
answer a question, and Questioner Nodes where it is the Questioner’s turn to ask a question. At the
root, a question has just been asked (e.g., q1i ), so the root is an Answerer Node. Next, we explain how
to construct tree by recursively expanding (or ‘branching’) each node to construct its children, i.e.,
starting from the root, then proceeding to its children, and so on.
• At each Answerer Node, a question has just been asked. Next, we need to further ‘branch’ the tree

based on the possible answers to the current question. Rather than allowing completely open-ended
answers, we instead focus on affirmative and negative responses4, as this allows us to compute
meaningful uncertainty metrics, as we discuss later. Hence, we branch the node into two children,
corresponding to affirmative and negative answers.

• At each Questioner Node, we prompt an LLM to generate m questions using the current history
and possibility set, in the same way as in the Question Generation step. Note that while the
generation procedure is similar, the purpose is different: the Question Generation step generates
candidate questions to select from, while here we are generating simulated questions to form a tree
for the purpose of evaluating the current question. The resulting m generated questions are added
to the tree as children of the current node.

In this way, we recursively generate nodes of the tree, stopping when we reach a fixed number of
levels (i.e., depth). While generating this tree, we also recursively compute the current possibility set
Ωv at each node v. Specifically, let hv be the current conversation history up to node v, combining
both the actual conversation history hi and the simulated conversation up to node v. Then the current
possibility set at this node, denoted Ωv, is the subset of the possibility space consistent with hv. At
the root, the current possibility set is only limited by the actual conversation history, i.e., Ωi. Then, as
we proceed over the simulated tree, note that the current possibility set only changes at Answerer
nodes, when an answer is added to the current history. Hence, at each Answerer node v, we prompt a
new LLM (an ‘Answerer Simulator’ LLMans), to determine the further subset ΩA

v ⊆ Ωv for which
the answer to the current question is affirmative, and the corresponding ΩN

v = Ωv \ΩA
v for which the

answer is negative.5 This allows us to recursively compute the possibility sets of the children of v
(which themselves correspond to the affirmative and negative answers).

ΩA
v ,Ω

N
v = LLMans(Promptans(hv,Ωv)) (2)

In this way, we can recursively compute the possibility set on each node of the tree.

2.4 UNCERTAINTY-BASED REWARD CALCULATION

To develop suitable information-seeking approaches, a critical question is how to evaluate the
effectiveness of a question, i.e., its contribution to reducing uncertainty. To address this, we turn
to information theory, specifically the concept of information gain, which measures the amount by
which uncertainty decreases after a particular observation. To reward information-seeking behavior,
we assign rewards to questions based on how much they reduce the model’s uncertainty about the
unknown random variable. These reward signals are used by our UoT framework to determine which
question to select, to maximize the reduction of uncertainty.

Entropy. Entropy and information gain are well-known concepts in information theory Shannon
(1948). In our work, we use these concepts to measure how much information is gained (or equiva-
lently, how much uncertainty is reduced) by asking a question, to formulate our rewards. Entropy
measures the level of uncertainty in a random variable: higher entropy indicates greater uncertainty.
The entropy of a discrete random variable X taking values x1, ..., xn is:

H(X) = −
n∑

i=1

p(xi) log p(xi) (3)

Since our goal is to reduce the uncertainty in the unknown ω ∈ Ω, we use entropy to measure
this uncertainty. Formally, let Ω = {ω1, · · · , ωn}, and we define an additional set of arbitrary real

4As shown Figure 2 (a), for question ‘Did you vomit?’, possible affirmative responses include ‘yes’ or ‘I
already vomited twice’, while negative responses could be ‘no’ or ‘I don’t have’.

5In practice, allowing overlap between ΩA
v and ΩN

v may be more realistic. However, in this work, we
consider only the simplified scenario where they are disjoint.
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numbers X = {x1, · · · , xn} ⊆ R which we will associate with each of these possibilities. Define a
random variable X : Ω → X such that X(ωi) = xi. Intuitively, X is a discrete random variable that
takes the value xi if the ith possibility is true, i.e., if ω = ωi. X serves to capture our uncertainty
about ω, since observing X is equivalent to observing the true option ω. As a simple example,
suppose our possibility space is Ω = {ω1, ω2, ω3}; we accompany these with real numbers x1, x2, x3,
and have a distribution for our random variable X reflecting prior beliefs over these possibilities:
e.g., p(x1) = 0.2, p(x2) = 0.3, p(x3) = 0.5. Conceptually, our framework allows for any prior
probability distribution over the possibilities (i.e., p(xi)), but in our experiments, we assume a
uniform distribution over them due to the lack of an informative prior.

Before asking any questions, our uncertainty about the unknown ω is given by H(X), as in Eq.
equation 3. At any node v of the trees described in the previous section, recall that we have a
conversation history hv which contains some answers given by the Answerer. This history limits the
current possibility set to those in Ωv ⊆ Ω, thereby reducing our uncertainty. We model this using
notion of conditional probability on an event, with Ωv ⊆ Ω allowing conditioning on Ωv .

p(xi|Ωv) = p(xi)/p(Ωv) ∀ i such that ωi ∈ Ωv (4)

where p(Ωv) is the sum of probabilities of the elements in Ωv. To illustrate, we continue from the
earlier example, where p(x1) = 0.2, p(x2) = 0.3, p(x3) = 0.5. If the conversation history hv at
node v is only consistent with x1 and x2, i.e., Ωv = {ω1, ω2}, we can adjust probability distribution
by conditioning: e.g., the adjusted probability of x1 is p(x1)/p(Ωv) = 0.2/(0.2 + 0.3) = 0.4.

Next, to quantify the uncertainty at node v, note that since X is conditionally distributed based on
p(·|Ωv), the entropy of this distribution is:

Hv(X) :=
∑

i:ωi∈Ωv

p(xi|Ωv) log p(xi|Ωv) (5)

Intuitively, Hv(X) is the remaining uncertainty in X at node v (i.e., after observing the history hv).

Information Gain at a Node We now quantify the uncertainty reduction when receiving answers
at an Answerer node v. Recall that the answer given at v partitions Ωv into two disjoint subsets:
Ωv = ΩA

v ∪ ΩN
v , where ΩA

v and ΩN
v are the subsets of possibilities resulting in affirmative and

negative answers respectively to last asked question. Given an affirmative answer, entropy reduces to:

HA
v (X) :=

∑
i:ωi∈ΩA

v

p(xi|ΩA
v ) log p(xi|ΩA

v ) (6)

We define HN
v (X) analogously for negative answers. Let pAv = p(ΩA

v )/p(Ωv) and pNv =
p(ΩN

v )/p(Ωv) be the conditional probabilities of affirmative and negative answers at node v. To
compute the expected entropy after receiving the answer at node v, since we have a pAv probability of
receiving an affirmative answer and pNv of a negative answer, the expected entropy is:

pAv ·HA
v (X) + pNv ·HN

v (X) (7)

As such, the expected information gain at node v is the difference in entropies before and after
receiving the answer:

IGv(X) := Hv(X)− pAv ·HA
v (X)− pNv ·HN

v (X) (8)

We can simplify this: as proven in Appendix 6.1, the above equation reduces to:

IGv(X) = −pAv log pAv − pNv log pNv (9)

This represents the expected reduction of uncertainty in X when receiving an answer at node v. Note
that it has an entropy-like expression, and is therefore nonnegative.

