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ABSTRACT

The integration of domain knowledge into the learning process of artificial intel-
ligence (AI) has received significant attention in the last few years. Most of the
approaches proposed so far have focused on centralized machine learning scenar-
ios, with less emphasis on how domain knowledge can be effectively integrated
in decentralized settings. In this paper, we address this gap by evaluating the ef-
fectiveness of domain knowledge integration in distributed settings, specifically in
the context of Decentralized Federated Learning (DFL). We propose the Physics-
Informed DFL (PIDFL) architecture by integrating domain knowledge expressed
as differential equations. We introduce a serverless data aggregation algorithm
for PIDFL, prove its convergence, and discuss its computational complexity. We
performed comprehensive experiments across various datasets and demonstrated
that PIDFL significantly reduces average loss across diverse applications. This
highlights the potential of PIDFL and offers a promising avenue for improving
decentralized learning through domain knowledge integration.

1 INTRODUCTION

Federated Learning (FL) has been introduced as an alternative to classical centralized training to
solve different issues including data security, privacy, and data transfer costs, prevalent in distributed
environments (AbdulRahman et al., 2020). Indeed, a large number of geographically dispersed de-
vices and sensors are equipped with a local machine learning model nowadays. In FL data are not
moved to the central server but stored and analyzed locally, with model parameters shared among
nodes. Each node retains its local model, obtained by taking into account the learning process of
the whole system. The relationship between global and local models is orchestrated by a central
server in Centralized FL (CFL), as shown in Figure 1(a), while in Decentralized Federated Learn-
ing (DFL), there is no centralized aggregator entity, as shown in Figure 1(b). Hybrid solutions,
where some nodes operate as aggregator entities, performing parameter analyses and sharing, are
considered variations of DFL. A DFL network can be seen as an undirected graph (see Figure 1(b)),
where edges represent connections among nodes, and nodes (shown in Figure 1 as the squared box)
contain a local dataset and a local model with its parameters, that are shared with other adjacent
nodes. DFL addresses issues such as reducing centralized risk, enhancing privacy, optimizing re-
source utilization, improving scalability, ensuring regulation compliance, and contributing to the
democratization of Artificial Intelligence (AI). However, different challenges regarding communi-
cation overhead, data distribution, data security, and privacy have been addressed in the literature
(for a recent survey on DFL, refer to (Beltrán et al., 2023)).

The utilization of domain knowledge to enhance machine learning performance has been the subject
of numerous recent efforts. Systems allowing expressions of domain knowledge through logical
formulas are known as neuro-symbolic (see (Garcez & Lamb, 2023) as a survey on this topic). The
integration of mathematical equations within learning algorithms is studied in the physics-informed
learning (Karniadakis et al., 2021; Piccialli et al., 2024). A recent research direction following this
intuition is the proposal of the Physics-Informed Neural Networks (PINNs), seeking to integrate
physics-related domain knowledge, in the form of mathematical equations, as soft constraints into
an empirical loss function of a neural network (Krishnapriyan et al., 2021; Hao et al., 2022; Chen
et al., 2020). However, the existing studies have taken place in centralized structures, where the
dataset and model are under the same administrative authority. Independently of the type of domain
knowledge, its use favors the training speed in large-scale datasets and accuracy.
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Figure 1: Federated Learning architectures: CFL (a), DFL (b) proposed PIDFL (c).

In this paper, we investigate the possibility of using domain knowledge in Decentralized Federated
Learning (DFL) framework. Our proposal is motivated by the fact that in DFL the local data can be
limited, possibly noisy, and may vary in terms of distribution (e.g. Heterogeneous data) and volume
(Beltrán et al., 2023), and thus the use of domain knowledge could improve the learning performance
of single nodes, and consequently of the whole DFL system. To this end, we generalize PINN to
deal with (decentralized) federated learning and propose an architecture called Physics-Informed
Decentralized Federated Learning (PIDFL) (see Figure 1(c)), integrating domain knowledge into
decentralized federated learning. While the idea behind the proposed framework is straighforward,
we face unique technical considerations including heterogeneous data as it impacts the convergence
of the learning process. On the other hand, the decentralized learning setup requires specific adapta-
tion to the standard PINNs due to the practical considerations including the network topology, and
communication limitations. Our architecture is suitable for many real-world distributed machine
learning applications, especially when dealing with heterogeneous and scarce data during training.
To the best of our knowledge, this paper marks the initial attempt to integrate domain knowledge,
presented as physical equations, with machine learning in decentralized systems.

Contributions. Our main contributions are as follows:

• We propose a general architecture called Physics-Informed Decentralized Federated Learn-
ing (PIDFL), that integrates domain knowledge, expressed in terms of differential equations
into decentralized federated learning. Our architecture is suitable for many real-world dis-
tributed machine learning applications dealing with scarce data during training.

• We propose a data aggregation algorithm for PIDFL called DFLA, prove its convergence,
and discuss its computational complexity.

• Performing comprehensive experiments across various datasets, we show that PIDFL sig-
nificantly improves the performance in terms of average loss. We utilize a non-IID (non-
independent and identically distributed) data distribution and compare the performance
of the PIDFL in different settings with existing baseline DFL algorithms including well-
known Federated Averaging (FedAvg) (McMahan et al., 2017b), Segmented Gossip (SG)
(Hu et al., 2019) algorithms.

Organization. The rest of this paper is organized as follows. Section 2 recalls the key concepts
underlying Partial Differential Equations, Physics-Informed Neural Networks, and Decentralized
Federated Learning. Section 3 presents the PIDFL framework, the distributed aggregation algo-
rithm (Section 3.1), and its convergence analysis, computational complexity, theoretical limits, and
optimization of hyperparameters. The experimental analysis is presented in Section 4. Related work
is discussed in Section 5, before concluding the paper in Section 6.
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2 PRELIMINARIES

We recall the key concepts underlying Supervised ML, Physics-Informed Neural Networks, and
Decentralized Federated Learning.

2.1 SUPERVISED MACHINE LEARNING

A supervised (neural network) learning model can be defined as a pair M = ⟨N,Θ⟩ where N
identifies the neural network and Θ denotes the set of its parameter values. The goal is to build a
function fN (x; Θ) (or simply f(x; Θ) whenever the neural network is understood) relating inputs
x (also called instances) to outputs ŷ = f(x; Θ) (also called model predictions). The particular
relationship between inputs and model predictions is determined byM. To train the model, a loss
function L(D,Θ) is adopted over a training dataset D consisting in pairs (x, y), where x is an
instance and y is its corresponding label (also called ground truth). The loss function quantifies
the mismatch between the model prediction ŷ = f(x; Θ) and the ground truth y over all pairs
(x, y) in D. Since the function f(x; Θ) depends on parameters Θ, the goal is to search for the
parameter values that minimize the loss. An important neural network learning model is Multi-
Layer Perceptron (MLP), that appeared as a building block of several learning architectures (Prince,
2023; Bengio et al., 2017). An MLPM = ⟨N,Θ⟩, where N has k layers, is defined by a sequence
of weighted matrices ω(1), . . . , ω(k), bias vectors b(1), . . . ,b(k), and fixed activation functions
a(1), . . . , a(k). 1 Given an input instance x, we inductively define h(i) = a(i)(h(i−1)ω(i) + b(i))
with i ∈ {1, . . . , k}, assuming that h(0) = x. The output ofM on x is defined as h(k).

