
Under review as submission to TMLR

BiDoRA: Bi-level Optimization-Based Weight-Decomposed
Low-Rank Adaptation

Anonymous authors
Paper under double-blind review

Abstract

Parameter-efficient fine-tuning (PEFT) of large language models (LLMs) has gained con-
siderable attention as a flexible and efficient way of adapting LLMs to downstream tasks.
Among these methods, weighted decomposed low-rank adaptation (DoRA) has emerged
as a promising approach. DoRA bridges the gap between low-rank adaptation (LoRA)
and full fine-tuning (FT) by decomposing the weight matrices into magnitude and direc-
tion components, thereby maintaining learning behavior similar to FT. Although DoRA
shows encouraging performance, it is over-expressive and potentially increases the risk of
overfitting. Moreover, optimizing magnitude and direction simultaneously leads to a coupled
updating pattern, limiting its learning capacity. In this work, we propose BiDoRA, a bi-level
optimization-based PEFT method. In BiDoRA, the two components are optimized at dif-
ferent optimization levels, mitigating the risk of overfitting. Additionally, the asynchronous
optimization promotes a decoupled updating pattern, allowing for more flexible updates suit-
able for various downstream tasks. Evaluation of BiDoRA on various tasks spanning natural
language understanding, natural language generation, token classification, and extremely
small datasets reveals that it significantly outperforms DoRA and other PEFT methods.
The code for BiDoRA is available at https://anonymous.4open.science/r/BiDoRA-5D31.

1 Introduction

Large language models (LLMs) (Radford et al., 2019; Brown et al., 2020) have achieved state-of-the-art
results across a broad range of NLP tasks, from natural language understanding (NLU) (Wang et al., 2019)
to natural language generation (NLG) (Novikova et al., 2017). Parameter-efficient fine-tuning (PEFT)
methods (Houlsby et al., 2019; Hu et al., 2021) have been introduced as a promising solution for adapting
LLMs for downstream data. PEFT approaches update only a subset of the pre-trained parameters, achieving
performance comparable to full-finetuning (FT) while requiring significantly fewer computational resources.

One popular type of PEFT is low-rank adaptation (LoRA, Hu et al. (2021)), which attaches low-rank
matrices to the pre-trained weights and updates only these matrices during fine-tuning. Liu et al. (2024)
shows that when decomposing the weights into magnitude and direction, their correlation (as defined in a
weight decomposition analysis in Liu et al. (2024)) tends to be positive in LoRA, whereas it is negative
in FT. To bridge the training pattern distinction, they introduce an explicit reparameterization of the pre-
trained weights matrix. The method, named DoRA, decomposes the weights into the column-wise product of
magnitude and direction, which determines the direction and magnitude of the weight update, respectively.
This approach enables DoRA to share similar learning patterns with FT, thereby outperforming LoRA
in multiple tasks. Nonetheless, DoRA introduces additional parameters and over-expressive architecture
compared to LoRA, which can exacerbate overfitting issues when adapting to small downstream datasets
(See Fig. 2). Furthermore, in DoRA, the magnitude and direction components are optimized concurrently,
leading to a constrained updating pattern due to shared optimization setup (e.g., learning rate, optimizer,
batch size.)

To address the challenges above, we propose BiDoRA, a bi-level optimization-based weight-decomposed
low-rank adaptation method for parameter-efficient fine-tuning of LLMs. BiDoRA facilitates an even more

1

https://anonymous.4open.science/r/BiDoRA-5D31

Under review as submission to TMLR

Direction

1/||𝑉𝑉 + Δ𝑉𝑉||𝑐𝑐

Pretrained
Weight
𝑉𝑉 ∈ ℝ𝑑𝑑×𝑘𝑘 𝐴𝐴 ∈ ℝ𝑟𝑟×𝑘𝑘

𝑚𝑚 ∈ ℝ1×𝑘𝑘

1/||𝑉𝑉 + Δ𝑉𝑉||𝑐𝑐

𝑉𝑉

𝐵𝐵

𝐴𝐴

𝑚𝑚

① Search phase

1/||𝑉𝑉 + Δ𝑉𝑉||𝑐𝑐

𝑉𝑉

𝐵𝐵

𝐴𝐴

𝑚𝑚∗

Merged
Weight

Frozen Component Trainable Component

② Retraining phase

Δ𝑉𝑉
∈
ℝ
𝑑𝑑

×
𝑘𝑘

𝑊𝑊𝑊 ∈ ℝ𝑑𝑑×𝑘𝑘

Magnitude

𝐵𝐵 ∈ ℝ𝑑𝑑×r

𝑚𝑚∗

Lower to Upper

Upper to Lower

Figure 1: An overview of BiDoRA. BiDoRA performs PEFT using a bi-level optimization framework.
At the lower level, BiDoRA learns the direction component ∆V of the update matrices using the training
split of the downstream dataset. At the upper level, BiDoRA optimizes the magnitude component m with
optimized ∆V from the lower level, using the validation split of the dataset. After determining the optimal
magnitude, the direction component undergoes further fine-tuning on a combined set of both training and
validation splits to maximize overall performance.

Figure 2: Training and test accuracy versus global training steps on the ModHayes split of the Reuters21578
dataset when fine-tuning a RoBERTa-base model using DoRA and BiDoRA. The training and test curves
for DoRA show a larger gap compared to BiDoRA, highlighting the effectiveness of our method in reducing
overfitting.

flexible updating pattern and mitigates overfitting by separately optimizing the two components on different
data splits with distinct optimization levels. BiDoRA is based on a bi-level optimization framework: At
the lower level, the low-rank direction component is updated using the training split, while the magnitude
component remains fixed. At the upper level, the magnitude component is updated by minimizing the loss
on the validation split via hypergradient descent. Subsequently, the direction component is further fine-
tuned with the optimal magnitude frozen to maximize the performance. These two optimization steps are
performed iteratively until convergence. Fig. 1 provides an overview of BiDoRA.

2

Under review as submission to TMLR

A similar strategy of combating overfitting based on bi-level optimization has been utilized in the well-
established practice of differentiable neural architecture search (DARTS, Liu et al. (2018)), where architecture
and sub-network are learned using different dataset splits. Optimizing the selection variables and sub-
networks in a single loop can result in an over-expressive network since the selection variables tend to
select all sub-networks to achieve the best expressiveness, which, however, incurs severe overfitting. In
contrast, training the sub-networks with the selection module fixed on the training split while validating the
effectiveness of the selection module on the unseen validation split eliminates the risk of overfitting effectively.
Similarly, we treat the magnitude component as the architecture and the direction component as the sub-
networks and train these components on separate datasets. As shown in Fig. 2, BiDoRA demonstrates
better resistance to overfitting compared to DoRA, given the smaller performance gap between the training
set and test set. Furthermore, the asynchronous gradient update steps at the two optimization levels in
BiDoRA facilitate better decoupling of two components, leading to a more flexible update pattern that
closely resembles FT. As illustrated in Fig. 3, the updates across different layers using BiDoRA have a
correlation value that is closest to that of FT, highlighting its superior learning capability compared to both
DoRA and LoRA.