Reward Formulation A natural approach would be to define the reward function Ru(v) at node
v as the information gain IGv(X): that is, the reward from the question at node v is the expected
information gain IGv(X) from receiving its answer. In practice, we find that a slightly modified
function ĨGv(X) is preferable. In particular, we find that IGv(X) does not result in sufficiently
sharp differences in reward over the typical ranges we encounter. Hence, we introduce an additional
hyperparameter λ ≥ 0 which helps to sharpen the rewards using a scaling approach:

Ru(v) = ĨGv(X) :=
−pAv log pAv − pNv log pNv

1 + λ−1|pAv − pNv |
(10)
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This definition ensures that Ru(v) falls within the range [0, 1], providing a normalized and consistent
reward to measure uncertainty reduction. The reward function reaches its maximum when the subsets
ΩA

v and ΩN
v have equal probability, reflecting the maximum reduction in uncertainty. It reaches

its minimum when one of the subsets has zero probability, indicating no reduction in uncertainty.
Appendix 6.5 plots the reward function curve across values of pAv and pNv .

2.5 QUESTION SELECTION VIA REWARD PROPAGATION

Single-step rewards often fall short in dynamic settings as they only consider immediate impact,
overlooking long-term effects. To overcome this, our method employs a reward propagation scheme
over simulation trees. Specifically, we will define ‘accumulated rewards’ which accumulate rewards
over multiple steps of the simulations, capturing the effectiveness of past decisions. These are used to
calculate ’expected rewards,’ indicating the expected information from the questions. The rewards
then guide the selection of candidate questions.

Accumulated Reward We first define the accumulated reward at each node v, which accumulates
the rewards at v and all its ancestors on the tree, defined recursively as:

Ra(v) := Ru(v) +

{
0 v is root
Ra(Parent(v)) otherwise

Here Ru(v) is the uncertainty-based reward at node v defined in Eq. equation 10, and Ra(Parent(v))
is the accumulated reward of the parent of v. We compute these accumulated rewards by starting at
the root and propagating down to the leaves. Intuitively, the accumulated reward at each leaf node
represents the total reward we end up with at the end of the conversation at that node.

Expected Reward Next, we compute the expected reward for each node Re(v), which represents
the expected total value of rewards received on expectation on a node and all its descendants on tree:

Re(v) :=


Ra(v) if v is a leaf; otherwise:
pAv Re(v

A) + pNv Re(v
N ) if v is an Answerer Node

1
m

∑m
w∈Children(v) Re(w) if v is a Questioner Node

For the case where v is an Answerer Node, recall that pAv and pNv are the conditional probabilities
of affirmative and negative answers at node v, defined in section 2.4. vA and vN are its children,
corresponding to the affirmative and negative answers. For the case where v is a Questioner Node,
we assign equal probability to the m questions asked from this node. In this way, we propagate the
expected rewards from the leaves up to the root, allowing us to compute the expected gain at the root
(i.e., the expected reward for that candidate question).

Determining the Optimal Question Finally, to decide the question to ask, we select the question
with highest expected reward (and therefore, the highest expected information gain, considering both
immediate and future information gains):

qi = argmax
n=1

Re(q
n
i ) (11)

2.6 UOT SUMMARY

UoT first generates candidate questions q1i , q
2
i , . . . , q

m
i based on the history hi and current possibility

set Ωi. Then, we conduct multistep simulation to generate a tree for each candidate question qni .
Next, we compute the uncertainty-based rewards Ru(v), and propagate over the trees to compute
accumulated reward Ra(v) and expected reward Re(v). Lastly, the optimal question qni with highest
expected reward will be selected as qi to interact with the Answerer.

2.7 EXTENSIONS AND DISCUSSION

Pruned UoT. To enhance efficiency during simulation, pruning akin to Beam Search can be employed
when constructing the simulation trees, which limits the number of paths to explore over the tree to a
predetermined size.

Open Set UoT. Recall that in the closed set scenario, the Questioner starts with knowledge of the
possibility space Ω. In practice, the possibility space is often unknown, resulting in the open set
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setting. To adapt UoT to this case, we prompt the Questioner to initialize the possibility space Ω and
then reinitialize the possibility set Ωi according to current history hi. Following this, the rest of UoT
proceeds unchanged.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Models We test various LLMs to evaluate the generality of our method, including Llama 2-70B-
Chat Touvron et al. (2023), Cohere Cohere (2023), PaLM 2 Anil et al. (2023), Claude 2 Anthropic
(2023), GPT-3.5-turbo OpenAI (2023a) and GPT-4 OpenAI (2023b).

Baselines Direct Prompting in Open-Set (DPOS) prompts an LLM directly to generate the next
response, without using information about the possibility set. Direct Prompting in Closed-Set
(DPCS) At the start of the interaction, the LLM is provided with full information about the possibility
set. The subsequent baselines also follow this setting. Planning Prompting (PP) is motivated by
Wang et al. (2023). We leverage another LLM to plan the future and, consequently, determine the
question to ask. Chain-of-Thought (CoT) Wei et al. (2022) enhances LLMs’ complex reasoning via
intermediate steps. CoT-SC (Self-Consistency) Wang et al. (2022), an ensemble method, explores
multiple reasoning paths. We standardize sampling counts for fair computational cost comparison
with other methods. Reflexion Shinn et al. (2023) enables the agent to propose an action, and
uses self-evaluation-based rewards to assess whether the agent should reflect to develop a new
idea. Tree-of-Thoughts (ToT) Yao et al. (2023) allows LMs to navigate decisions through a tree of
reasoning paths. We analyze two versions: Original-ToT, following standard question generation and
evaluation, and Adapted-ToT, incorporating heuristic insights to focus on space-halving questions.
Tree depths were aligned with UoT simulation steps for equitable comparison. Hyperparameters and
detailed experimental settings are in Appendix 6.7.1, and prompts in Appendix 6.9.

Table 1: Results from three different scenarios, assessing Success Rate (SR), Mean Conversation
Length in Successful Cases (MSC), and Mean Conversation Length (MCL).

