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ABSTRACT

Existing periodic activation-based implicit neural representation (INR) networks,
such as SIREN and FINER, suffer from hidden feature redundancy, where neu-
rons within a layer capture overlapping frequency components due to the use of a
fixed frequency multiplier. This redundancy limits the expressive capacity of mul-
tilayer perceptrons (MLPs). Drawing inspiration from classical signal processing
methods such as the Discrete Sine Transform (DST), we propose FM-SIREN and
FM-FINER, which assign Nyquist-informed, neuron-specific frequency multipli-
ers to periodic activations. Unlike existing approaches, our design introduces fre-
quency diversity without requiring hyperparameter tuning or additional network
depth. This simple yet principled modification reduces the redundancy of features
by nearly 50% and consistently improves signal reconstruction across diverse INR
tasks, including fitting 1D audio, 2D image, 3D shape, and synthesis of neural ra-
diance fields (NeRF), outperforming their baseline counterparts while maintaining
efficiency.

1 INTRODUCTION

Signal representation often depends on selecting an appropriate basis tailored to the application,
where each basis has its own pros and cons. The commonly used standard basis, composed of N
ordered permutations of one-hot vectors that form the identity matrix, leads to a coordinate-value
description known as an explicit representation, which is simple to comprehend and visualize (Nord-
berg, 1992). While straightforward, this representation necessitates storage that scales directly with
signal size, which can limit efficiency in applications requiring fast processing, such as those involv-
ing linear convolutions or cross-correlation (e.g., Fourier Transform) (Hayes, 1996). To address this,
alternative basis functions are often used to represent signals more compactly. For example, Cosine,
Sine, and Fourier Transforms decompose signals into periodic components, enabling efficient pro-
cessing and offering compact representations. These transformations remain within the domain of
explicit representation (Bracewell & Kahn, 1966), as the basis functions are analytically defined and
the coefficients are directly interpretable. In recent years, such bases have also been adopted within
implicit neural representations as activation functions (Essakine et al., 2024).

Various methods for explicit signal representation have been proposed by researchers, including the
Discrete Sine Transform (DST) (Ahmed et al., 2006), Discrete Fourier Transform (DFT) (Brigham,
1988), Discrete Wavelet Transform (DWT) (Daubechies, 1992), and the fractional Fourier trans-
form (FrFT) (Lin, 1999). Although these classical techniques are computationally efficient, they
are inherently limited to producing linear combinations of fixed basis functions, which may re-
strict their expressive capacity to represent complex or non-stationary signals. Interestingly, many
of these basis functions are now reused in multilayer perceptrons (MLPs) as activation functions
in modern implicit neural representations. For instance, the Sinusoidal Representation Network
(SIREN) uses sinusoids (Sitzmann et al., 2020), Wavelet Implicit Neural Representations (WIRE)
uses wavelets (Saragadam et al., 2023), and Flexible spectral-bias tuning in Implicit NEural Repre-
sentation (FINER) employs chirp-based activations (Liu et al., 2024).

MLPs offer the significant advantage of modeling hierarchical signal components through composi-
tions of non-linear neurons (Popescu et al., 2009). However, they are inefficient at learning implicit
representations due to their reliance on iterative optimization. Training even small MLPs requires
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(a) Ground Truth

PSNR = 22.70

(b) DST

PSNR = 19.35

(c) SIREN

PSNR = 21.28

(d) FINER

PSNR = 23.55

(e) FM-SIREN

PSNR = 24.25

(f) FM-FINER

Figure 1: Comparison of reconstruction quality using different methods for the cameraman image
from USC Signal and Image Processing Institute (1973) database. Subfigures (c–f) show INR-based
reconstructions with single-layer networks, designed to match the linear DST baseline in (b). All
models were trained for 500 epochs using the Adam optimizer. FM-SIREN and FM-FINER yield
the highest PSNR values, outperforming both SIREN and FINER as well as the classical DST.

several seconds, whereas computing a DST is virtually instantaneous. This inefficiency likely stems
from the limited design of existing activation functions, even though a single-layer MLP structurally
resembles the linear combination produced by classical explicit representation methods. Figure
1(b–d) compares the reconstruction results of single-layer MLPs with SIREN and FINER activa-
tions against DST reconstruction, all using the same number of parameters (2048). One can observe
that SIREN performs significantly worse and that FINER also falls short despite its frequency-
variable activation, which, in principle, should offer higher capacity (i.e., bandwidth) (Collins &
Atkins, 1999). These results indicate that the linear layers of state-of-the-art (SOTA) implicit neural
representations still lack the expressive capacity of classical explicit methods despite using the same
bases functions as activation.