Our work makes the following key contributions:

• We propose BiDoRA, a novel PEFT method based on bi-level optimization. In contrast to DoRA,
which trains the magnitude and direction components on a single dataset, BiDoRA optimizes these
components at different optimization levels.

• Our strategy effectively mitigates the risk of overfitting and results in a parameter update pattern
that more closely resembles full fine-tuning.

• Extensive experiments on various downstream tasks highlight the superior performance of BiDoRA.
BiDoRA consistently surpasses several baseline methods, including LoRA and DoRA.

2 Related Work

2.1 Parameter Efficient Fine-Tuning Methods

Parameter-efficient fine-tuning (PEFT) methods aim to reduce the high costs associated with full fine-tuning
large-scale models by updating only a relatively small subset of pre-trained parameters, rather than the entire
model, to adapt to downstream tasks. Existing PEFT methods can be mainly categorized into three types.
The first category, known as adapter-based methods, injects additional trainable modules into the original
frozen backbone. For instance, Houlsby et al. (2019) suggests adding linear modules in sequence to existing
layers, while He et al. (2021) proposes integrating these modules in parallel with the original layers to enhance
performance. The second category is prompt tuning methods, which add extra soft tokens (prompts) to the
initial input. During the fine-tuning stage, only these trainable soft tokens are updated, as demonstrated in
works such as Lester et al. (2021) and Razdaibiedina et al. (2023). Unfortunately, the first two categories
lead to increased inference latency compared to fully fine-tuned models. The third category is low-rank
adaptation methods, pioneered by the foundational work LoRA (Hu et al., 2021). These methods attach low-
rank matrices to pre-trained weights and use only these matrices for weight updates during fine-tuning. Since
low-rank updates can be merged with pre-trained weights before inference, low-rank adaptation-based PEFT
methods do not increase inference time. Following LoRA, Zhang et al. (2023) applies SVD decomposition to
low-rank matrices and prunes less significant singular values for more efficient updates. Zhang et al. (2024b)
uses meta-learning to search for the optimal rank of LoRA matrices, further improving its performance on
downstream tasks. Most recently,Liu et al. (2024) uses weight decomposition analysis to reveal that LoRA
exhibits a distinct weight updating pattern compared to FT, which may constrain its learning capacity.
Therefore, DoRA (Liu et al., 2024) was then proposed to bridge the gap between LoRA and FT. DoRA
decomposes the pre-trained weights into two components—magnitude and direction—and fine-tunes both,
which results in a more closely aligned updating pattern compared to FT.

3

Under review as submission to TMLR

(a) Full FT(k = −65.816) (b) LoRA(k = 0.836) (c) DoRA(k = −1.784) (d) BiDoRA(k = −8.042)

Figure 3: Magnitude and direction updates for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA of the query
matrices across different layers and intermediate steps after fine-tuning the GPT2 model on the E2E dataset,
where k denotes the correlation value. Different markers represent matrices from different training steps,
with each color corresponding to a specific layer.

2.2 Bi-level Optimization

Bi-level optimization (BLO) has been widely applied in various machine learning tasks, including meta-
learning (Finn et al., 2017; Rajeswaran et al., 2019), neural architecture search (Liu et al., 2018; Zhang et al.,
2021), and hyperparameter optimization (Lorraine et al., 2020; Franceschi et al., 2017). Despite its wide
usage, solving BLO problems can be challenging due to the inherent nature of nested optimization problems.
Several algorithms have been proposed to address this challenge, including zeroth-order methods such as
Bayesian optimization (Cui & Bai, 2019) and first-order algorithms based on hypergradients (Pearlmutter &
Siskind, 2008; Lorraine et al., 2020). Among these approaches, gradient-based BLO has received significant
attention because it can scale to high-dimensional problems with a large number of trainable parameters.
In this work, we extend the application scenarios of gradient-based BLO to develop a robust and effective
parameter-efficient fine-tuning method for pre-trained models.

3 Preliminary

LoRA (Hu et al., 2021) involves attaching the product of two low-rank matrices to the pre-trained weights and
fine-tuning these low-rank matrices on downstream datasets with the pre-trained weights frozen. It is based
on the assumption that parameter updates made during fine-tuning exhibit a low intrinsic rank. Formally,
given a pre-trained weight matrix W0 ∈ Rd×k, LoRA attaches a low-rank update matrix ∆W ∈ Rd×k to the
pre-trained weight. This update matrix can be decomposed as ∆W = BA, where B ∈ Rd×r and A ∈ Rr×k

are two low-rank matrices, with r ≪ min(d, k). Consequently, the weight matrix W ′ is represented as follows:

W ′ = W0 + ∆W = W0 + BA (1)

In this setup, only the LoRA matrix ∆W is updated. (Liu et al., 2024) found that LoRA and full fine-tuning
exhibit different learning patterns by performing weight decomposition on fine-tuned weight matrices (See
Appendix D). To bridge this discrepancy, weight-decomposed low-rank adaptation (DoRA, Liu et al. (2024))
further reparameterizes the weight matrices by explicitly decomposing them into learnable magnitude and
direction components. Formally, DoRA performs adaption as follows:

W ′ = m
V + ∆V

∥V + ∆V ∥c
= m

W0 + BA

∥W0 + BA∥c
(2)

where ∆V is a product of two learnable low-rank matrices, B and A, while the magnitude component
m ∈ R1×k is a learnable vector. Here, ∥ · ∥c represents the vector-wise norm of a matrix computed across
each column. In DoRA, both components are optimized concurrently on a single downstream dataset. In
this work, we aim to improve DoRA by further decoupling the training of two components.

4

Under review as submission to TMLR

4 Methods

4.1 Overview of BiDoRA

Our method, BiDoRA, optimizes the trainable parameters in DoRA layers by solving a bi-level optimization
problem. Let M = {m1, m2, . . . , mn} denote the set of magnitude components for all n DoRA modules, and
V = {∆V1, ∆V2, . . . , ∆Vn} denote the set of corresponding direction components. Specifically, we first learn
the direction components V∗(M) on the training split of the downstream dataset Dtr at the lower level. The
magnitude component M is tentatively fixed at this level, thus the resulting optimal direction component
V∗(M) is a function of M. At the upper level, we determine the optimal magnitude component M∗ by
optimizing the loss on a validation split Dval. In practice, Dtr and Dval are typically created by splitting
the original training set without using additional data. This bi-level optimization problem is solved using an
efficient gradient-based algorithm, where parameters in two levels are optimized iteratively until convergence.
Related convergence analyses of this type of gradient-based bi-level optimization algorithms can be found
in Pedregosa (2016), Rajeswaran et al. (2019), and references therein. The generalization analysis has also
been studied in Bao et al. (2021).

