AUTOMATED FEATURE ENGINEERING BY PROMPTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Automated feature engineering (AutoFE) liberates data scientists from the burden of manual feature construction, a critical step for tabular data prediction. While the semantic information of datasets provides valuable context for feature engineering, it has been underutilized in most existing works. In this paper, we introduce AutoFE by Prompting (FEBP), a novel AutoFE algorithm that leverages large language models (LLMs) to process dataset descriptions and automatically generate features. Incorporating domain knowledge, the LLM iteratively refines feature construction through in-context learning of top-performing example features and provides semantic explanations. Our experiments on real-world datasets demonstrate the superior performance of FEBP over state-of-the-art AuoFE methods. We also conduct ablation study to verify the impact of dataset semantic information and examine the behavior of our LLM-based feature search process.

021 022

023

000

001

004

006

008 009

010

011

012

013

014

015

016

017

018

019

1 INTRODUCTION

Tabular data, a form of structured data comprising instances and attributes, have extensive use in vast domains, e.g., credit assessment, market prediction, and quality control. Traditional machine learning models, especially tree-based models (Breiman, 2001; Ke et al., 2017), have strong performance on tabular datasets of small and medium sizes (Grinsztajn et al., 2022) and good interpretability.
Feature engineering is the process of computing new features from feature attributes of a dataset to enhance downstream model performance, which is crucial for traditional ML models as the new features extract useful information for target prediction by capturing complex non-linear relationships. Feature engineering by hand requires domain expertise to alleviate the significant human labor.

Automated feature engineering (AutoFE) uses high-level algorithms and models to automate the FE process such that the performance is comparable to domain experts. Existing AutoFE methods, such as (Zhu et al., 2022a;b; Zhang et al., 2023), compute and evaluate a large number of features in a trial-and-error manner. While some learn to optimize the feature utility during the FE process, these methods do not utilize domain knowledge to guide the feature search. The need to start from scratch for new datasets or downstream models hampers their effectiveness and efficiency. Besides, these methods do not offer explanation of the computed features, impairing the interpretability.

The descriptions contained in tabular datasets 040 provide rich context for feature engineering. Domain experts consult attribute descriptions 041 to select relevant feature attributes and com-042 pute new features useful for predicting the tar-043 get. For example, the *square footage* of a house 044 times the average housing price per square foot 045 in the neighborhood can be a good predictor 046 of the market value of the house. Large lan-047 guage models (LLMs) (Radford et al., 2019; 048 Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023a;b), pretrained on large volumes of text data, handle general natural language pro-051 cessing tasks and encapsulate extensive domain knowledge. Under proper prompt instructions, 052 the LLM may process the dataset semantic in-

Figure 1: Overview of FEBP: (1) prompting the LLM to construct new features by providing dataset descriptions and example features; (2) evaluating the constructed features; (3) updating the prompt with topperforming features and scores; and (4) selecting a set of features and adding them to the dataset.

formation and utilize its knowledge to automatically compute features in a manner similar to domain

 experts. The work by Hollmann et al. (2023) demonstrates the potential of applying LLMs for AutoFE, but it is not sufficiently effective in terms of feature search.

We propose AutoFE by Prompting (FEBP), a novel AutoFE algorithm that leverages LLMs for 057 effective, efficient, and interpretable feature engineering, as illustrated in Figure 1. By providing dataset descriptions and example features in canonical Reverse Polish Notation (cRPN), we prompt the LLM to generate new features. After evaluating the features, we update the prompt with top-060 performing features and their evaluation scores and instruct the LLM to construct further features. 061 Through this iterative process, the LLM explores the feature space and improves solutions through 062 in-context learning of successful examples. The semantic information of data not only guides the 063 feature search, but helps the LLM understand and learn from the patterns in example features. Ap-064 plying domain knowledge, the LLM generates semantically meaningful features and explains their usefulness. Experiments on seven real-world datasets demonstrate that FEBP significantly outper-065 forms state-of-the-art baselines, achieving over 5% performance gain on average across three down-066 stream models. Additionally, our ablation study shows that incorporating dataset semantic context 067 improves the performance. We also analyze the behavior of the LLM-based feature search process 068 and examine the effects of hyperparameters. 069

Our main contributions are: (1) We introduce a novel LLM-based AutoFE algorithm that utilizes dataset semantic information for automated feature search. This is the first method capable of generating features in string representations while providing semantic explanations. (2) We benchmark the performance of our approach against state-of-the-art baselines using both GPT-3.5 and GPT-4. (3) We investigate the impact of semantic context on our approach, analyze the behavior of the LLM-based feature search process, and examine hyperparameter effects.