In this paper, we address the problem of limited linear layer capacity in INRs by studying frequency
diversity within the same layer. Our approach is inspired by the orthogonality principle underlying
classical transforms (Tolimieri, 1984). In explicit representations, coefficients are obtained through
inner products with orthogonal basis functions, ensuring uncorrelated components. This contrasts
with conventional INRs, where network parameters are optimized while the frequency multiplier is
kept fixed for all activations in a layer. To achieve good performance, researchers typically increase
the number of layers and parameters while relying on random initialization, which often results in
correlated and redundant hidden features. We hypothesize that explicitly inducing frequency diver-
sity in a single layer can significantly enhance its representational capacity. To this end, we propose
activation functions that induce frequency diversity among neurons within a single layer, informed
by the Nyquist sampling theorem (Por et al., 2019). Figures 1e and 1f present reconstruction results
of our proposed methods: Frequency Multiplier-SIREN (FM-SIREN) and Frequency Multiplier-
FINER (FM-FINER). Our results show consistent improvements over SIREN and FINER, and even
outperform the classical DST.
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Our contributions can be summarized as follows: (1) we propose a principled scheme for designing
frequency multipliers in periodic activation functions of INRs, informed by the Nyquist sampling
theorem, which increases frequency diversity, eliminates the need for hyperparameter tuning, and
preserves efficiency without increasing network width or depth; (2) we introduce two new architec-
tures, FM-SIREN and FM-FINER, that employ our Nyquist-informed multipliers and reduce hidden
feature redundancy by 49.92% and 50.43%, respectively; (3) we establish a connection between
classical linear signal reconstruction and modern MLP-based INRs, providing theoretical insight
into how Nyquist frequency limits can be incorporated into implicit neural representations; and (4)
we present comprehensive experiments on 1D audio, 2D image and 3D volume reconstructions, and
NeRF synthesis, demonstrating that our models consistently outperform the baselines.

2 RELATED WORK

Different INR techniques have been presented in the literature. Given an input coordinate x, the
INR network learns the mapping of f(x), which is represented by a standard basis. Hence, the INR
network learns the implicit mapping. In this section, we review several INR techniques found in the
literature.

SIREN (Sitzmann et al., 2020). SIREN introduces sine activations with a frequency hyperparam-
eter ω, enabling smooth function fitting and stable training. While effective for continuous signals,
its fixed frequency multiplier limits flexibility, reducing accuracy on tasks with diverse frequency
details. The SIREN activation function is expressed as σ(x) = sin(ωx).

GAUSS (Ramasinghe & Lucey, 2022). The Gauss activation provides smooth, localized repre-
sentations useful for denoising and signal reconstruction, but its non-periodicity limits modeling of
high-frequency details. The Gauss activation function is expressed as σ(x) = e−(sx)2 .

WIRE (Saragadam et al., 2023). WIRE employs the Gabor wavelet activation (Lee, 1996), which
combines sinusoidal and Gaussian components to represent localized frequencies. This design en-
ables effective modeling of high-frequency details in spatially localized regions, but its complex-
valued formulation increases computational cost and makes training and inference more expensive.
The Gabor wavelet is expressed as σ(x) = e−(sx)2+iωx.

FINER (Liu et al., 2024). FINER modifies SIREN by using a frequency-variable activation, en-
abling representation of a broader frequency spectrum while retaining SIREN’s advantages, making
it more capable to capture broader range of frequencies. However, it is sensitive to bias initialization
and adds training complexity. This activation function is expressed as σ(x) = sin(ω(|x|+ 1)x).

Positional Encoding (Tancik et al., 2020). Positional encoding (PE) maps in-
puts into a higher-dimensional space using sinusoidal functions as γ(x) =
[sin(20πx), cos(20πx), . . . , sin(2L−1πx), cos(2L−1πx)] to mitigate the spectral bias of MLPs.
While it enriches representations with multiple frequency components, it is sensitive to the choice
of L and it increases input dimensionality, raising the overall number of parameters in the network.

Existing INR models generally lack guarantees of frequency diversity, relying instead on iterative
optimization to mitigate frequency bias. They also do not ensure orthogonality among hidden fea-
tures within the same layer, in contrast to classical bases such as those in the DST. Recent works
propose higher-level frameworks: MIRE (Jayasundara et al., 2025) employs a search-based algo-
rithm to select activation functions per layer from a predefined dictionary; Neural Experts (Ben-
Shabat et al., 2024) leverages large mixture-of-experts models (Masoudnia & Ebrahimpour, 2014)
composed of smaller subnetworks; and Fourier Reparameterization (Shi et al., 2024) reparameter-
izes the weights of MLPs with a fixed Fourier basis to alleviate spectral bias. In contrast, our work
focuses on the principled design of activation functions, and we therefore compare FM-SIREN and
FM-FINER against other activation-based INR approaches in the following sections.

