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ABSTRACT

A common assumption in probabilistic generative models for image generation is
that learning the global data distribution suffices to generate novel images via sam-
pling. We investigate the limitation of this core assumption, namely that learning
global distributions leads to memorization rather than generative behavior. We
propose two theoretical frameworks, the Mutually Exclusive Probability Space
(MEPS) and the Local Dependence Hypothesis (LDH), for investigation. MEPS
arises from the observation that deterministic mappings (e.g., neural networks) in-
volving random variables tend to reduce overlap coefficients among involved ran-
dom variables, thereby inducing exclusivity. We further propose a lower bound
in terms of the overlap coefficient, and introduce a Binary Latent Autoencoder
(BL-AE) that encodes images into signed binary latent representations. LDH for-
malizes dependence within a finite observation radius, which motivates our γ-
Autoregressive Random Variable Model (γ-ARVM). γ-ARVM is an autoregres-
sive model, with a variable observation range γ, that predicts a histogram for the
next token. Using γ-ARVM, we observe that as the observation range increases,
autoregressive models progressively shift toward memorization. In the limit of
global dependence, the model behaves as a pure memorizer when operating on
the binary latents produced by our BL-AE. Comprehensive experiments and dis-
cussions support our investigation.

1 INTRODUCTION

Overlapping Coefficient

Figure 1: Selecting images for values in the over-
lap range is ambiguous.

Probabilistic generative models, such as Varia-
tional Autoencoders (VAEs), Generative Adver-
sarial Networks (GANs), diffusion models, and
autoregressive models have achieved remarkable
progress in image generation. A core assump-
tion is that these models, learn an image distri-
bution from which new images can be generated
via sampling (Bond-Taylor et al., 2022). How-
ever, we explore a potential limitation of this as-
sumption; namely, that learning global distribu-
tions1 results in memorization rather than gen-
erative behavior. Specifically, we focus on au-
toregressive models. For this investigation, we
introduce two theoretical frameworks. The first,
Mutually Exclusive Probability Space (MEPS), arises from the observation that deterministic map-
pings involving random variables tend to reduce the overlap coefficients inherent in the system. This
reduction makes the probability spaces of the random variables effectively mutually exclusive. The
second is the Local Dependence Hypothesis (LDH), which is motivated by an analysis of why au-
toregressive models tend to reproduce training samples. While this phenomenon is often attributed
to overfitting, we argue that it is related to the core assumption of learning global distributions. The

1By global distribution we mean the overall probability distribution that the generative model is trained to
approximate across the entire dataset.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

issue lies in differing philosophical views between the frequentist and Bayesian interpretations of
whether probability distributions objectively exist. This leads us to propose the Local Dependence
Hypothesis (LDH), which posits that generative capacity in autoregressive models arises from mod-
eling local dependence rather than global distributions.

In a trainable deterministic mapping from random variables to deterministic variables, for example, a
network that takes noise as input for image reconstruction (like VAEs, GANs, or diffusion models),
the distributions of the random variables may overlap. In such cases, observations from different
optimization steps within the overlap region may be optimized toward inconsistent targets. This is
especially true when training for many epochs. Consequently, such inconsistent optimization tar-
gets raise the lower bound of the entire mapping system (Theorem 3.3), thereby degrading mapping
fidelity (specifically, reconstruction quality). As shown in Fig. 1, observations from overlapping
ranges confuse the final optimization target. When the random variables are also parameterized
for optimization, the learning dynamics tend to diminish such overlapping ranges, and the means
of these random variables are pushed apart (Theorem 3.5). Exclusivity thus emerges. This obser-
vation motivates the formulation of the Mutually Exclusive Probability Space (MEPS) (Definition
3.1). Leveraging this exclusivity, we propose the Binary Latent Autoencoder (BL-AE), which en-
codes images into binary latent representations. However, when feeding the learned binary latents
into PixelCNN (van den Oord et al., 2016), a widely used autoregressive model, the network often
reproduces training samples. This motivates our concern that learning global distributions leads to
memorization. To investigate this possibility, we propose the Local Dependence Hypothesis (LDH),
which is formalized by assuming a bounded dependence radius for autoregressive models (Assump-
tion 4.1). Based on LDH, the γ-Autoregressive Random Variable Model (γ-ARVM) is proposed,
which is an autoregressive model with a variable observation range γ. In addition, given the subtle
presence of MEPS in autoregressive models (Sec. 4.2), the proposed γ-ARVM outputs histograms
describing the distribution of the next token rather than a label like PixelCNN. The main contribu-
tions of this work are:

• We propose the Mutually Exclusive Probability Space (Definition 3.1) by observing ex-
clusivity in an optimizable deterministic mapping system from random variables to de-
terministic targets. Based on this exclusivity, the Binary Latent Autoencoder (BL-AE) is
introduced. In particular, by injecting noise into the outputs of activation functions with
limited support width, the model learns signed binary latents, which are naturally used as
tokens for autoregressive models. Moreover, MEPS can also be applied to revise the priors
of generative models such as VAEs (Sec. A.1.1) for improving fidelity.

• We propose the Local Dependence Hypothesis (LDH) (Assumption 4.1) to investigate a
potential limitation in the core assumption of probabilistic generative models; namely, that
learning global latent distributions may lead to memorization rather than generative behav-
ior. In particular, the γ-Autoregressive Random Variable Model is proposed. Unlike previ-
ous autoregressive models that typically imply global dependence, the proposed γ-ARVM
has a variable observation range γ. Using γ-ARVM, we observe that as the observation
range increases, autoregressive models progressively shift toward memorization (Sec. 5.2).

2 RELATED WORK

Probabilistic generative models have achieved remarkable progress across a range of applications.
A core assumption is that models learn a data distribution from which new content can be generated
via sampling (Bond-Taylor et al., 2022). For example, Variational Autoencoders (VAEs) (Kingma
& Welling, 2014) assume a Gaussian prior over latent variables and maximize the evidence lower
bound (ELBO) to approximate the true posterior. Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) employ an adversarial objective, wherein a generator and a discriminator are
trained in opposition. Despite ongoing debate regarding whether GANs learn the true data distribu-
tion (Arora et al., 2018; Chen et al., 2022), empirical results demonstrate the effectiveness of GANs
in image generation (Lee et al., 2025). Diffusion models (Ho et al., 2020b), or score-based models
(Song et al., 2020), learn to generate data by reversing a diffusion process through score-function
estimation. Autoregressive models (Chen & Pan, 2025; Cheng et al., 2025) factorize the joint dis-
tribution into a product of conditionals and are usually combined with discrete latent quantization
methods such as VQ-VAE (van den Oord et al., 2017). There are also other generative models such
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as energy-based models (Gao et al., 2021) and normalizing flows (Tabak & Turner, 2013; Papa-
makarios et al., 2019; Stimper et al., 2022; Vuckovic). Most of these models share a fundamental
assumption that learning a global distribution—whether over data or latent representations—is often
traced back to the manifold hypothesis (Bengio et al., 2013). In this work, we propose the Mutually
Exclusive Probability Spaces (MEPS) and the Local Dependence Hypothesis (LDH) to explore a
potential limitation of this assumption.

