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Abstract

We study the design decisions of publicly avail-
able instruction tuning methods, by reproduc-
ing and breaking down the development of Flan
2022 (Chung et al., 2022). Through careful abla-
tion studies on the Flan Collection of tasks and
methods, we tease apart the effect of design deci-
sions which enable Flan-T5 to outperform prior
work by 3-17%+ across evaluation settings. We
find task balancing and enrichment techniques
are overlooked but critical to effective instruc-
tion tuning, and in particular, training with mixed
prompt settings (zero-shot, few-shot, chain-of-
thought) actually yields equivalent or stronger
(2%+) performance in all settings. In further ex-
periments, we show Flan-T5 requires less fine-
tuning to converge higher and faster than T5 on
single downstream tasks—motivating instruction-
tuned models as more computationally-efficient
starting checkpoints for new tasks. Finally, to ac-
celerate research on instruction tuning, we make
the Flan 2022 collection of datasets, templates,
and methods publicly available.1

1. Introduction

Large language models such as PaLM (Chowdhery et al.,
2022), Chinchilla (Hoffmann et al., 2022), and ChatGPT

1Media Lab, Massachusetts Institute of Technology, Cam-
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1Data generation code available at: https://github.
com/google-research/FLAN/tree/main/flan/v2.
Generation code allows users to vary mixtures rates, templates,
prompt types and data augmentations techniques, for faster public
research.

among others (Brown et al., 2020; Ouyang et al., 2022) have
unlocked new capabilities in performing natural language
processing (NLP) tasks from reading instructive prompts.
Prior art has shown that instruction tuning—finetuning lan-
guage models on a collection of NLP tasks formatted with
instructions—further enhances the ability of language mod-
els to perform an unseen task from an instruction (Wei et al.,
2021; Sanh et al., 2021; Min et al., 2022).

In this work, we evaluate the methods and results of open
sourced instruction generalization efforts, comparing their
finetuning techniques and methods. And in particular, we
identify and evaluate the critical methodological improve-
ments in the “Flan 2022 Collection”, which is the term we
use for the collection of data and the methods that apply
to the data and instruction tuning process, first introduced
in Chung et al. (2022). Where Chung et al. (2022) focuses
on the emergent and state-of-the-art results of combining
Flan 2022 with PaLM 540B, this work focuses in on the
details of the instruction tuning methods themselves, ablat-
ing individual factors, and comparing them directly to prior
work by keeping the pretrained model size and checkpoint
consistent.

The Flan 2022 Collection offers the most extensive publicly
available set of tasks and methods for instruction tuning,
which we have compiled in one place, and supplemented
with hundreds more high-quality templates and richer for-
matting patterns. We show that a model trained on this
collection outperforms other public collections on all tested
evaluation benchmarks, including the original Flan 2021
(Wei et al., 2021), T0++ (Sanh et al., 2021), Super-Natural
Instructions (Wang et al., 2022c), and the concurrent work
on OPT-IML (Iyer et al., 2022). As shown in Figure 1, this
includes a 4.2%+ and 8.5% improvements on the MMLU
(Hendrycks et al., 2020) and BIG-Bench Hard (Suzgun et al.,
2022) evaluation benchmarks, for equally sized models.

Analysis of the Flan 2022 method suggests the strong results
stem both from the larger and more diverse set of tasks, but
also from a set of simple finetuning and data augmentation
techniques. In particular, training on a mix of examples
templatized with zero-shot, few-shot, and chain-of-thought
prompts improves or maintains performance in every one of
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Figure 1: Comparing public instruction tuning collections on Held-In, Held-Out (BIG-Bench Hard (Suzgun et al.,
2022) and MMLU (Hendrycks et al., 2020)), and Chain-of-Thought evaluation suites, detailed in ??. All models except
OPT-IML-Max (175B) are T5-XL with 3B parameters. Green text indicates improvement over the next best comparable
T5-XL (3B) model.

these settings, together. For instance, adding just 10% few-
shot prompts improves zero-shot prompting results by 2%+.
Additionally, enriching task diversity by inverting input-
output pairs, as used in (Sanh et al., 2021; Min et al., 2022),
along with balancing task sources, are both shown to be
critical to performance. The resulting Flan-T5 model con-
verges faster and at a higher performance than T5 models in
single-task finetuning—suggesting instruction-tuned mod-
els offer a more computationally-efficient starting check-
point for downstream applications, corroborating Aribandi
et al. (2021); Liu et al. (2022b).

We hope making these findings and resources publicly avail-
able will unify resources around instruction tuning and
accelerate research into more general-purpose language
models. We summarize this work’s core contributions as
follows:

• Methodological: Show that training with mixed zero-
and few-shot prompts yields much better performance
in both settings (Section 3.2).

• Methodological: Measure and demonstrate the criti-
cal techniques to effective instruction tuning: scaling
Section 3.3, enriching task variety with input inversion
(Section 3.4), adding chain-of-thought training data,
and balancing different data sources (Section 3.5).

• Results: Demonstrate these technical choices yield 3-
17% Held-Out task improvements over existing open
source instruction tuning collections (Figure 1).

• Results: Demonstrate Flan-T5 XL serves as a stronger
and more computationally-efficient starting checkpoint
for single-task finetuning (Section 4).

2. Public Instruction Tuning Collections

Large Language Models Instruction tuning has emerged
as a tool to “unlock” the knowledge and abilities of large
language models (LLMs) learned at pretraining time, to
make them more useful for interactive dialog and func-
tional tasks. Previous work (Raffel et al., 2020; Liu et al.,
2019; Aghajanyan et al., 2021; Aribandi et al., 2021) exper-
imented with large scale multi-task finetuning, to improve
downstream single target finetuning, but without instruction
prompts. UnifiedQA and others (Khashabi et al., 2020; Mc-
Cann et al., 2018; Keskar et al., 2019) unified a wide range
of NLP tasks into a single generative question answering
format, using prompt instructions for multi-task finetuning
and evaluation.

