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Abstract

Modern generative models exhibit unprecedented
capabilities to generate extremely realistic data.
However, given the inherent compositionality of
real world, reliable use of these models in practi-
cal applications mandates they exhibit the ability
to compose their capabilities, generating and rea-
soning over entirely novel samples never seen in
the training distribution. Prior work demonstrates
recent vision diffusion models exhibit intriguing
compositional generalization abilities, but also
fail rather unpredictably. What are the reasons
underlying this behavior? Which concepts does
the model generally find difficult to compose to
form novel data? To address these questions, we
perform a controlled study of compositional gen-
eralization in conditional diffusion models in a
synthetic setting, varying different attributes of
the training data and measuring the model’s abil-
ity to generate samples out-of-distribution. Our
results show that: (i) the compositional structure
of the data-generating process governs the order
in which capabilities and an ability to compose
them emerges; (ii) learning individual concepts
impacts performance on compositional tasks, mul-
tiplicatively explaining sudden emergence; and
(iii) learning and composing capabilities is dif-
ficult under correlations. We hope our study in-
spires further grounded research on understanding
capabilities and compositionality in generative
models from a data-centric perspective.
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1. Introduction
The scaling of data, models, and compute has unleashed an
array of powerful capabilities in generative models, enabling
controllable synthesis of realistic images (Pan et al., 2023;
Saharia et al., 2022b; Yu et al., 2022), 3D scenes (Richard-
son et al., 2023; Lim et al., 2023; Huang et al., 2022a),
videos (Mei & Patel, 2022; Ceylan et al., 2023; Shin et al.,
2023), accurate image-editing (Ravi et al., 2023; Couairon
et al., 2022; Brooks et al., 2022), and semantically coherent
text generation (Nijkamp et al., 2022; Zheng et al., 2023;
Cassano et al., 2023). With increased interest to incorpo-
rate these models in our daily lives (Vemprala et al., 2023;
Globe., 2023; Riera et al., 2020; Roose, 2023), e.g., to
improve robotic systems via better planning and ground-
ing (Janner et al., 2022; Singh et al., 2022; Chi et al., 2023;
Brehmer et al., 2023; Huang et al., 2022b; Liu et al., 2023),
the question of their reliability is becoming crucial. For
these models to be beneficial to society, we argue concerted
efforts are needed to understand the limitations of capabili-
ties already existent within them and how these capabilities
can be controlled.

Motivated by the above, in this paper, we perform a study
of compositional generalization in conditional diffusion
models, i.e., diffusion models that are conditioned on aux-
iliary inputs to control their generated images (e.g., text-
conditioned diffusion models (Nichol et al., 2021; Kawar
et al., 2022)). Given the inherent compositionality of the
real world, it is arguably difficult to ever create a training
dataset that allows the model to see all possible combi-
nations of different concepts. Correspondingly, we argue
the ability to compositionally generalize can be central to
a model’s reliability in out-of-distribution scenarios, i.e.,
when the model has to reason about data distributions it has
never seen before (Zhang et al., 2021; Kaur et al., 2022).
Sharing this motivation, several prior works have tried to
probe the compositional generalization capabilities of off-
the-shelf text-conditioned diffusion models (Marcus et al.,
2022; Leivada et al., 2022; Conwell & Ullman, 2022; 2023;
Gokhale et al., 2022; Du et al., 2023; Liu et al., 2022; Rassin
et al., 2022; Feng et al., 2022). These works demonstrate
that diffusion models can often compose rather complicated
concepts, producing entirely non-existent objects, but can

1



Figure 1. (Lack of) Compositionality in text-conditioned diffu-
sion models. Images generated using Stable Diffusion v2.1 (AI.,
2023b). (a) Diffusion models conditioned on text descriptions de-
scribing the concepts in an image often allow generation of entirely
novel concepts that are unlikely to present in the training data, in-
dicating an ability to compose learned concepts and generalize
out-of-distribution. (b) However, arguably similar prompts show
the model can unpredictably fail to compose its learned concepts
at times, indicating its abilities to compose is dependent on pre-
cisely which concepts are being combined together. For example,
generations of Panda in the above figure are difficult for the model,
likely because a panda is less likely to be seen in different colors.
The model seemingly chooses to alter the background or lighting
to induce color alteration to some extent.

also unpredictably fail at composing arguably similarly com-
plicated concepts (see Fig. 1). It remains unclear precisely
what drives a model’s ability to compositionally reason
about some specific concept and yet miserably fail at an-
other one. Indeed, what properties differentiate the concepts
that the model learns to compose versus ones that it does
not? We argue precisely answering these question requires
a data-centric study, where the model’s training data is sys-
tematically altered to observe exactly when an ability to
compose a given set of concepts emerges.