Although our MEPS framework is newly proposed, the underlying principle can be observed in sev-
eral previous works. For example, the inconsistent optimization target is related to the optimization
inconsistency in β-VAE (Higgins et al., 2017), where the weights of the KL loss and the reconstruc-
tion loss are controlled by user-defined parameters. Burgess et al. (Burgess et al., 2018) explain
this inconsistency through the information bottleneck, while Lucas et al. (Lucas et al., 2019) sug-
gest that it leads to posterior collapse. Recent work (Michlo et al., 2023) has also discussed the
disentanglement of the reconstruction loss. Moreover, the inconsistency can also be observed in
the “prior hole” problem (Aneja et al., 2021; Xiao et al., 2020; Nalisnick et al., 2018), consider-
ing that a single Gaussian prior is insufficient for modeling complex data distributions (Vahdat &
Kautz, 2020). In contrast, Gaussian Mixture VAEs (GMVAEs) (Dilokthanakul et al., 2016; Yang
et al., 2019; Guo et al., 2020) replace the standard prior with a mixture of Gaussians, which reduces
the overlap between the distributions of different latent variables, thereby alleviating the optimiza-
tion inconsistency. In this work, we mathematically demonstrate the exclusivity of these probability
spaces and propose the Binary Latent Autoencoder (BL-AE).

The Local Dependence Hypothesis (LDH) can be viewed as an extension or improvement of the
global dependence implicitly assumed in most autoregressive models (van den Oord et al., 2016).
Typically, autoregressive models imply global dependence, since they factorize the joint distribution
into full-context conditionals. However, there are also autoregressive models that incorporate local
patterns (Mao et al., 2024; Cao et al., 2021), most of which were proposed primarily to reduce com-
putational complexity. For example, Cao et al. (Cao et al., 2021) proposed a Local Autoregressive
Transformer that restricts attention regions to accelerate inference. In contrast, our work is, to the
best of our knowledge, the first to systematically argue that learning the global distribution can lead
to memorization. Unlike prior work that devises attack methods to extract training samples from
pre-trained large models such as Stable Diffusion (Ross et al., 2025; van den Burg & Williams,
2021; Kowalczuk et al., 2025; Kasliwal et al., 2025; Yu et al., 2025), our LDH serves as a theoretical
framework to examine this foundational assumption in autoregressive models.

3 MUTUALLY EXCLUSIVE PROBABILITY SPACES

3.1 THEORETICAL FOUNDATIONS

Definition 3.1 [Mutually Exclusive Probability Space (MEPS)]. Let Z̃ = {z̃i}Ni=1 be a set of
random variables with densities {pz̃i

(z)}Ni=1. Let X = {xi}Mi=1 be a set of deterministic variables
with M ≤ N . For each pair (i, j), the overlap coefficient between z̃i and z̃j is:

OC(z̃i, z̃j) =

∫
min

(
pz̃i(z), pz̃j (z)

)
dz. (1)

Let dϕ : Z̃ → X be a deterministic mapping. We say that (Z̃, dϕ) forms a Mutually Exclusive
Probability Space (MEPS) if:

max
i̸=j

OC(z̃i, z̃j) ≤ ε. (2)

When ε = 0, we obtain a strict MEPS (all pairwise overlaps vanish up to measure zero). When
ε > 0 is small, we obtain an approximate MEPS (pairwise overlaps are reduced to a negligible
measure). Note that strict MEPS is rare, unless otherwise stated, “MEPS” in this paper refers to the
approximate case.
Remark 3.2. The MEPS definition can be understood as a characterization of overlap coefficients
among random variables under a deterministic mapping, such as a neural network decoder. It also
reflects a training objective: learning dynamics tend to reduce pairwise overlaps, thereby pushing
the latent space closer to a strict MEPS. Thus, the definition serves both as a descriptive criterion
and as a motivation for optimization. In addition, the densities {pz̃i(z)}Ni=1 must be parameterized
by optimizable parameters. Otherwise, overlaps remain fixed and cannot diminish. Note that MEPS
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still exist in this case, but only in a fixed form. The deterministic mapping dϕ may be either trainable
or fixed.
Theorem 3.3 [Reconstruction MSE Lower Bound]. Let Z̃ = {z̃i}Ni=1 be random variables with
densities {pz̃i

}Ni=1. In particular, each random variable is obtained by injecting additive noise, i.e.,
z̃i = zi+ϵ, where for each i the noise ϵ is drawn independently from the same unimodal, symmetric
distribution. Let X = {xi}Ni=1 be deterministic targets. Suppose dϕ : Z̃ → X is a deterministic
mapping (e.g., a neural decoder). For each i, we reconstruct xi as dϕ(z̃i) and evaluate the recon-
struction error using the mean squared error (MSE). Then the mean reconstruction loss satisfies:

1

N

N∑
i=1

Eϵ

[
∥dϕ(z̃i)− xi∥2

]
≥ 1

4N2

N∑
i,j=1

OC(z̃i, z̃j) ∥xi − xj∥2. (3)

The proof is provided in Sec. A.2.1.
Remark 3.4. This lower bound implies that the average reconstruction MSE cannot approach zero
whenever the pairwise overlaps are nonzero. Consequently, the reconstructed images cannot per-
fectly match the training targets under nonzero overlap. In addition, although this lower bound is
derived under the mean squared error, a similar bound can be established for other convex loss func-
tions. This is because the constant term on the right-hand side arises from the convexity inequality
and is independent of the overlap coefficient.
Theorem 3.5 [Mutual Exclusivity Theorem]. Let pz̃i

and pz̃j
be unimodal and symmetric densities

centered at means zi, zj ∈ Rd. Then minimizing the expectation of overlap coefficient satisfies:

argmin
zi,zj

Eϵ[OC(z̃i, z̃j)] ⇒ argmin
zi,zj

Eϵ[OC(zi + ϵ, zj + ϵ)] ⇒ argmax
zi,zj

1

N2

∑
i,j

∥zi − zj∥2. (4)

The proof is provided in Sec. A.2.2
Remark 3.6. Reducing pairwise overlaps under training dynamics forces the random variables to
separate in expectation, thereby encouraging the formation of mutual exclusivity between random
variables whose distributions exhibit overlap.
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Figure 2: VAE, GAN, and diffusion models are
correlated by different assumptions introducing
the overlap coefficient (OC) in the mutually ex-
clusive probability space.