The First Wave Since 2020, several instruction tuning
task collections have been released in rapid succession, out-
lined in Figure 2. Natural Instructions (Mishra et al., 2021),
Flan 2021 (Wei et al., 2021), PromptSource (a.k.a. P3,
Public Pool of Prompts, Bach et al., 2022) aggregated large
NLP task collections and templatized them with instructions
(zero-shot prompting), specifically for finetuning models
to generalize to unseen instructions. MetaICL (Min et al.,
2022) also consolidated other task collections (Ye et al.,
2021; Khashabi et al., 2020) to train models to learn tasks
“in-context” – from several input-output examples, known
as few-shot prompting, but in this case without instructions.
Each of these works affirmed the scaling benefits of task and
template diversity, and some reported strong benefits from
inverting the inputs and outputs in templates to produce new
tasks (“noisy channel” in Min et al., 2022).
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Figure 2: A Timeline of Public Instruction Tuning Collections specifies the collection release date, name, detailed information on
the finetuned models (their name, the base model, their size, and whether the model itself is made Public (P) or Not Public (NP)), what
prompt specification they were trained for (zero-shot, few-shot, or Chain-of-Thought), the number of tasks contained in the Flan 2022
Collection Flan 2022 (released with this workours), and core methodological contributions in each work. Note that the number of tasks
and of examples vary under different assumptions and so are estapproximateions. For instance, the definition of “task” and ”task category”
vary by work, and are not easily simplified to one ontology. The reported cCounts for the number of taskseach are reported using task
definitions from the respective works. † indicates concurrent work.

The Second Wave A second wave of instruction tun-
ing collections expanded prior resources: combining
more datasets and tasks into one resource, like Super-
Natural Instructions (Wang et al., 2022c) or OPT-IML (Iyer
et al., 2022), adding multilingual instruction tuning in xP3
(Muennighoff et al., 2022), and Chain-of-Thought training
prompts in Flan 2022 (Chung et al., 2022). Both the Flan
Collection and OPT-IML contain most tasks represented in
prior collections.2 Our work is positioned here, coalescing
most of these collections (of collections) and their methods,
as the strongest starting point for future open source work.

New Directions Concurrent and future work is beginning
to explore two new directions: (a) expanding task diversity
even more aggressively with synthetic data generation, par-
ticularly in creative, and open-ended dialogue (Wang et al.,

2Each work defines datasets, tasks, and task categories dif-
ferently. For simplicity, we use their own definitions in Section
2.

2022b; Honovich et al., 2022; Ye et al., 2022; Gupta et al.,
2022), and (b) offering human feedback signals on model
responses (Ouyang et al., 2022; Glaese et al., 2022; Bai
et al., 2022a; Nakano et al., 2021; Bai et al., 2022b). We
view most of these new directions as likely additive to a
foundation of instruction tuning methods.

Tuning with Human Feedback Instruction tuning on hu-
man feedback has demonstrated strong results on open-
ended tasks, but at the expense of performance on a wide
array of more traditional NLP tasks (Ouyang et al., 2022;
Glaese et al., 2022; Bai et al., 2022a; Nakano et al., 2021).
(See Ouyang et al. (2022)’s discussion of the “alignment
tax”.) Our work focuses specifically on instruction gener-
alization, without human feedback, for two reasons. First,
human feedback datasets are far less publicly available than
instruction tuning datasets (and may be model specific).
Second, by itself, instruction generalization shows great
promise in enhancing human preferred responses on open-
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ended tasks, as well as improving traditional NLP metrics
(Chung et al., 2022). The extent of obtainable progress
without expensive human response demonstrations or rat-
ings remains an open question, and an important pursuit to
narrow the gap between public and non-public research.

The Importance of Open Source High profile research
is increasingly driven by non-public data, as in the case
of Gopher, PaLM, GPT-3 and others (Ouyang et al., 2022;
Glaese et al., 2022; Rae et al., 2021; Chowdhery et al.,
2022). The inaccessibility of these resources inhibits the
research community’s ability to analyze and improve these
methods in the public domain. We narrow our purview to
open source and accessible data collections, motivated by
the goal of democratizing accessibility to research.

3. Flan 2022 Instruction Tuning Experiments

Recent research has yet to coalesce around a unified set
of techniques, with different tasks, model sizes, and target
input formats all represented. We open source a new col-
lection, first introduced in Chung et al. (2022), we denot
as “ Flan 2022”, which combines Flan 2021, P3++3, Super-
Natural Instructions, with some additional reasoning, dialog,
and program synthesis datasets. We emulate Chung et al.
(2022)’s description of templatization and collection; and in
this work we analyse the key methodological improvements
with detailed ablations, and compare the collection to other
collections, using equivalently-sized models.

In this section, we evaluate the design decisions in Flan
2022 and discuss four in particular that yield strong im-
provements to the instruction tuning recipe. These design
components, outlined in Section 2, are: (I) using mixed zero-
shot, few-shot, and Chain-of-Thought templates at training
(Section 3.2), (II) scaling T5-sized models to 1800+ tasks
(Section 3.3), (III) enriching tasks with input inversion (Sec-
tion 3.4), and (IV) balancing these task mixtures (Section
3.5). In Section 3.1, we begin by measuring the value of
each component and compare the final model against alter-
native instruction tuning collections (and their methods).