In our work, we design a synthetic experimental setup that
adheres to the principle of pursuing simplicity and control-
lability while preserving the essence of the phenomenon of
interest, i.e., compositional generalization. Specifically, our
data-generating process tries to abstract training data used
in text-conditioned diffusion models by developing pairs of
images representing geometric objects and tuples that de-
note which concepts are involved in the formation of a given
image (see Fig. 2). We train diffusion models on synthetic
datasets sampled from this data-generating process, con-
ditioning the model on tuples denoting which concepts an
object in the image should possess, while systematically con-
troling the constitution of the dataset to alter the frequency
of a given concept. Thereafter, we study the model’s ability
to generate samples corresponding to a novel combination
of concepts by conditioning the denoising process on a cor-
respondingly novel tuple, thus assessing the model’s ability
to compositionally generalize. This approach allows us to
systematically investigate key configurations of a dataset
that enable compositional generalization in an interpretable
and controlled manner in conditioned diffusion models.

Train Set Test
(1,a) (2,a) (1,b)

Image
Tuple

?
(2,b)

(1,a)(2,a) (1,b)

 : circle, : triangle1 2
Shape

: red, : bluea b
Color

(a) (c)

(b)

Figure 2. Compositionality in a minimalistic conditional gener-
ation task. (a) We train diffusion models on pairs of images and
tuples, where the tuples denote which specific concepts compose
an image (e.g., color and shape in the figure). (b) When only a
single element differs between two tuples, a model can ideally
learn the capability to recognize and alter the identifying concepts
that distinguish the corresponding image pairs. (c) To test the
existence of such capabilities and the model’s ability to compose
them, we ask the model to generate images corresponding to novel
tuples that are out-of-distribution, hence requiring compositional
generalization.

2. Concept Graph: A Minimalistic Framework
for Compositionality

Figure 3. Concept graphs. We organize our study in a simple
but expressive framework called concept graphs. The basis of
a concept graph is a set of primitives called concept variables
(e.g., shape , color , etc.). A subset of these variables are
instantiated with specific values to yield a concept class, e.g.,
{shape = 0, size = 0, color = 1} implies a small, blue circle.
This is akin to defining a broad set of objects that share some
common properties, such as all lizards of different color in Fig. 1
belong to the species of lizards. A specific object in this class is
instantiated by filling the remaining variables; e.g., small, blue
circles at different locations. Each concept class corresponds to
a graph node, where nodes are connected if their concept classes
differ by a concept distance of 1.
In this section, we present the concept graph framework,
as illustrated in Fig. 3, which enables us to visually de-
pict the minimal compositional structure of our synthetic
data. Inspired by theories of concept learning in cognitive
science (Margolis & Laurence, 1999) and object-oriented
programming (Wikipedia., 2023), this framework forms our
basis for generating hypotheses and designing experiments.
We begin by defining the essential building blocks of our
framework: concept variables and concept values. In the
following, we call a specific output of our data-generating
process an “object”. For example, in Fig. 3, the images
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produced by the data-generating process form objects.

Definition 1. (Concept Variables.) Let V =
{v1, v2, ..., vn} be a set of n concept variables, where each
vi represents a specific property of an object.

For instance, for geometric objects shown in Fig. 3, concept
variables could include shape , color , size , location ,
and angle. These variables take on values from a pre-
specified range, called concept values, as noted next.

Definition 2. (Concept Values.) For each concept variable
vi ∈ V , let Ci = {ci1, ci2, ..., ciki} be the set of ki possible
values that vi can take. Each element of the set Ci is called
a concept value. Further, given an object x, vi(x) returns
the value taken on by the ith concept variable in that object.

For example, in Fig. 3, the concept values for the
shape variable can be in the set {circle, triangle, square},
while for the color variable can be in the set
{red, blue, green}, and so on. If there are n concept vari-
ables, with each variable vi having ki concept values, there
can be as many as

∏n
i=1 ki distinct combinations of concept

values across the n concept variables. We use a unique com-
bination of a pre-defined subset of these concept variables,
v1, . . . , vp (where p < n), to define the notion of a “concept
class”.

Definition 3. (Concept Class.) A concept class C is an
ordered tuple (v1 = c1, v2 = c2, ..., vp = cp), where each
ci ∈ Ci is a concept value corresponding to the concept
variable vi. If an object x belongs to concept class C, then
vi(x) = ci ∀i ∈ 1, . . . , p.