076 077

2 RELATED WORK

079 Large Language Models. LLMs are large-scale general-purpose neural networks pretrained on large corpora of raw text data for natural language processing, typically built with transformerbased architectures (Vaswani et al., 2017). Generative LLMs, such as the GPT family (Radford 081 et al., 2019; Brown et al., 2020; OpenAI, 2023) and the LLaMA family (Touvron et al., 2023a;b), are pretrained to successively predict the next token given the input text and can be finetuned using 083 reinforcement learning from human feedback (Ziegler et al., 2019; Ouyang et al., 2022). By this 084 means, they acquire the knowledge about syntax and semantics of human languages and are able to 085 achieve state-of-the-art performance on various tasks like text generation, summarization, and question answering. LLMs can be adapted to specific tasks without changing model parameters through 087 prompt engineering. Few-shot learning (Brown et al., 2020) includes examples in the prompt for 880 the language model to learn in-context. Leveraging such capability, the LLM may function as a 089 problem solver (Yang et al., 2024) that iteratively improves candidate solutions according to the task 090 description and feedback. Chain-of-though (Wei et al., 2022; Kojima et al., 2022) enables complex reasoning capabilities of LLMs through intermediate reasoning steps. 091

Automated Feature Engineering. AutoFE computes new features for the input data and augments 093 or replaces portions of the existing features, to enhance the performance of downstream models. 094 Common AutoFE approaches include expansion-reduction (Kanter & Veeramachaneni, 2015; Horn 095 et al., 2020; Zhang et al., 2023), evolutionary algorithms (Smith & Bull, 2005; Zhu et al., 2022a), and 096 reinforcement learning (Khurana et al., 2018; Li et al., 2023; Wang et al., 2023). DIFER (Zhu et al., 097 2022b) utilizes neural networks to learn the utility of constructed features and optimize features in 098 the embedding space. OpenFE (Zhang et al., 2023) introduces a feature boost algorithm to speedup 099 feature evaluation. Nonetheless, these approaches do not utilize the semantic information of data, 100 which impedes the performance and interpretability of engineered features.

101

092

AutoFE with Domain Knowledge. The benefits of incorporating domain knowledge in AutoFE include: (1) improving the effectiveness; and (2) reducing the cost of learning an AutoFE model, especially the feature evaluation overhead. Prior works take different directions. One direction is to transfer the knowledge through pretraining. LFE (Nargesian et al., 2017) represents features with quantile sketches transferable across datasets and inputs them to a feature transformation recommendation model. FETCH (Li et al., 2023) is an RL-based AutoFE framework taking tabular data as the state and generalizable to new data. E-AFE (Wang et al., 2023) pretrains a feature evaluator

108 to efficiently learn the RL-based AutoFE model. The other direction is to leverage the semantic 109 information of datasets. KAFE (Galhotra et al., 2019) leverages knowledge graphs to identify se-110 mantically informative features relevant to the prediction task. CAAFE (Hollmann et al., 2023) 111 manipulates Pandas data frames using the code generated from the LLM based on dataset descrip-112 tions. In our work, we adopt a compact form of feature representation in strings with pre-defined transformation operators. Our approach reduces the search space and helps the LLM learn the pat-113 terns of useful features, leading to stronger and more robust performance. We further discuss the 114 differences between our approach and CAAFE in Appendix G. 115

3 NOTATIONS

116 117

118

125 126

137

We denote a tabular dataset as D = (X, y), where X = {x₁,..., x_d} is the set of raw features with
x_i ∈ Rⁿ for i = 1,..., d and y ∈ Rⁿ is the target. We construct a new feature x̃ = t(x_{j1},..., x_{jo})
by transforming existing features x_{j1},..., x_{jo} via some operator t ∈ Rⁿ × ... × Rⁿ → Rⁿ of arity
o. Given a set of transformation operators T, we define the feature space X_T recursively as: for any
x̃ ∈ X_T, either x̃ ∈ X; or ∃t ∈ T, s.t., x̃ = t(x̃_{j1},..., x̃_{jo}), where x̃_{j1},..., x̃_{jo} ∈ X_T. To measure
feature complexity, we compute the order of a feature x̃ ∈ X_T as:

$$\alpha(\tilde{\boldsymbol{x}}) = \begin{cases} 0 & \text{if } \tilde{\boldsymbol{x}} \in \mathbb{X}, \\ 1 + \max_{i} \alpha(\tilde{\boldsymbol{x}}_{i}) & \text{if } \tilde{\boldsymbol{x}} = t(\tilde{\boldsymbol{x}}_{i_{1}}, \dots, \tilde{\boldsymbol{x}}_{i_{n}}) \text{ for some } t \in \mathbb{T}. \end{cases}$$
(1)

The constrained feature space with the order upper bounded by k is denoted as $\mathbb{X}_{\mathbb{T}}^{(k)} = \{ \tilde{x} \in \mathbb{X}_{\mathbb{T}} \mid \alpha(\tilde{x}) \leq k \}.$

We denote the performance of a downstream machine learning model algorithm M on the dataset as $\mathcal{E}_M(\mathbb{X}, \boldsymbol{y})$. Our objective of AutoFE is to construct a set of features $\tilde{\mathbb{X}}^*$ to optimize the model performance by adding them to the dataset, specifically:

$$\tilde{\mathbb{X}}^* = \operatorname*{arg\,max}_{\tilde{\mathbb{X}} \subset \mathbb{X}_{\mathbb{T}}} \mathcal{E}_M(\mathbb{X} \cup \tilde{\mathbb{X}}, \boldsymbol{y}).$$
⁽²⁾

4 Methodology

In this section, we present Auto<u>FE by Prompting (FEBP)</u>, a novel AutoFE algorithm leveraging the power of LLMs, particularly, the GPT models (Radford et al., 2019; Brown et al., 2020; OpenAI, 2023). The high-level idea is to provide the LLM with descriptive information of the dataset in the prompt and guide it to search for effective features using examples.

We represent features in a compact form in our 143 prompt. A feature $\tilde{x} \in \mathbb{X}_{\mathbb{T}}$ is expressible as a 144 tree, where the leaf nodes are raw features and 145 the internal nodes are operators. However, the 146 expression trees of features containing commu-147 tative operators (like addition and multiplication) 148 are not unique since the child nodes of these op-149 erators are unordered. We introduce a canonical-150 ization scheme: arranging operator nodes before feature nodes for left skewness and lexicograph-151 ically sorting the nodes within each group. We 152

Figure 2: We obtain the canonical RPN (cRPN) by reordering nodes of the expression tree.

then serialize the canonical expression tree into the postorder depth-first traversal string, i.e., canonical reverse Polish notation (cRPN), ensuring the one-to-one mapping between features and string representations. We denote the feature corresponding to an RPN string f as \tilde{x}_f and the set of features corresponding to a set of RPN strings \mathbb{F} as $\tilde{\mathbb{X}}_{\mathbb{F}}$. We make further discussion in Appendix A.

Our prompt contains: (1) a meta description of the dataset (optional); (2) an indexed list of the dataset
attributes, with attribute types, value ranges, and descriptions; (3) lists of transformation operators
with descriptions, grouped by the arity; (4) a ranked list of example features with performance
evaluation scores; and (5) an output template for new features and explanations. Figure 3 outlines the
structure of our prompt. The descriptions of the dataset and attributes provide contextual information
for the LLM to understand the data and apply domain knowledge. The value ranges of attributes

	(1) Dataset description:
	This dataset contains information on default payments, demographic factors, credit data, and history of payment of credit card clients
	(2) Dataset contains the following columns:
162	col-0 (int) [10000, 800000]: LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
163	col-23 (category) {1, 27, 3EA, Center (1-mare, 2-reinate) col-23 (category) {0, 1}; default,payment,next,month; Default payment (1=ves, 0=no)
16/	(3) We have the following unary operators:
104	sqrt_abs: taking the square root of the absolute value
165	We have the following binary operators:
166	+: summing two columns
167	Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset. Each feature string constructs an extra column that is useful for the downstream model Random Forests to predict the target col-23. The model will be trained on the dataset with the
168	constructed columns and evaluated on a holdout set. The best columns will be selected.
100	(4) Below are feature strings arranged in ascending order based on their performance scores. Higher scores are better.
169	Feature
170	col-17,col-21,*,col-20,+,sqrt_abs
171	Score
171	
172	Peature
173	col-4,col-0,*,col-12,col-10,-,sqff_abs,* Score
17/	0.0014
174	Give me a new feature string that is different from all strings above and has a higher score. Use no more than five operators. Make sure all
175	columns and operators exist and do not include the target column. Follow the syntax of RPN.
176	(5) Output format:
	Feature
177	(Feature name and description)
178	Usefulness
170	(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset description)
179	