MEPS in VAEs, diffusion models and GANs:
MEPS exist in a wide range of probabilistic gen-
erative models, including VAEs, diffusion mod-
els, GANs, and even autoregressive models. The
presence of MEPS implies that reconstructed
images cannot perfectly match training samples,
which effectively prevents overfitting. How-
ever, this also degrades reconstruction fidelity
and thus leads to lower generation quality. Since
probabilistic generative models aim to approxi-
mate the data distribution, the trade-off between
memorization and generalization becomes criti-
cal. The overlap coefficient (OC), which char-
acterizes MEPS, provides a natural measure of
this trade-off. As shown in Fig. 2, diffusion
models apply a fixed noise schedule, resulting
in a fixed OC. VAEs involve a competition be-
tween the KL term and the reconstruction loss,
yielding a variable OC (typically less than 1). In
contrast, GANs sample directly from noise with-
out explicit latent constraints, effectively corre-
sponding to an OC of 1 (Sec. A.2.3). As a result,
diffusion models tend to be the easiest to train,
while GANs are generally the most difficult. Moreover, according to our Theorem 3.3, a lower
overlap coefficient in the Mutually Exclusive Probability Space leads to lower reconstruction qual-
ity, which in turn typically results in better FID scores, due to the memorization . Based on this
observation, the fidelity of generated images (a better FID) can be improved by choosing priors that
induce a lower overlap coefficient. For example, in VAEs, a Gaussian prior with a smaller variance

4
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σ achieves better FID values (Sec. A.1.1). While such behavior may reduce diversity, generative
modeling is essentially a trade-off between fidelity and diversity. Furthermore, by revising the prior
assumptions of VAEs (Sec. A.1.2) , GANs (Sec. A.1.3), and diffusion models (Sec. A.1.4), one can
deliberately drive these models toward memorization behavior, which highlights the significance of
MEPS in studying the memorization properties of generative models.

3.2 BINARY LATENT AUTOENCODER

The Binary Latent Autoencoder is a practical application leveraging the exclusivity in MEPS. We
employ an activation function with a bounded output range, such as the hyperbolic tangent (tanh).
Then, noise from a symmetric bounded distribution is injected into the activation function’s out-
put, thereby extending the output into random variables, with the motivation to form MEPS. Due to
exclusivity, the network implicitly pushes these latent variables toward distinct, non-overlapping re-
gions at the limits of the tanh activation (±1). As training proceeds2, the activation outputs converge
to binary values {−1, 1}, resulting in an autoencoder with discrete signed binary latents. Mathemat-
ically:

BL-AE(xi; θ, ϕ) =
∑
xi∈X

∥dϕ(ψ(eθ(xi)) + σ · ϵ)− xi∥2, (5)

where ψ(·) is the activation function. dϕ, eθ denote the decoder and the encoder with ϕ and θ as their
parameters. xi denotes an image from dataset X. ϵ is a noise following a distribution with unimodal
and symmetric densities, such the Gaussian distribution, or the generalized triangular distribution
(GTD):

ϵ ∼ Tri(κ) =

{
(1− uκ), if u > 0+

(|u|κ − 1), if u < 0−,
(6)

where u ∼ U(−1, 1) is the uniform distribution from -1 to 1. The parameter κ controls the sharpness
of the distribution. The proposed BL-AE works well to learn quantization tokens. This is naturally
suitable for autoregressive models. Thus, we input the tokens from BL-AE into autoregression,
and the memorization appears, which motivated us to propose the local dependence hypothesis for
further investigation.

4 LOCAL DEPENDENCE HYPOTHESIS

4.1 THEORETICAL FOUNDATIONS

Assumption 4.1 [γ-Local Dependence Assumption (γ-LDA)]. Let {z̃i}Ni=1 be random variables.
Fix a radius parameter γ > 0 under a given distance metric d(·, ·). We assume that the mutual
information between variables is bounded by a tolerance ε:

d(z̃i, z̃j) > γ ⇒ I(z̃i; z̃j) ≤ ε. (7)
Thus, γ defines a bounded dependence radius. Beyond this radius, dependencies vanish up to ε-
tolerance, while within it, dependencies can be arbitrary. When ε = 0, we obtain a strict LDA,
where exact independence holds outside radius γ. When ε > 0 is small, we obtain an approximate
LDA, where long-range dependencies are reduced to negligible levels.
Remark 4.2. The γ-LDA hypothesis is conceptually related to the n-gram assumption in language
modeling, as both impose locality by restricting the range of dependencies. The n-gram assumption
relies on a fixed-size window to truncate dependencies, primarily for natural language sequences. In
contrast, γ-LDA controls locality through mutual information with tolerance, making it applicable
to more general settings such as images and other high-dimensional data. Therefore, γ-LDA can be
regarded as a generalization of the n-gram assumption. Our γ-LDA is used to generalize autoregres-
sive models. When the radius parameter γ is greater than or equal to the sequence length, it reduces
to standard autoregressive models such as PixelCNN (van den Oord et al., 2016). When the radius
parameter γ is smaller than the sequence length, it effectively yields a local autoregressive model.
Thus, a variable observation range autoregressive model can be written as:

p(Z) =

N∏
i=1

p(zi | z<i) ⇒ p(Z) =

N∏
i=1

p(zi | z[i−γ,i)). (8)

2Adding noise to the latent variables remains differentiable via the reparameterization trick, which allows
gradients to pass through the stochastic sampling process.
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4.2 γ-AUTOREGRESSIVE RANDOM VARIABLE MODEL

Unlike previous common autoregressive models in image generation that imply global dependence,
the γ-Autoregressive Random Variable Model (γ-ARVM) is based on our γ-LDA, with variable
observation ranges. Moreover, the output of the proposed γ-ARVM also differs from regular masked
architectures such as PixelCNN or Transformer,3 where both the input and the output are sequences
of tokens. In our γ-ARVM, the input is token sequences within an observation range γ. The output of
the proposed γ-ARVM is a histogram that describes the distribution of the next token. Hence, before
training, the token distribution conditioned on the observation range γ is captured in a statistical
manner.

q(Z)=

N∏
i=1

q(zi | z[i−γ,i))=

N∏
i=1

P(zi=k | z[i−γ,i)=g)=

N∏
i=1

∑N
n=1 1[z

(n)
i =k] · 1[z(n)[i−γ,i)=g]∑N
n=1 1[z

(n)
[i−γ,i)=g]

,

(9)
where 1(·) is the indicator function. k and g are specific values of output token and input token
sequences. After capturing the training instances, the KL-divergence is used as the loss function:

L(p(Z), q(Z)) =
N∑
i=1

∫
q(z|z[i−γ,i)) log

q(z|z[i−γ,i))

p(z|z[i−γ,i))
dz. (10)