2.2 PARTIAL DIFFERENTIAL EQUATIONS AND PHYSICS-INFORMED NEURAL NETWORKS

Partial differential equations (PDEs) are typically derived from fundamental governing principles
such as the conservation of mass or energy, these PDEs often lack exact analytical solutions in many
real-world scenarios. The following abstraction captures many of the issues associated with a PDE
constraint (Krishnapriyan et al., 2021; Moin, 2010):

F(c(x1, . . . , xn)) = 0, with [x1, . . . , xn−1] ∈ Ω, xn ∈ [0, H]

where F is a differential operator representing the PDE, c(x1, . . . , xn) is the state variable (i.e., the
parameter of interest), x1, . . . , xn−1 denote space, xn denotes the time, H is the time horizon, and
Ω is the spatial domain. Since F is a differential operator, in general one must specify appropriate
boundary and/or initial conditions to ensure the existence/uniqueness of a solution.

Example 1. Considering a pollutant’s dispersion scenario, c(x1, x2, x3) represents the pollutant
concentration at time x3 at the coordinates of (x1, x2). Moreover, the pollutant’s dispersion could
be modeled by Advection-diffusion (Lanser & Verwer, 1999) with the following differential equation:

∆ : δ(
d2c

dx2
1

+
d2c

dx2
2

)− dc

dx3
− (ρ1

dc

dx1
+ ρ2

dc

dx2
) + σ = 0 (1)

where ρ1 and ρ2 are wind velocity components, δ is the so-called diffusion coefficient, and σ repre-
sents the source of pollutant. 2

Current research on PINN aims to integrate partial differential equation as soft constraints in the
neural network’s output using an empirical loss function (Hao et al., 2022; Krishnapriyan et al.,
2021). The goal is to find the neural network parameters Θ that minimize L(c) + λFF(c), where
L(c) is the data-fit term (including initial/boundary conditions), and λF is a regularization parameter
that controls the emphasis on the PDE based residual (which we ideally want to be zero).2 Sharing
the same underlying idea, we generalize PINNs within (decentralized) federated learning setting.

1In MLP, the activation functions are part of the neural network N , while matrices ω and vectors b constitute
parameters Θ.

2Loosely speaking, a residual is the error in computing the exact value of F(c). This is due to the fact that,
for many practical use cases, it is not possible to derive closed-form solutions for these problems.
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2.3 DECENTRALIZED FEDERATED LEARNING

A Decentralized Federated Learning framework (or simply DFL) can be intuitively seen as a graph
whose nodes can collect and process local data and communicate with the other nodes through edges.
More formally, a DFL is a pair ⟨V, E⟩, where V is a set of nodes (e.g., agents) and E ⊆ V × V × R
is a set of directed edges among pairs of nodes such that there are no two edges (vi, vj , wij) and
(vi, vj , w

′
ij) with wij ̸= w′

ij . An edge (vi, vj , wij) ∈ E represents the fact that node vj receives
information from vi and, as it will be clearer in what follows, the weight wij (with wij ≥ 0)
intuitively represents the importance that vj gives to the received information. Each node vi ∈ V
balances the information received from its neighbors with its local information—to this end we also
assume the existence of ‘self-loop’ edges (vi, vi, wii) ∈ E . Moreover, in DFL it is also assumed
that the communication is symmetric, that is (vi, vj , wij) ∈ E if and only if (vj , vi, wji) ∈ E ,
although wij and wji may differ. Each node vi ∈ V contains a local dataset Di and a local model
Mi = ⟨Ni,Θi⟩ parameterized by Θi. It is also assumed that nodes share the same neural network,
that is Ni = Nj for any pair of nodes (vi, vj). Thus, we often denote a DFL as a triple ⟨V, E , N⟩.
We use Ei = {(vj , wji) | (vj , vi, wji) ∈ E} to denote the neighborhood of vi, that is the set of
pairs (vj , wji) where vj is a neighbor of vi and wji is the weight of the edge from vj to vi denoting
the importance vi gives to vj . A DFL is said to be fully connected if all pairs of nodes are directly
connected by an edge, that is the graph ⟨V, E⟩ is complete.

The training process of a DFL network is delegated to an aggregation algorithm, where each node
minimizes its local loss by also taking into account the information provided by its neighbors (Bel-
trán et al., 2023). Most of the aggregation algorithms in the literature share the same underlying
(training) idea: each node, at each iteration, update its model parameters by leveraging on its local
dataset and the parameters received from its neighbors (Sun et al., 2023; He et al., 2018; Martínez
Beltrán et al., 2024; McMahan et al., 2017a). The algorithm ends whenever convergence criteria
are satisfied or a maximum number of iterations is reached. This approach of sharing the model
parameters instead of raw data is particularly useful for privacy preservation and efficient computa-
tion in distributed networks. Thus, DFL proposes many advantages over CFL in terms of privacy
preservation, communication efficiency, scalability, and resilience to adversarial attacks.

3 PHYSICS-INFORMED DFL FRAMEWORK

In this section we present the Physics-Informed Decentralized Federated Learning (PIDFL) Frame-
work (or simply PIDFL).

A PIDFL ⟨V, E , N⟩ is a specific DFL where each node vi also contains some physics-related laws,
denoted as ∆i. Motivated by the fact that nodes in DFL typically learn the same phenomena and
share the same neural network, we assume that all nodes share the same physics-related laws, that is
∆i = ∆j for any pair (vi, vj) of nodes. Thus, we often denote a PIDFL as a quadruple ⟨V, E , N,∆⟩.
For the sake of readability, w.l.o.g. we consider ∆ as a single PDE. It is worth noting that ∆
should be not necessarily applied to all the samples from the local dataset Di. Thus, we denote
with Xi ⊆ Di the subset of Di where ∆ is expected to hold. Selection of Xi depends on the
domain-specific knowledge. For instance, in our example (cf. Example 1), air pollutant dispersion
can be influenced by wind patterns, urban geometry (e.g., buildings), temperature gradients, and
emissions sources. Thus, to ensure that the model learns the initial conditions and source-related
terms of the dispersion, the set Xi might be selected as the data points around known emission
sources such as industrial areas, or areas with high levels of human activity. This process can be
performed automatically by data-driven or adaptive sampling methods. In data-driven methods,
specific patterns or regions withinDi could be selected while adaptive sampling techniques evaluate
the model performance, or the uncertainty in prediction to dynamically identify Xi.

The PIDFL problem consists in the individuation of parameters Θ1, . . . ,Θn that minimize the sum-
mation

∑
vi∈V L(Di,Xi,Θi), where each local loss function L(Di, Xi, Θi) is defined as follows:

L(Di,Xi,Θi) = Ld(Di,Θi) + λL∆(Xi,Θi). (2)

In the above equation, Ld(Di,Θi) represents the local loss function based on local dataDi and local
model parameters Θi. Moreover, L∆(Xi,Θi) is the local loss function based on the physics-related
law ∆, whereas λ is a regularization parameter that balances the data fidelity with the physic-law
adherence integrating the latter as a soft constraint.
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Figure 2: Overview of the training process for local model Mi contained in any node vi of a PIDFL framework
presented in Example 1.