3 BACKGROUND

In this section, we provide the necessary background on signal reconstruction using periodic basis
functions, the Nyquist sampling theorem for proper sampling, and the extension of these concepts
to signal reconstruction with MLPs.
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3.1 LINEAR SIGNAL RECONSTRUCTION

According to Stearns & Hush (1990), let a desired function f(x) be approximated as closely as
possible by another function f∗(c, x) = f∗(x), where c denotes a set of adjustable parameters used
to minimize the error between the two functions. The approximation f∗(x) is expressed as a linear
combination of a set of periodic bases with different frequencies [ϕ0(x), ϕ1(x), . . . , ϕM−1(x)], with
the corresponding amplitude coefficients [c0, c1, . . . , cM−1]. Formally, f∗(x) can be written as:

f∗(c, x) = f∗(x) =

M−1∑
m=0

cmϕm(x) (1)

The optimal approximation f∗(x) is obtained by minimizing the least squares error between f∗(x)
and f(x). A central property in this formulation is orthogonality of the basis functions, which en-
sures that each coefficient can be computed independently of the others. In particular, when the bases
[ϕ0(x), ϕ1(x), . . . , ϕM−1(x)] correspond to distinct frequencies, the coefficient cm is computed as:

cm =

∑N−1
n=0 fn(x)ϕmn(x)∑N−1

n=0 ϕ2
mn(x)

, m = 0, 1, . . . ,M − 1. (2)

The linear independence due to the orthogonality of the basis functions is what makes classical trans-
forms efficient and non-redundant, a property that conventional MLP activations fail to guarantee,
leading to correlated hidden features.

3.2 NYQUIST FREQUENCY

The Nyquist frequency specifies the maximum frequency that can be captured without aliasing when
sampling a continuous-time signal using periodic basis functions. According to the Nyquist sam-
pling theorem, the sampling frequency must be at least twice the highest frequency component
present in the signal to ensure a perfect reconstruction (Shannon, 2006). Sampling below this thresh-
old causes frequency components to overlap in the spectral domain, resulting in distortion and loss
of information. Formally, the Nyquist frequency is defined as:

fNyquist =
fs

2
, fs ≥ fmax (3)

where fs is the sampling frequency and fmax denotes the maximum frequency present in the signal.
For example, if a signal contains frequency components up to 1 kHz, the sampling frequency must
be at least 2 kHz, corresponding to a Nyquist frequency of 1 kHz. For higher-dimensional signals,
such as 2D images and 3D volumes, each dimension has its own Nyquist frequency.

3.3 MLP RELEVANCE TO LINEAR SIGNAL RECONSTRUCTION

MLPs are composed of sequential linear layers, which can be interpreted as reconstructing linear
and hierarchical embeddings. For simplicity, consider a single hidden linear layer where both the
input x and the output y are one-dimensional. The output y of this layer with respect to the input x
can be written as:

yn =

M−1∑
m=0

wout
m ϕm

(
win

mxn

)
(4)

where win
m, wout

m , and ϕm denote the input weights, output weights, and activation function, respec-
tively. This representation resembles the linear reconstruction in Equation 1. However, in classical
signal reconstruction, the basis functions ϕm correspond to distinct frequencies, avoiding redun-
dancy. In contrast, conventional INR settings typically assign the same activation function across
all neurons in a layer, effectively creating frequency replicas. As a result, the optimizer must im-
plicitly enforce orthogonality through weight updates, which is not guaranteed due to the highly
non-convex nature of MLPs. This limitation is evident in models such as SIREN and FINER, where
hidden embeddings often remain correlated, reducing the overall capacity, as shown in Figure 1.
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(b) FINER
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(c) FM-SIREN
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(d) FM-FINER

Figure 2: Covariance maps of hidden embeddings for different methods, with the Frobenius norm
shown in the top-right of each subfigure. x and y axes represent neuron index. FM-SIREN (c)
and FM-FINER (d) yield substantially lower covariance norms than SIREN (a) and FINER (b),
reflecting improved frequency diversity. The stronger correlation observed in the upper-left corner
of (c) and (d) corresponds to neurons associated with lower frequencies. All maps are derived from
the networks used to reconstruct images in Figure 1.

4 PROPOSED METHOD

INR activations, such as sinusoids, frequency-variable sinusoids, and wavelets, offer substantial
performance gains over classical activations like ReLU(.), sigmoid(.), and tanh(.) (Parhi & Nowak,
2020). However, MLPs employing these periodic activations still suffer from low frequency bias
(Ramasinghe et al., 2022). This bias leads to redundancy between hidden embeddings, reducing
the effective capacity of MLP linear layers, as illustrated in Figure 1. In this section, we propose a
simple, yet effective, frequency multiplier scheme to address this problem, and show the resultant
feature diversity.