Experimental Setup We finetune on the prefix language
model adapted T5-LM (Lester et al., 2021), using the XL
(3B) size for all models, unless otherwise stated, again
following Chung et al. (2022). We evaluate on (a) a suite
of 8 “Held-In” tasks represented within the 1800+ training
task collection (4 question answering and 4 natural language
inference validation sets), (b) Chain-of-Thought (CoT) tasks
(5 validation sets), and (c) the MMLU (Hendrycks et al.,
2020) and BBH (Suzgun et al., 2022) benchmarks as our

3“P3++” is our notation for all datasets used in the Public Pool
of Prompts (P3): https://huggingface.co/datasets/
bigscience/P3

set of “Held-Out” tasks, as they are not included as part of
Flan 2022 finetuning. The Massivley Multitask Language
Understanding benchmark (MMLU) broadly tests reasoning
and knowledge capacity across 57 tasks in the sciences,
social sciences, humanities, business, health, among other
subjects. BIG-Bench Hard (BBH) includes 23 challenging
tasks from BIG-Bench (Srivastava et al., 2022) where PaLM
under-performs human raters. In our ablations, we also
evaluate BBH with Chain-of-Thought inputs, following
Chung et al. (2022). Additional finetuning and evaluation
details are provided in Appendix B.

3.1. Ablation Studies

Table 1 summarizes the mean contribution to Held-in, Held-
out, and Chain-of-thought tasks, by individually deducting
methods: mixture weight balancing (“- Mixture Balanc-
ing"), Chain-of-thought tasks (“- CoT"), mixed prompt set-
tings (“- Few Shot Templates"), and Input Inversion (“-
Input Inversion"). Flan-T5 XL leverages all four of these
methods together. We also finetune T5-XL-LM on other
collections, including Flan 2021, P3++, Super-Natural In-
structions for comparison.

Each of the ablated components of Flan contributes improve-
ments to different metrics: Chain-of-Thought training to
Chain-of-Thought evaluation, input inversion to Held-Out
evaluations (MMLU and BBH), few-shot prompt training to
few-shot evaluations, and mixture balancing to all metrics.

As compared to T5-XL models trained on alternative in-
struction tuning collections (and their methods), Flan out-
performs in almost every setting. While previous collections
are tuned specifically to zero-shot prompts, Flan-T5 XL is
tuned for either zero- or few-shot prompts. This yields
performance margins of +3-10% for most of the zero-shot
settings, and margins of 8-17% for the few-shot settings.
Most impressively, Flan 2022 outperforms OPT-IML-Max’s
much larger (10x) 30B and (58x) 175B models, and GLM-
130B (x43). Next, we isolate some of Flan 2022’s ablated
methods individually, to examine the benefits of each.

3.2. Training with Mixed Prompt Settings

Prior work has shown a wide variety of input templates per
task can improve performance. However, separate from
the wording of the instruction template, these prior LLMs
mostly tune with template sets targeted to a single prompt
setting: for zero-shot prompting (Wei et al., 2021; Sanh
et al., 2021; Aghajanyan et al., 2021; Aribandi et al., 2021)
or for few-shot prompting (Min et al., 2022; Wang et al.,
2022c).

An underappreciated design decision in InstructGPT
(Ouyang et al., 2022) was to mix training templates for
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Table 1: Method Ablations (top) show the importance of each method for Flan-T5 XL. Collection Ablations (bottom)
evaluate Flan-T5 XL against T5-XL finetuned on other instruction tuning collections: FLAN 2021, P3++, and Super-Natural
Instructions. Flan 2022 - Next Best T5-XL shows the improvement of Flan-T5 XL over the next best T5-XL (comparatively
sized) finetuned on another collection. Metrics are reported in both zero-shot / few-shot settings across Held-In, Chain-of-
Thought, and Held-Out (MMLU, BBH) tasks.
† We also inlcude the results reported by OPT-IML (Iyer et al., 2022) and GLM-130B (Zeng et al., 2022).

MODEL HELD-IN COT MMLU BBH BBH-COT

T5-XL Flan 2022 73.8 / 74.8 35.8 / 34.1 50.3 / 52.4 26.2 / 39.3 33.9 / 35.2

- CoT 73.3 / 73.2 28.8 / 24.6 47.5 / 46.9 18.2 / 30.0 18.2 / 12.0
- Input Inversion 73.8 / 74.1 32.2 / 23.5 41.7 / 41.2 18.4 / 24.2 15.7 / 13.0
- Mixture Balancing 71.2 / 73.1 32.3 / 30.5 45.4 / 45.8 15.1 / 24.3 13.8 / 15.4
- Few Shot Templates 72.5 / 62.2 38.9 / 28.6 47.3 / 38.7 27.6 / 30.8 18.6 / 23.3

T5-XL Flan 2021 68.4 / 56.3 24.6 / 22.7 41.4 / 34.8 28.1 / 28.3 26.0 / 26.9
T5-XL P3++ 70.5 / 62.8 25.6 / 25.6 46.1 / 34.1 26.0 / 30.8 23.4 / 26.1
T5-XL Super-Natural Inst. 50.3 / 42.2 13.8 / 14.3 35.6 / 31.1 10.4 / 15.6 8.0 / 12.5
GLM-130B† - - – / 44.8 - -
OPT-IML-Max 30B† - - 46.3 / 43.2 – / 30.9 -
OPT-IML-Max 175B† - - 49.1 / 47.1 – / 35.7 -

Flan 2022 - Next Best T5-XL +3.3 / +12 +10.2 / +8.5 +4.2 / +17.6 -1.9 / +8.5 +7.9 / +8.3

each of these prompt settings, rather than target a single
setting. However, since Ouyang et al. (2022) do not ex-
amine this choice, we expected a performance trade-off in
finetuning for zero-shot or few-shot prompted performance
– particularly for smaller models. Instead, we find training
with mixed zero- and few-shot prompts significantly im-
proves performance in both settings – most surprisingly,
even for models with only 3B parameters.