4.2 Orthogonal Regularization

The orthogonality of neural network weights has been identified as a beneficial property (Bansal et al., 2018)
and can effectively mitigate the overfitting issue (Balestriero & richard baraniuk, 2018). Therefore, we define
a Gram regularization loss (Xie et al., 2017) for the direction component:

R(V) =
n∑

k=1

∥∥(Vk + ∆Vk)⊤(Vk + ∆Vk) − I
∥∥2

F
(3)

where I is the identity matrix and ∥ · ∥F denotes the Frobenius norm. Intuitively, R(V) encourages each
column of the direction matrix, representing a specific direction, to be orthogonal to one another. Since each
column has already been normalized (equivalent to projected to the unit sphere), this also prompts each
column to be far away from the other, thereby reducing the redundancy of parameters.

4.3 A Bi-level Optimization Framework

Lower Level At the lower level, we train the low-rank direction component V by minimizing a loss Ltr

defined on the training set Dtr. The overall training objective at this level is Ltr(V, M) = C(V, M; Dtr) +
γR(V). Here, C represents the fine-tuning loss, given the low-rank direction component V, the magnitude
component M, and the training split Dtr of the downstream dataset. R(V) is the orthogonal regularizer
defined in Eq. (3), with γ as a trade-off hyperparameter. In this level, we only update V while keeping M
fixed, resulting in the following optimization problem:

V∗(M) = arg min
V

Ltr(V, M) (4)

where V∗(M) denotes the optimal solution for V in this problem, which is a function of M.

Upper Level At the upper level, we validate the previously fixed magnitudes M on the validation set
Dval, using the optimal direction component V∗(M) that was learned at the lower level. This results in a
validation loss Lval(V∗(M), M) = C(V∗(M), M; Dval). We determine the optimal magnitude component
M by minimizing this validation loss:

min
M

Lval(V∗(M), M) (5)

A Bi-level Optimization Framework Integrating the two levels of optimization problems, we have the
following bi-level optimization framework:

5

Under review as submission to TMLR

Algorithm 1: BiDoRA
Input: Training dataset Dtr and validation dataset Dval

1 Initialize trainable magnitude components M = {mk}n
k=1 and low-rank direction components

V = {∆Vk}n
k=1 = {{Ak}n

k=1, {Bk}n
k=1}

2 // Search Phase
3 while not converged do
4 Update magnitude M by descending ∇MLval(V − ξ∇VLtr(V, M), M)
5 Update direction V by descending ∇VLtr(V, M)
6 Derive the optimal magnitude M∗ = {m∗

k}n
k=1

7 // Retraining Phase
8 Train V until converge using Dtr

⋃
Dval and derive the optimal direction V∗

Output: V∗ and M∗

min
M

Lval(V∗(M), M)

s.t. V∗(M) = arg min
V

Ltr(V, M) (6)

Note that these two levels of optimization problems are mutually dependent on each other. The solution
of the optimization problem at the lower level, V∗(M), serves as a parameter for the upper-level problem,
while the optimization variable M at the upper level acts as a parameter for the lower-level problem. By
solving these two interconnected problems jointly, we can learn the optimal magnitude component M∗ and
incremental direction matrices V∗ in an end-to-end manner.

Two reasons exist behind the choice of setting the magnitude component as the upper level instead of the
converse one: 1) In literature, the upper level usually has much fewer parameters than the lower level. In
our case, the design of setting the magnitude of complexity O(k) as the upper level and the direction of
complexity O(dr + kr) as the lower level is consistent with the common practice. 2) BiDoRA resembles the
DARTS method (Liu et al., 2018) in neural architecture search where the subnets are selected by a selection
variable. Specifically, the magnitude vector resembles a selection variable on the direction matrix by softly
selecting each direction (subnets) via scaling.

Optimization Algorithm We use a gradient-based optimization algorithm (Choe et al., 2023) to solve
the bi-level optimization problem presented in Eq. (6). A significant challenge in this process is that
precisely computing the gradient of the upper-level loss Lval with respect to the magnitude component M
can be computationally prohibitive due to the lack of an analytical solution for V∗(M) at the lower-level
optimization problem. To address this issue, we use the following one-step-unrolled approximation of V∗(M)
inspired by previous work (Liu et al., 2018):

∇MLval(V∗(M), M) ≈ ∇MLval(V − ξ∇VLtr(V, M), M)

where ξ is the learning rate at the lower level, and the one-step-unrolled model V̄ = V − ξ∇VLtr(V, M)
is used as a surrogate for the optimal solution V∗(M). We then compute the approximated gradient as
follows:

∇MLval(V − ξ∇VLtr(V, M), M)
=∇MLval(V̄, M) − ξ∇2

M,VLtr(V, M)∇V̄Lval(V̄, M) (7)

≈∇MLval(V̄, M) − ξ
∇MLtr(V+, M) − ∇MLtr(V−, M)

2ϵ
(8)

where ϵ is a small scalar and V± = V ± ϵ∇V̄Lval(V̄, M). Since directly computing the matrix-vector
multiplication term in Eq. (7) is computationally expensive, we use finite difference to approximate this

6

Under review as submission to TMLR

Table 1: RoBERTabase/large (Rb/l) and DeBERTaXXL (DXXL) with different fine-tuning methods on the
GLUE benchmark. A higher value is better for all datasets. The best results are shown in bold.

Method Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
Rb(FT) 125.0M 90.3 94.8 89.3 61.6 86.7 92.8 76.9 91.2 85.5

Rb(Adapter) 0.9 M 86.5 94.0 88.4 58.8 92.5 89.1 71.2 89.9 83.8
Rb(LoRA) 0.15 M 86.8 94.3 88.0 60.3 93.0 89.6 72.9 90.1 84.4
Rb(DoRA) 0.17 M 86.8 94.2 89.2 60.5 92.9 89.6 73.2 90.2 84.6

Rb(BiDoRA) 0.17 M 87.1 94.4 89.4 61.3 92.7 90.6 76.0 90.1 85.2
Rl(FT) 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9

Rl(Adapter) 0.8M 90.3 96.3 87.7 66.3 94.7 91.5 72.9 91.5 86.4
Rl(LoRA) 0.39 M 90.6 96.3 90.0 66.9 94.5 91.2 86.3 91.7 88.4
Rl(DoRA) 0.39 M 90.6 96.4 89.8 65.8 94.7 91.2 86.6 92.0 88.4

Rl(BiDoRA) 0.39 M 90.6 96.1 90.1 67.0 94.6 91.7 86.9 92.0 88.6
DXXL(DoRA) 4.9M 91.2 96.3 92.3 71.1 95.3 91.6 91.8 90.8 90.0

DXXL(BiDoRA) 4.9M 91.7 96.3 92.6 72.3 95.2 92.0 92.3 90.8 90.4

product as in Eq. (8), following Liu et al. (2018). As detailed in Algorithm 1, the direction component V
and the magnitude component M are updated using gradient descent iteratively until convergence. After
acquiring the optimal magnitudes M∗ through the process above, the direction component V is retrained on
the union of training and validation splits to achieve the best performance on downstream tasks, resulting
in the final learned V∗.