Model Method
20 Questions Medical Diagnosis Troubleshooting

20Q in BIG-bench Common DX MedDG FloDial
SR↑ MSC↓ MCL↓ SR↑ MSC↓ MCL↓ SR↑ MSC↓ MCL↓ SR↑ MSC↓ MCL↓ SR↑ MSC↓ MCL↓

Llama2-70B
DPOS 6.9 12.0 19.5 1.80 11.0 19.8 13.4 3.1 4.8 23.7 3.4 4.6 11.1 15.1 19.5
DPCS 17.2 13.5 18.9 6.31 12.0 19.7 29.8 3.0 4.4 28.0 3.5 4.6 24.2 14.5 18.7
UoT 20.7 13.2 18.6 10.8 15.6 19.5 51.9 1.8 3.4 33.9 1.4 3.8 31.4 15.8 18.7

Cohere
DPOS 3.45 15.0 19.8 1.80 14.0 19.9 19.8 3.7 4.7 25.0 3.6 4.7 16.3 16.7 19.5
DPCS 6.90 12.0 19.4 1.80 12.5 19.8 35.6 3.3 4.4 33.3 4.0 4.7 27.5 16.3 19.0
UoT 34.3 8.50 16.0 16.2 11.7 18.6 45.5 2.6 3.9 75.7 2.7 3.3 41.4 8.7 15.3

PaLM 2
DPOS 37.9 13.5 17.5 35.1 14.4 18.0 7.69 3.9 4.9 11.3 4.0 4.9 22.6 15.2 19.0
DPCS 51.7 13.2 16.5 53.1 13.9 16.8 7.92 3.4 4.9 34.0 4.4 4.8 30.1 15.0 18.5
UoT 72.4 7.0 10.6 62.1 12.5 15.3 75.0 2.1 2.8 80.7 2.2 2.7 48.4 7.6 14.0

Claude2
DPOS 48.3 9.8 15.1 29.7 13.8 18.2 45.2 3.0 4.1 60.7 4.1 4.5 39.7 14.3 17.7
DPCS 72.4 11.6 13.9 43.2 13.8 17.3 97.1 2.4 2.5 83.0 4.3 4.4 42.9 15.7 18.2
UoT 75.9 5.1 8.69 61.3 9.8 13.7 98.0 2.3 2.4 88.3 2.7 2.9 52.6 6.3 12.8

GPT-3.5
DPOS 36.0 12.6 17.3 32.6 14.6 18.2 18.8 3.5 4.7 25.0 3.5 4.6 19.4 12.3 18.5
DPCS 44.8 13.2 17.0 40.0 14.8 17.8 49.5 2.7 3.3 42.3 3.8 4.5 22.6 13.3 18.5
UoT 51.7 5.3 12.4 44.2 10.9 16.0 92.1 2.1 2.4 81.3 2.4 2.9 67.1 6.9 11.2

GPT-4

DPOS 37.9 14.0 17.7 48.6 14.0 17.1 44.2 3.5 4.9 45.7 4.2 4.6 38.4 13.0 17.3
DPCS 48.3 11.1 15.7 50.5 13.1 16.5 91.3 3.0 3.3 72.3 4.2 4.4 43.7 13.4 17.1
PP 58.6 14.0 16.5 38.7 14.9 18.0 58.6 2.5 3.5 62.3 3.8 4.3 39.2 14.2 17.7
CoT 27.6 13.1 18.1 20.7 16.0 19.2 33.7 3.7 4.4 20.0 3.8 4.3 32.8 10.1 16.8
CoT-SC 37.9 13.5 17.6 55.1 14.0 16.7 48.5 3.6 4.3 26.7 4.2 4.8 42.5 11.0 16.2
Reflexion 67.9 9.80 13.1 67.6 12.0 14.6 52.5 3.7 4.3 30.3 4.0 4.7 28.6 11.5 17.8
Original-ToT 34.5 14.3 18.1 28.8 15.5 18.7 70.3 3.3 3.8 60.3 3.2 3.9 40.4 11.6 16.6
Adapted-ToT 41.4 10.5 16.1 42.6 12.2 16.1 92.1 1.9 2.2 78.0 3.0 3.4 60.3 8.2 12.9
Pruned UoT 65.5 8.7 12.6 62.2 10.8 14.3 92.1 1.9 2.1 83.3 2.7 3.1 63.2 8.2 12.5
UoT 79.3 7.0 9.7 71.2 10.8 13.5 97.0 2.0 2.1 88.0 2.6 2.9 67.3 7.8 11.8

Scenarios and Datasets 20 Questions is a classic game where the answerer thinks of a word or
item, and the questioner asks up to 20 yes-or-no questions to guess it. We use two distinct datasets,
namely 20 Questions (20Q) in BIG-bench Srivastava et al. (2022), and Common (collected by us,
refer to Appendix 6.7.2 for more details), including 29 and 111 items separately. In this scenario, the
maximal turns is set to 20. In Medical Diagnosis, the doctor needs to ask questions to patients about
their symptoms, to determine an accurate diagnosis. We use two datasets: DX Xu et al. (2019), with
104 doctor-patient dialogues and 5 diseases in test set, and MedDG Liu et al. (2022), with over 17K
conversations and 15 type diseases, from which we manually select 350 high-quality test samples
for evaluation. Both datasets have a maximum of 5 turns. Troubleshooting is a scenario where a
customer support technician interacts with customers to identify and resolve faults or issues within
computer systems, electronic devices, machinery, or other complex systems. Raghu et al. (2021)
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introduce FloDial with 894 dialogues, containing 153 faults. We evaluate using a maximum of 20
turns. The answerer is simulated by GPT-4, prompted with the ground truth information for a case
(e.g., the patient’s ground truth disease, self-report, and conversation). For more details, refer to
Appendix 6.7.2. We provide examples of these scenarios in Appendix 6.8.

Evaluation Metrics To measure efficacy and efficiency, we use: Success Rate (%): SR = S/T ,
where S is the number of successful cases, and T is the total number of cases; Mean Conversation
Length in Successful Cases: MSC = Rs/S, where Rs is the total rounds in successful cases; Mean
Conversation Length: MCL = R/T , where R is the total rounds in all cases. MCL measures
efficiency based on the resources used in both successes and failures.