Let ŷ = f(x; Θi) be the model prediction for any element (x, y) ∈ Di, Ld is defined as the mean
squared error (MSE) between the prediction and ground truth as follows:

Ld(Di,Θi) =
1

|Di|
∑

(x,y)∈Di

(f(x; Θi)− y)
2
. (3)

The physics-informed term L∆(Xi,Θi) is formulated based on physics-related law ∆ on a set of
data points Xi ⊆ Di as follows:

L∆(Xi,Θi) =
1

|Xi|
∑

(x,y)∈Xi

(
residual(∆, x,Θi)

)2

(4)

where residual(∆, x,Θi) is a function computing the residual at x—the larger the value the
greater the error; conversely, the smaller the larger the number of data points compatible with ∆.

We next provide the DFLA aggregation algorithm, prove its convergence, and discuss its computa-
tional complexity.

3.1 AGGREGATION ALGORITHM

We propose an aggregation algorithm for PIDFL called DFLA that runs on each node of the PIDFL
network and is used to train multiple local models cooperatively, i.e. they are not trained solely based
on individual local data but also consider the learning parameters of its neighbors. Both cooperation
and domain knowledge are expected to improve the accuracy of training, especially when local data
is scarce. This will be confirmed in our experimental analysis in Section 4.

We now discuss how the proposed distributed algorithm (i.e., Algorithm 1) is performed on (any)
node vi ∈ V of the PIDFL network ⟨V, E , N,∆⟩. It takes as input the local data Di and Xi ⊆ Di,
the PDE ∆, the neural network N , the set Ei of pairs (vj , wji) including both vi’s neighbors and
respective importance weights wji, the maximum number of iterations τ ∈ N, and the regularization
parameter λ. The algorithm initializes parameters Θ0

i (Line 1). Then, at each iteration t ∈ [0, τ − 1]
it computes the local loss function L(Di,Xi,Θ

t
i) as outlined in Eq. 2 (Line 3). Then, node vi

first computes the gradient of the loss w.r.t. the model parameters (Line 4) and then performs an
optimizer step for each iteration t ∈ [0, τ − 1] (Line 5). That is, it consists of updating (through
function update) the parameters Θi of local modelMi = ⟨N,Θi⟩ as follows:

Θ̂t
i = Θt

i − µ∇(Ld(Di,Θ
t
i) + λL∆(Xi,Θ

t
i)), (5)

5
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Algorithm 1 DFLA(Di,Xi,∆, N, Ei, τ, λ)
Input: Local data Di and Xi ⊆ Di, PDE ∆, neural network N , set Ei of pairs (vj , wij), maximum

number of iterations τ , regularization parameter λ.
Output: Trained modelMi = ⟨N,Θi⟩

1: Initialize Θ0
i ;

2: for t ∈ [0, 1, . . . , τ − 1]
3: Let L(Di,Xi,Θ

t
i) = Ld(Di,Θ

t
i) + λL∆(Xi,Θ

t
i);

4: gL ← ∇L(Di,Xi,Θ
t
i); ▷ Gradient computation

5: Θ̂t
i ← update(Θt

i, gL); ▷ Optimizer step
6: Send Θ̂t

i to neighbors vj in Ei and receive Θ̂t
j ;

7: Compute Θt+1
i =

∑
(vj ,wji)∈Ni

wjiΘ̂
t
j ;

8: return trained modelMi = ⟨N,Θi = Θτ
i ⟩;

where ∇ represents the gradient over the local loss function and µ is the learning rate that can be
explicitly specified or adaptively adjusted by adaptive optimizers (Bengio et al., 2017). Then, at
Line 6, node vi performs the direct Peer-to-Peer communication (Beltrán et al., 2023). Therefore,
the model parameters Θ̂t

i are directly sent to their neighbors vj ∈ Ei. Since vi sends and receives up-
dates from their neighbors, the communication is efficient in terms of bandwidth and computational
resources. Finally, parameters Θ̂t

j are used to compute Θt+1
i at Line 7 as follows:

Θt+1
i =

∑
(vj ,wji)∈Ei

wjiΘ̂
t
j (6)

where the weights wji intuitively represent the importance that node vi, in updating its local param-
eters Θt+1

i , gives to the received parameters Θ̂t
j . These weights could be uniform or optimized to

determine the most influential nodes in the parameter update. After the last iteration t = τ − 1,
Algorithm 1 ends returning the trained modelMi = ⟨N,Θi = Θτ

i ⟩ (Line 8).

Computational Complexity. The complexity of DFLA is positively related to (a) the maximum
number of iterations τ , (b) the number of neighbors |Ei|, (c) the number of data-points |Di| and
|Xi|, and (d) the topology of neural network N . Thus, the worst case is whenever |Xi| = |Di|
and |Ei| = |V|. Furthermore, let DFL be the corresponding algorithm in the DFL setting, that is
obtained from DFLA by setting λ = 0. Notably, the overhead caused by the computation of the loss
L∆(Xi,Θ

t
i) in DFLA is negligible as its cost is lower than that of computing the gradient during

backpropagation (Line 4). Notably, this holds regardless of the neural network N ; therefore, DFLA
and DFL have the same complexity, that is the introduction of the physical law is not a source in
complexity.

Importance Weights. We now discuss various possible definitions for the importance weights wij .
Let W represent the weighted adjacency matrix associated with the graph ⟨N , E⟩. The choice of
W may depend on network topology and communication patterns. However, as it will be clearer
in Section 3.2, a significant aspect for achieving better convergence is to ensure that the matrix W
is doubly stochastic, i.e. wij ≥ 0 and

∑
j wij =

∑
i wij = 1. For any possible definition of

W , it is reasonable to set wij = 0 if there is no edge between vi and vj . In a fully connected
network, when there is no prior knowledge about the importance of the nodes, the simplest and most
efficient method is to use the uniform distribution, where each node vi considers the information
received from its neighbors to be equally informative, i.e. wji = 1/|V| for any node vj ∈ V . When
equal importance is not desired, to improve the convergence rate, the matrix W can be designed
to maximize the spectral gap, i.e. the difference between the largest (Λ1) and second-largest (Λ2)
eigenvalue (Vogels et al., 2022). To find the optimal values for the elements in W , we need to solve
the following optimization problem numerically since there is no closed-form solution in general. 3

max
W

(1− Λ2(W ))

subject to W1 = 1, WT1 = 1, wij ≥ 0, ∀i, j.
3Recall that, whenever W is doubly stochastic, Λ1 = 1 and thus the spectral gap can be defined as 1− Λ2.
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It is worth noting that doubly stochastic property on W is easily met on fully connected frameworks,
while for partially connected frameworks it is not generally true. However, to ensure doubly stochas-
tic property, it is possible to design the matrix W through schemes such as the Metropolis-Hastings
(M-H) weighting (Schwarz et al., 2014). In M-H weighting schemes, the importance of node vi
for node vj is inversely proportional to the maximum between the degrees of the two nodes. In
particular, for any pair of distinct nodes (vi, vj), if there is no edge between vi and vj then wji = 0,
otherwise wji = 1/max(|Ei|, |Ej |). Moreover, wii = 1−

∑
(vj ,wji)∈Ei

wji.