MEPS in Autoregressive Model: The main reason we do not follow the common sequence-to-
sequence training paradigm is to handle the subtle MEPS in previous autoregressive models. From
the mathematical definition of autoregression in the left part Eq. 8, MEPS does not appear to exist.
However, in practical implementations, MEPS inevitably emerges. The same input sequence may
map to different next tokens, creating an inconsistent target that induces a non-vanishing lower
bound for the cross-entropy loss. For example, consider the two binary sequences (0, 0, 1, 0) and
(0, 0, 0, 0). From the first sequence, we obtain the mapping (0, 0) → 1, while from the second we
obtain (0, 0) → 0. This condition forces an overlap that cannot vanish, preventing the loss from
approaching zero. Our proposed ARVM addresses this issue by predicting a histogram of the output
label, e.g., (0, 0) → q(y | (0, 0)) = [p0, p1] = [0.5, 0.5]. In this way, the γ-ARVM can reduce
the loss to extremely small values (e.g., 10−6), much smaller than those of sequence-to-sequence
models such as PixelCNN. As a result, we are able to observe pure memorization conditions, which
supports our claim that learning the global distribution tends to lead to memorization rather than
genuine generative behavior. While this phenomenon is frequently described as overfitting, one may
argue that, in strict logical terms, the concept is somewhat redundant. This is because a near-zero
loss naturally signifies optimization with respect to the chosen objective (Sec. A.1.5).

5 EXPERIMENTS

5.1 MUTUALLY EXCLUSIVE PROBABILITY SPACE

5.1.1 MUTUAL EXCLUSIVITY THEOREM

CIFAR-10MNIST

Triangular Noise

meanDist

minDist

recMSE

Gaussian Noise

meanDist

minDist

recMSE

meanDist

minDist

recMSE

meanDist

minDist

recMSE

CIFAR-10MNIST

Figure 3: Demonstration of the mutual exclusivity theorem on the MNIST and CIFAR-10 datasets
with Gaussian and triangular noise.

We demonstrate the exclusivity in MEPS on MNIST and CIFAR-10 datasets with Gaussian and tri-
angular noise settings, to support the generalization of MEPS. In practice, the computation of overlap

3Both rely on masking to enable parallel training in autoregressive models.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

coefficient (OC) in high dimensions is extremely expensive. Thus, we adopt an indirect approach
by scaling the variance parameter σ. Increasing the value of σ consistently increases the overlap for
Gaussian and triangular distributions. In particular, a straightforward autoencoder for image recon-
struction with the architecture described in Tab. 4 is utilized. During training, we inject noise into
the latent variables zi to create random variables z̃i following different distributions (Gaussian and
Triangular). Since mean squared error is used for reconstruction, the decoder becomes a determinis-
tic mapping from latent random variables to deterministic targets (the ground-truth images). MEPS
thus emerges, and these latent random variables become mutually exclusive. For demonstration, the
MSE loss, the minimum distance between pairs of latents, and the average distance between the
means of latent pairs are plotted in Fig. 3. Note that all curves are min–max normalized to [0, 1]
for visualization, with normalization details provided in Tab. 6. It is clear that the average distance
between the means zi and zj of the latent variables z̃i and z̃j increases as the MSE decreases with
an increasing number of training epochs. This behavior is consistent with the Mutual Exclusivity
Theorem (Theorem 3.5).

5.1.2 RECONSTRUCTION MSE LOWER BOUND THEOREM

Figure 4: Ablation experiments of the lower
bound with respect to the overlap coefficient,
controlled by the noise standard deviation σ, on
MNIST and CIFAR-10 with Gaussian and trian-
gular noise.

To further demonstrate the Reconstruction MSE
lower bound, we fix the parameters of encoders
in the previous section (Sec. 5.1.1), and in-
crease the intensity of noise for ablation experi-
ments. Specifically, we multiply the noise by a
σ value of [0.5, 1.0, 1.5, 2.0, 2.5, 3.0], and then
retrain the decoder with a sufficient number of
epochs. When the value of σ increases, the over-
lap coefficient increases as well. Then based on
Theorem 3.3, the lower bound of the reconstruc-
tion error increases and leads to a decrease in
reconstruction quality. Thus, the plot of σ and
average reconstruction quality evaluated by Peak
Signa-to-Noise Ratio (PSNR) is demonstrated in
Fig. 4. We can clearly observe the monotonic
trend as σ increases, the reconstruction quality
decreases, which is consistent with the Recon-
struction MSE Lower Bound Theorem.

5.1.3 BINARY LATENT AUTOENCODER

PSNR = 26, brate=97%PSNR = 10, brate=0% PSNR = 17, brate=23% PSNR = 19, brate=68% PSNR = 21, brate=81%

1 epochs 1000 epochs 2000 epochs 3000 epochs 10000 epochs

Figure 5: Demonstration of the binary rate of latent values (brate) and reconstruction quality under
Peak Signal-to-Noise Ratio (PSNR) across training epochs. The histogram of latent values is illus-
trated on the second row.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Reconstructed Images Binary Latents

Figure 6: Qualitative evaluation of the proposed BL-AE on CIFAR-10 and 1k images subset of
ImageNet.
Our Binary Latent Autoencoder (BL-AE) has a few advantages compared to existing State-of-the-
Art Autoencoders for latent representation extraction, such as VQ-VAE (van den Oord et al., 2017),
DC-AE (Chen et al., 2024), and SD-VAE (Rombach et al., 2022). First, BL-AE is able to capture
discrete binary latent representations using a single reconstruction loss function (e.g., mean squared
error). In contrast, VQ-VAE relies on an additional K-means clustering to learn a codebook. For
demonstration, the values of latent variables converge to signed binary during training, as shown in
Fig. 5. This is because our BL-AE is based on the Mutually Exclusive Probability Space. Second,
the reconstruction quality of the proposed BL-AE correlates monotonically with the overlapping
coefficient, which can be easily controlled by a parameter describing the intensity of noise, such as
σ (Fig. 4). Last but not least, as the latent values are binary, the latents provided by the proposed
model require significantly less memory. As shown in Tab. 1, the total number of bits for DC-AE
is 8× 8× 32× 32 = 65, 536 bits, whereas BL-AE only needs 16× 12× 1 = 192 bits. To further
illustrate the visualization results, we encode subsets of the CIFAR and ImageNet datasets using
latent sizes of 16× 16× 1 and 64× 64× 1, respectively. The qualitative results of our binary latent
representation are shown in Fig. 6.

Table 1: Comparison between the proposed Binary Latent Autoencoder with state-of-the-art Au-
toencoders including DC-AE (Chen et al., 2024) and SD-VAE (Rombach et al., 2022) in CIFAR-10
dataset.

Method Latent Shape rFID ↓ PSNR↑
DC-AE1 8× 8× 32× 32 bits 1.08 26.41
DC-AE2 4× 4× 128× 64 bits 2.30 28.71
SD-VAE1 8× 8× 32× 32 bits 6.81 19.01
SD-VAE2 4× 4× 128× 64 bits 8.53 22.34

Our BL-AE 4× 4× 12× 1 bits 0.006 38.12

5.2 LOCAL DEPENDENCE HYPOTHESIS

FID=0.56,  γ=7, rate=1.0FID=31, γ=5, rate=0.73FID=67, γ=3, rate=0.04
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Figure 7: Images generated by our ARVM with observation range γ=7, 5, and 3.