Note that the remaining n− p concept variables are free in
the above definition and, when filled, would define a specific
object. That is, a concept class represents a family of objects
by specifying the values of a pre-defined subset of concept
variables. For example, in Fig. 1, different colored lizards
instantiate images (objects) from the species (concept class)
of lizards; here, color of the lizard serves as a free vari-
able. Similarly, in the geometric objects scenario of Fig. 3,
a “small red circle” would be a concept class wherein the
shape , color , and size variables have been assigned spe-
cific values, while specific objects will be images designed
by further associating a precise value with the remaining
concept variables of location and angle . Next, we intro-
duce a notion of concept distance, which serves as a proxy
to succinctly describe the dissimilarity between two concept
classes.

Definition 4. (Concept Distance.) Given two con-
cept classes C(1) = (c

(1)
1 , c

(1)
2 , ..., c

(1)
n ) and C(2) =

(c
(2)
1 , c

(2)
2 , ..., c

(2)
n ), the concept distance d(C(1), C(2)) is

defined as the number of elements that differ between the

two concept classes:

d(C(1), C(2)) =

n∑
i=1

I(c
(1)
i , c

(2)
i ),

where I(c1i, c2i) = 1 if c1i ̸= c2i and I(c1i, c2i) = 0
otherwise.

The concept distance quantifies the dissimilarity between
two concept classes by counting the number of differing
concept values. It is important to note that this distance
serves only as a null model, as each axis represents distinct
concept variables, and each of these variables can assume
various possible concept values. We are now ready to de-
fine the notion of a concept graph, which provides a visual
representation of the relationships among different concept
classes (see Fig. 3).
Definition 5. (Concept Graph.) A concept graph G =
(N,E) consists of nodes and edges, where each node n ∈ N
corresponds to a concept class, and an edge e ∈ E connects
two nodes n1 and n2 representing concept classes C(1) and
C(2), respectively, if the concept distance between the two
concept classes is 1, i.e., d(C(1), C(2)) = 1.

That is, a concept graph allows us to organize different
concept classes as nodes in the graph, while edges denote
pairs of concept classes that differ by a single concept value.
An ideal conditional diffusion model, when trained on a
subset of the nodes from this graph, should learn capabilities
that allow it to produce objects from other concept classes.
We formalize this as follows.
Definition 6. (Capability and Compositionality.) Consider
a diffusion model trained to generate samples from concept
classes Ĉ = {C1, . . . , CT }. We define a capability as the
ability to alter the value of a concept variable vi to a desired
value ci. We say the model compositionally generalizes
when it can compose its capabilities with the ability to
generate samples from a concept class C ∈ Ĉ to produce
samples from class C̃ such that d(C,Ci) ≥ 1∀i ∈ Ĉ.

The ideas above are best explained via Fig. 4(a). Specifically,
assume we train a diffusion model on data from a subset of
concept classes, i.e., a subset of nodes in the concept graph.
To fit the training data, the model may learn the relevant
capabilities to alter specific concept variables or might in-
stead just memorize the training data, e.g., given samples
from classes 0000 and 0001 in Fig. 4, the model may learn
how to alter the fourth concept variable or just memorize
the data. Models that just memorize the training data lack
the capability to generate samples from out-of-distribution
classes (e.g., 0010). In contrast, capabilities would enable it
to produce out-of-distribution samples starting from classes
in the training data. In summary, our concept graph frame-
work provides a systematic approach to representing and
understanding a minimalistic compositional structure, al-
lowing for an analysis and comparison of different learning
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Figure 4. Capabilities and compositionality in a concept graph.
Consider a lattice representation of a concept graph corresponding
to four concept variables. Blue nodes denote classes represented
in the training data; a model can either memorize data from these
classes or learn capabilities to transform samples from one class
to another. If it learns capabilities, it can compose them with data-
generating process of samples from a concept class in the training
data and produce samples that are entirely out-of-distribution, de-
noted as pink nodes.

algorithms’ abilities to generalize across various concept
classes.

3. Multiplicative Emergence of Compositional
Abilities

With the concept graph framework in place, we now have
the tools to systematically investigate the impact of different
data-centric properties on the learning and composing of
different capabilities in conditional diffusion models. Specif-
ically, we aim to answer the following questions: (1) Can
a model compositionally generalize to a concept class it
has never encountered before?; (2) If so, under what cir-
cumstances does it fail?; (3) What is the order in which
a model learns capabilities, and how does this process fa-
cilitate compositional generalization to out-of-distribution
concept classes?