3.2 CONVERGENCE ANALYSIS

In this section, we prove the convergence of the proposed algorithm whenever the matrix W is
doubly stochastic and the gradient ∇L(Di,Xi,Θ

t
i) is Lipschitz continuous (Goldstein, 1977). We

define the network error E as the deviation of the node parameters Θi from the network average Θ̄.
Particularly, let Θ̄t be the averaged parameters of all Θt

i for any vi ∈ V . We define the (PIDFL)
error at time t as follows:

Et =
1

2|V|

|V|∑
i=1

∥∥Θt
i − Θ̄t

∥∥2. (7)

The following theorem proves the convergence of Algorithm 1 by showing that the error Et, de-
creases over time, that is Et+1 ≤ βEt, where β is called the convergence rate and β ∈ [0, 1). A
smaller β implies that the algorithm is reducing the error more rapidly, so the minimum value for
β is preferred. In the Appendix B, we discuss more on the convergence to an optimal solution and
present the generalization bound.
Theorem 1. Let ⟨V, E , N,∆⟩ be a PIDFL, ⟨Di,Xi,∆, N, Ei, τ, λ⟩ be an instance of Algo-
rithm 1, and W be the weighted matrix corresponding to weighted graph ⟨V, E⟩. If the gradient
∇L(Di,Xi,Θ

t
i) is Lipschitz continuous and W is doubly stochastic, then there exists β ∈ [0, 1)

such that Et+1 ≤ βEt holds, for any t ∈ [0, τ − 1].

Proof. As defined in Eq. (7), we have that:

Et =
1

2|V|
∑|V|

i=1

∥∥Θt
i − Θ̄t

∥∥2 , and Et+1 = 1
2|V|

∑|V|
i=1

∥∥Θt+1
i − Θ̄t+1

∥∥2.
Considering Lipschitz continuous conditions for the gradients ∇L(Di,Xi,Θ

t
i), there exists a con-

stant κ such that for all Θr,Θs, with r, s ∈ [1, |V|] we have (Goldstein, 1977):

∥∇L(Dr,Xr,Θr)−∇L(Ds,Xs,Θs)∥ ≤ κ∥Θr −Θs∥.

Therefore, in the update step (i.e., Line 7 in Algorithm 1) since matrix W is a doubly stochastic, the
average remains the same after combination, that is for any t < τ we have that:

Θ̄t+1 =
1

|V|

|V|∑
i=1

Θi
t+1 =

1

|V|

|V|∑
i=1

∑
(vj ,wji)∈Ei

wjiΘ
t
j =

1

|V|

|V|∑
j=1

(
∑

(vi,wji)∈Ej

wji)Θ
t
j = Θ̄t.

Consider now the gradient descent update of adaptation (i.e., Line 5 in Algorithm 1), we have that:
Θ̂t

i = Θt
i − µ∇L(Di,Xi,Θ

t
i). As the gradient is Lipschitz continuous we have that

∥Θ̂t
i −Θt

i∥ = µ∥∇L(Di,Xi,Θ
t
i)∥ ≤ µC∥Θt

i − Θ̄t∥

where C is the Lipschitz constant. We now expand ∥Θt+1
i − Θ̄t+1∥2 as follows:

∥Θt+1
i − Θ̄t+1∥2 =

∥∥∥∥∥∥
∑

(vj ,wji)∈Ei

wjiΘ̂
t
j − Θ̄t

∥∥∥∥∥∥
2

.

Applying the convexity of the squared norm (Boyd & Vandenberghe, 2004), we have:∥∥∥∥∥∥
∑

(vj ,wji)∈Ei

wjiΘ̂
t
j − Θ̄t

∥∥∥∥∥∥
2

≤
∑

(vj ,wji)∈Ei

wji∥Θ̂t
j − Θ̄t∥2.
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Since it holds that ∥Θ̂t
j − Θ̄t∥2 = ∥Θt

j − µ∇L(Dj ,Xj ,Θ
t
j)− Θ̄t∥2, we have that

∥Θt+1
i − Θ̄t+1∥2 ≤

∑
(vj ,wji)∈Ei

wji∥Θt
j − µ∇L(Dj ,Xj ,Θ

t
j)− Θ̄t∥2 and thus

|V|∑
i=1

∥Θt+1
i − Θ̄t+1∥2 ≤

|V|∑
i=1

∑
(vj ,wji)∈Ei

wji∥Θt
j − µ∇L(Dj ,Xj ,Θ

t
j)− Θ̄t∥2

and, as
∑

(vj ,wji)∈Ei

wji = 1, we can rewrite the above inequality as follows:

|V|∑
i=1

∥Θt+1
i − Θ̄t+1∥2 ≤

|V|∑
i=1

∥Θt
i − µ∇L(Di,Xi,Θ

t
i)− Θ̄t∥2︸ ︷︷ ︸

ζ

We expand ζ as follows: ∥Θt
i − Θ̄t∥2 − 2µ⟨Θt

i − Θ̄t,∇L(Di,Xi,Θ
t
i)⟩ + µ2∥∇L(Di,Xi,Θ

t
i)∥2

where ⟨· , ·⟩ represents the inner product. Considering the Lipschitz conditions, we have:
∥Θt

i−µ∇L(Di,Xi,Θ
t
i)− Θ̄t∥2 ≤ ∥Θt

i− Θ̄t∥2(1− γµC+O(µ2C2)) where γ is a proportionality
constant, and O(µ2C2) represents the second-order terms. Therefore, we have β = (1 − γµC +

O(µ2C2)) and
∑|V|

i=1 ∥Θ
t+1
i − Θ̄t+1∥2 ≤ β

∑|V|
i=1 ∥Θt

i − Θ̄t∥2, that concludes the proof.

4 EXPERIMENTAL ANALYSIS

In this section, we discuss the experiment setup and performance evaluation results of the proposed
PIDFL architecture. The code and results have been made available online.4

4.1 EXPERIMENT SETUP

Dataset. We consider different physical phenomena with publicly available datasets including the
nonlinear Schrödinger (NLS) models that have been utilized to light propagation in optical fibers
(Bafghi & Raissi, 2023), air dispersion in the diffusion and transport of pollutants in the atmosphere
(Lanser & Verwer, 1999), drug diffusion models (Chasnov, 2019), Burger equation that is used to
model fluid dynamics and traffic flow (Rudy et al., 2017), the Schrödinger equation from quantum
mechanics (Rudy et al., 2017), and finally, the wave equation models (de Wolff et al., 2021). We
compare also the performance of the proposed aggregation algorithm DFLA with the well-known
baselines including FedAvg (McMahan et al., 2017b), and SegmentedGossip (Hu et al., 2019),
across the mentioned datasets. Comparison of PIDFL with SCAFFOLD(Karimireddy et al., 2020)
and DEFDSAM-MGS (Shi et al., 2023) is provided in Appendix.

Data Distribution. We consider both IID and non-IID distributions. Non-IID distribution is a
practical consideration and arises due to factors such as geographical location, demographics, or
device usage patterns (Sánchez Sánchez et al., 2024). For non-IID, we consider Dirichlet distribution
(with α set to 0.5) to distribute data among the nodes in DFL (Wang et al., 2020; Yurochkin et al.,
2019). We also add Gaussian noise to input data with a variance of 0.24. Our initial experiments
demonstrated a potential bias with the sorted data. Therefore, we have shuffled the data randomly
for a more reliable evaluation. More details on the data distribution are provided in Appendix.

4.2 RESULTS

A first question is whether (and how much) the incorporation of domain knowledge into a DFL
architecture, thereby resulting in the proposed PIDFL architecture, offers any measurable benefits.
To this end, Table 1 (resp., Table 2) reports the results for a setting with fully-connected networks
of n = 10 (resp., n = 50) nodes by varying the regularization parameter λ and the dataset—clearly,
whenever λ = 0 we obtain the DFL setting. For each pair of dataset and value of λ we report the
average test loss of the DFLA algorithm among all nodes, that is 1

|V|
∑

vi∈V Ld(Di,Θi). 5

4Code: https://anonymous.4open.science/r/PIDFL-8EAF/
Results: https://file.io/0M8UM57zGfjO.