The main focus of this paper is to investigate whether learning global distribution leads to mem-
orization. We propose LDH as the mathematical framework for our γ-ARVM. The proposed γ-
ARVM is able to learn distributions with a variable observation range γ. We, therefore, have the
theoretical and experimental tool for our investigation. We first capture latents by our BL-AE with
the architecture in Tab. 5, with the latents of size N × 8 × 4 × 4. In particular, the CIFAR-10
dataset is utilized. Then by setting the observation ranges as 3, 5, and 7, we observe that ARVM
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becomes a pure observation model, which achieves very good FID values (Sec. A.3). The results
are shown in Fig. 7. For each observation range setting, we compute the memorization rate. In
particular, for every generated image, we compute PSNR with its closest training image. When
the PSNR value is greater than 30, we consider that they are the same image, following common
practice in image quality assessment. Hence, we also utilize the PixelCNN (van den Oord et al.,
2016) to reproduce our experiments, with a popular implementation on GitHub. The results are
shown in Fig. 8. In particular, when we first directly input the latents into PixelCNN, we did
not observe a strong memorization, which is the result of PixelCNN (v1). We then double the
network’s parameters and reduce the number of images to 1k, with the same architecture. Pix-
elCNN (v2) also becomes a memorization model. Since both the ARVM and PixelCNN achieve
the same conclusion, our concern that learning global distribution tends to lead to memorization
rather than generative behavior is verified. We further evaluate memorization on high-resolution
datasets, including 1k images from ImageNet and CelebA-HQ. Considering the computational cost,
we directly increase the observation range to the global distribution. In this setting, memoriza-
tion emerges prominently, with over 90% memorization rate and competitive FID scores (Tab. 3).

Figure 8: Demonstration of memorization rate
with respect to the observation range γ given val-
ues of 3, 5, 7.

5.3 ON THE NATURE OF DISTRIBUTIONS

The main reason for memorization in autore-
gressive models stems from a deeper philosoph-
ical question about the nature of probability dis-
tributions: what is a distribution? Is it an objec-
tive reality, or merely a subjective belief? The
frequentist perspective views probability distri-
butions as objective realities, defined by the
long-run frequencies with which events occur
over time. Thus, subjective prior assumptions
should be strictly controlled, with minimal hu-
man intervention. From this standpoint, memo-
rization is not a flaw, but rather a faithful reflec-
tion of the empirical distribution observed from
finite data, and arguably the best available ap-
proximation to the true distribution. Autoregressive models embody this frequentist perspective.
However, in practical engineering, memorization is typically something to be avoided, and artificial
prior assumptions are often introduced. This aligns with the Bayesian view, which treats proba-
bility distributions as subjective beliefs. Bayesian methods are therefore more flexible with prior
assumptions, which is one of the main reasons why VAEs, GANs, and diffusion models employ a
prior sampling distribution. For example, Gaussian priors in VAEs and diffusion models. Unfor-
tunately, the reliance on prior assumptions introduces a high degree of subjectivity, and potentially
even bias, into the evaluation and comparison of models. Under such circumstances, a clear gap
emerges between scientific objectivity and engineering subjectivity. The proposed Local Depen-
dence Hypothesis (LDH) can serve as a bridge to this gap. Since locality is assumed, autoregressive
models are still able to perform generation rather than memorization.

6 CONCLUSION

In this work, we proposed two theoretical frameworks: 1) Mutually Exclusive Probability Space
(MEPS) and 2) the Local Dependence Hypothesis (LDH). These frameworks were designed to in-
vestigate a potential limitation in probabilistic generative modeling; namely, learning global dis-
tributions tends to result in memorization rather than true generation. In particular, we focus on
autoregressive models. MEPS motivated the development of the Binary Latent Autoencoder (BL-
AE), which encodes images into binary latent representations. These representations serve as input
to our Autoregressive Random Variable Model (ARVM), which can be configured to model either
global distributions or local dependences. When trained to model global distributions, ARVM be-
comes a memorization model. In contrast, when local dependences are emphasized, ARVM exhibits
generative behavior, producing novel images by recombining learned features. Comprehensive ex-
periments and discussions were conducted to support our hypotheses.

9
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7 ETHICS STATEMENT

This work does not present any ethical concerns. The datasets used are publicly available and contain
no sensitive information.

8 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. The network architectures utilized
in this paper are provided in Tab. 4 and Tab. 5. raw data for normalization is provided in Tab. 6.
Details of the experimental setup are described in Sec. A.3.1. Proofs of the mathematical derivations
are presented in Sec. A.2. Source code and running scripts will be released upon acceptance of this
paper.
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A APPENDIX

A.1 DISCUSSION

A.1.1 IMPROVING VAE WITH SMALLER STANDARD DEVIATION IN GAUSSIAN PRIOR

Based on the proposed Theorem 3.3, the reconstruction quality is closely related to the lower bound
with respect to the overlap coefficient. An easy way to reduce the overlap coefficient is to use
a smaller standard deviation σ; since with decreasing σ, the latent spaces will have more room to
tolerate the overlap coefficient. To demonstrate this, we utilize a standard VAE implementation from
GitHub, and gradually reduced the σ of noise. Note that all other parts are kept invariant, including
random seeds, optimization methods, and training epochs, etc. In particular, the MNIST dataset is
utilized for evaluation. As shown in Fig. 9, the generation quality of the VAE increases with the
decrease of σ.

Figure 9: The generation quality of Variational Autoencoder can be improved by using a smaller
standard deviation σ in the Gaussian prior.

A.1.2 MEMORIZATION IN VARIATIONAL AUTOENCODER MODELS

The fundamental assumption of VAEs is to encode image distribution into a latent distribution, with
the ELBO used for optimization. The overlap coefficient in VAEs varies depending on the balance
between the KL loss and the reconstruction loss. To adjust the overlap coefficient, we replace Gaus-
sian noise with triangular noise and constrain the latent variables using the tanh function, ensuring
that values in the latent space remain within the range [−1, 1]. Then by setting the σ = 1, we create
a condition that each dimension of latent space is able to include 2 different latent random variables
without creating MEPS. More specifically, two latent random variables centered at -1 and 1, with
sigma as 1, so there are no overlap between the distributions of these two latents random variables.
With the increase in the number of dimensions, the total possible number of random variables with-
out OC becomes 2M , where M is the number of dimensions. As the number of dimensions increases,
we obtain the results shown in Fig. 10. In the low-dimensional case, since the total space for the
overlap coefficient is insufficient, the reconstruction is not similar to the training images. However,
with an increasing number of dimensions, the reconstructed images gradually become closer to the
training images.