5 Experiments

5.1 Experimental Setup

We compare BiDoRA with several PEFT methods, including Adapter tuning (Houlsby et al., 2019), LoRA
(Hu et al., 2021), and DoRA (Liu et al., 2024). BiDoRA does not use any additional data compared to
other baselines, as we create the validation set for upper-level optimization by splitting the original training
set with an 8:2 ratio for all tasks. All methods in the experiment, including ablation studies, are trained
until convergence for a fair comparison. Detailed descriptions of these baseline methods are provided in
Appendix C.

Table 2: RoBERTabase/large (Rb/l) with different fine-tuning methods on the Reuters21578 benchmark. A
higher value is better for all datasets. The best results are shown in bold.

Method Param ModApte ModHayes ModLewis
Rb(FT) 125.0M 85.4 77.6 77.1

Rb(Adapter) 0.9 M 85.3 77.5 76.8
Rb(LoRA) 0.15 M 84.7 74.3 74.7
Rb(DoRA) 0.17 M 84.8 78.2 76.6

Rb(BiDoRA) 0.17 M 85.3 79.9 77.6
Rl(FT) 355.0M 84.8 77.5 76.6

Rl(Adapter) 0.44 M 84.8 77.9 76.7
Rl(LoRA) 0.39 M 84.7 77.7 76.7
Rl(DoRA) 0.39 M 84.8 77.4 76.7

Rl(BiDoRA) 0.39 M 84.9 78.9 77.3

7

Under review as submission to TMLR

Our experiments cover a wide range of tasks, including natural language understanding (NLU), natural lan-
guage generation (NLG), and token classification. For NLU tasks, we fine-tune the RoBERTa-base (125M),
RoBERTa-large (355M), and DeBERTa XXL (1.5B) models on the GLUE benchmark (Wang et al., 2019)
and the Reuters21578 dataset (Padmanabhan et al., 2016) using all baseline PEFT methods and BiDoRA.
Detailed descriptions of these datasets and pre-trained models are provided in Appendix A. Following exist-
ing practices, the development set is used in GLUE as the test data since the actual test set is not publicly
available. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for
CoLA, Pearson correlation for STS-B, and accuracy for the other tasks. On the Reuters21578 dataset, the
F1 score is used as the evaluation metric across all three splits. For NLG tasks, we fine-tune GPT-2 medium
on the E2E (Novikova et al., 2017) dataset. We use BLEU (Papineni et al., 2002), NIST (Lin & Och, 2004),
METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al., 2015) as evalu-
ation metrics. For token classification, we fine-tune the RoBERTa-base and RoBERTa-large models on the
BioNLP (Collier et al., 2004) dataset and the CoNLL2003 (Sang & De Meulder, 2003) dataset. Accuracy,
precision, recall, and F1 score are used as evaluation metrics.

For all experiments, our implementation is based on the Huggingface Transformers library (Wolf et al., 2019)
and the Betty library (Choe et al., 2023). We use a single NVIDIA A100 GPU for all experiments. More
detailed experimental settings are provided in Appendix B.

Table 3: RoBERTabase/large (Rb/l) with different fine-tuning methods on BioNLP data and CoNLL2003
dataset. A higher value is better for all metrics. The best results are shown in bold.

BioNLP CoNLL2003
Method Param Accuracy Precision Recall F1 Accuracy Precision Recall F1
Rb(FT) 125.0M 93.9 69.0 78.9 73.6 99.3 95.7 96.3 96.0

Rb(Adapter) 0.9 M 93.9 69.1 78.8 73.7 99.3 95.7 96.4 96.0
Rb(LoRA) 0.15 M 93.9 69.0 78.8 73.6 99.3 95.4 96.3 95.8
Rb(DoRA) 0.17 M 94.0 69.2 79.1 73.8 99.3 95.3 96.2 95.8

Rb(BiDoRA) 0.17 M 93.9 71.2 78.6 74.7 99.3 95.9 96.5 96.2
Rl(FT) 355.0M 94.0 69.4 79.6 74.1 99.4 96.2 97.0 96.6

Rl(Adapter) 0.44 M 94.0 69.4 79.7 74.2 99.4 96.1 97.0 96.6
Rl(LoRA) 0.39 M 93.9 69.2 79.3 73.9 99.4 96.2 97.0 96.6
Rl(DoRA) 0.39 M 94.0 69.4 79.7 74.2 99.4 96.2 97.1 96.6

Rl(BiDoRA) 0.39 M 94.0 71.3 79.3 75.1 99.4 96.4 97.1 96.7

5.2 Experiments on Natural Language Understanding Tasks

In this section, we evaluate the performance of BiDoRA on NLU tasks, with a particular focus on text
classification. Table 1 presents the results of fine-tuning the RoBERTa-base, RoBERTa-large, and DeBERTa
XXL models on the GLUE benchmark with baseline PEFT methods and BiDoRA. The results show that
BiDoRA achieves superior or comparable performance compared to baseline methods across all datasets with
the same number of trainable parameters. Table 2 presents the results of fine-tuning RoBERTa models on the
Reuters21578 datasets, where BiDoRA outperforms all baseline methods by an even larger margin. Notably,
BiDoRA achieves performance comparable to or even better than full fine-tuning. The superior performance
of BiDoRA on both benchmarks verifies the effectiveness of its bi-level optimization mechanism. By training
the magnitude and direction components on two distinct sub-datasets, BiDoRA enhances the flexibility of
the learning process and improves learning capacity compared to DoRA, resulting in a performance boost.

5.3 Experiments on Natural Language Generation Tasks

In this section, we evaluate BiDoRA’s performance on the NLG task. Table 5 presents the results of fine-
tuning a GPT-2 model on the E2E dataset with baseline PEFT methods and BiDoRA. The results show

8

Under review as submission to TMLR

Table 4: Ablation studies. We evaluate the performance of BiDoRA without retraining (w/o retraining),
without bi-level optimization (ξ = 0) and without orthogonal regularization (w/o cst.).

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg
BiDoRA (w/o retraining) 87.0 94.2 89.0 57.3 92.4 90.6 71.6 90.0 84.0

BiDoRA (ξ = 0) 86.9 94.2 89.0 59.4 90.8 91.2 75.9 90.0 84.7
BiDoRA (w/o cst.) 87.0 94.4 88.6 61.3 92.7 90.2 76.0 90.1 85.0

BiDoRA 87.1 94.4 89.4 61.3 92.7 90.6 76.1 90.1 85.2

Table 5: Performance of BiDoRA and baseline methods for fine-tuning GPT2-medium on the E2E dataset.
A higher value is better for all metrics. The best results are shown in bold.

Method Param BLEU NIST MET ROUGE-L CIDEr
FT 354.9M 68.0 8.61 46.1 69.0 2.38

Adapter 11.1M 67.0 8.50 45.2 66.9 2.31
LoRA 0.39M 67.1 8.54 45.7 68.0 2.33
DoRA 0.39M 67.0 8.48 45.4 70.1 2.33

BiDoRA 0.39M 69.0 8.72 46.2 70.9 2.44

that BiDoRA achieves the best performance across all five evaluation metrics, demonstrating the superiority
of BiDoRA in fine-tuning pre-trained models for NLG tasks.