4.1 NYQUIST-INFORMED FREQUENCY MULTIPLIER

The classical periodic bases (sines or cosines) employed in signal reconstruction (Equation 1) are
predefined to span a fixed frequency range. According to the Nyquist theorem, this frequency span
is determined by the sampling rate as:

fspan = (−fNyquist,+fNyquist) (5)

We propose assigning a distinct frequency multiplier to each activation function, sampled from the
frequency span defined by the Nyquist theorem. Since most digital signals, such as audio, 2D
images, and 3D volumes, are real-valued, their spectra are symmetric around the zero frequency
(Deppisch & Ahrens, 2025). Consequently, we restrict the multiplier range to (0,+fNyquist), as
negative frequency components are redundant. Formally, the frequency multiplier and activation
function for the kth neuron are defined as:

ϕk(x) = sin(ωkx), ωk =
kfNyquist

K
, k = 0, 1, . . . ,K − 1 (6)

This frequency multiplier is not a tunable hyperparameter, as it is derived directly from the Nyquist
theorem. It can be applied to any periodic activation function. Moreover, our method is simple
to implement and produces improved results over the baselines, as shown in the next section. We
also propose to factor each frequency multiplier by 2/3 for FM-FINER due to the wider frequency
spectrum of FINER, reducing aliasing and improving performance, as shown in the ablation study.

4.2 FEATURE REDUNDANCY

Current periodic activation INRs, such as SIREN and FINER, apply the same activation function to
all neurons within a layer. This uniformity limits the expressive capacity of the layer, in part due to
the near-frequency bias of neural networks (Ramasinghe et al., 2022). Figures 2a and 2b show the
covariance matrices of hidden features from networks used to reconstruct the images in Figure 1.
The covariance values reveal substantial feature redundancy within a single layer. Ideally, the co-
variance matrix norm should approach zero, indicating orthogonality among neuron embeddings, but
this is rarely achieved in practice. In contrast, our proposed networks, FM-SIREN and FM-FINER,
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Figure 3: Qualitative results of one-second audio reconstructions for the 1995 Pacific Grand Prix
clip in the Spoken English Wikipedia dataset (Köhn et al., 2016), using two-layer networks with
different approaches. The one-second MSE of each reconstruction is reported in the top-right corner
of its subfigure. FM-SIREN and FM-FINER achieve visibly closer alignment to the ground truth and
substantially lower MSE compared to the baselines. Red , medium blue , black lines correspond
to ground truth, reconstructed signal, and error signal, respectively.

Table 1: Average MSE for audio fitting on the Spoken English Wikipedia dataset (Köhn et al.,
2016), comparing different INR models. Best and Second Best results are highlighted.

Model FINER GAUSS Positional Encoding SIREN WIRE FM-SIREN FM-FINER

MSE ↓ 2.631× 10−4 5.948× 10−3 6.884× 10−3 5.138× 10−4 5.812× 10−3 4.738× 10−5 4.055× 10−5

Size 66, 561 66, 561 197, 377 66, 561 66, 561 66, 561 66, 561
Train Time (s) 0.61 0.87 0.84 0.54 2.31 0.54 0.61

substantially reduce feature redundancy, as shown in Figures 2c and 2d, achieving a 49.92% and
50.43% improvement in the Frobenius norm of the covariance matrix compared to their baselines.
Specifically, we generate a distinct feature vector of length 10,000 from each neuron, computing the
covariance matrix of those feature vectors, and computing the Frobenius norm (Böttcher & Wenzel,
2008) of the resultant covariance matrix.

5 EXPERIMENTAL RESULTS

We evaluate the proposed FM-SIREN and FM-FINER across four representation tasks: 1D audio,
2D image, 3D shape, and NeRF. For fair comparisons, we adopt the hyperparameters recommended
in each of the original works of the respective baselines. An exception is the audio task, where
prior studies have not consistently benchmarked audio fitting; in this case, we selected the best-
performing settings. To ensure efficiency and comparability, training is capped at 500 epochs for
audio and image tasks, 75 epochs for 3D volumes, and 16 epochs for NeRF scenes. Full details of the
training infrastructure, configurations, complete hyperparameter lists, ablation study, and additional
results are provided in the appendix.

5.1 AUDIO FITTING

We evaluate audio reconstruction using two-layer models with 256 neurons in each layer. We used
the Spoken English Wikipedia dataset Köhn et al. (2016) as a reference, which contains 1,313 clips
sampled at fs = 4 kHz, informing a Nyquist frequency of fNyquist = 2 kHz,. For each clip, we fit the
first 10 seconds of audio and report performance in terms of mean squared error (MSE), averaged
across all clips. As summarized in Table 1, FM-SIREN and FM-FINER achieve substantially lower
errors than all baselines, and FM-FINER achieves the best overall performance. This demonstrates
the effectiveness of Nyquist-informed frequency diversity in capturing fine-grained temporal struc-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Ground Truth

PSNR = 19.61

(b) SIREN

PSNR = 21.70

(c) FINER

PSNR = 24.55

(d) Positional Encoding
PSNR = 16.05

(e) GAUSS

PSNR = 15.69

(f) WIRE

PSNR = 33.06

(g) FM-SIREN

PSNR = 33.59

(h) FM-FINER

Figure 4: Qualitative image reconstruction results of the Philips Circle Pattern (Wikipedia contrib-
utors, 2025) using two-layer networks. The PSNR (dB) of each reconstruction is reported in the
top-right corner of its subfigure. FM-SIREN and FM-FINER achieve the highest PSNR values and
produce visibly sharper reconstructions compared to the baselines. While positional encoding at-
tains the best performance among the baseline methods, its reconstructions appear noisier than ours,
as highlighted in the zoomed-in slices.