A.1.3 MEMORIZATION IN GENERATIVE ADVERSARIAL NETWORK

The overlap coefficient in Generative Adversarial Network is 1, since the input of generator is pure
noise. In this condition, the GAN can be considered a mapping from latent variables shared the
same expectation which is usually 0. Our idea to reduce overlap coefficient in GANs is to extend the
input noise from a single distribution to a mixture distribution, such as a Gaussian mixture. More-
over, the means of Gaussian components are also parameterized to optimizable. During training,
both the parameters of Gaussians, generator and discriminator are updated. We utilized 1k images
from CIFAR-10 for experiments, with 20000 epochs used for training. In particular, the standard
implementation in PyTorch of GAN is utilized. Expected extending the input from pure noise into
optimizable Gaussians, all the remaining parts are kept invariant. The resulting figure is shown in
Fig. 11. The loss of generator and discriminator are quite common compared to regular GANs, but
every generated images are very similar to training images.
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Training Images
Reconstructed 

Images
Resampled Images Nearest Images

Figure 10: By using a triangular distribution and limiting the values of latent samples in range
[−1, 1] it is easy to create continuous probabilistic fields in high dimensional space. All samples in
this fields will generate images that are very similar to training images.

A.1.4 MEMORIZATION IN DIFFUSION MODELS

The easiest way to control the level of overlap coefficient is by reducing the number of training
images. Therefore, we trained the DDPM Ho et al. (2020a) model on the CIFAR-10 dataset with
varying numbers of training images: 16, 256, 1024, 2048, and 5120. To limit the fitting ability,
we adopt a U-Net with only 9.27M learnable parameters as the backbone network for DDPM. The
experiments are shown in Fig. 12. Specifically, the first row displays the generated results from
trained models with varying numbers of training images: 16, 256, 1024, 2048, and 5120. The
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Figure 11: By extending the input of generator from pure noise to optimizable mixture of Gaussians
noises, the GANs also tend to degrade into a memorization model.

second row shows the corresponding similar images in the training set. We employ the Structural
Similarity Index (SSIM) to find the most similar images. As shown in Fig. 12, when the number
of training images is 16, the diffusion model always outputs training images. When the number
of training images increases to 1024, we can only see a few differences in the details. When the
training images further increase to 5120, the diffusion model demonstrates images that are close to
image fusion.

NOI: 16 NOI: 256 NOI: 1024 NOI: 5120NOI: 2048

Figure 12: The DDPM model trained by different Number of Images (NOI). The images in the
first row are generated images, while the images in the second row are the closest original images
determined by Structural Similarity Index. We can observe that as the size of the training dataset
increases, the generated images become less and less similar to the original images.

A.1.5 OVERFITTING DISCUSSION

The original purpose of overfitting is to describe the gap between training and testing performance,
which reflects generalization ability. In generation tasks, however, there is no single gold-standard
target for a test set, although generalization can still be assessed on held-out data via proxy metrics
(e.g., likelihood, FID, human evaluation). Consequently, equating overfitting with mere memoriza-
tion is intuitively appealing but not strictly correct. Moreover, considering that the target of an
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autoregressive model is to fit the empirical distribution, a vanishing training loss on finite data often
increases the risk of memorization. Thus, some methods deliberately avoid over-optimization of
the training objective as a form of regularization aimed at improving generalization performance.
Unfortunately, from a mathematical-logical perspective, given that a loss function is designed to
measure the discrepancy between a model and its target, the natural interpretation is that the global
optimum corresponds to the loss approaching zero. In such a case, achieving zero loss should indi-
cate that the model has perfectly captured the target distribution. However, in practice, the notion of
overfitting is often introduced to suggest that a vanishing training loss reflects memorization rather
than generalization. This raises a conceptual tension: if zero is not regarded as the true optimum,
then how should one define the boundary between acceptable convergence and overfitting? Is ap-
proaching zero asymptotically still problematic, or only reaching it exactly? From this perspective,
overfitting appears less as a logically necessary concept.

A.1.6 FID COMPARISON FAIRNESS

A common concern could be the fairness of comparing the proposed ARVM with state-of-the-art
generative models. Practically, it is true that such a comparison is “unfair,” since the FID results of
the proposed approach essentially come from memorization, while there is clear evidence that SOTA
methods like diffusion are capable of generating novel images. However, from a mathematical-
logical perspective, since no prior images are explicitly involved in the sampling steps, the FID of
the proposed ARVM is still comparable. Logically speaking, even a purely memorization-based
model still fits the minimal definition of a generative model. Of course, our goal is not to argue
over semantics. The true issue lies in the evaluation metric: FID is insensitive to memorization.
Moreover, since the proposed approach is basically an autoregressive model, there is no evidence to
disprove that the FID reported by SOTA methods is not also benefiting from memorization, espe-
cially in autoregressive settings. Indeed, numerous recent works point to memorization in various
generative paradigms, including diffusion (Carlini et al., 2023) and autoregressive models (Kowal-
czuk et al., 2025; Kasliwal et al., 2025; Yu et al., 2025). Ultimately, the main focus of the proposed
approach is not to “beat” SOTA methods, but to encourage critical reflection on the core assumptions
underlying generative modeling.

A.2 MATHEMATICAL DERIVATION

A.2.1 PROOF OF RECONSTRUCTION MSE LOWER BOUND IN THEOREM 3.3

Given a set of images X = {xi}Ni=1, encoder eθ and decoder dϕ. Let zi = eθ(xi) and inject
symmetric, unimodal noise to obtain z̃i = zi + ϵi with density pz̃i

(·). For any pair (i, j) define:

p(i,j)m (z) = min
(
pz̃i(z), pz̃j (z)

)
. (11)

Then:

1

N

N∑
i=1

E
[
∥d(z̃i)− xi∥2

]
=

1

2N2

N∑
i=1

N∑
j=1

(
E∥d(z̃i)− xi∥2 + E∥d(z̃j)− xj∥2

)
=

1

2N2

∑
i,j

(∫
pz̃i

(z)∥d(z)− xi∥2 dz+
∫
pz̃j

(z)∥d(z)− xj∥2 dz
)

=
1

2N2

∑
i,j

∫
p(i,j)m (z)

(
∥d(z)− xi∥2 + ∥d(z)− xj∥2

)
dz

+
1

2N2

∑
i,j

ζij(Z,X),

(12)
where the expression of ζij(Z,X) is:

ζij(Z,X) :=

∫ (
pz̃i

(z)−p(i,j)m (z)
)
∥d(z)−xi∥2 dz+

∫ (
pz̃j

(z)−p(i,j)m (z)
)
∥d(z)−xj∥2 dz. (13)

Let Aij = {z : pz̃i
(z) ≥ pz̃j

(z)} and Bij = A∁
ij . On Aij , pz̃i

− p
(i,j)
m = pz̃i

− pz̃j
≥ 0 and

pz̃j − p
(i,j)
m = 0; on Bij , the roles swap. Since the weights are nonnegative and the squared terms
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are nonnegative, we have:

ζij(Z,X) ≥ 0 .