5.4 Experiments on Token Classification

Further evidence of the effectiveness of BiDoRA can be observed in Table 3, which reports the results of token
classification tasks. Unlike the NLU tasks discussed in the previous section, which involve classifying entire
sentences and focusing on capturing global semantics, token classification requires classifying each token
within a sentence, highlighting the importance of capturing local context. On the BioNLP dataset, BiDoRA
consistently outperforms baseline methods by a large margin in terms of F1 score. On the CoNLL2003
dataset, BiDoRA either outperforms or matches all baseline methods across all metrics. Consistent with our
previous findings, BiDoRA effectively fine-tunes pre-trained models for token classification tasks.

5.5 Experiments on Extremely Small Datasets

Table 6: Fine-tuning ESM on the thermostability prediction task. A higher value is better for all metrics,
with the best results highlighted in bold.

Methods #Params Accuracy Precision Recall F1
FT 652.7M 79.8 81.2 79.8 78.4

LoRA 1.5M 75.9 78.2 75.9 75.5
DoRA 1.6M 76.9 78.7 76.9 76.2

BiDoRA 1.6M 78.8 79.1 78.8 78.2

The ESM (Evolutionary Scale Modeling, Rives et al. (2021)) model is a transformer-based protein language
model designed for protein sequence analysis, leveraging the transformer architecture to capture evolutionary
patterns. We fine-tune the ESM model using the Protein Aligner checkpoint (Zhang et al., 2024a) on two
classification tasks—thermostability prediction (Chen et al., 3,695 training samples) and blood-brain barrier
peptide prediction (BBP, Dai et al. (2021), 936 training samples). Notably, protein analysis datasets are
typically much smaller than those in NLP, in which case the large pre-trained models are prone to overfitting,
even when using PEFT methods. The trainable parameters (on the order of millions) are significantly
overparameterized compared to the available samples (thousands or even hundreds), highlighting the need
for our overfitting-resilient counterpart.

9

Under review as submission to TMLR

Table 7: Fine-tuning ESM on the BBP task. A higher value is better for all metrics, with the best results
highlighted in bold.

Methods #Params Accuracy Precision Recall F1
FT 652.9M 89.4 89.9 89.4 89.4

LoRA 1.9M 86.8 87.7 86.8 86.7
DoRA 2.0M 89.4 91.3 89.4 89.3

BiDoRA 2.0M 92.1 93.1 92.1 92.0

The results are presented in Tables 6 and 7, respectively. For the classification tasks, we use accuracy, preci-
sion, recall, and F1 score to evaluate performance. Consistent with our previous findings, BiDoRA effectively
fine-tunes pre-trained models on extremely small datasets. Our method outperforms the baselines by a larger
margin as the dataset size decreases, confirming our previous conclusion that our method effectively combats
the overfitting issue on various network architectures and diverse tasks.

5.6 Ablation Studies

In this section, we perform ablation studies to investigate the effectiveness of individual modules or strategies
in BiDoRA. We fine-tune a RoBERTa-base model on the GLUE benchmark under different ablation settings,
and the results are shown in Table 4.

Retraining We test the model directly obtained from the search phase to evaluate the effectiveness
of further retraining the direction component. The results show that BiDoRA outperforms BiDoRA (w/o
retraining) on average, highlighting the necessity of retraining.

Bi-level Optimization We set ξ to zero in Algorithm 1 to assess the effectiveness of the bi-level
optimization framework. This ablation setting can be interpreted as an alternative learning method where
two optimization steps are carried out alternately on two different splits of the training dataset. Notably,
in the alternative learning method, the updating of each component is unaware of each other, making
the training less stable. In contrast, the hyper-gradient used in bi-level optimization avoids this issue by
connecting the two levels in a certain way. The results show that BiDoRA outperforms BiDoRA (ξ = 0) on
average, demonstrating the efficacy of the bi-level optimization strategy.

Orthogonal Regularization We examine the effectiveness of the orthogonality constraint in Eq.
(3) by setting γ to zero. Results show that BiDoRA outperforms BiDoRA (w/o cst.) on average, indicating
the effectiveness of applying the orthogonality regularizer to alleviate overfitting.

5.7 Weight Decomposition Analysis

One important motivation of DoRA is to bridge the inherent differences between LoRA and FT. Similar to
DoRA, we conduct a weight decomposition analysis on the correlation between the change of magnitudes and
that of directions (detailed in Appendix D) for BiDoRA and baseline methods by fine-tuning a GPT2-medium
model on the E2E dataset. As shown in Fig. 3, FT, DoRA, and BiDoRA all exhibit negative correlation
values, while LoRA shows a positive correlation, consistent with the findings in Liu et al. (2024). Notably,
BiDoRA achieves a negative correlation of −8.042, closer to FT than DoRA’s −1.784. This improvement is
attributed to the decoupled training process of the two layers, which allows for a higher learning capacity
compared to DoRA.

5.8 Discussion

The advantage of BiDoRA is supported by both theoretical insights and empirical evidence, as illustrated
as follows.

Motivation. Theoretically, Liu et al. (2024) showed that LoRA’s training pattern tends to be coupled in
terms of magnitude-direction correlation, which degrades learning capacity. Their solution was to introduce
a reparameterization that decouples these components in the formulation. We build upon DoRA following

10

Under review as submission to TMLR

their theory and further decouple magnitude and direction in terms of training dynamics. Specifically, the
two components are trained in separate loops within a bilevel optimization framework, which is expected to
improve performance in an intuition similar to DoRA.

Empirical evidences. We performed a Wilcoxon signed-rank test to compare the performance of DoRA
and BiDoRA. Specifically, we used the results from Table 1. For each PEFT method, we collected 9 values
(8 values from each dataset plus the average performance) from one base model and concatenated the results
from three base models (RoBERTa-base, RoBERTa-large, and DeBERTa-XXL) to obtain a list of 27 values.
A comparison of these 27 values between DoRA and BiDoRA reveals that BiDoRA is significantly better
than DoRA, with a p-value of 2.4 × 10−4. This result demonstrates that BiDoRA offers a non-marginal
improvement over DoRA.

Additionally, the weight decomposition analysis, including (Fig. 3 and Fig. 4), indicates that BiDoRA
achieves better decoupling of the components compared to DoRA. Evaluation metrics across various tasks
demonstrate the superior performance of BiDoRA, confirming that our decoupled optimization loop leads
to improved outcomes.

6 Conclusion and Future Works

We propose BiDoRA, a novel bi-level optimization framework for parameter-efficient fine-tuning of large-scale
pre-trained models. By conducting weight decomposition following the DoRA approach, our method trains
the two components separately in two interconnected optimization levels using different sub-datasets. In this
way, BiDoRA not only decouples the learning process of the two components, resulting in a learning pattern
closer to FT, but also effectively alleviates overfitting. Empirical studies on various NLP tasks demonstrate
that BiDoRA outperforms DoRA and other baselines, highlighting the effectiveness of our method.