5We use 80% of the data in each node for training and 20% for the test.
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Table 1: Average test loss of the DFLA algorithm for PIDFL architecture (λ ∈ [0.25, 0.5, 0.75, 1])) and DFL
architecture (i.e., DFLA with λ = 0) with n = 10 nodes. In cyan we report the gap (in percentage) w.r.t. the
case λ = 0. Bold represents best in row.

Dataset/PDE λ = 0 (DFL) λ = 0.25 λ = 0.5 λ = 0.75 λ = 1.0
NLS .337±.051 .110±.014 .124±.02 .140±.007 .148±.004

– 67.434 63.082 58.411 56.168
Air Dispersion .190±.067 .135±.041 .112±.025 .123±.038 .147±.064

– 29.187 41.133 35.205 22.593
Drug Diffusion .087±.007 .082±.005 .080±.012 .077±.008 .092±.012

– 6.042 7.614 11.519 -5.442
Burger .013±.005 .009±.002 .011±.006 .007±.002 .008±.002

– 33.925 12.659 45.572 4.154
Schrödinger .160±.01 .126±.015 .108±.005 .126±.012 .116±.003

– 2.951 32.469 2.868 27.121
Wave .028±.01278 .027±.0055 .028±.0042 .029±.0010 .036±.0049

– 1.519 -1.936 -2.765 -28.754

Table 2: Average test loss of the DFLA algorithm for PIDFL architecture (λ ∈ [0.25, 0.5, 0.75, 1]) and DFL
architecture (i.e., DFLA with λ = 0) with n = 50 nodes. In cyan we report the gap (in percentage) w.r.t. the
case λ = 0. Bold represents best in row.

Dataset/PDE λ = 0 (DFL) λ = 0.25 λ = 0.5 λ = 0.75 λ = 1.0
NLS .285±.028 .187±.017 .218±.017 .246±.006 .245±.020

– 34.153 23.455 13.471 21.151
Air Dispersion .140±.041 .090±.013 .098±.011 .101±.019 .094±.012

– 36.164 3.389 28.333 33.299
Drug Diffusion .083±.012 .071±.005 .072±.003 .070±.003 .067±.003

– 14.637 13.288 14.977 18.616
Burger .0053±.0012 .0035±.0007 .0026±.0004 .0045±.0004 .0040±.0004

– 34.214 5.457 15.037 25.147
Schrödinger .0964±.0053 .0812±.0005 .0788±.0001 .0822±.0021 .0806±.00003

– 15.796 18.193 14.756 16.399
Wave .074±.0138 .032±.0045 .037±.0034 .042±.0067 .031±.0022

– 56.757 5.000 43.243 58.108

From Tables 1 and 2 we can draw the following conclusions for non-IID distribution. The regu-
larization parameter λ affects the performance and the best value (shown in bold) depends on the
specific dataset (and thus on the application domain). It is worth noting that, in 21 over the 24 cases
(resp., all the cases) of Table 1 (resp., Table 2), the performance of PIDFL is better than the DFL.
Moreover, Table 2 shows that when increasing the number of nodes from n = 10 to n = 50, the
PIDFL outperforms the DFL also in the four cases.

Another interesting question is whether the PIDFL architecture continues to offer measurable bene-
fits against other well-known DFL baselines like FedAvg (McMahan et al., 2017b) and Segment-
edGossip (SG) (Hu et al., 2019). To this end, Table 3 reports, for each dataset, the average test loss
of i) the DFLA algorithm with the best value of λ (obtained from Tables 1 and 2) and ii) baselines
DFL, FedAvg, and SG. As a result, the PIDFL approach always outperforms all the baselines DFL,
FedAvg and SG in both network settings with n = 10 and n = 50 nodes, and non-IID data distri-
bution. The experiment results with IID data distribution is discussed in the Appendix and supports
the superiority of PIDFL.

5 RELATED WORK

Recent studies on FL aim to enhance the robustness and performance of both centralized and de-
centralized settings by optimizing data management and proposing aggregation algorithms (Huang
et al., 2024; Xu et al., 2024; Chen et al., 2024). PeFLL is proposed as a personalized FL algorithm
that improves accuracy, reduces computation and communication, and offers theoretical guarantees
for generalization. PeFLL utilizes a learning-to-learn approach to train an embedding network and
a hypernetwork to represent clients in a latent descriptor space (Scott et al., 2024). Despite the ad-
vancements in the FL algorithms, the issues caused by the training data are still challenging. Insuf-
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Table 3: Average test loss of the DFLA algorithm with λ = 0 (i.e., DFL), DFLA algorithm with the best value
of λ, and baselines FedAvg and SG with n = 10 and n = 50 . Bold represents best in row.

n = 10 n = 50

Dataset/PDE DFLA (λ = 0) DFLA (best λ) FedAvg SG DFLA (λ = 0) DFLA(best λ) FedAvg SG
NLS .337 .110 .323 .317 .285 .187 .437 .425

Air Dispersion .190 .112 .437 .428 .140 .090 .527 .517
Drug Diffusion .087 .077 1.700 1.544 .083 .067 1.926 1.753

Burger .013 .007 .045 .043 .0053 .0026 .040 .037
Schrödinger .160 .108 .112 .112 .0965 .0788 .0788 .0788

Wave .028 .027 .593 .515 .074 .031 .7665 .6766

ficient data also referred to as “data scarcity”, might cause problems in the robustness and accuracy
of the DFL models and degrade the performance due to bias or under-fitting (Babbar & Schölkopf,
2019), causing convergence problems (Fahy et al., 2022). To mitigate these issues, several strategies
are proposed in the literature. Zhang et al. (Zhang et al., 2023) utilize transfer learning and intro-
duce an FL paradigm for non-intrusive load monitoring at the edge. Generating synthetic data also
referred to as data augmentation, is also used to mitigate data scarcity in FL (Goetz & Tewari, 2020;
Li et al., 2022). Chen and Vikola study non-IID local data in FL and propose a method to add data
made by variational auto-encoders to the local data (Chen & Vikalo, 2023). Hu et al. (Hu et al.,
2022) use the synthetic data to train the model instead of the local data. In the literature, synthetic
data is mainly utilized to address the communication issue in FL by replacing the large number of
parameters in the ML model. PINNs are a class of neural networks that incorporate physics laws,
typically in the form of differential equations, into the learning process. They have emerged as a
powerful tool, particularly in scientific computing and situations where data is sparse or expensive
(Piccialli et al., 2024). The research on PINNs is still ongoing in many fields, including fatigue
life prediction (Zhou et al., 2023), solving partial differential equations (PDEs) (Gao et al., 2022),
power systems (Huang & Wang, 2022), magnetic image reconstruction (van Herten et al., 2022) and
many others (for a recent survey see Wu et al. (2024)). Li et al. (Li et al., 2023) study managing en-
ergy across multiple grids and propose a federated multi-agent deep reinforcement learning (DRL)
method. They use a physics-informed reward in their proposal. Although the term physics-informed
is used, the authors use the physical characteristics of the problem definition and do not mean the
PINNs concept. In another study, Chen et al. (Chen et al., 2023) reviewed FL-based X-ray image
screening. Instead of sampling the client loss uniformly, they use local messages and physical facts.
By being physics-informed, they mean that people have more interest in the images labeled as “HIT”
or “MAYBE”, which means the substance features being tested are reflected in the images. As the
above-mentioned articles (Li et al., 2023; Chen et al., 2023) include the terms “physics-informed”
and “federated learning”, they do not discuss the idea of using domain knowledge (differentiable
equations) in training the ML model of DFL. Therefore, to the best of our knowledge, this is the first
time a generalizable architecture is being proposed for DFL.