Learning dynamics respect the structure of the concept
graph (Fig. 5). We first hypothesize that the ability to
compositionally generalize and produce samples from out-
of-distribution concept classes emerges at a rate which is
inversely related to a class’s concept distance with respect
to classes in the training data. We empirically verify this
claim in Fig. 5. Specifically, Fig. 5(a) shows the learning dy-
namics of the model, where lightblue nodes denote concept
classes within the training dataset, while pink and darkpink
nodes respectively denote classes at a concept distance of
1 and 2 from classes in the training dataset. As the model
learns to fit its training data (lightblue nodes), it infers ca-
pabilities that can be composed to produce samples from
concept classes entirely out of its training distribution (pink
/ darkpink nodes). As seen in Fig. 5 (b), we find that the
learning dynamics of compositional generalization respect
the concept distance from the training set: The model first
memorizes the concept classes within the training dataset

(lightblue lines) and then generalizes to concept classes with
a concept distance of 1 from the training dataset (pink lines).
Thereafter, the model suddenly acquires the capability to
compositionally generalize to a concept class with a concept
distance of 2 from the training dataset (darkpink line). Fig. 5
(c) shows the images generated by the model over time. We
observe that rough shapes and sizes are learned relatively
early in training, by the 4th epoch, while the color is dom-
inantly biased to be red, the majority color in the training
dataset, up to the 10th epoch. Then, around the 20th epoch,
the model learns to generate the minority color (blue) for
concept classes with a concept distance of 1. Finally, around
the 40th epoch, the model learns to generate the minority
color (blue) for the class at concept distance 2, showing a
sudden emergence of capability to generate samples from
that class.

Delayed emergence of abilities to generate minority col-
ors for compositional generalization (Fig. 6). To better
understand how the capability to generate minority colors
is learned, we plot the accuracy of generated colors over
training in Fig. 6. First, as expected, we observe that the
model is capable of generating the majority color (red) much
earlier than generating the minority color (blue). Impor-
tantly, as the concept distance of the given concept class
for compositional generalization increases, the timing of
generalization during training is further delayed. This obser-
vation provides important insights for training models with
fairness in their design. Specifically, even once generaliza-
tion for in-distribution concept classes is achieved, stopping
the training of a model will likely lead to a failure in gen-
erating minority concepts, particularly for compositional
generalization.

Multiplicity drives the sudden emergence of composi-
tional abilities (Fig. 7). We leverage the interpretability of
our experimental setup to illustrate how multiplicity is the
critical mechanism behind the sudden emergence of compo-
sitional abilities. Fig. 7(a) depicts the learning dynamics of
accuracy for generating concept class {111, (triangle, small,
blue)}, which has a concept distance of 2 from the training
data. We first observe a rather sudden occurrence of strong
compositional generalization. To better comprehend this
compositional ability, in Fig. 7(b), we plot the accuracy of a
linear probe predicting each concept variable (shape, size,
color). From the plot, we notice that the model struggles to
acquire color transformation capabilities until the final stage
of training, effectively bottlenecking compositional gener-
alization to the ‘111’. This leads to the following intuitive
understanding of emergent behaviors in generative models.

Remark. (Multiplicative Emergence.) The nonlinear in-
crease in capability observed in large neural networks as
size and computational power scale up is driven by the
task’s compositionality. Models must learn all required
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Figure 5. Concept distance from the training set govern the order in which compositional capabilities emerge. (a) Concept graph
(cube) depicting training data points (blue nodes) and concept distances for test data points, where pink nodes represent distance = 1, and
darkpink nodes represent distance = 2. Each trajectories represents a learning dynamics of generated images given each tuple prompt.
Each trajectory represents the learning dynamics of generated images based on each tuple prompt. During every epoch of training, 50
images are generated, and binary classification is performed to predict each concept, including color, shape, and size. (b) Compositional
generalization happens in sequence, starting with concept distance = 1 and progressing to concept distance = 2. The x-axis represents the
number of epochs, and the y-axis represents the progress of compositional generalization. (c) Images generated as a function of time
clearly show a sudden emergence of capability to change color for small, red triangles.

Figure 6. Delayed emergence of abilities to generate minority
colors for distant classes. Prediction accuracy of color based
on generated samples at each epoch during training. We observe
that the ability to generate minority colors emerges significantly
later as the concept distance of a concept class increases, highlight-
ing the need for extended training beyond the point of achieving
in-distribution generalization. This prolonged training enables ef-
fective composition of the minority concept and leads to improved
generalization.

concepts, but compositional generalization is hindered by
the multiplicative, rather than additive, impact of learning
progress on each concept. This results in a rather sudden
emergence of capabilities to produce or reason about data
not seen during training.