Table 2: Average reconstruction performance on the Kodak (Mehta, 2020) and BSDS500 (Martin
et al., 2001) datasets in MSE, PSNR, and SSIM. Best and Second Best results are highlighted.

Model Train Time (s) Parameters MSE (10−3) ↓ PSNR (dB) ↑ SSIM ↑
Kodak BSDS500 Kodak BSDS500 Kodak BSDS500

FINER 1.12 67, 331 1.808 0.881 28.236 31.468 0.778 0.887
GAUSS 1.18 67, 331 2.690 1.552 26.472 29.024 0.695 0.817
Positional Encoding 1.28 197, 891 3.140 2.706 25.810 26.884 0.705 0.799
SIREN 0.96 67, 331 2.555 1.432 26.769 29.492 0.743 0.857
WIRE 3.27 67, 331 1.071 0.433 29.874 33.921 0.763 0.888

FM-SIREN 0.96 67, 331 0.660 0.175 32.285 38.115 0.874 0.967

FM-FINER 1.12 67, 331 0.631 0.201 32.475 37.465 0.868 0.958

tures. Figure 3 provides qualitative results on a one-second segment of the 1995 Pacific Grand Prix
clip, where our models exhibit a markedly lower reconstruction error compared to SIREN, FINER,
and other baselines.

5.2 IMAGE FITTING

We evaluated all models on the Kodak Lossless True Color Image Suite (Mehta, 2020) and the
BSDS500 dataset (Martin et al., 2001), which correspond to informed Nyquist frequencies of 256
and 160.5 cycles/image, respectively. Performance was evaluated using three standard metrics:
MSE, peak signal-to-noise ratio (PSNR) (Korhonen & You, 2012), and structural similarity index
(SSIM) (Wang et al., 2004). All models were implemented with two layers of 256 neurons each. As
shown in Table 2, our FM-SIREN and FM-FINER consistently achieved the lowest MSE, highest
PSNR, and highest SSIM, outperforming all baseline methods. In addition, we evaluated the models
on the Philips Circle Pattern (Wikipedia contributors, 2025), a benchmark with sharp geometric
structures ideal for testing reconstruction fidelity with a Nyquist frequency of 200 cycles/image.
Figure 4 shows qualitative results, where FM-SIREN and FM-FINER exceed the strongest baseline
by 8.51dB and 9.04dB in terms of PSNR, respectively. These results highlight the ability of our
models to deliver high-fidelity image reconstructions using only two-layer networks. Additional
reconstruction results along with their error distributions are provided in the appendix.
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(a) Ground Truth (b) SIREN (c) FINER (d) Positional Encoding

(e) GAUSS (f) WIRE (g) FM-SIREN (h) FM-FINER

Figure 5: Qualitative reconstruction results for the Thai Statue 3D scene using three-layer networks.
FM-SIREN and FM-FINER deliver higher-fidelity reconstructions with visibly sharper details com-
pared to baselines. The zoomed-in slices highlight that fine structures are better preserved by our
models, whereas WIRE, the third-best method, fails to capture fine detail in the blue zoomed-in
slice.

Table 3: Epoch time, number of parameters, and IoU results for shape fitting on scenes from the
Stanford 3D Scanning Repository dataset (Stanford Computer Graphics Laboratory, 2014). Best
and Second Best results are highlighted.

Model Epoch Time (sec) Parameters IoU ↑
Thai Statue Armadillo Dragon Asian Dragon

FINER 2.30 132, 865 0.976 0.991 0.994 0.978
GAUSS 3.14 132, 865 0.981 0.992 0.955 0.981
Positional Encoding 2.14 263, 169 0.982 0.994 0.977 0.980
SIREN 2.11 132, 865 0.960 0.980 0.981 0.956
WIRE 4.10 132, 865 0.988 0.994 0.993 0.974

FM-SIREN 2.11 132, 865 0.990 0.996 0.995 0.987

FM-FINER 2.30 132, 865 0.991 0.997 0.996 0.991

5.3 3D SHAPE FITTING

For 3D shape fitting, we follow the framework of Saragadam et al. (2023). Specifically, 3D shapes
are sampled over a 512 × 512 × 512 grid, where voxels inside the shape volume are assigned a
value of 1 and those outside are assigned 0. This resolution corresponds to a Nyquist frequency
of 256 cycles/volume. Reconstruction performance is evaluated using the Intersection over Union
(IoU) metric (Rezatofighi et al., 2019). All models consist of three layers with 256 neurons each.
Table 3 reports IoU scores for four shapes from the Stanford 3D Scanning Repository dataset (Stan-
ford Computer Graphics Laboratory, 2014), where our proposed models consistently outperform the
baselines. Figure 5 shows qualitative results for the Thai Statue, where FM-SIREN and FM-FINER
yield visibly superior reconstruction fidelity, especially in the zoomed-in regions. Notably, Table 3
and Figure 5 also show that FM-SIREN and FM-FINER achieve these improvements without in-
creasing compute time or parameter count.