6 CONCLUSIONS AND FUTURE WORK

We proposed PIDFL, a novel decentralized federated learning architecture that incorporates domain
knowledge in the form of differential equations. PIDFL improves the learning process by utiliz-
ing physics-related PDEs as soft constraints. We also introduced a suitable data-aggregation algo-
rithm (DFLA), proved its convergence, and discussed its computational complexity. We evidenced
the efficacy of PIDFL across many datasets, exhibiting substantial performance enhancements in
loss reduction relative to conventional decentralized federated learning algorithms like FedAvg and
SegmentedGossip. The experimental findings confirm the capability of PIDFL to integrate do-
main knowledge and learning in decentralized environments, especially in scenarios with non-IID
data distributions.

As future work on the proposed framework, we plan to investigate adaptive mechanisms for select-
ing the regularization parameter λ, ensuring data fidelity and domain-knowledge adherence across
diverse tasks and enhancing the framework’s generalizability.
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APPENDIX

A LIMITATIONS

The proposed PIDFL offers an innovative approach for incorporating domain-specific physical
knowledge into decentralized learning; however, some limitations needs to be addressed. These
limitations do not undermine the merits or applicability of PIDFL but offer insights for future re-
search and enhancement.

As a general limitation on Physics-Informed Neural Networks (PINNs), the effectiveness of the
PIDFL framework depends on the precision of the physical model. This constraint is intrinsic to all
PINNs and underscores the imperative for careful selection and validation of the domain-specific
physical rules ∆ utilized in training. The PIDFL framework is engineered to manage both IID and
non-IID data distributions between nodes. Similar to numerous DFL systems, when significant vari-
ation occurs in data distribution across nodes, the framework’s performance may be affected. In
DFL systems, scalability poses a difficulty across extensive networks with numerous nodes. This is
because of non-linear relationship between the number of nodes and computational complexity. The
PIDFL demonstrates robust performance in experimented mid-sized networks; however, scaling to
massive networks may necessitate the utilization of hierarchical topologies to mitigate communi-
cation overheads. The efficacy of PIDFL, similarly to existing PINNs, is acutely dependent on the
selection of the regularization parameter λ. Although we have exhibited the framework’s robustness
across several λ values, the ideal selection of this regulization is dependend on the given situation.

B CONVERGENCE AND GENERALIZATION BOUND

Here, we discuss the extension of theorem 1 in strongly convex and non-convex scenarios. We also
discuss the generalization bound of the PIDFL.

Strongly Convex Scenario A function L(Di,Xi,Θi) is strongly convex with respect to Θi if
there exists a constant µ > 0 such that for any Θa,Θb, we have: L(Di,Xi,Θa) ≥ L(Di,Xi,Θb) +
⟨∇L(Di,Xi,Θb),Θa −Θb⟩+ µ

2 ∥Θa −Θb∥2. Strong convexity implies that the objective function
has a unique global minimizer Θ∗ (Scaman et al., 2017).

In theorem 1, we proved that by the given assumptions, Et+1 ≤ βEt. Let each local objective
L(Di,Xi,Θi) be strongly convex with a constant µ > 0, therefore, the aggregate objective L(Θ) =
1
|V|

∑|V|
i=1 L(Di,Xi,Θ) is also strongly convex, with a unique minimizer Θ∗. The contraction of the

consensus error, combined with gradient updates, ensures that all nodes’ parameters Θi converge to
the unique minimizer (Koloskova et al., 2020): limt→∞ Θt

i = Θ∗, ∀i ∈ V .

In other words, in theorem 1, having Et+1 ≤ βEt where 0 ≤ β < 1 (by controlling the µ). With
β < 1, we have a decay in Et, therefore: Et+1 ≤ βEt ≤ β2Et−1 ≤ · · · ≤ βt+1E0, As t → ∞,
βt → 0, hence limt→∞ Et = 0. In the strongly convex case, convergence to the unique optimal
point Θ∗ follows limt→∞ Θt

i = Θ∗, ∀i ∈ V .

Non-Convex Scenario Assuming that the gradients of the local loss functions L(Di,Xi,Θi)
are uniformly bounded (across all nodes and all iterations) and defining G as a bound on the
gradient norm of the local loss functions (Arjevani et al., 2023), the global average parame-
ter Θ̄t = 1

|V|
∑

i∈V Θt
i converges to a stationary point of the global objective Lglobal(Θ) =

1
|V|

∑
i∈V L(Di,Xi,Θi) as t → ∞, at the rate of O(1/

√
t). Assuming the bounded gradient

∥∇L(Di,Xi,Θi)∥ ≤ G ∀i ∈ V and since L(·) is non-convex, the convergence is to a station-
ary point where ∥∇Lglobal(Θ)∥ = 0.

To prove, we define et = Θt
i − Θ̄t as the deviation of local parameters from the global average.

Substituting the update rule (Algorithm 1) into the deviation, we have: et+1 = Wet, where et =
[et1, e

t
2, . . . , e

t
V ]

⊤. Considering the doubly stochastic W , the global average Θ̄t is invariant, so the
deviation et evolves independently. Therefore: ∥et+1∥ = ∥Wet∥ ≤ λ2(W )∥et∥. By iterating
this over t steps, we have: ∥et∥ ≤ λ2(W )t∥e0∥, that indicates a geometric decay of ∥et∥ at a rate
proportional to λ2(W ). Since λ2(W ) < 1, it follows that ∥et∥ → 0 as t → ∞. This implies that
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all local parameters Θt
i converge to the global averageΘ̄t. Therefore, ∥et∥2 ≤ λ2(W )t∥e0∥2. This

indicates that the consensus error diminishes geometrically over iterations, i.e., ∥et∥ → 0 as t→∞.
Therefore, bounding the gradient norm as ∥∇Lglobal(Θ)∥ ≤ 1

|V|
∑

i∈V ∥∇L(Di,Xi,Θi)∥+∥et∥ and
using the diminishing consensus error ∥et∥ → 0 and bounded gradients ∥∇L(·)∥ ≤ G, the global
gradient norm satisfies E[∥∇Lglobal(Θ

t)∥2] ≤ O(1/
√
t).

Generalization Bound For generalization bound (Bousquet & Elisseeff, 2002), we assume that
the local loss function L(Di,Xi,Θ) is C-smooth (Lipschitz continuous with constant C), and
γ = λ2(W ) − λ1(W ) > 0 represents the eigengap of a doubly stochastic weighing matrix W ,
where λ1(W ) = 1 is the largest eigenvalue and λ2(W ) is the second-largest eigenvalue. The
data heterogeneity across nodes is bounded by δ. The δ measures the variation in data distri-
butions across nodes and can be quantified by the difference between local and global empiri-
cal risks: δ = 1

|V|
∑|V|

i=1

∣∣∣R̂i(Θ)− R̂(Θ)
∣∣∣, where R̂i(Θ) and R̂(Θ) are the local and global em-

pirical risks, respectively (Bousquet & Elisseeff, 2002). We define the generalization bound as
Egen = E

[
R(Θ)− R̂(Θ)

]
(Bousquet & Elisseeff, 2002). This definition shows the difference be-

tween the model’s expected performance on unseen data and its performance on the training data.
Let R(Θ) = E(D,X ) [L(D,X ,Θ)] be the expected global risk, and R̂(Θ) = 1

|V|
∑|V|

i=1 R̂i(Θi)

be the global empirical risk, with R̂i(Θi) = 1
|Di|

∑
Di

L(Di,Xi,Θi). Therefore, Egen =

E
[
R(Θ)− R̂(Θ)

]
= E

[
R(Θ)− 1

|V|
∑|V|

i=1 Ri(Θi)
]
+ E

[
1
|V|

∑|V|
i=1

(
Ri(Θi)− R̂i(Θi)

)]
.