4. Conclusion
We introduce an abstraction of the training pipeline involved
in training conditional diffusion models by designing a sim-
ple, interpretable, and yet powerful framework, titled con-
cept graphs, that allow us to infer precisely when a model
can learn the ability to compositionally generalize, produc-
ing novel, out-of-distribution samples. We show composi-

Figure 7. Multiplicity underlies the sudden emergence of com-
positional capabilities. (a) Accuracy of producing samples from
the concept class {111, (triangle, blue, small)}, which has a con-
cept distance of 2 from the training data. A multiplicative metric
(solid line) assigns a score of 1 when all concept variables of shape,
color, and size are correctly predicted. Conversely, an additive
score (dashed line) provides partial credit for accurately predicting
each of the concept variables independently, deceptively showing
smooth progress (cf. (Barak et al., 2022; Nanda et al., 2023)). (b)
Learning dynamics of accuracies for predicting each of the three
concept variables: shape (blue), color (orange), and size (green).

tionality emerges in a sequence that respects the geometric
structure of the concept graph, eliciting a multiplicative
emergence effect that manifests as sudden increase in the
model’s performance to produce out-of-distribution data
well after it has learned to produce samples from its training
distribution. This behavior is reminiscent of the recently ob-
served phenomenon of grokking in language modeling-like
objectives (Power et al., 2022; Nanda et al., 2023; Barak
et al., 2022). We further study settings where a model can
fail to generalize compositionally, seeing phenomenon such
as need for a critical amount of data to learn relevant capa-
bilities.
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A. Related Work
Diffusion models. Diffusion models are the current state-of-the-art in generating extremely realistic visual data (Dhariwal
& Nichol, 2021; AI., 2023a; Ho et al., 2020; Ho & Salimans, 2022; Nichol & Dhariwal, 2021; Nichol et al., 2021; Ramesh
et al., 2022; 2021; Pan et al., 2023; Saharia et al., 2022b; Yu et al., 2022). Often these models are trained using image-text
pairs, where the text is processed using a large language model to produce semantically rich embeddings that can allow
controlled generation of novel images or even editing of existing ones (Kawar et al., 2022; Saharia et al., 2022a; Goel et al.,
2023; Ravi et al., 2023; Couairon et al., 2022; Brooks et al., 2022). Such conditional diffusion models are easy to probe for
compositional generalization, as one can directly specify a text description that requires composition of concepts the model
is likely to know (e.g., avocado and chair) to produce images that are unlikely to exist in the model’s training data (e.g.,
avocado chair; see (Dhariwal & Nichol, 2021; Nichol et al., 2021)). Such results demonstrate the model’s ability to compose
and generalize out-of-distribution. However, the use of text-conditioning also implies a possible failure to generalize
compositionally can involve the text model being unable to properly represent desired concepts in the text-embedding space.
To avoid this failure mode and only focus on the abilities of the diffusion process for image generation, in this work, we
prefer to use ordered tuples that denote without ambiguity precisely which concepts are involved in a scene’s composition.

Compositional generalization. Compositionality is an inherent property of the real world (Peters et al., 2017), wherein
some primitive such as color can be composed with another primitive such as shape to develop or reason about entirely
novel concepts that may not have been witnessed before (Zhang et al., 2021). It is especially hypothesized to play an integral
role in human cognition, enabling humans to operate seamlessly in novel scenarios (Goodman et al., 2008; Phillips &
Wilson, 2010; Frankland & Greene, 2020; Reverberi et al., 2012; Franklin & Frank, 2018). Inspired by this, several works
in machine learning have focused on developing (Du et al., 2021; 2023; Liu et al., 2022; Xu et al., 2022; Yuksekgonul
et al., 2022; Bugliarello & Elliott, 2021; Spilsbury & Ilin, 2022; Kumari et al., 2023) and benchmarking (Thrush et al.,
2022; Andreas, 2019; Lewis et al., 2022; Lake & Baroni, 2018; Yun et al., 2022; Lepori et al., 2023; Johnson et al., 2017;
Conwell & Ullman, 2022; Yuksekgonul et al., 2022; Schott et al., 2021; Gokhale et al., 2022; Valvoda et al., 2022) systems
to respectively improve and analyze a system’s ability to compositionally generalize. We note that a thorough formalization
of compositionality in generative models is relatively lacking, though a noteworthy work includes the paper by Hupkes et
al. (Hupkes et al., 2020).