3.2 PERFORMANCE

20 Questions (20Q) As illustrated in Table 1, for all types of LLMs, those equipped with UoT
outperform the baselines in both DPOS and DPCS settings. Among the methods used on GPT-4 to
enhance planning and reasoning, CoT and PP show inferior performance even compared to GPT-4
alone. UoT achieves the highest success rate, surpassing the second-best Reflexion by an average of
7.5%. It’s more efficient than Reflexion, requiring 2 fewer rounds on average in successful cases.
Medical Diagnosis (MD) UoT outperforms baselines in simplified medical diagnostics, achieving
a 97.0% success rate on the DX dataset with GPT-4. On the MedDG dataset, UoT on PaLM 2 and
GPT-4 achieve success rates of 80.7% and 88.0%. UoT significantly reduces conversation length,
with average MSC of 2.0 on GPT-4 for DX, lower than 3.5 and 3.0 for DPOS and DPCS methods.
Troubleshooting (TB) UoT similarly achieves the highest SR of 67.3%, and the lowest MSC of
7.8. With UoT, GPT-3.5 boosts its SR from 22.6% to 67.1% in closed set scenarios.
Overall Performance On average, UoT enhances the success rate by 57.8% compared to DPCS
across 5 datasets and 6 different LLMs, including open source and commercial models. Notably,
success rate increases 102.8% for Cohere. Furthermore, UoT outperforms CoT-SC by 38.4% and
Reflexion by 31.2%. Even compared to tree structure methods like Original-ToT and Adapted-ToT,
UoT still shows superior performance with gains of 33.7% and 17.7% respectively. Additionally,
Pruned UoT, our pruning method to improve efficiency, outperforms Adapted-ToT by 10.4%.

3.3 ANALYSIS

3.3.1 COMPARING MODEL PERFORMANCE AT EQUAL COMPUTATIONAL EFFICIENCY

Here, we compare performance across approaches with similar computational cost, in terms of token
consumption. To do so, we first prune our UoT as described in section 2.7. Secondly, we expand the
exploration depth of Adapted-ToT method to bring its token cost in line with that of UoT.

As shown in the top half of Table 2, the
Pruned UoT model, despite its reduced
efficacy compared to UoT, still outper-
forms ToT and other methods. Also, the
bottom part of Table 2 shows that even
when increasing the depth of Adapted
ToT (Adapted-ToT (D = 4)) to match
the token cost of UoT (D = 3), it still
underperforms compared to UoT.

Table 2: Average success rates for 20Q, MD, and TB
datasets at comparable efficiency, measured by GPT-4
token use. k is sampling count, D is tree depth.

Method Tokens 20Q MD TB

CoT-SC(k = 33) 4.6k 46.5 37.6 42.5
Orig-ToT(D = 3) 4.5k 31.7 65.3 40.4
Adapt-ToT(D = 3) 4.5k 37.4 85.1 60.3
Pruned UoT(D = 3) 4.7k 64.8 88.4 63.2

Adapt-ToT(D = 4) 9.3k 54.4 86.7 63.7
UoT(D = 3) 9.2k 75.3 92.5 66.0

3.3.2 EFFECTIVENESS OF UNCERTAINTY REWARDS

To further demonstrate the effectiveness of our uncertainty-based reward, we compare it with the
self-evaluation reward used in the original ToT based on GPT-4 model. We implement the uncertainty-
based reward in place of the self-evaluation reward in ToT, creating a variant we call ToT (+UR). The
results, as shown in left side of Figure 3, indicate that our reward significantly enhances planning
efficacy by an average of 9.3%. Additionally, we use the heuristic self-evaluation reward in Adapted-
ToT to replace our current uncertainty-based reward in UoT, a variant we refer to as UoT (-UR).
This change results in a performance decrease shown in the right part of Figure 3, further validating
the effectiveness of our uncertainty-based reward. Moreover, the performance of UoT (-UR) still
surpasses that of Adapted-ToT illustrated in Table 1,
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Figure 3: Success rate comparison between Adapted-
ToT and Adapted-ToT using uncertainty reward, and
between UoT and UoT without uncertainty reward.

Table 3: Averaged Success rate compari-
son over datasets on open set setting by
using GPT-4 in 20Q, MD, and TB tasks.

Method 20Q MD TB

DPOS 43.3 45.0 38.4
Open set UoT 46.0 60.9 42.5

3.3.3 CASE STUDIES

As demonstrated in Figure 4 of Appendix 6.2, compared to direct prompting, UoT asks questions that
better reduce uncertainty and narrow down candidates, rather than overly specific questions that yield
limited information. Moreover, once our method acquires initial information (e.g., stomach pain), it
generates more targeted questions (related to digestive issues), instead of general inquiries.

3.3.4 PERFORMANCE OF OPEN SET UOT

To further assess the practicality of UoT, we test it in the open set setting and compare its performance
with DPOS. As shown in Table 3, UoT enhances DPOS by an average relative improvement of 17.4%.

3.3.5 FURTHER ANALYSIS

Our study finds that the UoT’s one-step planning performs well, thanks to effective reward design
and question selection. Although deeper planning improves performance, we cap simulations at
three steps for budget reasons, striking a balance between efficiency and effectiveness. We evaluated
GPT-4’s accuracy across datasets, analyzing 10% of interactions. GPT-4 showed consistent accuracy
and reliability. See Appendix 6.3 and 6.4 for details and results.

4 RELATED WORK

Planning and Reasoning of LLMs LLMs show prowess in planning and reasoning. Wei et al.
(2022) introduced CoT prompting for intermediate reasoning; Yao et al. (2023) proposed ToT
prompting using DFS/BFS. Besta et al. (2023) present GoT to solve elaborate problems. Feng et al.
(2023) illustrated TS-LLM’s tree-search guided decoding. ReAct Yao et al. (2022) offers acting-based
prompting, while Reflexion Shinn et al. (2023) enhances this with feedback reflection. Zhou et al.
(2023) unify reasoning and planning.

Decision-making and Information-seeking by LLMs LLMs have evolved as decision-making tools,
with models like LLM+P Liu et al. (2023a) and LLM-DP Dagan et al. (2023) combining external
planners and LLMs for natural language-based programming. RAP Hao et al. (2023) goes beyond
structured language, using LLMs with Monte Carlo Tree Search (MCTS) Chaslot et al. (2008) for
dynamic decision-making. This approach is also seen in the work of Zhao et al. (2023), applying
MCTS and LLM knowledge for complex tasks like robot control. However, MCTS struggles in
uncertain scenarios due to its reliance on terminal states and specific modules for rewards and action
selection. Additionally, to enhance LLMs’ questioning abilities, Deng et al. (2023) introduce the
Rephrase and Respond method. AVIS Hu et al. (2023) represents an autonomous visual question
answering system that uses external tools. Pan et al. (2023) introduce KwaiAgents for processing
queries, following guidelines, and accessing external documents.