Figure 3 shows (1) adding as little as 10% few-shot training
templates can improve zero-shot performance by 2%, and
(2) adding 10%+ of zero-shot data improves few-shot per-
formance by 2-4%. Both Held-In and Held-Out tasks peak
between 10-90% of few-shot data, but this range is consis-
tently higher than training with only one prompt setting.

3.3. Scaling Small Models to 1.8k+ Tasks

The most recent and concurrent publicly available instruc-
tion tuning efforts, like Flan 2022, train on thousands of
tasks (Wang et al., 2022c; Iyer et al., 2022), but operate on
different task compositions and underlying training meth-
ods. To measure the impact of scaling model sizes and tasks
for the Flan 2022 collection, and specifically on T5-sized
models, we finetune T5-LM adapted models (Small, Base,
Large, XL, XXL) on randomly selected task subsets (8, 25,
50, 100, 200, 400, 800, all 1873). Every finetuning run is
guaranteed to include the Held-In tasks, so we can estimate
how task scaling impacts the model capacity to maintain
performance on a given task its already seen.

Figure 4 demonstrates that both Held-In and Held-Out tasks
appear to benefit from adding hundreds of finetuning tasks.

Held-in task evaluations peak around 200 total tasks, and
diminish in performance as more tasks are added, though
larger models peak later and diminish less. Held-out task
performance increases log-linearly with the number of tasks,
achieving the highest performances with all 1836 tasks.
Surprisingly, only T5-Small appears to exceed its Held-
Out task performance before 1836 tasks, while larger model
sizes continue to improve. These results suggest (a) even T5-
Base may not have exhausted its capacity with thousands of
tasks, and (b) the largest LMs could benefit from thousands
more tasks for Held-In and Held-Out task performance.

One necessary assumption of this analysis is that all tasks
are defined and counted equally. Section 3.5 demonstrates
how not all task sources are equally beneficial to training,
and the model performance may saturate from too many
tasks from one source (e.g. Super-Natural Instructions). We
would caution conclusions that task scaling beyond 1800
would translate to increased returns without also paying
attention to task heterogeneity and quality.

3.4. Task Enrichment with Input Inversion

Prior instruction tuning work has enriched their diversity of
tasks by inverting the (x, y) input-output pairs in supervised
tasks—referred to as “prompts not intended for the original
task” in P3 (Bach et al., 2022) or the “noisy channel” in
MetaICL (Min et al., 2022). For example, a dataset may
be originally designed for, given a question x, evaluate if a
model can answer y. Input inversion instead gives a model
the answer y and trains it to generate the question x. This
is an easy method to enrich the task variety given a limited
set of data sources. However, it isn’t clear from prior work
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Figure 3: Training jointly with zero-shot and few-shot prompt templates improves performance on both Held-In and
Held-Out tasks. The stars indicate the peak performance in each setting.

Table 2: Subsets of tasks are left out from an equally
weighted mixture to measure their importance. T0-SF and
Flan 2021 finetuning are most important for MMLU,
while Chain-of-Thought (CoT) finetuning is most im-
portant for Chain-of-Thought evaluation.

TRAIN MIXTURES METRICS
Held-In CoT MMLU

All (Equal) 64.9 41.4 47.3

All - T0-SF 63.2 43.4 44.7
All - Flan 2021 55.3 38.6 45.7
All - Super-Nat. Inst. 65.9 42.2 46.8
All - CoT 65.6 29.1 46.8
All - Prog. Synth. 66.9 42.3 46.8
All - Dialog 65.4 40.3 47.1

All (Weighted) 66.4 40.1 48.1

that this method remains helpful when 100s of unique data
sources and 1000s of tasks are already available.

To assess this, we enrich our mixtures with input inverted
tasks (details and examples in Appendix C) and measure
the effect. In Table 1 we find this is not beneficial for
Held-In performance, but strongly beneficial for Held-Out
performance. These benefits invigorate the prospect of
data augmentation techniques for LLM finetuning, which
had previously been shown to have diminishing returns the
longer models are pretrained (Longpre et al., 2020).

3.5. Balancing Data Sources

Scaling architecture size and the number of tasks are effec-
tive, but our results suggest the mixture weighting deserves
as much attention to optimize results. To assess a balanced
weighting, we omit different sets of task sources, one at a
time (Flan 2021, T0-SF, Super-Natural Instructions, Chain-
of-Thought, Dialog, and Program Synthesis), and rank their
contributions on the MMLU benchmark.4.

In Table 2 we sample from each of the 6 submixtures equally
for “All (Equal)”, then remove submixtures individually. We
ran these experiment prior to other ablations, so it is trained
only with zero-shot training templates.
As shown in Table 2, Flan 2021 and T0-SF are among
the most beneficial mixtures, followed by Super-Natural
Instructions and Chain-of-Thought, with Dialog and Pro-
gram Synthesis last. These findings are corroborated by
Iyer et al. (2022) who extensively test data mixing propor-
tions, and also determine their Flan 2021, T0-SF, and T5
mixtures are the most broadly beneficial. Additionally, they
find Super-Natural Instructions has limited scaling bene-
fits on Held-Out task performance, which they relate to
its unique input format and instruction design. Notably,
Chain-of-thought finetuning appears beneficial across all
our evaluation settings, especially considering they contain
far fewer tasks than Flan 2021, T0-SF or Natural Instruc-
tions. For the final mixture we follow Chung et al. (2022),
which seems to mirror our findings in Table 2.