The first term represents the error due to the lack of compatibility between the local models
Θi and the global model Θ (the Θ after convergence), while the second term captures the er-
ror due to the empirical approximation at each node. Using the Lipschitz continuity of the
gradient with constant C, and applying ∥R(Θ) − Ri(Θi)∥ ≤ C∥Θi − Θ∥, considering the
doubly stochastic property of the weight matrix W we have: E

[
R(Θ)− 1

|V|
∑|V|

i=1 Ri(Θi)
]
≤

C
|V|

∑|V|
i=1 ∥Θi −Θ∥. The eigengap bounds the rate of consensus between nodes, i.e. ∥Θi −Θ∥2 ≤

1√
γ ∥Θi − Θ∥. Therefore, E

[
R(Θ)− 1

|V|
∑|V|

i=1 Ri(Θi)
]
≤ C√

γ ·
1
|V|

∑|V|
i=1 ∥Θi − Θ∥2. The sec-

ond term as E
[

1
|V|

∑|V|
i=1

(
Ri(Θi)− R̂i(Θi)

)]
is bounded by a constant δ, which depends on

the size of the local dataset |Di| and the heterogeneity of data across nodes. Formally speak-
ing, E

[
1
|V|

∑|V|
i=1

(
Ri(Θi)− R̂i(Θi)

)]
≤ δ. Combining the bounds for the two terms, we have:

Egen = E
[
R(Θ)− R̂(Θ)

]
≤ C√

γ ·
1
|V|

∑|V|
i=1 ∥Θi−Θ∥2+δ. The first term, C√

γ ·
1
|V|

∑|V|
i=1 ∥Θi−Θ∥2,

presents the impact of network connectivity ( γ) and the smoothness of the loss function ( C) on the
generalization error. The second term, δ, accounts for the approximation error due to finite data and
heterogeneity across nodes. In our experiments, we utilized Dirichlet distribution with parameter
α to model the heterogeneity of the data. Larger values of α result in distributions closer to IID.
Empirical analysis (like what is performed by (Hsu et al., 2019)) suggests that δ is inversely related
to α, approximately following δ ∝ 1

α .

Discussion on Convergence Rate The convergence rate O(µ2C2) reflects the influence of two
critical factors the step size µ (learning rate) and the Lipschitz constant C, which bounds the gradi-
ent of the loss function L. The Lipschitz constant C represents the smoothness of the loss function
L. A smaller C implies that the loss surface is smoother, which can lead to more stable and effi-
cient optimization. The quadratic dependence C2 indicates that a higher Lipschitz constant (i.e., less
smoothness) slows down the convergence process. This is because larger C leads to greater variabil-
ity in the gradients, which the algorithm must account for by taking smaller steps. The convergence
rate O(µ2C2) ensures that the algorithm effectively handles smooth loss functions by leveraging
C as a control measure for gradient variations. When C is small, the optimization benefits from
faster convergence, making the algorithm suitable for problems with well-behaved loss functions.
For functions with high Lipschitz constants (large C), the quadratic dependence highlights the sen-
sitivity of the algorithm to the smoothness of L. In cases with such challenges, techniques such as
gradient clipping or adaptive learning rates may be employed to mitigate the adverse effects. The
dependence on µ2 implies that the step size (learning rate) must be carefully chosen. A smaller µ
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leads to slower convergence, while a larger µ could exacerbate the impact of C, causing instabil-
ity. For real-world problems, the value of C can often be estimated or bounded based on empirical
observations of the loss landscape. For instance, in decentralized learning scenarios, smoother func-
tions (smaller C) may arise naturally from averaging techniques. While a squared convergence rate
may not be optimal, it is still significant in non-convex settings as it guarantees the algorithm will
approach a stationary point. In distributed and federated learning frameworks, where non-convex
loss surfaces are common, achieving even O(µ2C2) convergence provides a reliable method for
gradual improvement, especially given the challenges posed by communication constraints and het-
erogeneous data. For faster convergence, we may increase µ, but this could lead to larger consensus
errors or divergence if µ exceeds stability bounds. Choosing an optimal µ balances convergence
speed with stability, particularly important in decentralized settings (Wang et al., 2019; Arjevani
et al., 2023).

C EXPERIMENTAL INSIGHTS

The experiments were performed on a machine featuring a 2.93 GHz base processor speed, 12
physical cores, 24 logical processors, and 64 GB of RAM. We report the average loss on the test
set after, that is 1

|V|
∑

vi∈V Ld(Di,Θi). Table 4 presents the parameters used in our performed
experiments which were selected based on common assumptions or practical evaluations.

Table 4: Settings used in our performed experiments.

Parameter Value
Network Size (Nodes) 10 and 50
Iterations (communication rounds) 100
Non-IID Data Distribution Dirichlet distribution with α = 0.5

Learning Rate 0.1
Noise Gaussian with variance 0.24

Impact of Communication Rounds A critical determinant affecting the efficacy of the PIDFL
framework is the number of iterations τ (or Communication Rounds, CRs) in Algorithm 1. The
impacts of τ on the experiments are presented in the following.

In experiments with 100 iterations, the models demonstrated a more accelerated decrease in mean
loss relative to scenarios with fewer CRs. This is especially evident in the outcomes for the NLS,
Air Dispersion, and Burger datasets. This suggests that increased τ , enables decentralized nodes to
more effectively synchronize their model parameters, hence enhancing overall performance.

Although increasing the number of iterations may enhance convergence, it simultaneously results in
greater communication overhead. In massive networks, this may result in considerable delays due
to large amount of data transmission across nodes. For instance, in the experiments with n = 50
nodes, the communication overhead has become increasingly evident. Although the average loss
consistently diminished with additional communication cycles, the enhancement was less significant
relative to the n = 10 node networks. This indicates that although communication aids in aligning
model parameters, there might be a diminishing return with increased communication cycles in
larger networks, particularly when accounting for the associated computational and temporal costs.

When the data distribution among nodes is non-IID, increasing τ facilitates greater information
sharing among nodes, hence diminishing the discrepancies in their local models. Experimental
results indicate that models with higher number of iterations, show enhanced performance in non-
IID data distributions. This is more apparent in the Drug Diffusion and Burger datasets. Figure 3
illustrates the test loss value across communication rounds for Air Dispersion and Wave Datasets.