5 CONCLUSION AND DISCUSSION

This paper presents the Uncertainty of Thoughts (UoT) algorithm, significantly improving LLMs in
tasks requiring active information seeking through tree-based simulation, uncertainty-based rewards
and a reward propagation scheme. On five datasets UoT increases success rate by 57.8% on average,
establishing a new benchmark for evaluating LLMs in active information-seeking tasks. We evaluate
UoT on simplified scenarios; more realistic scenarios raise challenges like allowing incomplete
elimination of possibilities by answers, and issues with completely open-ended questions/answers,
which we leave for future work. We further discuss these limitations and future work in Appendix 6.6.
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6 APPENDIX

6.1 DERIVATION OF INFORMATION GAIN FORMULA

Recall that the information gain at node v is defined as the expected change in uncertainty (or entropy)
when receiving an answer at this node, which we defined as:

IGv(X) := Hv(X)− pYv ·HY
v (X)− pNv ·HN

v (X) (12)

We now show that:

Proposition 1. The information gain at node v is equal to:

IGv(X) = −pAv log pAv − pNv log pNv (13)

Proof. Note that for any outcome xi, we have by the rules of conditional probability:

p(xi|ΩA
v ) =

p(xi|Ωv)

p(ΩA
v |Ωv)

=
p(xi|Ωv)

pAv
(14)

Now the information gain is:

IGv(X)

= Hv(X)− pAv ·HA
v (X)− pNv ·HN

v (X)

= −
∑

i:ωi∈Ωv

p(xi|Ωv) log p(xi|Ωv)

+ pAv
∑

i:ωi∈ΩA
v

p(xi|ΩA
v ) log p(xi|ΩA

v )

+ pNv
∑

i:ωi∈ΩN
v

p(xi|ΩN
v ) log p(xi|ΩN

v )

=
∑

i:ωi∈ΩA
v

p(xi|ΩA
v )(log p(xi|ΩA

v )− log p(xi|Ωv))

+
∑

i:ωi∈ΩN
v

p(xi|ΩN
v )(log p(xi|ΩN

v )− log p(xi|Ωv)),

where the last equality holds by pAv ·p(xi|ΩA
v ) = p(xi|Ωv), and similarly for pNv . We further compute

that ∑
i:ωi∈ΩA

v

p(xi|ΩA
v )(log p(xi|ΩA

v )− log p(xi|Ωv))

=
∑

i:ωi∈ΩA
v

p(xi|ΩA
v ) log

p(xi|ΩA
v )

p(xi|Ωv)

= −
∑

i:ωi∈ΩA
v

p(xi|ΩA
v ) log p

A
v

= −pAv log pAv

Analogously the remaining term is −pNv log pNv . Finally we conclude that

IGv(X) = −pYv log pYv − pNv log pNv (15)

In fact, this proposition can also be proven using some properties of information theory, particularly
the definitions of conditional entropy and mutual information. As the more computational proof shown
here is still relatively short and does not require defining certain additional probability distributions,
we provide the computational proof here instead.
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Q1: Is X a living thing?
A1: Yes, X is a living thing.
…
Q8: Is X larger than a human?
A8: No, X is not larger than a human.

Q9: Is X found in North America?
A9: No, X is not found in North America.
Q10 : Is X found in Africa?
A10: No, X is not found in Africa.
Q11: Is X found in Asia?
A11: Yes, X is found in Asia.
…
Q14: Is X a leopard?
A14: Yes, X is a type of leopard.
Q15: Is X a snow leopard?
A15: You guessed it. X is 'Snow leopard'.

Q1: Is X a man-made object?
A1: No, X is not a man-made object.

Q2: Is X an animal?
A2: Yes, X is an animal.
Q3: Is X a carnivore?
A3: Yes, X is a carnivore.
Q4: Is X a mammal?
A4: Yes, X is a mammal.
Q5: Is X a mammal that is typically
associated with water?
A5: No, X is not associated with water.
…
Q9: Is X a leopard?
A9: Yes, X is a type of leopard.
Q10: Is X a snow leopard?
A10: You guessed it. X is 'Snow leopard'.

Direct Prompting UoT

Q1: Have you experienced any nausea or
vomiting?
A1: No, I haven't experienced any nausea or
vomiting. The pain started around six
o'clock ….
Q2: Does the pain radiate to any other part of
your body, such as your back or shoulder?
A2: No, the pain doesn't radiate to any other
part of my body. It's just in the middle of my
abdomen, right above my belly button.
…
Q5: Do you experience pain after eating,
particularly fatty or greasy foods?
A5: No, I don't feel any pain after eating. But
I started feeling pain around 6 o'clock….

Q1: Do you experience a burning or
gnawing sensation in your stomach,
especially on an empty stomach?
A1 : Yes, I do have this sensation, 
especially on an empty stomach.
Q2: Have you noticed any dark, tarry
stools or vomit that looks like coffee
grounds?
A2: I haven't noticed the color of my stool, 
but I haven't vomited.
A3: You are probably experiencing Gastric
ulcer?

Self-Report: Stomachache. Pain in the upper abdominal area. No diarrhea. (Female, 27 years old)

Direct Prompting UoT

Figure 4: Case studies from the 20 Questions game (left) and simplified medical diagnosis (right).

6.2 CASE STUDY EXAMPLE

As shown in Figure 4, these two examples can further demonstrate the effectiveness of our UoT
method.

6.3 EFFECT OF SIMULATION DEPTH

As Figure 5 illustrates, we analyze the impact of simulation steps. Even with one-step reasoning and
planning, our method can still have a strong performance, further indicating the effectiveness of our
reward design and question selection mechanism. With the increase of the step, the performance can
gradually rise. However, due to the constraints of computation resources and OpenAI API budgets,
we only explore the simulation to the third step and argue that it can be the practical tradeoff between
performance and efficiency.
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6.4 RELIABILITY OF GPT-4 AS THE ENVIRONMENT

As the impressive understanding ability of LLMs, previous research has validated the effectiveness
of evaluators served by ChatGPT or GPT-4 Chiang & Lee (2023); Liu et al. (2023b). Consequently,
we also adopt GPT-4 as the environment to provide feedback on our work. Prompts can be found
in Appendix 6.9.4. To assess the accuracy and reliability of employing GPT-4 as the environment
simulator, we randomly sample 10% interaction records (including the final judgment and intermediate
feedback from the environment) from each dataset. As Figure 4 shows, GPT-4 can provide completely
accurate judgment and also keep a high level of accurate feedback during the interaction. These
experimental results can further support the effectiveness of our method.
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Table 4: Human evaluation results for the accuracy of environment feedback served by GPT-4. IF
represent the Accuracy of Intermediate Feedback

Scenario Judgement IF

20 Questions 100 93.7
Medical Diagnosis 100 94.4
Troubleshooting 100 92.9
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Figure 6: Curve of uncertainty based reward on Eq 10, where pNv can be replaced by (1 − pAv ).
The horizontal axis pAv is conditional probabilities of affirmative at node v, which are introduced in
Section §2.4.

6.5 REWARD FUNCTION DETAILS AND ITS CURVE

Refer to Figure 6 for the curve of uncertainty-based reward function.