4Following Chung et al. (2022) we refer to the subset of P3++
that is not in Flan 2021 as T0-SF (SF stands for “sans Flan”).
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Figure 4: Performance Scaling Laws for the number of finetuning tasks and model sizes. Held-In performance (left)
and Held-Out MMLU performance (right) are shown. The gold star indicates the peak performance for that model size.

3.6. Discussion

OPT-IML (Iyer et al., 2022) presents the closest compar-
ison to the Flan Collection, including a similar collection
of tasks, examples and techniques. However, while their
used tasks are all publicly sourced, their collection, with
templates, processing, and example mixing, is not released,
and as a result cannot be easily compared. Iyer et al. (2022)
report that Flan-T5-XL (3B) and XXL (11B) outperforms
OPT-IML-Max 175B on both MMLU and BBH. As they
discuss, these differences may arise from any combination
of pre-training, model architecture, and instruction tuning.
Model architecture and pretraining before instruction tuning
can play a significant role (Wang et al., 2022a). But there
are many other details in instruction tuning that may vary
between Flan 2022 and OPT-IML. Likely candidates are:
example templatization, how the mixed input prompting
procedures are used at training, and task composition.

How significant are each of these difference? While OPT-
IML contains more tasks than Flan 2022, we estimate ap-
proximately 94%(2067/2207) are also used in the Flan
2022 collection5, and very few tasks in Flan 2022 are not
contained in some format in OPT-IML. This suggests the
overall difference in task diversity is not significant when
using a shared definition of “task”. Task mixture rates also
emphasize similar sources, including Flan 2021 (46% vs
20%), PromptSource/P3 (28% vs 45%), and Super-Natural
Instructions (25% vs 25%), for Flan 2022 and OPT-IML re-
spectively.6 OPT-IML’s other collections (Crossfit, ExMix,
T5, U-SKG) are not weighted significantly: 4%, 2%, 2%,

5This is calculated using their definition of “task” (Iyer et al.
(2022)’s Table 1), which does not deduplicate across collections.

6Note that 46% weight for Flan 2022 is actually on “Muffin”
from Chung et al. (2022) which is similar to Flan 2021.

2% respectively.

We believe example templatization and the mixed prompt
formats may pose the largest differences with OPT-IMLs
instruction tuning. Our template repository inherits from
the source collections, but also significantly extends them,
adding variety not just in instructions, but also other di-
mensions. For instance, the templatization procedure varies
where the instruction is placed (before or after few-shot
prompts), the spacing and separators between few-shot and
Chain-of-Thought exemplars, and the formatting permu-
tations of answer options (and their targets) for multiple-
choice examples, which sometimes includes and sometimes
excludes answer options in the inputs or exemplars. While
we do not have dedicated experiments comparing many
iterations of their development, we found these procedures
dramatically augment input variety and showed repeated
performance improvements. Our example templatizing
procedure is open sourced for inspection and future work.

4. Instruction Tuning Enhances Single-Task
Finetuning

In applied settings, machine learning practitioners deploy
NLP models finetuned (FT) specifically for a single tar-
get task, usually where finetuning data is already available.
While prior work has shown the benefits of intermediate
finetuning (Pruksachatkun et al., 2020; Vu et al., 2020) or
multi-task finetuning (Aghajanyan et al., 2021; Aribandi
et al., 2021) for downstream tasks, this has not been studied
extensively for instruction-tuned models. In this setting, we
evaluate Flan 2022 instruction tuning as an intermediary
step before single target finetuning, to understand if Flan-T5
would serve as a better starting checkpoint for applied prac-
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Figure 5: Flan-T5 Outperforms T5 on Single-Task Finetuning. We compare single-task finetuned T5, single-task
finetuned Flan-T5, and Flan-T5 without any further finetuning.

titioners. We evaluate three settings in Figure 5: finetuning
T5 directly on the target task as the conventional baseline,
using Flan-T5 without further finetuning, and finetuning
Flan-T5 further on the target task.

Pareto Improvements to Single Target Finetuning For
both sets of Held-In and Held-Out tasks examined, finetun-
ing Flan-T5 offers a pareto improvement over finetuning T5
directly. In some instances, usually where finetuning data is
limited for a target task, Flan-T5 without further finetuning
outperforms T5 with target task finetuning.

Faster Convergence Using Flan-T5 as a starting check-
point has an added benefit in training efficiency. As demon-
strated in Figure 6, Flan-T5 converges much more quickly
than T5 during single target finetuning, as well as peak-
ing at higher accuracies. These convergence results also
suggest there are strong green-AI incentives for the NLP
community to adopt instruction-tuned models, like Flan-T5
for single-task finetuning, rather than conventional non-
instruction-tuned models. While pretraining and instruction
tuning are more financially and environmentally expensive
than single-task finetuning, they are a one-time cost. On the

contrary, pretrained models that require extensive finetuning
become more costly when aggregating over many millions
of additional training steps (Wu et al., 2022; Bommasani
et al., 2021). Instruction-tuned models offer a promising
solution to significantly reduce the amount of finetuning
steps across a wide swathe of tasks, if they are adopted as a
new standard starting point for single-task finetuning.

5. Conclusions

The new Flan 2022 instruction tuning collection unifies
some of the most popular prior public collections and their
methods, while adding new templates and simple improve-
ments like training with mixed prompt settings. The result-
ing collection outperforms Flan 2021, P3++, Super-Natural
Instructions, GLM-130B, and OPT-IML-Max 175B on a
wide vareity of Held-In and Held-Out benchmarks, often by
large margins. Results suggest this new collection serves as
a more competitive starting point for generalizing to new
instructions, or finetuning on a single new task.
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A contrastive reading comprehension dataset for reason-
ing about negation. arXiv preprint arXiv:2211.00295,
2022. URL https://arxiv.org/abs/2211.
00295.