In decentralized federated learning settings with peer to peer communications there is a need to
frequent communication between nodes to ensure consistency across local models. The use of a
doubly stochastic weight matrix W enables the proposed PIDFL to achieve geometric convergence
of the consensus error. While this may increase communication overhead, it is balanced by the
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benefit of rapid and robust convergence to a consensus model. In practical implementations, the
communication frequency can be reduced by employing asynchronous communication or periodic
synchronization intervals. Techniques such as model compression can mitigate the communication
overhead without significantly affecting performance. Although our experiment results focus on
fully connected networks, the proposed architecture and aggregation is compatible with partially
connected topologies. The doubly stochastic weight matrix W can be constructed for partially
connected networks using techniques such as the Metropolis-Hastings weighting scheme or graph
Laplacian-based methods. These approaches ensure that the necessary mathematical properties for
convergence, such as bounded spectral gaps, are preserved even when the communication graph
is not fully connected.Considering fully connected networks we put emphasize the impact of in-
corporating domain knowledge through the regularization term λL∆. By reducing the variability
introduced by different communication topologies, we could more clearly demonstrate the effec-
tiveness of domain-specific information in improving performance. This design choice enables a
more controlled and interpretable analysis of the contributions of our method.

IID Data Distribution In Table 5 we report the average test loss of the DFLA algorithm for PIDFL
architecture (λ ∈ [0.25, 0.5, 0.75, 1]) and DFL architecture (λ = 0) with n = 10 nodes and IID data
distribution. It is worth noting that the performance of PIDFL is better than the DFL in all datasets
and regulization parameters (λ ∈ [0.25, 0.5, 0.75, 1]). Moreover, Table 6 reports, for each dataset,
the average test loss of i) the DFLA algorithm with the best value of λ (obtained from Tables 5 ) and
ii) baselines DFLA, FedAvg, and SG when the data distribution is IID. As shown, the proposed
approach outperforms all the baselines.

Table 5: Average test loss of the DFLA algorithm for PIDFL architecture (λ ∈ [0.25, 0.5, 0.75, 1]) and DFL
architecture (λ = 0) with n = 10 nodes and IID data distribution. In cyan we report the gap (in percentage)
w.r.t. the case λ = 0. Bold represents best in row.

Dataset/PDE λ = 0 (DFL) λ = 0.25 λ = 0.5 λ = 0.75 λ = 1.0

NLS .284±.026 .153±.019 .174±.014 .170±.023 .185±.010
– 46.186 38.556 4.234 34.777

Air Dispersion .177±.0409 .092±.0052 .128±.0451 .154±.0543 .078±.0023
– 48.045 27.650 13.010 56.106

Drug Diffusion .085±.014 .062±.002 .068±.005 .058±.0002 .063±.004
– 27.208 19.566 31.437 25.916

Burger .011±.00001 .008±.004 .007±.003 .006±.002 .007±.001
– 2.767 32.386 41.001 32.015

Schrödinger .147±.017 .104±.0003 .096±.0005 .094±.0033 .092±.0019
– 29.642 34.663 35.930 37.782

Wave .044±.024 .018±.002 .024±.006 .019±.002 .019±.0004
– 59.892 44.387 56.323 55.816

Non-IID Data Distribution In DFL, data is frequently distributed in a non-IID fashion. In contrast
to IID environments, where each node accesses analogous data distributions, non-IID distributions
more accurately reflect real-world situations in which the nodes produce data locally, resulting in
diversity in data distributions among nodes. Similar to many DFL studies, we employ the Dirichlet
distribution for non-IID data distributions (Shi et al., 2023). As shown below, the Dirichlet distribu-
tion is defined by a concentration parameter α that governs the heterogeneity of the data distribution,
and is defined as follows:

P (pi | α) =
1

B(α)

K∏
i=1

pαi−1
i ,

where K denotes the number of classes, B(α) represents the beta function to normalize the distribu-
tion, and pi represents the probability vector for the i-th class. The In our experiments, we utilized
Dirichlet distribution with α = 0.5 to allocate the data across N nodes. Figure 4 shows both IID
and non-IID distributions over NLS dataset.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Air Dispersion dataset

(b) Wave dataset

Figure 3: Average Loss over communication rounds for different values of regularization parameter λ, where
blue (λ = 0), orange (λ = 0.25), green (λ = 0.5), dark-blue (λ = 0.75), and purple (λ = 1). These plots
show how loss decreases as communication rounds increase for both the Air Dispersion and Wave datasets.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Comparison of the proposed PIDFL’s average loss with FedAvg and Segmented Gossip (SG) tech-
niques on IID data for 10 nodes

Dataset/PDE 10 Nodes
DFL (λ = 0) DFLA (best λ) FedAvg SG

NLS .284 .153 .364 .356
Air Dispersion .177 .078 .348 .337
Drug Diffusion .085 .058 1.820 1.653

Burger .011 .006 .024 .023
Schrödinger .147 .092 .091 .090

Wave .044 .018 .739 .653

Comparing PIDFL with SCAFFOLD and DFedSAM-MGS We mainly consider the FedAvg
and Segmented Gossip to compare the performance of PIDFL, since these methods are well-known
as the baselines in DFL. However, to have a better understanding, we also compare the PIDFL with
some of more recent methods in the literature including SCAFFOLD (Karimireddy et al., 2020)
and DEFDSAM-MGS (Shi et al., 2023) on both IID and non-IID settings. The results are privided
in Table 7 show that the proposed PIDFL outperforms the existing DFL algorithms because of
its inherent strength that comes from domain knowledge. These results indicate that although the
aggregation algorithms play a key role, especially in controlling the communication overheads in
DFL, the integration of domain knowledge can provide more effect on the accuracy. The results
also indicate that for non-IID settings, the PIDFL shows significant improvement, particularly in
complex datasets like "Air Dispersion" and "Wave."

Table 7: Comparison of the proposed PIDFL’s average loss with FedAvg, Segmented Gossip (SG), SCAF-
FOLD, DEFDSAM-MGS techniques on IID and non-IID data for 10 nodes

Dataset/PDE 10 Nodes (Non-IID) 10 Nodes (IID)

PIDFL FedAvg SG SCAFFOLD DFEDSAM PIDFL FedAvg SG SCAFFOLD DFEDSAM

NLS .110 .323 .317 .398 .484 .153 .364 .356 0.380 .387
Air Dispersion .112 .437 .428 .495 .444 .078 .348 .337 0.354 .407
Drug Diffusion .077 1.700 1.544 .072 .068 .058 1.820 1.653 0.063 .062
Wave .027 .593 .515 .123 .117 .018 .739 .653 0.106 .108

Choosing the Subset X The subset Xi ⊂ Di can be chosen adaptively based on the relevance of
the domain knowledge to the data. This adaptive selection process could be designed to prioritize
data points where the PDE constraints are expected to have the most significant impact on model
accuracy (depending on the application). For instance, regions in the dataset associated with higher
physical variations or boundary conditions may be selected to ensure that the model learns crucial
domain-specific behaviors. While expert knowledge can guide the initial selection criteria, the pro-
cess is further refined through iterative model training, where the contribution of each data point to
the PDE constraint is evaluated. This iterative refinement enables the model to self-adjust its focus
on parts of the dataset Xi where domain knowledge is most informative, reducing dependence on
manual selection by experts. In case none of these options are available, the system can select a
subset of the Di randomly to present the Xi.
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(a) non-IID α = 1.0

(b) non-IID α = 0.5

(c) non-IID α = 0.1

(d) IID

Figure 4: Data distribution plots for the NLS dataset for non-IID (a, b and c) and IID distributions (d). For non-
IID, the Dirichlet distribution is plotted with α ∈ {0.1, 0.5, 1}. Larger bubbles represent more data assigned
to a node. The plots demonstrate the distribution of data across nodes for different levels of non-IID-ness (as
controlled by the Dirichlet α values) and a fully IID distribution.
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