By the parallelogram inequality,

∥d(z)− xi∥2 + ∥d(z)− xj∥2 ≥ 1
2∥xi − xj∥2, (14)

hence:

1

N

N∑
i=1

E
[
∥d(z̃i)− xi∥2

]
≥ 1

4N2

∑
i,j

∥xi − xj∥2
∫
p(i,j)m (z) dz +

1

2N2

∑
i,j

ζij(Z,X). (15)

Since
∫
p
(i,j)
m (z) dz = OC(z̃i, z̃j) and ζij ≥ 0, we obtain the lower bound

1

N

N∑
i=1

E
[
∥d(z̃i)− xi∥2

]
≥ 1

4N2

N∑
i,j=1

OC(z̃i, z̃j) ∥xi − xj∥2 .

Remark A.1. Although the above lower bound is derived under the squared error loss, the key
structure does not rely on the specific quadratic form. The overlap coefficient OC(z̃i, z̃j) arises
solely from the probabilistic overlap of the perturbed latent codes and is independent of the loss.
The constant factor 1

2 ||xi − xj ||2 in the bound originates from the parallelogram inequality in Eq.
14, which is a consequence of the strong convexity of the squared norm. For a general convex
(or strongly convex) loss, one may obtain an analogous lower bound where the constant changes
according to the convexity parameter of the chosen loss. Thus, the phenomenon that reconstruction
error is fundamentally limited by the overlap coefficient in MEPS is not specific to the squared loss,
but extends to a broader family of convex losses.

A.2.2 PROOF OF MUTUAL EXCLUSIVITY IN THEOREM 3.5

The expression of Theorem 3.5 is shown as:

argmin
zi,zj

Eϵ[OC(z̃i, z̃j)] ⇒ argmin
zi,zj

Eϵ[OC(zi + ϵ, zj + ϵ)] ⇒ argmax
zi,zj

1

N2

∑
i,j

∥zi − zj∥2. (16)

where noise ϵ is a symmetric, unimodal function with f(·) as its probability density function. There-
fore, the probability density function of z̃i and z̃j is:

pz̃i(z) = f(z− zi), pz̃j (z) = f(z− zj). (17)

Then, by plugging this expression into the overlap coefficient in Eq. 1, we have:

OC(z̃i, z̃j) =

∫
min

(
pz̃i

(z), pz̃j
(z)

)
dz =

∫
min (f(z− zi), f(z− zj)) dz. (18)

Since f is symmetric and radially unimodal (e.g., Gaussian), the overlap coefficient OC(z̃i, z̃j)
depends solely on the Euclidean distance dij = ∥zi − zj∥. Then we have:

OC(z̃i, z̃j) = h(∥zi − zj∥), (19)

where h(·) is a strictly decreasing function. Therefore, minimizing the sum of all pairwise overlaps
is equivalent to minimizing the sum over all h(dij). Since h(·) is strictly decreasing, this objective
is effectively enforced by maximizing the pairwise distances dij = ∥zi − zj∥. Theorem 3.5 is thus
proved.

Remark A.2. This proof shows that minimizing overlap between symmetric, unimodal latent dis-
tributions is mathematically equivalent to maximizing their pairwise distances. The main limitation
of this proof is the reliance on symmetric, unimodal assumptions, which may not extend to more
complex or multimodal priors. However, as the noise is usually injected into the elements of tensors,
such a proof is sufficient for analyzing our MEPS in variable generative models like VAEs, GANs,
and diffusion.
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A.2.3 ON THE MONOTONICITY OF OC WITH RESPECT TO SCALE

For the two distributions we use (Gaussian and symmetric triangular), the overlap coefficient (OC)
between two shifted copies with fixed mean separation ∆ increases monotonically with the scale
parameter σ.

Gaussian case: For X ∼ N (µ1, σ
2) and Y ∼ N (µ2, σ

2) with ∆ = |µ1 − µ2|, the overlap
coefficient is

OC(σ,∆) = 2Φ
(
− ∆

2σ

)
, (20)

where Φ is the standard Gaussian CDF. Differentiating gives

∂OC
∂σ

= 2ϕ
(
∆
2σ

)
· ∆
2σ2 > 0, (21)

so OC increases strictly with σ.

Triangular case: For triangular distribution, we set κ = 2, centered at µ1, µ2 with half-width σ,
the overlap region is the intersection of two isosceles triangles. Its area is a quadratic function of the
overlap length, which grows linearly with σ. A direct calculation gives

OC(σ,∆) =


(
1− ∆

2σ

)2
, 0 ≤ ∆ ≤ 2σ,

0, ∆ ≥ 2σ.
(22)

Clearly, ∂OC
∂σ > 0 whenever overlap exists.

Remark A.3. Thus, in both Gaussian and triangular settings, scaling σ monotonically enlarges the
overlap for fixed ∆, justifying our use of σ as a practical proxy for controlling OC.

A.2.4 OC=1 IN GANS

For GANs, the generator input is pure noise. During training, the number of input noise vectors
usually equals the batch size, and each noise vector is mapped through the generator to produce a
fake image. In our MEPS framework, these input noise vectors can be regarded as a set of random
variables. Specifically, drawing n samples from the same distribution is equivalent to defining n
random variables that follow the same distribution with identical expectation and sampling each
once. Under this view, all input variables in GANs share the same distribution and expectation,
and thus their overlap coefficient (OC) equals 1. This situation corresponds to an extreme case in
MEPS where all random variables completely overlap. Intuitively, this means that the model lacks
any separation margin during training, making the optimization more unstable. We believe this
perspective offers an explanation for the well-known training difficulties of GANs. It should be
emphasized that this is not a formal proof, but rather an interpretative understanding.

A.3 DIAGNOSTIC EVALUATION: COMPARISON WITH STATE-OF-THE-ART METHODS

We also compare our γ-Autoregressive Random Variable Model (ARVM), with observation range
of 7, 5, and 3, to get the FID scores of 7-ARVM, 5-ARVM and 3-ARVM shown in Tab. 2 and Tab. 3.
In particular, the architecture is described in Tab. 5, with NoD=32. Since the spatial size of binary
latent is 4 × 4, our ARVM learns the global distribution when observation range = 7 (padding is
used when spatial size is too small.) 7-ARVM achieves an FID score of 0.56 when learning global
distributions, which often results in training-sample memorization. Unfortunately, such FID scores
remain comparable to those of state-of-the-art methods under identical evaluation conditions (Sec.
A.1.6). Notably, this is achieved without relying on any prior assumptions related to image structure
during the sampling process. Similar results are observed on high-resolution datasets including
ImageNet, CelebA-HQ, and LSUN Bedroom, as shown in Tab. 3. The main reason for such low FID
is primarily the memorization effect in the proposed γ-ARVM. However, since the proposed ARVM
is essentially a standard autoregressive model, especially when the observation range is increased to
learn global distributions, it is worth considering that the current claims that autoregressive models
outperform diffusion models may simply be a consequence of memorization (Sun et al., 2024; Zhang
et al., 2025). Likewise, it is also worth considering that the reported superiority of diffusion over
VAEs or GANs may be due to the same reason.
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Table 2: Diagnostic Evaluation on CIFAR-10 Using FID and Inception Scores on the CIFAR-10
dataset.