6.6 LIMITATION AND FUTURE WORK

In practice, ΩA
v and ΩN

v might overlap, as different answers (such as “yes” or “no”) may lead to
the exclusion of different sets of possibilities. Another similar limitation is that some questions
or answers may not fully eliminate certain possibilities (e.g.,“I don’t have a fever” does not 100%
eliminate the possibility of having COVID-19). Furthermore, compared to completely open-ended
interaction in medical diagnosis or troubleshooting, our current benchmark represents a simplified
scenario. In theory, such cases could be handled using the method of converting interactions into
probability estimations and applying some kind of Bayesian update to the probabilities of each
possibility, rather than just eliminating some subset.

6.7 EXPERIMENTAL SETUPS

6.7.1 BASELINES SETUP

Chain-of-Thought (CoT) We adapt the typical CoT prompt which instruct LLM to generate the
explanation or motivation for the proposed question first, then give the question to ask.

Chain of Thought with Self-Consistency (CoT-SC) To make the method spend comparable
compute to our approach for a fair comparison, we sampled 33 times before deciding on each action
with the LLM’s temperature of 0.7. The final selected question is the one repeated most times among
33 samples.

Planning Prompting To measure whether LLMs’ planning ability can be enhanced through some
crafted prompts like CoT, ToT or Reflexion. We design the prompt to enable LLM to simulate

15



Published as a conference paper at ICLR 2024

multiple different sets of future interactions between questioner and answerer, then let LLM choose
one most promising interaction (question) to ask.

Tree of Thoughts In the case of Original-ToT, a sampling method is employed to generate 3
questions from each answer node, and the self-evaluation method is utilized for reward calculation.
Subsequently, breadth-first search will be used and 10 nodes from each step will be selected for
later simulation. Additionally, the temperature of the LLM is configured to 0.7, consistent with the
settings in original ToT paper. In the case of Adapted-ToT, we provide more heuristical hints in
prompt to generate the questions, e.g. ‘you should try to propose the question to halve the probability
set. Likewise, each answer node generates 3 questions, and the LLM selects 10 nodes with higher
self-evaluation rewards to further simulation. The simulation steps are also 3.

Reflextion This approach involves the LLM agent suggesting questions iteratively until the question
reward exceeds the threshold of 0.7 or reaches the maximum limit of 3 questions. The reward score
s is calculated using the formula s = min(pA, pN )/max(pA, pN ). This heuristic is based on the
principle of whether the question can effectively halve the probability set. If a candidate question
achieves a score above the threshold, the process of proposing questions is concluded, and that
question is selected. In cases where no question meets the threshold, the one with the highest score is
chosen.

Uncertainty of Thoughts Pruned After generating the candidate question based on the possibility
set Ωi, we sorted these question nodes by uncertainty based reward and reserved half of them, serving
the purpose of pruning. In subsequent steps of the simulation, this pruning operation will be continued.
Other settings were the same as UoT, described in Section §6.7.3.

6.7.2 SCENARIOS SETTINGS AND DATASETS

20 Questions game is a classic guessing game where the answerer thinks of an object, person, place,
or other, and the questioner, possessing no prior knowledge about the chosen entity, proceeds to
pose a series of up to 20 yes-or-no questions to determine what the secret item is. The questions are
designed to narrow the possibilities and ultimately guess the secret item within the 20 questions. 20
Questions in BIG-bench: It is the sub-task of BIG-bench and can be found on the GitHub website6.
Common Dataset Construction: We came across an official website7 that introduces a 20 Questions
game, which mentions that common target categories in this game include animals, places, food,
and objects. Therefore, we extracted and manually screened the targets mentioned on this website,
resulting in a dataset named ”Common” comprising 111 targets, each belonging to one of the four
aforementioned categories.

Medical Diagnosis In this scenario, the patient will simply describe their symptom first which we
call a ‘Self-report’, then doctor acted by LLM will start to ask questions to interact with patient to
determine the disease.

Troubleshooting In FloDial dataset, tt includes faults of car and laptop. Similar to Medical
Diagnosis, the customer first describes some simple fault symptoms, then the customer support
technician will chat with customer to further check the specific issues of device.

LLMs Serve as Questioner (Patient or Customer) In simulated interactions involving questioner
and answerer scenarios, particularly for medical diagnosis and troubleshooting, the response given
by an LMM acting answerer is guided by scenario instructions and real-world dialogue examples.
This approach makes the LM’s responses more human-like and enhances its accuracy in diagnosing
diseases or identifying faults. While, in a game like ”20 Questions,” where the objective is to guess
common items, the LMM acting as the answerer only needs to provide simple ’yes’ or ’no’ answers.
Therefore, incorporating real-world dialogue into the LMM’s prompts for this game is not necessary.

6.7.3 IMPLEMENTATION

Empirically, we set the plan (simulation) steps as 3 and the number of questions during the simulation
is 3. The hyperparameter λ in uncertainty-based reward is 0.4.

6https://github.com/google/BIG-bench/tree/main/bigbench/benchmark tasks/twenty questions
7https://blog.prepscholar.com/20-questions-game

16

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/twenty_questions
https://blog.prepscholar.com/20-questions-game


Published as a conference paper at ICLR 2024

6.8 EXAMPLES IN SCENARIOS

Some examples of conversation in different scenarios are provided in Table 5-9.

Table 5: Example for 20 Question. Q stands for Questioner and A stands for Answerer.

Target: Glass micropipette
Conversation
1: Q: Is X a tangible object? A: Yes.
2: Q: Is X a living organism? A: No.
3: Q: Is X a household item? A: No.
4: Q: Is X a type of transportation? A: No.
5: Q: Is X used in construction? A: No.
6: Q: Is X a wearable item? A: No.
7: Q: Is X a type of toy? A: No.
8: Q: Is X a ’Glass micropipette’?

A: You guessed it. X is a ’Glass micropipette’.

Table 6: Example for Medical Diagnosis. D stands for Doctor (Questioner) and P stands for Patient
(P).

Disease: Allergic rhinitis
Self-report
Hello doctor, my son’s throat easily becomes red and swollen as soon as winter comes. He has
been coughing and his throat has been red and swollen for the past half month.
Conversation
1: D: Do you experience a runny or stuffy nose? P: Yes.
2: D: You may have ’Allergic rhinitis’.

Table 7: Example for MedDG. D stands for Doctor (Questioner) and P stands for Patient (Answerer).

Disease: Gastritis
Self-report
Recently, I always feel nauseous when I wake up in the morning, but during the day, everything
seems fine. (Female, 33 years old)
Conversation
1: D: Have you been experiencing vomiting or diarrhea recently?

P: No, I haven’t. I just feel nauseous and my stomach is uncomfortable.
2: D: Have you noticed any dark, tarry stools or vomit that looks like coffee grounds?

E: No, I haven’t noticed anything like that.
3: D: Are you experiencing pregnancy-related morning sickness?