B. Experimental and Evaluation Setup
Experimental Setup. The detailed setup is presented in Appendix B. In brief, we train conditional diffusion models that
follow the U-Net pipeline proposed by Dhariwal and Nichol (Dhariwal & Nichol, 2021). Our dataset involves concept
classes defined using three concept variables, each with two values; specifically, shape = {circle, triangle}, color = {red,
blue}, and size = {large, small}. Tuples, which stand as an abstraction for text-conditioning, are used for conditioning the
diffusion model’s training and defined using binary numbers. For example, the tuple 000 implies a large, red circle is present
in the image. To sample images from this process, we simply map the size and color axes to the range [0, 1] and sample
points in between to develop a training dataset of 5000 samples (the precise samples depend on which concept classes are
allowed in the data-generating process). In this setup, the minimal required set for learning capabilities to alter concepts is
just four pairs of tuples and images, each drawn from one of the following four concept classes: {000, (circle, red, large)},
{100, (triangle, red, large)}, {010, (circle, blue, large)}, {001, (circle, blue, small)}. By comparing the first elements of the
sets {000, (circle, red, large)} and {100, (triangle, red, large)}, we can observe that the concept of shape is encoded in the
first element. Here, 0 represents a circle and 1 represents a triangle. Similar arguments can be made for the remaining
elements in the sets.

Evaluation Metric. Evaluating whether a generated image corresponds to the desired concept class can require a human-
in-the-loop. To circumvent this issue, we propose to follow literature on disentanglement which trains classifiers to test
whether a generated image possesses some property of interest (Higgins et al., 2017; Kim & Mnih, 2018; Eastwood &
Williams, 2018; Chen et al., 2018; Kumar et al., 2017; Van Steenkiste et al., 2019; Locatello et al., 2019). Specifically, we
use the data used for training the diffusion model for training three linear classifiers that perform binary classification for
each of the three concept variables, i.e., shape , color , and size . We define a model’s accuracy for generating images of
a given concept class as the product of the probabilities outputted by the three classifiers that each concept variable matches
the value defined by the concept class. We also note that a random classifier of just one concept variable will predict the
correct result with a 0.5 probability. We report this random baseline with dotted, gray lines in our plots whenever necessary.
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B.1. Synthetic dataset

The dataset consists of 5,000 rendered images of 2D geometric shapes, along with corresponding concept classes. These
synthetic images are generated using Blender1 by creating a scene graph and rendering it. Each scene contains a single
object placed on a blank background of size 28 × 28. The objects have three types of attributes: size, color, and shape.
There are two shapes (circle and triangle), three colors (red, blue), and two sizes (large, small), resulting in up to eight
different combinations of attributes. Each image is annotated with the corresponding object attributes, which can be utilized
as conditional features for image generation. This enables us to directly evaluate the text-to-image generation capability of
the diffusion model against ground truth images. Fig. 8 depicts example images with the corresponding concept classes.
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Figure 8. Examples of data samples with pairs of images and corresponding concept classes.

B.2. Loss function

Diffusion models convert Gaussian noise into samples from a data distribution through an iterative denoising process. The
sampling process starts with a noisy input xT , and denoised samples are generated through gradual iteration, xT−1, xT−2,
until the original input x0 is obtained. Conditional diffusion models (Chen et al., 2021; Saharia et al., 2022b) allow for
a denoising process conditioned on texts or class labels. In all the experiments, we used the conditional diffusion model
with the form p(x|V ), where x denotes an image and V = {v1, v2, ..., vn} denotes a set of n concept variables. To predict
the noise ϵ at each timestep t ∈ [0, T ], we follow the approach proposed in (Ho et al., 2020) by training a neural network.
Specifically, we construct a neural network ϵθ(xt, t,a) and minimize the mean squared error (MSE) between the predicted
Gaussian noise and the true noise:

L = Et∈[0,T ],x0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(x0, t, V )∥2

]
, (1)

where q(x0) denotes the distribution of input image x0, and N (0, I) denotes the standard Gaussian distribution.

B.3. Architecture

We use the conditional U-Net architecture (Dhariwal & Nichol, 2021), as in (Ho et al., 2020), for our neural network ϵθ(·).
Our architecture comprises two down-sampling and up-sampling blocks, with each block consisting of 3×3 convolutional
layers, GELU activation, the global attention, and pooling layers. The conditional information V are fed through an
embedding layer and concatenated with the image feature maps at each stage of the up-sampling blocks. We illustrate our
network architecture in Fig. 9.