Romanov, A. and Shivade, C. Lessons from natural lan-
guage inference in the clinical domain. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1586–1596, 2018.
URL https://aclanthology.org/D18-1187.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika,
L., Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L.,
Raja, A., et al. Multitask prompted training enables
zero-shot task generalization. ICLR 2022, 2021. URL
https://arxiv.org/abs/2110.08207.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. The
woman worked as a babysitter: On biases in language
generation. In Proceedings of the 2019 Conference on

13

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://aclanthology.org/2021.eacl-main.249
https://aclanthology.org/2021.eacl-main.249
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2211.00295
https://arxiv.org/abs/2211.00295
https://aclanthology.org/D18-1187
https://arxiv.org/abs/2110.08207


The Flan Collection: Designing Data and Methods for Effective Instruction Tuning

Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 3407–3412,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1339.
URL https://aclanthology.org/D19-1339.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung,
H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,
Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Scharli,
N., Chowdhery, A., Mansfield, P., Arcas, B. A. y., Web-
ster, D., Corrado, G. S., Matias, Y., Chou, K., Gottweis,
J., Tomasev, N., Liu, Y., Rajkomar, A., Barral, J., Sem-
turs, C., Karthikesalingam, A., and Natarajan, V. Large
language models encode clinical knowledge, 2022. URL
https://arxiv.org/abs/2212.13138.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. arXiv preprint arXiv:2206.04615, 2022.
URL https://arxiv.org/abs/2206.04615.

Suzgun, M., Scales, N., Scharli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
ZHou, D., and Wei, J. Challenging BIG-Bench tasks
and whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261, 2022. URL https://
arxiv.org/abs/2210.09261.

Talat, Z., Névéol, A., Biderman, S., Clinciu, M., Dey,
M., Longpre, S., Luccioni10, A. S., Masoud11, M.,
Mitchell10, M., Radev12, D., et al. You reap what you
sow: On the challenges of bias evaluation under multi-
lingual settings. Challenges & Perspectives in Creating
Large Language Models, pp. 26, 2022.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Com-
monsenseqa: A question answering challenge targeting
commonsense knowledge. In Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
4149–4158, 2019.

Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Bahri,
D., Schuster, T., Zheng, H. S., Houlsby, N., and Met-
zler, D. Unifying language learning paradigms. arXiv
preprint arXiv:2205.05131, 2022a. URL https://
arxiv.org/abs/2205.05131.

Tay, Y., Wei, J., Chung, H. W., So, D. R., Shakeri, S.,
Garcia, X., Tran, V. Q., Zheng, H. S., Rao, J., Zhou, D.,
Metzler, D., Houlsby, N., Le, Q. V., and Dehghani, M.
Transcending scaling laws with 0.1% extra compute. In
arxiv, 2022b.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. LaMDA: Language models for dialog ap-
plications. arXiv preprint arXiv:2201.08239, 2022. URL
https://arxiv.org/abs/2201.08239.

Vu, T., Wang, T., Munkhdalai, T., Sordoni, A., Trischler, A.,
Mattarella-Micke, A., Maji, S., and Iyyer, M. Exploring
and predicting transferability across NLP tasks. In Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 7882–
7926, 2020. URL https://aclanthology.org/
2020.emnlp-main.635.

Vu, T., Lester, B., Constant, N., Al-Rfou’, R., and Cer,
D. SPoT: Better frozen model adaptation through soft
prompt transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pp. 5039–5059, 2022. URL https://
aclanthology.org/2022.acl-long.346.

Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh,
S. Universal adversarial triggers for attacking and ana-
lyzing NLP. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 2153–2162,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1221.
URL https://aclanthology.org/D19-1221.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

Wang, T., Roberts, A., Hesslow, D., Scao, T. L., Chung,
H. W., Beltagy, I., Launay, J., and Raffel, C. What
language model architecture and pretraining objective
work best for zero-shot generalization? ICML, 2022a.
URL https://arxiv.org/abs/2204.05832.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language model with self generated instructions, 2022b.
URL https://arxiv.org/abs/2212.10560.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Arunkumar, A., Ashok, A., Dhanasekaran,
A. S., Naik, A., Stap, D., et al. Benchmarking general-
ization via in-context instructions on 1,600+ language
tasks. arXiv preprint arXiv:2204.07705, 2022c. URL
https://arxiv.org/abs/2204.07705.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W.,
Lester, B., Du, N., Dai, A. M., and Le, Q. V. Fine-
tuned language models are zero-shot learners. ICLR 2022,

14

https://aclanthology.org/D19-1339
https://arxiv.org/abs/2212.13138
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2201.08239
https://aclanthology.org/2020.emnlp-main.635
https://aclanthology.org/2020.emnlp-main.635
https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/D19-1221
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2204.05832
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2204.07705


The Flan Collection: Designing Data and Methods for Effective Instruction Tuning

2021. URL https://openreview.net/forum?
id=gEZrGCozdqR.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C.,
et al. Sustainable ai: Environmental implications, chal-
lenges and opportunities. Proceedings of Machine Learn-
ing and Systems, 4:795–813, 2022.

Xu, Z., Shen, Y., and Huang, L. Multiinstruct: Improv-
ing multi-modal zero-shot learning via instruction tun-
ing, 2022. URL https://arxiv.org/abs/2212.
10773.

Ye, Q., Lin, B. Y., and Ren, X. Crossfit: A few-shot learn-
ing challenge for cross-task generalization in NLP. In
EMNLP, 2021. URL https://arxiv.org/abs/
2104.08835.