5.4 NEURAL RADIANCE FIELDS

NeRF synthesizes novel 3D scene views from sparse 2D images by learning a continuous volumetric
representation optimized via ray-based rendering (Mildenhall et al., 2020). In our experiments, the

8
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(a) Ground Truth (b) SIREN (c) FINER (d) Positional Encoding

(e) GAUSS (f) WIRE (g) FM-SIREN (h) FM-FINER

Figure 6: Qualitative reconstruction results of the Chair scene from the Blender dataset (Mildenhall
et al., 2021), using five-layer networks (three layers for the first block, one layer for density, and one
layer for color). FM-SIREN and FM-FINER achieve improvements over the baselines, with exact
PSNR values reported in Table 4.

volume is discretized at a resolution of 100 × 100 × 100, corresponding to a Nyquist frequency of
50 cycles/volume. We adopt the concise implementation of Vandegar (2023) on the Blender dataset
(Mildenhall et al., 2021), using networks with five layers that model density and color. Perfor-
mance is evaluated as the average PSNR across all 200 test images per scene, each at a resolution of
400 × 400. As reported in Table 4 and illustrated in Figure 6, FM-SIREN and FM-FINER achieve
higher PSNR than baseline models in most scenes. Although the improvements in reconstruction
quality are modest, both FM-SIREN and FM-FINER reduce compute time by 14.53% and 17.06%,
respectively, demonstrating the efficiency gains of our approach.

Table 4: Epoch time, number of parameters, and PSNR for NeRF fitting on the Blender dataset
(Mildenhall et al., 2021). Best and Second Best results are highlighted.

Model Epoch Time (s) Parameters PSNR ↑
Lego Ship Chair Mic Materials Hotdog Ficus Drums

FINER 106.84 199, 428 28.01 33.09 34.53 34.44 33.38 37.16 33.75 32.51

GAUSS 98.68 199, 428 27.58 32.91 34.23 34.48 33.21 36.66 33.33 32.31
Positional Encoding 126.33 214, 788 27.63 32.48 34.13 34.24 32.86 36.17 32.82 31.72

SIREN 122.12 199, 428 27.81 33.08 34.42 34.45 33.38 37.00 33.79 32.48
WIRE 140.04 199, 428 23.36 20.34 25.21 26.31 23.07 27.50 23.19 21.11

FM-SIREN 104.37 199, 428 27.55 33.17 34.55 34.64 33.45 37.37 33.76 32.54

FM-FINER 88.61 199, 428 28.11 33.14 34.56 29.81 33.41 37.41 33.73 32.53

6 CONCLUSION

In this work, we tackled the issue of hidden feature redundancy in SOTA INR models such as
SIREN and FINER. Our analysis showed that using the same frequency multiplier across neurons
leads to correlated embeddings and limited capacity. To overcome this, we introduced FM-SIREN
and FM-FINER, which assign Nyquist-informed, neuron-specific frequency multipliers. This sim-
ple modification reduces redundancy by nearly 50% and yields consistent improvements across 1D
audio, 2D image regression, 3D shape fitting, and NeRF synthesis. Beyond higher accuracy, our
results highlight that frequency diversity within a single layer can significantly improve representa-
tional power without increasing network size or training time. In addition, we observed reduction
in training time in NeRF fitting while improving performance. We believe this work facilitates new
opportunities for bridging classical signal processing and modern implicit neural representations,
paving the way for more efficient and scalable models.

9
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A EXPERIMENTAL SETUP

A.0.1 EXPERIMENTATION INFRASTRUCTURE

For all experiments, we used PyTorch Paszke et al. (2019) with Adam optimizer Kingma & Ba
(2015), and a PyTorch StepLR scheduler which decayed the learning rate by a factor of 0.1 every
100 epochs. The audio and image experiments were performed on a Nvidia GTX 1080 Ti graphical
processing unit (GPU) with 11GB memory and 32GB of system memory. 3D shape fitting and
neural radiance fields experiments were performed on a Nvidia H200 GPU with 80GB memory and
256GB of system memory.

A.0.2 EVALUATION METRICS

We used mean square error (MSE) to evaluate the predictive performance, which is expressed as:

MSE =

∑N
i=1 (xi − x̂i)

2

N
(7)

where xi is the actual observation, x̂i is the predicted value, and N is the number of test points.

For images, we also used the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM). PSNR is a common metric to measure reconstruction quality. It is expressed in decibels
(dB), and a higher value indicates a better fit. PSNR is defined as:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(8)

where MAXI is the maximum possible pixel value of the image (e.g., 255 for 8-bit images).