1http://www.blender.org
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Figure 9. The architecture of the conditional diffusion model. The architecture of the conditional diffusion model involves an iterative
process comprising noise addition and denoising steps. The model leverages conditioning information, specifically concept classes,
to guide the transformation of the input image towards a desired state. In our implementation, we utilize a U-Net to parameterizethe
denoising process. The U-Net architecture consists of three upsampling convolutional layers and three downsampling convolutional
layers, which are connected through skip connections. Each layer within the U-Net includes a pooling layer, a global attention mechanism,
and a GELU activation function.

B.4. Optimizer

We implemented the diffusion model using PyTorch and trained it on four Nvidia A100 GPUs. We performed a hyperpa-
rameter search based on a validation set. We tested batch sizes ranging from 32 to 256, the number of channels in each
layer from 64 to 512, leaning rate from 10−4 and 10−3, the number of steps in the diffusion process from 100 to 400. We
employed the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.99, and weight decay of 10−5.

B.5. Evaluation metric

For the evaluation, we follow a probing protocol popularly used in several prior works on learning disentangled repre-
sentations (Higgins et al., 2017; Kim & Mnih, 2018; Eastwood & Williams, 2018; Chen et al., 2018; Kumar et al., 2017;
Van Steenkiste et al., 2019; Locatello et al., 2019). To evaluate the attributes of the images generated by our conditional
diffusion model, we trained linear classifiers on these images for three specific attributes: shape, color, and size. For each
attribute, we developed a dedicated classifier: f0(x̂0) for shape, f1(x̂0) for color, and f2(x̂0) for size. Here x̂0 denotes the
image generated by the conditional diffusion model. We utilized a cross-entropy loss function to train these classifiers. The
output of each classifier fell into one of two categories: for shape, the categories were circle or triangle; for color, blue
or red; and for size, large or small. We then calculated the accuracy for each attribute using the corresponding classifier
outputs. To quantitatively assess the accuracy of predicted attributes aligning with their corresponding ground-truth concept
classes, we utilize a multiplicative measure. This measure gauses the accuracy of all attributes, and defined by the product of
individual accuracies for each attribute as follows:

Accuracy =
1

Nt

Nt∑
n=1

⊮
(
f0(x

(n)
0 ), v

(n)
0

)
· ⊮

(
f1(x

(n)
0 ), v

(n)
1

)
· ⊮

(
f2(x

(n)
0 ), v

(n)
2

)
, (2)

where ⊮(·) is the indicator function, n is the index of the test samples, and Nt is the total number of samples used for
evaluation. For our experiments, we generated Nt = 50 images for each input of concept classes. v

(n)
0 , v(n)1 , and v

(n)
2

denote the actual (ground truth) concepts classes for shape, color, and size, respectively. We trained them over 50 epochs
using the training dataset comprising 5,000 pairs of concept classes and images. The trained linear classifiers achieved an
accuracy rate of 100% on the test set drawn from the original synthetic dataset.
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C. Additional experimental results
C.1. Challenges for Compositional Generalization

We have demonstrated that, given a well-structured training dataset, a conditional diffusion model can learn to compose its
capabilities to generate novel inputs not encountered in the training set. Next, we systematically investigate adversarial setups
under which the model fails to learn relevant capabilities or an ability to compose them, failing to generalize compositionally.
Understanding these limitations is as crucial as recognizing the successes, as they carry significant implications for limiting
and controlling the emergence of harmful capabilities while preserving beneficial ones.

Figure 10. How does the frequency of data samples impact the learning of capabilities? We systematically control the frequency of a
specific concept class in the training dataset and observe how it affects the model’s learning of capabilities. (a) Capability to alter colors is
quickly learned after introducing approx. 10 samples with a concept class of large blue circle, ‘001’. (b) In contrast, a critical threshold
(marked with dotted vertical lines) exists for learning a capability to alter the shape: as we gradually introduce samples, with a concept
class of large red triangle, ‘100’.