References
Randall Balestriero and richard baraniuk. A spline theory of deep learning. In Jennifer Dy and An-

dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 374–383. PMLR, 10–15 Jul 2018. URL https:
//proceedings.mlr.press/v80/balestriero18b.html.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved corre-
lation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summarization, pp. 65–72, 2005.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regular-
izations in training deep cnns? In Neural Information Processing Systems, 2018. URL https:
//api.semanticscholar.org/CorpusID:55704502.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of bilevel
programming in hyperparameter optimization. Advances in neural information processing systems, 34:
4529–4541, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic
textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055,
2017.

Tianlong Chen, Chengyue Gong, Daniel Jesus Diaz, Xuxi Chen, Jordan Tyler Wells, Zhangyang Wang,
Andrew Ellington, Alex Dimakis, Adam Klivans, et al. Hotprotein: A novel framework for protein ther-
mostability prediction and editing. In The Eleventh International Conference on Learning Representations.

11

https://proceedings.mlr.press/v80/balestriero18b.html
https://proceedings.mlr.press/v80/balestriero18b.html
https://api.semanticscholar.org/CorpusID:55704502
https://api.semanticscholar.org/CorpusID:55704502

Under review as submission to TMLR

Sang Keun Choe, Willie Neiswanger, Pengtao Xie, and Eric Xing. Betty: An automatic differentiation library
for multilevel optimization. In The Eleventh International Conference on Learning Representations, 2023.

Nigel Collier, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka Tateisi, and Jin-Dong Kim. Introduction to the bio-
entity recognition task at jnlpba. In Proceedings of the International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications (NLPBA/BioNLP), pp. 73–78, 2004.

Hua Cui and Jie Bai. A new hyperparameters optimization method for convolutional neural networks.
Pattern Recognition Letters, 125:828–834, 2019.

Ruyu Dai, Wei Zhang, Wending Tang, Evelien Wynendaele, Qizhi Zhu, Yannan Bin, Bart De Spiegeleer,
and Junfeng Xia. Bbppred: sequence-based prediction of blood-brain barrier peptides with feature repre-
sentation learning and logistic regression. Journal of Chemical Information and Modeling, 61(1):525–534,
2021.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Third
international workshop on paraphrasing (IWP2005), 2005.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-
based hyperparameter optimization. In International Conference on Machine Learning, pp. 1165–1173.
PMLR, 2017.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified
view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
Lora: Low-rank adaptation of large language models. In International Conference on Learning Represen-
tations, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches
out, pp. 74–81, 2004.

Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using longest com-
mon subsequence and skip-bigram statistics. In Proceedings of the 42nd annual meeting of the association
for computational linguistics (ACL-04), pp. 605–612, 2004.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations, 2018.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first International Con-
ference on Machine Learning, 2024.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In International conference on artificial intelligence and statistics, pp. 1540–1552. PMLR,
2020.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-to-end
generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pp. 201–206,
2017.

12

Under review as submission to TMLR

Divya Padmanabhan, Satyanath Bhat, Shirish Shevade, and Y Narahari. Topic model based multi-label
classification. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI),
pp. 996–1003. IEEE, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311–318, 2002.

Barak A Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework: Lambda the
ultimate backpropagator. ACM Transactions on Programming Languages and Systems (TOPLAS), 30(2):
1–36, 2008.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International conference on
machine learning, pp. 737–746. PMLR, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for
squad. arXiv preprint arXiv:1806.03822, 2018.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, Jimmy Ba, and Amjad
Almahairi. Residual prompt tuning: Improving prompt tuning with residual reparameterization. arXiv
preprint arXiv:2305.03937, 2023.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15):
e2016239118, 2021.

Erik Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pp. 142–147, 2003.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1631–1642,
2013.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description
evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4566–
4575, 2015.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A
multi-task benchmark and analysis platform for natural language understanding. In 7th International
Conference on Learning Representations, ICLR 2019, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments. Trans-
actions of the Association for Computational Linguistics, 7:625–641, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771, 2019.

13

Under review as submission to TMLR

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5075–5084, 2017. URL
https://api.semanticscholar.org/CorpusID:8199182.

Li Zhang, Han Guo, Leah V Schaffer, Young Su Ko, Digvijay Singh, Hamid Rahmani, Danielle Grotjahn,
Elizabeth Villa, Michael Gilson, Wei Wang, et al. Proteinaligner: A multi-modal pretraining framework
for protein foundation models. bioRxiv, pp. 2024–10, 2024a.

Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza Haffari. idarts: Dif-
ferentiable architecture search with stochastic implicit gradients. In International Conference on Machine
Learning, pp. 12557–12566. PMLR, 2021.

Q Zhang, M Chen, A Bukharin, P He, Y Cheng, W Chen, and T Zhao. Adaptive budget allocation for
parameter-efficient fine-tuning. preprint (2023). arXiv preprint arXiv:2303.10512, 2023.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. AutoLoRA: Automatically tuning
matrix ranks in low-rank adaptation based on meta learning. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 5048–5060,
Mexico City, Mexico, June 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
naacl-long.282. URL https://aclanthology.org/2024.naacl-long.282.

A Datasets and Models

A.1 Natural Language Understanding

The GLUE Benchmark comprises a diverse array of tasks that are widely employed for evaluation in natural
language understanding. It encompasses two single-sentence classification tasks, three tasks assessing simi-
larity and paraphrasing, and four tasks focusing on natural language inference. Specifically, it includes MNLI
(MultiNLI, Williams et al. (2017)), SST-2 (Stanford Sentiment Treebank, Socher et al. (2013)), MRPC (Mi-
crosoft Research Paraphrase Corpus, Dolan & Brockett (2005)), CoLA (Corpus of Linguistic Acceptability,
Warstadt et al. (2019)), QNLI (Question NLI, Rajpurkar et al. (2018)), QQP (Quora Question Pairs), RTE
(Recognizing Textual Entailment), and STS-B (Semantic Textual Similarity Benchmark, Cer et al. (2017)).
We summarize the statistical data for all datasets within the GLUE Benchmark in Table 8.

The Reuters-21578 (Padmanabhan et al., 2016) dataset is one of the most widely used data collections for
text categorization research. It was collected from the Reuters financial newswire service in 1987 and is
used for text classification and natural language processing tasks. Three splits are available: ModApte,
ModHayes, and ModLewis. These documents cover various topics, such as politics, economics, and sports.
We summarize the statistical data for all text classification tasks used in our experiments in Table 9.

Table 8: The statistical data for all datasets within the GLUE Benchmark.

Dataset Metrics Train Dev Test Label Task
MNLI Accuracy 393k 20k 20k 3 NLI
SST-2 Accuracy 67k 872 1.8k 2 Sentiment
MRPC Accuracy 3.7k 408 1.7k 2 Paraphrase
CoLA Matthews Corr 8.5k 1k 1k 2 Acceptability
QNLI Accuracy 108k 5.7k 5.7k 2 QA/NLI
QQP Accuracy 364k 40k 391k 2 Paraphrase
RTE Accuracy 2.5k 276 3k 2 NLI
STS-B Pearson Corr 7.0k 1.5k 1.4k 1 Similarity

14

https://api.semanticscholar.org/CorpusID:8199182
https://aclanthology.org/2024.naacl-long.282

Under review as submission to TMLR

Table 9: The statistical data for the Reuters-21578 dataset.