SSIM is a crucial metric that evaluates the similarity between two images on the basis of luminance,
contrast, and structure. The index ranges from -1 to 1, with 1 indicating perfect similarity. SSIM is
defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(9)

where µx and µy are the average pixel values, σx and σy are the standard deviations, σxy is the
covariance of the images x and y, and c1, c2 are small constants to prevent division by zero.

For 3D shape fitting, we report the Intersection over Union (IoU), which measures the overlap be-
tween the predicted shape volume Vp and the ground-truth volume Vgt. It is defined as:

IoU =
|Vp ∩ Vgt|
|Vp ∪ Vgt|

(10)

where ∩ denotes the intersection and ∪ the union of occupied voxels. A higher IoU indicates better
reconstruction fidelity of the 3D shape.

B ABLATION STUDY

We conducted extensive ablation experiments to assess the impact of three key factors: network
width, network depth, and the Nyquist factor (i.e., the maximum frequency multiplier relative to the
Nyquist frequency). The results for each factor are presented in the following subsections.

B.1 NETWORK WIDTH

We conducted experiments with different numbers of neurons, {128, 256, 512, 1024}, in each layer
for both our models and the baselines, while fixing the depth to two layers. Figure 7a illustrates
the image fitting performance across all configurations. FM-SIREN and FM-FINER consistently
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Figure 7: Ablation study for different factors in the network design.

outperform the baselines at every width setting. However, their performance curves stagnate beyond
512 neurons. We attribute this to increased redundancy among hidden features, as the neuron-
specific frequency multipliers are capped by the Nyquist range, leading to overlapping frequency
components at larger widths.

B.2 NETWORK DEPTH

We evaluated the effect of network depth for the number of layers, in the set {2, 3, 4, 5}, while fixing
the network width to 256 neurons. Figure 7b reports the performance of all models for each depth.
For FM-SIREN, the performance curve exhibits an inverse relationship with depth after three layers.
We attribute this to the fact that FM-SIREN introduces higher-frequency components in the early
layers, which propagate as noise in deeper layers and reduce overall accuracy. FM-FINER shows a
similar trend but with a steeper decline, reflecting its greater sensitivity to depth. Notably, despite
this degradation at larger depths, both FM-SIREN and FM-FINER outperform the best baseline
even with significantly shallower architectures. For example, a two-layer FM-SIREN or FM-FINER
matches or outperforms a five-layer SIREN.

B.3 NYQUIST FACTOR

The Nyquist theorem defines the maximum frequency that can be represented in a digital signal
without aliasing. To study its effect, we tested different ranges of frequency multipliers relative to
the Nyquist frequency, {1/3, 2/5, 1/2, 2/3, 1}. Figure 7c presents the performance curves of FM-
SIREN and FM-FINER across these factors. For FM-SIREN, performance generally improves pro-
portionally with the Nyquist factor. In contrast, FM-FINER shows improvements only up to a factor
of 2/3, beyond which performance saturates. We attribute this to its chirp-based activations, which
inherently possess a broader frequency range (bandwidth) than sinusoidal activations that causes
aliasing with large multipliers. Overall, both models validate our central hypothesis: explicitly in-
corporating Nyquist-informed frequency limits into activation functions enhances representational
capacity and reduces redundancy.

Taken together with the width and depth studies, these results highlight that frequency diversity is
the key driver of improved performance in FM-SIREN and FM-FINER.

C HYPERPARAMETERS

All experiments share the same model-specific hyperparameters recommended in each baseline’s
reference with an exception for ω0. We used the best performing ω0 for audio fitting since not all
references presented audio fitting experiments. Table 5 presents global, model-specific hyperparam-
eters, whereas 6 presents experiment-specific hyperparameters.
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Table 5: Model-specific hyperparameters for the all experiments.

Parameter SIREN FINER WIRE Gauss PE FM-SIREN FM-FINER
First ω0 30.0 30.0 16 - - 30.0 30.0
Hidden ω0 30.0 30.0 16 - - 30.0 30.0
Outermost Linear ✓ - - - - ✓ -
Bias ✓ ✓ ✓ ✓ - ✓ ✓
Scale - - 8 16 15 - -
Embedding Size - - - - 256 - -
Nyquist Factor - - - - - 1 2/3

Table 6: Experiment-specific hyperparameters.

Parameter Audio Image 3D Shape NeRF
FINER ω0 700 30 30 30
SIREN ω0 800 30 30 30
WIRE ω0 16 16 16 16
FM-SIREN ω0 800 30 30 30
FM-FINER ω0 700 30 30 30
Learning Rate 0.0001 0.001 0.001 0.0001
Number of Hidden Layers 2 2 3 5
Number of Epochs 500 500 75 16

D ADDITIONAL RESULTS

We provide additional experimental results of the models discussed in the main paper. These results
further demonstrate the effectiveness of our proposed frequency modulation approach in enhancing
the fitting capabilities of implicit neural representation. Our quantitative audio fitting results in Table
7 show a superior performance in terms of MSE, which is further supported by the visual compar-
isons in Figures 8 to 11. For image fitting, we present supplementary quantitative results for both
PSNR and SSIM in Table 8, and Figures 12 to 15 visually confirm the higher quality of reconstruc-
tion achieved by our models. Finally, qualitative results for 3D shape fitting and neural radiance
fields demonstrate our models’ ability to capture intricate details and produce higher-quality render-
ings as shown in Figures 16 to 19

Table 7: Sample MSE results for audio reconstruction from the Spoken English Wikipedia dataset
(Köhn et al., 2016). Best , Second Best .