Critical frequency for learning capabilities (Fig. 10). We first systematically probe the effect of changing frequency of
samples from different concept classes in the training data and examine how this affects the model’s ability to learn and
compose capabilities involving that concept class. Results are shown in Fig. 10 and demonstrate how the frequency of
color and size concept in the training data impacts the generalization capabilities of the diffusion model. Specifically, we
change the number of samples in the training data from 0 to 300 for concept class ‘001’ (Fig. 10 (a)) and class ‘100’ (Fig. 10
(b)). As can be seen, low frequencies of concepts degrade the accuracy of the model in both settings. Notably, training for
out-of-distribution concept classes (pink lines) require more samples than that for in-distribution ones (lightblue lines). This
suggests that as the sample size grows, memorization occurs first, and generalization is achieved beyond a certain threshold
of data frequency. More importantly, we observe a critical number of samples are required before we can see the onset of
capabilities to alter a concept. Specifically, in Fig. 10 (a), we can see that the model rapidly learns the color concept after
being provided with 10 samples for a concept of large blue circle, ‘001’. In contrast, in Fig. 10 (b), the model learns the
shape concept only after reaching a certain threshold in the number of samples with a concept of large red triangle, ‘100’.

We believe the results above are especially interesting because an often used strategy to prevent a generative model from
learning harmful capabilities, such as the ability to generate images involving sensitive concepts like pornographic images,
involves cleaning the dataset to filter images corresponding to such concepts (Desai et al., 2021; Brown et al., 2020; Radford
et al., 2019). The hope is that this hinders the model’s ability to generate samples corresponding to it. However, such
dataset filtering can not only be expensive, but arguably statistically impossible to achieve to perfection, i.e., a few samples
corresponding to the sensitive concept are likely to remain in the data. Our results above imply that perhaps one need not
filter the data to an extreme zero presence of such sensitive concepts: if there presence in the training data is below the
relevant critical threshold of frequency, that can be sufficient to deter the model from learning a capability to generate
samples related to that concept.

Diffusion models struggles when concept variables are strongly correlated (Fig. 11). We next evaluate a setting where
concept classes present in the training data are not neighboring, i.e., their concept distance is greater than 1, but nonetheless
represent all concept variables to allow a model to learn relevant capabilities. Specifically, as shown in Fig. 11 (a), we
use only the following four pairs of tuples and images for training: {000, (circle, red, large)}, {100, (triangle, red, large)},
{001, (circle, blue, small)}, {111, (triangle, blue, small)}. Arguably, capabilities corresponding to shape change (000 to
100) and color change (000 to 001) should be easy to learn since the setup for these is similar to our prior experiments.
However, size change is observed only via samples from the class 111, and is necessarily observed in tandem with change in
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Figure 11. Correlation in concept variables makes learning of capabilities difficult; fine-tuning is not a remedy. (a) The model
struggles when two concept variables, such as size and color, are perfectly correlated. In this example, large objects are red, and small
objects are blue. In the example shown in (a), it must first compare 000 (circle, large, red) and 100 (triangle, large, red) to deduce that the
first element specifies shape, and compare 000 (circle, large, red) and 001 (circle, large, blue) to deduce that the third element specifies
color. Based on these findings, the model should then infer that 101 represents (triangle, large, blue) and by contrasting this with a training
data point 111 (triangle, small, blue), learn that the second element specifies size. However, as seen in the plot, the model incorrectly
associates the second element with the triangle shape and produces triangles for both 011 and 010, even though they should be circles. (b)
The model faces difficulty learning new concepts through fine-tuning. We add node 101 (triangle, large, blue) to the dataset and attempt to
fine-tune the model. However, even with a large learning rate equal to the one used for training, the model fails to learn the capability to
alter the concept of size.

another concept (e.g., change in color and size co-occur as we move from 100 to 111). Correspondingly, the model has to
perform an extra step of reasoning, disentangling size from other concept variables to learn the relevant capability. Our
results show an interesting failure model of the model in this setting: Fig. 11 (a) shows the model struggles to dissociate the
second element being 1 with the shape of a small triangle, and this strong, misinterpreted bias causes the model to generate
small triangles for both ‘011’ and ‘010’, which should have been a small circle. This finding demonstrates that correlation in
the data can be hard to disentangle for the model. The potential bias in the training data poses a significant challenge when
applying the model in practical applications. If specific concepts are missing, the conditional diffusion models can have
stereotypes and discrimination in the generated images. Given this clear failure mode, we now investigate whether it can
be fixed via fine-tuning in Fig. 11 (b). To test this, we fine-tuned the trained model on a dataset that includes the concept
class of ‘101’ (left), ‘010’ (middle), and ‘010’ (right). However, as shown in Fig. 10 (b), the model still generates small
triangles for ‘011’ and ‘010’ even after fine-tuning. When the concept classes ’010’ (middle) and ’010’ (right) are added, the
newly introduced concepts overwrite all existing concepts, causing the previously learned concepts (e.g., the color and shape
concept for ’101’) to be forgotten. These results present a further challenge in addressing the learned bias.
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