Method FID score ↓ Inception Score↑

Diffusion DDPM (Ho et al., 2020b) 3.17 9.46 ± 0.11
EDM (Cui et al., 2023) 1.30 N/A

GAN

CCF-GAN (Li et al., 2023) 6.08 N/A
KD-DLGAN (Cui et al., 2023) 8.30 N/A
StyleGAN2 (Karras et al., 2020) 3.26 9.74 ± 0.05
SN-SMMDGAN (Arbel et al., 2018) 25.00 7.30

VAE

NCP-VAE (Aneja et al., 2021) 24.08 N/A
NVAE (Vahdat & Kautz, 2020) 32.53 N/A
DC-VAE (Parmar et al., 2021) 17.90 8.20
NCSN (Song & Ermon, 2019) 25.32 8.87

Ours
ARVM3 67.13 6.32 ± 0.23
ARVM2 31.42 7.12 ± 0.15
ARVM1 0.56 11.15 ± 0.13

Table 3: Diagnostic Evaluation on CIFAR-10 Using FID and Inception Scores on high-resolution
datasets.

Dataset Model Method FID ↓

LSUN
Bedroom

Diffusion DDPM (Ho et al., 2020b) 6.36

GAN PGGAN (Karras et al., 2018) 8.34
PG-SWGAN (Wu et al., 2019) 8.00

Ours ARVM1 1.54

ImageNet

Diffusion DiT-XL/2 (Peebles & Xie, 2023) 9.62
DiT-XL/2-G (Peebles & Xie, 2023) 2.27

Transformer MaskGIT (Chang et al., 2022) 6.18
VQGAN+Transformer (et al., 2021) 6.59

Ours ARVM1 5.63

CelebA-HQ
256x256

VAE NVAE (Vahdat & Kautz, 2020) 48.27

Ours ARVM1 1.53

A.3.1 EXPERIMENTAL DETAILS

All experiments were conducted on a single RTX 4090 GPU with 24 GB of VRAM. Training and
testing for each experiment were completed within 24 hours on this single GPU, given the computa-
tional constraints. For the same reason, large-scale experiments on larger models were not feasible.
All implementations were based on PyTorch, and the Adam optimizer was used for training. Source
code and running scripts will be released upon acceptance of this paper.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized Grammarly and ChatGPT solely to check typos and grammar in the proposed paper. No
technical content, experiments, or analysis were generated by large language models.
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Table 4: Details of our network architecture

Type weight stride padding Data size

E
nc

od
er

Input N × 3 × 32 × 32
Conv2d 64 × 3 × 4 × 4 2 1 N × 64 × 16 × 16
LeakyReLU
Conv2d 256 × 64 × 4 × 4 2 1 N × 256 × 8 × 8
LeakyReLU
Conv2d 256 × 1024 × 1 × 1 1 0 N × 1024 × 8 × 8
Conv2d 1024 × NoD × 1 × 1 1 0 N × NoD × 8 × 8

L
at

en
ts

N × NoD × 8 × 8

D
ec

od
er

Linear NoD × 1024 × 1 × 1 1 0 N × 1024 × 8 × 8
Linear 1024 × 1024 × 1 × 1 1 0 N × 1024 × 8 × 8
LeakyReLU
ConvT2d 512 × 1024 × 3 × 3 3 1 N × 512 × 8 × 8
LeakyReLU
ConvT2d 64 × 512 × 4 × 4 2 1 N × 64 × 16 × 16
ConvT2d 3 × 64 × 4 × 4 2 1 N × 3 × 32 × 32
Tanh

R
efi

ne

Conv2d 32 × 3 × 1 × 1 3 1 N × 32 × 32 × 32
LeakyReLU α = 0.01 N × 32 × 32 × 32
Conv2d 3 × 32 × 1 × 1 3 1 N × 3 × 32 × 32

Output N × 3 × 32 × 32

NoD: number of dimension.

Table 5: Details of our network architecture.

Type weight stride padding Data size

E
nc

od
er

Input N × 3 × 32 × 32
Conv2d 64 × 3 × 4 × 4 2 1 N × 64 × 16 × 16
LeakyReLU
Conv2d 256 × 64 × 4 × 4 2 1 N × 256 × 8 × 8
LeakyReLU
Conv2d 512 × 256 × 4 × 4 2 1 N × 512 × 4 × 4
LakyReLU
Conv2d 512 × 8196 × 1 × 1 1 0 N × 8196 × 4 × 4
Conv2d 8196 × NoD × 1 × 1 1 0 N × NoD × 4 × 4

L
at

en
ts

N × NoD × 4 × 4

D
ec

od
er

Linear NoD × 8196 × 1 × 1 1 0 N × 8196 × 4 × 4
Linear 8196 × 1024 × 1 × 1 1 0 N × 1024 × 4 × 4
LeakyReLU
ConvT2d 512 × 1024 × 4 × 4 1 0 N × 512 × 4 × 4
LeakyReLU
ConvT2d 256 × 512 × 4 × 4 2 1 N × 256 × 8 × 8
ConvT2d 64 × 256 × 4 × 4 2 1 N × 64 × 16 × 16
ConvT2d 3 × 64 × 4 × 4 2 1 N × 3 × 32 × 32
Tanh

R
efi

ne

Conv2d 32 × 3 × 1 × 1 3 1 N × 32 × 32 × 32
LeakyReLU α = 0.01 N × 32 × 32 × 32
Conv2d 3 × 32 × 1 × 1 3 1 N × 3 × 32 × 32

Output N × 3 × 32 × 32

NoD: number of dimension.
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Table 6: Min-Max normalization parameters settting.

CIFAR-10 Tri. MNIST Tri. CIFAR-10 Gau. MNIST Gau.
min meanDist 28.01 36.11 50.76 72.43
max meanDist 1018.79 1131.68 1302.75 1068.97

min minDist 25.78 25.26 23.72 20.11
max minDist 806.93 315.31 988.17 414.71

min recMSE 6.97 2.18 6.43 1.89
max recMSE 296.37 36.31 395.81 45.13

Tri. Triangular noise, Gau. Gaussian noise.
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