Ye, S., Kim, D., Jang, J., Shin, J., and Seo, M. Guess the
instruction! making language models stronger zero-shot
learners. arXiv preprint arXiv:2210.02969, 2022.

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi,
A., Roesner, F., and Choi, Y. Defending against neural
fake news. Advances in neural information processing
systems, 32, 2019.

Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M.,
Yang, Z., Xu, Y., Zheng, W., Xia, X., et al. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., et al.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

15

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2212.10773
https://arxiv.org/abs/2212.10773
https://arxiv.org/abs/2104.08835
https://arxiv.org/abs/2104.08835


The Flan Collection: Designing Data and Methods for Effective Instruction Tuning

Appendix

Table of Contents
A Extended Related Work 16

B Experimental Details 17

B.1 Instruction Tuning . . . . . . . . . . 17

B.2 Single-Task Finetuning . . . . . . . 17

B.3 Evaluation . . . . . . . . . . . . . . 17

C Input Inversion Details 17

A. Extended Related Work

We discuss directly related work in Section 2, and other
important related works in this section.

Large Language Models As the foundation of instruc-
tion tuning, the practice of pretraining one general-purpose
language representation that is useful for multiple down-
stream tasks has a long tradition that goes back at least
Mikolov et al. (2013) and Dai & Le (2015). In 2018, Peters
et al. (2018) and Devlin et al. (2019) cemented the paradigm
of pretraining a large model on a large unsupervised cor-
pus, and the field of NLP quickly converged to using these
models which substantially outperform the prior art of non-
pretrained task-specific LSTM models on all tasks. How-
ever, the dominate way to access that high-quality syntac-
tic and semantic knowledge encoded in pretrained models
was not to prompt them with instructions, but to train an
additional task-specific linear layer that maps the model
activations into numerical class labels. A short year later,
Radford et al. (2019), Raffel et al. (2020), and Lewis et al.
(2020) popularized the notion that downstream tasks—and
multiple tasks—can be jointly learned by directly using
the pretrained LM head to generate the answers in natu-
ral language (cf. task-specific numerical class labels), the
task-general nature of these generative models became the
precursor to many multitask transfer learning studies (Mc-
Cann et al., 2018; Khashabi et al., 2020; Ye et al., 2021; Vu
et al., 2020), which in turn led to the first wave of instruction
tuning as described in Section 2.

The continuing advancement in research on the pretraining
corpora, architectures and pretraining objectives of LMs
also has a large impact on instruction tuning. As of 2022,
decoder-only left-to-right causal Transformers dominate the
market of models larger than 100B (Brown et al., 2020;

Thoppilan et al., 2022; Rae et al., 2021; Chowdhery et al.,
2022; Hoffmann et al., 2022), and all models of such size
class with fully public model parameters are decoder-only
(Wang & Komatsuzaki, 2021; Le Scao et al., 2022; Zhang
et al., 2022), the decision of which are often due to better
hardware and software framework support. However, Raf-
fel et al. (2020), Lewis et al. (2020), and Tay et al. (2022a)
have consistently found that left-to-right causal language
modeling is a suboptimal objective, while Tay et al. (2022b)
and Wang et al. (2022a) particularly showed that a mixture
of non-sequential objectives is much superior for down-
stream tasks with zero-shot and few-shot prompting. An
additional factor which remains under-explored is the re-
lationship between pretraining corpora, instruction tuning,
and downstream abilities. Typically, public models are all
trained on one of a few public corpora: C4 (Raffel et al.,
2020), The Pile (Gao et al., 2020), or ROOTs (Laurençon
et al.).

Instruction Tuning In Section 2 we outline major de-
velopments in instruction tuning. Other important devel-
opments include the prospect of complimenting or replac-
ing few-shot in-context learning-the currently predominate
method of evaluating pretrained and instruction-tuned mod-
els—with parameter-efficient tuning. As standard finetun-
ing of models larger than 100B requires a high number
of accelerators with the right interconnects often too ex-
pensive even for many industry labs, parameter-efficient
tuning (a.k.a. continuous or soft “prompt tuning”) shows
that only updating a small subset of model parameters can
reach comparable performance as fully tuning all model
parameters (Lester et al., 2021; Vu et al., 2022; Hu et al.,
2021; see He et al., 2022 for a detailed analysis). No-
tably, Liu et al. (2022b) show that, due to the long sequence
length of few-shot ICL and that the few-shot exemplars need
to be repeatedly inferenced for evaluating every example,
parameter-efficient tuning can be computationally cheaper
and higher performing than in-context learning. Further,
Liu et al. (2022b), Vu et al. (2022), Wei et al. (2021), and
Singhal et al. (2022) collectively show that both single-task
and multi-task parameter-efficient tuning can be produc-
tively combined with instruction tuning, either before or
after regular full-model instruction tuning. This line of
work makes it easy for other researchers to build on top
of a general-domain instruction-tuned model, and collect a
custom instruction-tuning mixture for their use, e.g., with
multiple modalities (Ahn et al., 2022; Huang et al., 2022;
Xu et al., 2022) or special domains such as science and
medicine (Lewkowycz et al., 2022; Singhal et al., 2022).

Problems Addressed by Instruction Tuning & Align-
ment Techniques Instruction tuning is part of a line of
work designed to “align” language models with more use-
ful objectives and human preferences. In the absence of
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such methods, language models are known to demonstrate
toxic/harmful behaviour (Sheng et al., 2019; Liang et al.,
2021; Wallace et al., 2019), generate non-factual informa-
tion (Maynez et al., 2020; Longpre et al., 2021; Devaraj
et al., 2022), and other challenges in deployment and evalu-
ation (Zellers et al., 2019; McGuffie & Newhouse, 2020; Ta-
lat et al., 2022). Analyzing, evaluating and mitigating these
problems pose a promising direction for future work (Gao
et al., 2022; Ganguli et al., 2022). Instruction tuning war-
rants greater investigation, as it has already demonstrated
itself an encouraging remedy in reducing NLP bias metrics,
as shown in Chung et al. (2022).