P: No, I’m not pregnant. It’s just that my stomach feels uncomfortable and nauseous.
4: D: You may have ’Gastritis’.

6.9 PROMPTS

6.9.1 DPOS AND DPCS PROMPT

The specific prompts for the DPOS and DPCS baselines in each scenario are provided in Table 10-12.

6.9.2 PLANNING PROMPT

The specific prompts for Planning Prompt baselines in each scenario are provided in Table 13,
Table 14 and Table 15. As planning prompt method is close set setting, hence the probability set will
also be informed in the prompt as DPCS prompt. We do not repeat it in the tables.

17



Published as a conference paper at ICLR 2024

Table 8: Example for MedDG. D stands for Doctor (Questioner) and P stands for Patient (Answerer).

Disease: Gastric ulcer
Self-report
Stomachache. Pain in the upper abdominal area. No diarrhea. (Female, 27 years old)
Conversation
1: D: Do you experience a burning or gnawing sensation in your stomach, especially on an
empty stomach?

P: Yes, I do have this sensation, especially on an empty stomach.
2: D: Have you noticed any dark, tarry stools or vomit that looks like coffee grounds?

P: I haven’t noticed the color of my stool, but I haven’t vomited.
3: D: You may have ’Gastric ulcer’.

Table 9: Example for Troubleshooting. T stands for customer support technician and C stands for
customer.

Fault: Brake fluid overflow
Self-report
Lately, I have been having trouble with the brakes of my car. I have checked it again and again
but can’t figure out what’s causing this. Please help me.
Conversation
2: T: Does the issue affect the rotation or movement of the wheels? C: No.
3: T: Does the issue seem to be related to the overall braking system? C: Yes.
4: T: Are you experiencing a brake fluid leak? C: No.
5: T: Are your brake pads worn out? C: No.
6: T: Is the brake pedal feeling spongy or soft when you press it? C: Yes.
7: T: Is there an issue with the brake lines being air-filled or damaged? C: No.
8: T: Your car may have a brake fluid overflow issue.

6.9.3 UOT PROMPT

The detailed prompts for our UoT method in each scenario are attached in Table 16, Table 17 and
Table 18.

6.9.4 QUESTIONER PROMPT

The specific prompt to guide the examiner in all scenarios is provided in Table 19, Table 20 and
Table 21.

18



Published as a conference paper at ICLR 2024

Table 10: DPOS and DPCS Prompt for 20 Question game. The two settings are the same except for
the content noted in red, which is only for DPCS Prompt. The first time the content marked in red is
mentioned at the beginning of interaction is to inform the questioner of the entire probability set. The
second mention serves as a reminder for the questioner to determine the target as soon as possible
when the conversation is nearing its end. We establish two phases with the aim of encouraging the
questioner to guess the target as soon as possible when the second phase of interaction is nearing its
conclusion, in order to avoid failure at the end of interaction.

Prologue
Let us play the game of 20 questions. I am impersonating the thing, X. You will ask me
up to 20 questions that start with ’Is X’ and can only be answered by yes or no, and I will
answer each one truthfully based on being X.
Let us begin. Ask me the first question. Reply to me with your first question.
The X may be one of the items below: [list of items]
Phase 1 (Q1 - Q13)
None
Phase 2 (Q14 - Q20)
The X may be one of the items below: [list of items]

Table 11: DPOS and DPCS are medical diagnostic prompts with similar structures. The key difference
is the inclusion of probability set information in red text for DPCS. This red text appears twice:
initially to inform the questioner about all potential diagnoses and again towards the end of the
interaction as a reminder to quickly confirm the disease. We establish two phases with the aim of
encouraging the questioner to confirm the disease as soon as possible when the second phase of
interaction is nearing its conclusion, avoiding failure at the end of interaction.

Prologue
You are a doctor and your patient reports that: [self-report]
You should ask your patient questions in English with symptoms which can only be
answered by yes or no, to find what disease this patient suffers.
Let us begin. Ask me the first question.
Based on the symptoms above, if you find out the disease, please ask ’Are you a [disease
name]?’
The patient may suffer from one of the diseases below: [list of diseases]
Phase 1 (Q1)
None
Phase 2 (Q3 - Q5)
Based on the symptoms above, if you find out the disease, please ask ’Are you a [disease
name]?’
The patient may suffer from one of the diseases below: [list of diseases]

Table 12: DPOS and DPCS are troubleshooting prompts with similar structures, but DPCS includes
unique content highlighted in red. This red content appears first at the beginning, outlining all
potential faults, and again towards the end as a reminder to swiftly identify the fault. The two-phase
structure of these prompts aims to ensure quick fault confirmation, especially in the final stages of the
interaction, to prevent failure.

Prologue
You are a technician and your client reports that: [self-report]
You should ask your client questions about a specific situation which can only be answered
by yes or no, in order to find where the issue this client faces with located.
Let us begin. Ask me the first question.
The client may face one of the issues below: [list of issues]
Phase 1 (Q1 - Q13)
None
Phase 2 (Q14 - Q20)
Based on the situations above, if you find out the issue, please ask ’Are you a [issue name]?’
The client may face one of the issues below: [list of issues]
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Table 13: Planning Prompt for 20 Question game. [C1] is the count of questions asked and [C2] is
the count of questions remaining. The ‘information gained’ marked blue represents the previous
interaction history. We divide it into three phases to discuss the probability set as quickly as possible,
conduct simulation for planning, and remind the questioner to guess the answer.

Prologue
Same as prompts in Appendix 6.9.1
Phase 1 (Q1 - Q4)
The next question should narrow down the possible range of X, preferably in half.
Phase 2 (Q5 - Q15)
We are playing the 20 Question game, [C1] questions have been asked. And now we know:
[information gained]
Based on the features of X above, please guess what X exactly is and tell me your top 3
most likely answers.
For these three candidate X, please separately complete the remaining [C2] questions and
answer yes/no by yourself. Notably, you must guess the corresponding X before the last
question.
Phase 3 (Q16 - Q20)
Note that you should guess what X exactly is from now on. The question must start with
’Is X ...’

Table 14: Planning Prompt for Medical Diagnosis. [C1] is the count of questions asked and [C2]
is the count of questions remaining. The ‘information gained’ marked blue represents the previous
interaction history. We divide it into three phases to discuss the probability set as quickly as possible,
conduct simulation for planning, and remind the questioner to confirm the disease.