Dataset Metrics Train Test
ModApte F1 8.8k 3k
ModHayes F1 18k 0.7k
ModLewis F1 12k 5.5k

A.2 Natural Language Generation

In our experiments on natural language generation, we use the E2E (Novikova et al., 2017) dataset, which was
initially introduced as a dataset for training end-to-end, data-driven natural language generation systems.
Multiple references can be associated with each source table used as input. Each sample input (x, y) consists
of a series of slot-value pairs accompanied by an associated natural language reference text. The E2E dataset
comprises approximately 42,000 training examples, 4,600 validation examples, and 4,600 test examples from
the restaurant domain.

We utilize the following five evaluation metrics: BLEU (Papineni et al., 2002), NIST (Lin & Och, 2004),
METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al., 2015). We
summarize its statistical data in Table 10.

Table 10: The statistical data for E2E dataset.

Dataset Metrics Train Validation
E2E BLEU,NIST,MET,ROUGE-L,CIDEr 42k 4.6k

A.3 Token Classification

BioNLP (Collier et al., 2004) is a Named Entity Recognition dataset that contains biological entities such
as DNA, RNA, and protein. It is essentially a token classification task where we want to classify each
entity in the sequence. CoNLL-2003 (Sang & De Meulder, 2003) focuses on language-independent named
entity recognition. It concentrates on four types of named entities: persons, locations, organizations, and
miscellaneous entities that do not belong to the previous three groups. We summarize the statistical data
for all used token classification tasks in Table 11.

Table 11: The statistical data for token classification tasks

Dataset Metrics Train Validation Test
BioNLP Accuracy,Precision,Recall,F1 17k 1.9k 3.9k
CoNLL2003 Accuracy,Precision,Recall,F1 14k 3.3k 3.5k

B Experimental Settings

In this section, we provide detailed experimental settings. We maintain consistent configurations across
experiments, including LoRA rank, LoRA α, batch size, maximum sequence length, and optimizer, to ensure
a fair comparison. The hyperparameter tuning for our method is straightforward and convenient.

15

Under review as submission to TMLR

B.1 RoBERTa

We summarize the experimental settings for the GLUE benchmark in Table 12 and for the Reuters21578
dataset and token classification tasks in Table 13.

Table 12: The hyperparameters we used for RoBERTa on the GLUE benchmark.
Method Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 8

RoBERTa-base Total batch size 32
Global steps 20000 12000 25000 20000 15000 20000 15000 12000
Lower learning rate 5e-5 1e-5 2e-5 5e-5 2e-5 5e-5 1e-5 1e-5
Upper learning rate 5e-5 1e-5 2e-5 5e-5 2e-5 5e-5 1e-5 1e-5
Lower weight decay 0.1
Upper weight decay 0.1 0.1 0.1 0.1 0 0.1 0.1 0.01
Max Seq Length 512
Regularization Coefficient 1e-5

RoBERTa-large Total batch size 32
Global steps 50000 20000 30000 20000 60000 40000 15000 10000
Lower learning rate 1e-5
Upper learning rate 1e-5
Lower weight decay 0.5 0.5 0 0.2 0.5 0.5 0.5 0.5
Upper weight decay 0.5 0.05 0 0.2 0.5 0.5 0.1 0.5
Max Seq Length 128
Regularization Coefficient 0 0 1e-5 1e-5 0 1e-5 0 1e-5

B.2 GPT-2

We summarize the experimental settings for the GPT-2 experiments in Table 14. The experimental config-
uration, particularly during the inference stage, follows the approach described by Hu et al. (2021).

C Baselines in Experiments

We compare BiDoRA with Full Fine-Tuning (FT), Adapter tuning (Houlsby et al., 2019), LoRA (Hu et al.,
2021), and DoRA (Liu et al., 2024) in all our experiments. We provide a brief introduction to these methods
here.

Full Fine-Tuning (FT) is a commonly used method for adaptation. The model is initialized with pre-
trained weights and biases, and all model parameters are updated through gradient descent.

Adapter tuning (Houlsby et al., 2019) inserts layer adapters between neural modules, such as the MLP
module or the self-attention module. It incorporates two fully connected layers within an adapter layer, with
a nonlinearity function applied between them.

LoRA (Hu et al., 2021) adds trainable incremental update matrices to pre-trained weight matrices. Following
the experimental settings of LoRA, we applied BiDoRA to Wq and Wv matrices (the query and value weight
matrices in the self-attention module) for a fair comparison.

DoRA (Liu et al., 2024) proposes weight-decomposed adaptation, which formulates the incremental matrices
as a product of magnitude and direction components, thereby accelerating training and aligning the training

16

Under review as submission to TMLR

Table 13: The hyperparameters we used for RoBERTa on the Reuters21578 dataset, BioNLP dataset, and
CoNLL2003 dataset.

Method Settings ModApte ModHayes ModLewis BioNLP CoNLL2003
Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 8

RoBERTa-base Total batch size 32
Global steps 20000 20000 20000 12000 12000
Lower learning rate 3e-5 3e-5 3e-5 1e-5 2e-5
Upper learning rate 3e-5 3e-5 3e-5 1e-5 2e-5
Lower weight decay 0.1 0.1 0.1 0.1 0.2
Upper weight decay 0.1
Max Seq Length 512
Regularization Coefficient 0 1e-5 0 1e-5 0

RoBERTa-large Total batch size 32
Global steps 20000 20000 20000 12000 15000
Lower learning rate 1e-5 1e-5 1e-5 2e-5 1e-5
Upper learning rate 1e-5 1e-5 1e-5 2e-5 1e-5
Lower weight decay 0.2 0.1 0.2 0.02 0.1
Upper weight decay 0.1 0.1 0.1 0.02 0.1
Max Seq Length 128
Regularization Coefficient 0 1e-5 0 0 1e-5

Table 14: The hyperparameters we used for GPT-2 on the E2E NLG benchmark.
Settings Training
Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 32
Label Smooth 0.1
Lower learning rate 1e-3
Upper learning rate 1e-4
Lower weight decay 1
Upper weight decay 1
Max Seq Length 512
Regularization Coefficient 1e-5
Settings Inference
Beam Size 10
Length Penalty 0.9
no repeat ngram size 4

behavior with full fine-tuning. In contrast, our BiDoRA trains the two components on distinct sub-datasets
to alleviate overfitting.