Model
1995 Pacific
Grand Prix

(×10−3)

Alzheimer
Disease
(×10−3)

Flag of
Canada
(×10−3)

Functional
Programming

(×10−3)

Munich
(×10−3)

Average
(×10−3)

FINER 0.385 0.548 1.632 0.918 0.052 0.707
GAUSS 1.576 1.096 4.433 2.923 9.546 3.9148
Positional Encoding 1.981 1.575 4.914 3.269 9.968 4.3414
SIREN 1.458 0.989 4.395 2.748 0.932 2.1044
WIRE 1.895 1.089 5.052 2.910 11.108 4.4107

FM-SIREN 0.181 0.202 0.203 0.161 0.033 0.156

FM-FINER 0.014 0.023 0.016 0.009 0.001 0.0126
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Table 8: Sample PSNR (dB) results for image reconstruction on images from Kodak and BSD500
datasets. Best , Second Best .

Model
Kodak BSD500

Averagekodim02 kodim03 kodim22 100075 113016 216041
FINER 28.77 29.16 26.97 31.65 27.23 29.54 28.89
GAUSS 25.80 26.46 23.85 26.29 22.28 25.82 25.08
Positional Encoding 24.33 28.22 26.15 27.06 23.44 27.05 26.04
SIREN 27.21 27.38 24.95 28.37 24.05 27.14 26.52
WIRE 26.40 27.18 24.74 27.69 23.45 26.61 26.01

FM-SIREN 31.93 33.12 29.91 38.69 32.65 37.35 33.94

FM-FINER 32.59 32.90 30.23 38.45 32.11 36.33 33.77

E LLM USAGE

We did not use large language models (LLMs) for research ideation or for generating scientific con-
tent in this paper. LLMs were only used for light assistance in polishing the writing (e.g., improving
grammar and readability).

SUPPLEMENTARY REFERENCES

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://arxiv.org/abs/1412.
6980.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
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Figure 8: Qualitative results of one-second audio reconstructions for the Alzheimer27s Disease clip
from the Spoken English Wikipedia dataset Köhn et al. (2016).
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Figure 9: Qualitative results of one-second audio reconstructions for the Flag of Canada from the
Spoken English Wikipedia dataset (Köhn et al., 2016).
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Figure 10: Qualitative results of one-second audio reconstructions for the Functional Programming
from the Spoken English Wikipedia dataset (Köhn et al., 2016).
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Figure 11: Fitting the a 10 second cut of the Munich from the Spoken English Wikipedia dataset
(Köhn et al., 2016) on E-SIREN and E-FINER.
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Figure 12: Qualitative results for kodim02 from Kodak Lossless True Color Image Suite (Mehta,
2020)). Top image in each subfigure is the reconstruction results while the bottom one is the error
distribution between reconstruction and ground truth.
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Figure 13: Qualitative results for kodim03 from Kodak Lossless True Color Image Suite (Mehta,
2020)). Top image in each subfigure is the reconstruction results while the bottom one is the error
distribution between reconstruction and ground truth.
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Figure 14: Qualitative results for kodim22 from Kodak Lossless True Color Image Suite (Mehta,
2020)). Top image in each subfigure is the reconstruction results while the bottom one is the error
distribution between reconstruction and ground truth.
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Figure 15: Qualitative results for kodim23 from Kodak Lossless True Color Image Suite (Mehta,
2020)). Top image in each subfigure is the reconstruction results while the bottom one is the error
distribution between reconstruction and ground truth.
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Figure 16: Qualitative 3D reconstruction results of the Asian Dragon scene from the Stanford 3D
Scanning Repository dataset (Stanford Computer Graphics Laboratory, 2014).
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(e) GAUSS (f) WIRE (g) FM-SIREN (h) FM-FINER

Figure 17: Qualitative 3D reconstruction results of the Armadillo scene from the Stanford 3D Scan-
ning Repository dataset (Stanford Computer Graphics Laboratory, 2014).
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Figure 18: Qualitative reconstruction results of the Lego scene from the Blender dataset (Mildenhall
et al., 2021).
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(a) Ground Truth (b) SIREN (c) FINER (d) Positional Encoding

(e) Gauss (f) WIRE (g) FM-SIREN (h) FM-FINER

Figure 19: Qualitative reconstruction results of the Mic scene from the Blender dataset (Mildenhall
et al., 2021).
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