Prologue
Same as prompts in Appendix 6.9.1
Phase 1
Skip because of the limited QA rounds in this scenario
Phase 2 (Q1 - Q3)
You are the doctor asking questions to diagnose, [C1] questions have been asked. And now
we know about the patient:
[information gained]
Based on the symptoms of the patient above, please think about what disease the patient
suffers from and tell me your top three most likely answers.
For these three candidate diseases, please separately complete the remaining [C2] questions
and answer yes/no by yourself. Notably, you must determine the corresponding disease
before the last question.
Phase 3 (Q4 - Q5)
Note that you should determine what disease the patient suffers from now. The question
must start with ’Are you a [disease name]?’
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Table 15: Planning Prompt for Troubleshooting. [C1] is the count of questions asked and [C2] is
the count of questions remaining. The ‘information gained’ marked blue represents the previous
interaction history. We divide it into three phases to discuss the probability set as quickly as possible,
conduct simulation for planning, and remind the questioner to confirm the fault.

Prologue
Same as prompts in Appendix 6.9.1
Phase 1 (Q1 - Q4)
The next question should narrow down the possible range of trouble issues, preferably in
half
Phase 2 (Q5 - Q15)
You are a technician to troubleshoot, [C1] questions have been asked. And now we know:
[information gained]
Based on the situation your client faces, please think about what the issue exactly is and
tell me your top 3 most likely answers.
For these three candidate issues, please separately complete the remaining [C2] questions
and answer yes/no by yourself. Notably, you must determine the corresponding issue before
the last question.
Phase 3 (Q16 - Q20)
Note that you should determine what issue your client faces from now on. The question
must start with ’Are you a [issue name]?’

Table 16: UoT Prompt for the 20 Questions Game: As it is based on a closed-set setting, information
about probabilities will be given at the beginning of the interaction and will be reminded after Q14.
Since it is similar to previous prompts, we will not repeat it here. In the ’Prompt for Question
Generation and Simulation’, the count of YES/NO indicates the number of items that are consistent
with the affirmative/negative response.

Prologue
Let us play the game of 20 questions. I am impersonating the thing, X. You will ask me
up to 20 questions that start with ’Is X’ and can only be answered by yes or no, and I will
answer each one truthfully based on being X.
Let us begin. Ask me the first question. Reply to me with your first question.
Prompt for Question Generation and Simulation
Please design a question about X and can only be answered by YES or NO. asked Then
classify the possible X above based on this question. If the answer is ’YES’, put this X into
’YES: ...’, otherwise to ’NO: ...’. Finally calculate how many X in YES and NO.

Notably, this question should fulfill that the count of YES and NO are almost the same with
a permissible discrepancy of no more than one!

You should think about best n questions to respond to. And your answer should be:
Question 1: Is X ...?
YES: item1, item2, ...
Count of YES: ...
NO: item1, item2, ...
Count of NO: ...
Additional Reminder in Q14 - Q20
Note that you should guess and ask what X exactly is from now on. X is possible a:
[item list str], or other. The question must start with ’Is X ...
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Table 17: UoT Prompt for medical diagnosis: As it is based on a closed-set setting, information about
probabilities will be given at the beginning of the interaction and will be reminded after Q3. Since it
is similar to previous prompts, we will not repeat it here. In the ’Prompt for Question Generation
and Simulation’, the count of YES/NO indicates the number of diseases that are consistent with the
affirmative/negative response.

Prologue
You are a doctor and your patient reports that: [self-report]
You should ask your patient questions in English with symptoms which can only be
answered by yes or no, to find what disease this patient suffers.
Let us begin. Ask me the first question.
Prompt for Question Generation and Simulation
Please design a question to ask your patient with symptoms about disease and can only be
answered by YES or NO. Then classify the possible disease above based on each question.
If the answer is ’YES’, put this disease into ’YES: ...’, otherwise to ’NO: ...’. Finally
calculate how many X in YES and NO.

Notably, this question should fulfill that the count of YES and NO are almost the same with
a permissible discrepancy of no more than one!

You should think about best n questions to respond to.
And your answer should be:
Question 1: ...?
YES: disease1, disease2, ... (disease names only)
Count of YES: ...
NO: disease1, disease2, ... (disease names only)
Count of NO: ...
Additional Reminder in Q3 - Q5
Note that you should point out and ask what disease the patient suffers from now. The
patient may suffer from one of diseases below: [list of disease], or other. The question must
be ’You may have a [disease name]?’
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Table 18: UoT Prompt for troubleshooting: As it is based on a closed-set setting, information about
probabilities will be given at the beginning of the interaction and will be reminded after Q14. Since it
is similar to previous prompts, we will not repeat it here. In the ’Prompt for Question Generation
and Simulation’, the count of YES/NO indicates the number of faults which are consistent with the
affirmative/negative response.

Prologue
You are a technician and your client reports that: [self-report]
You should ask your client questions about a specific situation which can only be answered
by yes or no, in order to find where the issue this client faces with located.
Let us begin. Ask me the first question.
Prompt for Question Generation and Simulation
Please design a question to ask your client with specific situation and can only be answered
by YES or NO. asked Then classify the possible issue above based on this question. If the
answer is ’YES’, put this issue into ’YES: ...’, otherwise to ’NO: ...’. Finally calculate how
many issues in YES and NO.

Notably, this question should fulfill that the count of YES and NO are almost the same with
a permissible discrepancy of no more than one!

You should think about best n questions to respond to. And your answer should be:
Question 1: ...?
YES: issue1, issue2, ... (issue names only)
Count of YES: ...
NO: issue1, issue2, ... (issue names only)
Count of NO: ...
Additional Reminder in Q14 - Q20
Note that you should point out and ask what disease the patient suffers from now. The
patient may suffer from one of diseases below: [list of disease], or other. The question must
be ’You may have a [disease name]?’

Table 19: Prompt for Answerer in 20 questions game. [target] is the name of the final target for each
dialogue.

Prologue
Let us play the game of 20 questions. You are the answerer and I am the guesser. X is
’[target]’. I will ask you up to 20 questions and you should answer each one truthfully based
on being X. If I guess correctly what is X, answer me ”You guessed it. X is ’[target]’.”
Note that never directly tell me what X is all the time.
Let us begin. Here is my first question.

Table 20: Prompt for Answerer in medical diagnosis. [disease] is the name of the final disease for
each dialogue.

Prologue
You are the patient suffering ’[target]’ and I am the doctor. I will ask you up to 5 questions
and you should answer each one truthfully based on your disease. If I point out correctly
what disease you experience, answer me ”You are right. I am experiencing ’[target]’.” Note
that never directly tell me what disease is all the time.
Let us begin. Here is my first question.

Table 21: Answerer Prompt in troubleshooting. [fault] is the name of the final fault for each dialogue.

Prologue
You are the client with a device that has ’[target]’ and I am the technician. I will ask you
up to 20 questions and you should answer each one truthfully based on the issue of your
device. If I point out correctly what your issue is, answer me ”You are right. My device has
’[target]’.” Note that never directly tell me what the issue is all the time.
Let us begin. Here is my first question.
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