17

Under review as submission to TMLR

D Weight Decomposition Analysis

We provide a brief review of the weight decomposition analysis proposed in Liu et al. (2024). Define the
weight decomposition of a weight matrix W ∈ Rd×k (e.g., query matrix in an attention layer) as W =
m V

∥V ∥c
= ∥W∥c

W
∥W ∥c

, where m ∈ R1×k is the magnitude vector, and V ∈ Rd×k is the directional matrix,
with ∥ · ∥c representing the vector-wise norm of a matrix across each column. This decomposition ensures
that each column of V/∥V ∥c remains a unit vector, and the corresponding scalar in m defines the magnitude
of each vector. Liu et al. (2024) examine the magnitude and directional variations between W0 and WFT,

defined as ∆M t
FT =

∑k

n=1
|mn,t

FT −mn
0 |

k and ∆Dt
FT =

∑k

n=1
(1−cos(V n,t

FT ,W n
0))

k . Here, ∆M t
FT and ∆Dt

FT represent
the magnitude and direction differences between W0 and WFT at the t-th training step, respectively, with
cos(·, ·) denoting cosine similarity. mn,t

FT and mn
0 are the nth scalars in their respective magnitude vectors,

while V n,t
FT and W n

0 are the nth columns in V t
FT and W0. Intuitively, a consistent positive slope trend across all

the intermediate steps implies a difficulty in concurrent learning of both magnitude and direction, suggesting
that slight directional changes are challenging to execute alongside more significant magnitude alterations.
In contrast, a relatively negative slope signifies a more varied learning pattern, with a more pronounced
negative correlation indicating a larger learning capacity.

Complementary to Fig. 3 in the main paper on the query matrix, we provide additional results of weight
decomposition analysis in Fig. 4 on the value matrix to complement the findings in Section 5.7. We can
draw two key observations from Fig. 4: 1) Consistent with the results in Liu et al. (2024), both FT and
DoRA exhibit negative correlation values of −49.279 and −5.485, respectively, while LoRA shows a positive
correlation with a value of 2.503. 2) BiDoRA achieves a negative correlation value of −10.547, indicating
closer alignment with FT compared to DoRA. The analysis of how BiDoRA achieves this improvement is
similar to that discussed in Section 5.7.

(a) FT(k = −49.279) (b) LoRA(k = 2.503) (c) DoRA(k = −5.485) (d) BiDoRA(k = −10.5)

Figure 4: Magnitude and direction updates for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA of the
value matrices across different layers and intermediate steps after fine-tuning the GPT2 model on the E2E
dataset. Different markers represent matrices from different training steps, while different colors indicate
matrices from each layer. The values of negative correlation are shown at the top, denoted by k.

E Training Cost

E.1 Computation Costs

Table 15: Average training time cost on the MNLI, QQP, and SST-2 datasets.

Method LoRA DoRA BiDoRA
Cost ×1 ×1.30 ×3.92

Since BiDoRA has the same architecture as DoRA, our method only requires two extra forward and back-
ward passes of the lower level for the hypergradient calculation of the upper level, as shown in Eq. 8. In
principle, this would make our method roughly threefold computationally costly. A similar analysis holds

18

Under review as submission to TMLR

Partition ModApte ModHayes ModLewis
0.6 85.32 79.76 77.69
0.7 85.32 80.01 77.74
0.8 85.34 79.93 77.63
0.9 85.27 79.85 77.64
1.0 85.23 79.59 77.42

Table 16: Experiment results on different data partitions of BiDoRA

for the memory consumption analysis. Empirically, Table 15 shows the average training cost of BiDoRA
and two baseline methods on the MNLI, QQP, and SST-2 datasets from the GLUE benchmark, being con-
sistent with the theoretical analysis. We normalize the cost of LoRA to 1 for reference. Given BiDoRA’s
superior performance across various tasks, the increase in computational costs is acceptable in most cases,
underscoring its practicality.

F The Role of Hyperparameter

The hyperparameter tuning for BiDoRA is simple, convenient, and straightforward. We further conducted
experiments regarding the dataset partition of Dtr and Dval to provide insights into its role in BiDoRA.
The dataset partition helps maintain the balance of inner/outer optimization by assigning different portions
of data. The direction component has more trainable parameters, so it is reasonable to use more data for
training the lower level while using the remaining data for training magnitudes. As shown in Table 16,
We varied the inner-level dataset Dtr partition from 0.6 to 1.0 with 0.1 intervals and experimented with
RoBERTa-base on three splits of the Reuters21578 dataset to examine its influence.

The results indicate that both extreme cases are negative to the overall performance. When the inner
partition is too small (≤ 0.6), directions are not well-trained, and when the inner partition is 1.0, magnitudes
are not trained at all, leading to a significant performance drop. These findings demonstrate that bi-level
optimization is effective in the sense that both levels are necessary for enhancing performance. Although
tuning the partition ratio may further improve overall performance, we maintain a consistent data partition
of 8:2 in all the experiments for simplicity. A fixed configuration of data partition already consistently yields
superior performance of BiDoRA, demonstrating that our method is robust to this hyperparameter within
a certain range.

G Comparison with Other General Methods for Addressing Overfitting

There are some common experimental settings that may be used to reduce overfitting. For DoRA, two
promising methods are increasing weight decay and adopting a more aggressive dropout rate. We conducted
experiments on these two methods separately. We kept hyperparameters that have been well-tuned in DoRA
and can achieve optimal results while only tuning the weight decay value. Similarly, we tune the dropout rate
of DoRA while keeping the weight decay value to be optimized. We conducted experiments on Roberta-base
on three datasets. The results are presented in Table 17 and 18.

We can draw the observation that neither of these approaches effectively addresses overfitting issues or
enhances the model’s generalization ability. On the other hand, BiDoRA exploits the specific magnitude-
direction structure of DoRA and the strategy of training the two distinct components on separate splits of
the dataset. An advantage of our methodology is that it can be easily combined with other general-purpose
overfitting-alleviating strategies since BiDoRA does not modify the original DoRA architecture.

19

Under review as submission to TMLR

Table 17: Experiment results on different weight decay values of DoRA
Method CoLA MRPC RTE

DoRA (weight decay = 0) 59.3 88.7 72.9
DoRA (weight decay = 0.05) 60.1 89.2 73.3
DoRA (weight decay = 0.1) 60.5 89.2 73.2
DoRA (weight decay = 0.2) 60.3 89.0 73.2

BiDoRA 61.3 89.4 76.0

Table 18: Experiment results on different dropout rates of DoRA
Method CoLA MRPC RTE

DoRA (dropout rate = 0) 59.2 89.2 72.9
DoRA (dropout rate = 0.1) 60.2 88.9 71.4
DoRA (dropout rate = 0.2) 55.1 87.8 64.2

BiDoRA 61.3 89.4 76.0

20

	Introduction
	Related Work
	Parameter Efficient Fine-Tuning Methods
	Bi-level Optimization

	Preliminary
	Methods
	Overview of BiDoRA
	Orthogonal Regularization
	A Bi-level Optimization Framework

	Experiments
	Experimental Setup
	Experiments on Natural Language Understanding Tasks
	Experiments on Natural Language Generation Tasks
	Experiments on Token Classification
	Experiments on Extremely Small Datasets
	Ablation Studies
	Weight Decomposition Analysis
	Discussion

	Conclusion and Future Works
	Datasets and Models
	Natural Language Understanding
	Natural Language Generation
	Token Classification

	Experimental Settings
	RoBERTa
	GPT-2

	Baselines in Experiments
	Weight Decomposition Analysis
	Training Cost
	Computation Costs

	The Role of Hyperparameter
	Comparison with Other General Methods for Addressing Overfitting