B. Experimental Details

B.1. Instruction Tuning

Our instruction tuning follows the setup described in Chung
et al. (2022). For few-shot and few-shot Chain-of-Thought
prompts during finetuning our templatizing procedure gen-
erates few-shot examples with 2, 3, or 5 exemplars.

B.2. Single-Task Finetuning

For single-task finetuning, described in Section 4, our mod-
els are finetuned for 100,000 steps for all tasks. We use a
constant learning rate of 0.001, a dropout probability of 0.1,
and a batch size of 128 length-512 sequences. We save a
checkpoint every 20 steps and report test performance on
the model checkpoint corresponding to the highest valida-
tion performance. For tasks without a validation split, we
hold out 1024 training examples for validation. For tasks
without a test split, we hold out 1024 training examples
for validation and report results on the original validation
set. For PubmedQA, we do not use any of the unlabeled
and artificially generated QA instances associated with the
dataset. For CxC, we only consider the text-text portion of
the dataset, following Vu et al. (2022). For tasks with less
than 1K training examples, we report average results across
3 random seeds.

We also evaluate on certain metrics to account for label
skew in some of the datasets, as shown in Table 3.

B.3. Evaluation

For Held-In evaluations we use the validation sets from 4
question answering (QA) tasks, BoolQ, ARC Easy, ARC
Challenge, and AI2’s Middle School Science Exams, and
4 natural language inference (NLI) tasks, including ANLI
R1, R2, R3, and RTE. These datasets are contained in the
Flan 2022 finetuning collection and represent challenging
benchmarks, often used to evaluate LLMs on QA and NLI.
The Held-In score is the mean accuracy across these 8 tasks.

For the Chain-of-Thought (CoT) evaluation, we use the
mean accuracy across 5 datasets which have been prepared
with prompts which request step-by-step explanations in
their target answers: GSM8K, StrategyQA, SVAMP, Asdiv,
and CommonsenseQA.

For the Held-Out tasks, we use MMLU’s suite of 57 exams,
and BBH’s suite of 23 tasks where PaLM performed worse
than the average human annotators. MMLU tasks were
removed from the Super-Natural Instructions part of the
Flan 2022 collection at training, to ensure they were Held-
Out.

C. Input Inversion Details

Question Chain-of-Thought Answer

Question Answer Chain-of-Thought

QuestionAnswerChain-of-Thought

Question AnswerChain-of-Thought

Question AnswerChain-of-Thought

QuestionAnswer Chain-of-Thought

Inputs Targets

Figure 7: Input Inversions permutations for a Zero-Shot
Chain-of-Thought example. Each is accompanied by a corre-
sponding instruction template that prompts the model with what
the input is, and what to predict as the targets.

For the input inversion experiments we note that Flan 2021,
P3++, and Super-Natural Instructions already implicitly in-
clude tasks that have been inverted, e.g. question answering
to question or context generation. Consequently, we choose
to also create input inversions for the remaining datasets
in the Flan 2022 collection, following Chung et al. (2022)
as closely as possible, including for the Dialog, Program
Synthesis, and Chain-of-Thought tasks.

As examples: for Dialog tasks, we write template instruc-
tions asking for the previous conversational history from
the current dialog turn; for program synthesis we ask for the
coding question which the code solves; and for Chain-of-
Thought we include every permutation of the query-answer-
explanation triple, where at least one of the three appears
as the in output. An illustration of Chain-of-Thought input
inversion permutations are shown in Figure 7.

These inversions are mixed in with the existing tasks at a
rate of 30%, meaning for a Dialog task, 3 inverted examples
will be generated for every 10 regular examples. We choose
this rate for simplicity, approximately mirroring prior work,
and leave the large space of exploration for future work.
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USED IN
DATASET METRIC HELD-IN COT ST-FT H-IN ST-FT H-OUT CITATION

ARC E+C Acc X X (Clark et al., 2018)
ANLI R1+R2+R3 3-class F1 X X (Nie et al., 2020)
AI2 Mid. Science 4-class F1 X X AI2 Science Questions
BoolQ AUC-ROC X X (Clark et al., 2019)
RTE AUC-ROC X X (Bentivogli et al., 2009)
SQuAD V2 F1 X (Rajpurkar et al., 2018)
CosmosQA Acc X (Huang et al., 2019)

GSM8K Acc X (Cobbe et al., 2021)
StrategyQA Acc X (Geva et al., 2021)
SVAMP Acc X (Patel et al., 2021)
Asdiv Acc X (Miao et al., 2020)
CommonsenseQA Acc X (Talmor et al., 2019)

WANLI Acc X (Liu et al., 2022a)
MedNLI Acc X (Romanov & Shivade, 2018)
CondaQA Acc X (Ravichander et al., 2022)
PubmedQA F1 X (Jin et al., 2019)
CxC Spearman X (Parekh et al., 2021)

Table 3: Datasets used for Various Finetuning and Evaluation Experiments. ST-FT stands for Single Task Finetuning.
H-In stands for Held-In. H-Out stands for Held-Out. The chain-of-thought datasets are held-in as they are included
either in the Natural Instructions v2 or Flan submixtures of the Flan Collection. Templates for the evaluations are found
in https://github.com/google-research/FLAN/blob/main/flan/v2/templates.py—we use the
first template in the list for each dataset. For MMLU evaluation templates we follow the original settings in https:
//github.com/hendrycks/test.
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