Figure 3: Prompt template. Sections requiring dataset information are highlighted in blue. The ranked list of feature examples and scores that gets updated in our feature search algorithm is highlighted in orange.

187

188

189

Feature col-11.col-11.col-12.-.log.*

183 col-11,col-12,-,log,*

This feature calculates the log of the difference between the September bill statement (col-11) and the August bill statement (col-12), then multiplies it by the September bill amount.

Usefulness

This feature captures the change in the bill amount from August to September in a logarithmic scale, which can effectively highlight significant changes in spending patterns. Large fluctuations in credit card bills could be indicative of financial distress, which may impact the likelihood of defaulting on payments, while the logarithmic transformation allows for handling potential skewness in the data distribution. By incorporating this feature, the model can better understand how temporal changes in spending behavior relate to the probability of default, providing richer contextual information beyond static features.

Figure 4: The LLM constructs a new feature in RPN and explains its usefulness from the semantic perspective.

192 are useful for selecting appropriate feature transformations, e.g., min-max normalization when the 193 scale is too large. We include the descriptions of transformation operators as they help the LLM parse example features in RPN syntax and construct syntactically valid feature strings. The output 194 template not only structures the output but instructs the LLM to reason about the usefulness of the 195 proposed features and offer semantic explanations, utilizing the chain-of-thought technique (Wei 196 et al., 2022; Kojima et al., 2022). We additionally add a constraint instruction to use no more 197 than a certain number of operators, which reduces the search space and regularizes the solutions. Figure 4 shows an example LLM output. The prompt can further include attribute statistics like 199 mean, standard deviation, and skewness, and we leave that for future work. 200

We initialize the prompt with k random features from the constrained feature space $\tilde{x}_1, \ldots, \tilde{x}_k \in$ 201 $\mathbb{X}^{(2)}_{\pi}$ represented in cRPN for demonstration. This lets the LLM start search from a small feature 202 space where it is easier to identify the basic patterns of promising features. Optionally, we can import 203 external example features. We prompt the LLM to construct a fixed number of m new feature in an 204 iteration. For each constructed feature string f, we first try to obtain the cRPN expression f^c to check 205 whether f^c is syntactically valid and not a duplicate of existing features. If both criteria are met, we 206 evaluate the performance score of adding the single feature to the dataset $s = \mathcal{E}_M(\mathbb{X} \cup \{\tilde{x}_{f^c}\}, y)$ 207 through cross validation on the training data and add $\langle f^c, s \rangle$ to the candidate set \mathbb{F}_{cand} . When f^c is 208 among the top-k candidate features in terms of the score s, we update prompt examples with the top-209 k pairs $\langle f', s' \rangle \in \mathbb{F}_{cand}$ ranked in the ascending order, taking score increment $s' - \mathcal{E}_M(\mathbb{X}, y)$ from 210 the baseline. We then instruct the LLM to construct additional features using the updated prompt. 211 To select candidate features, we successively add candidate features to the dataset from the best to 212 the worst and determine the optimal number of features to add based on validation performance, 213 which is evaluated over sets of candidate features and thus takes feature interactions into account. Algorithm 1 summarizes our methodology. The size of the prompt scales linearly with the number 214 of features in the dataset d and the number of example features k and stays roughly constant across 215 feature construction iterations. Thus, the cost of an LLM generation step in line 3 is almost constant.

¹⁰⁰

216	Ā	Algorithm 1: AutoFE by Prompting								
217	Ī	Input : Dataset $D = \langle \mathbb{X}, \boldsymbol{u} \rangle$, downstream model M, large language model LLM, and optionally an								
218		external set of features with evaluation scores \mathbb{F}_{ext}								
219	(Dutput: A set of engineered features \mathbb{F}								
220	1 I	nitialize prompt P with dataset descriptions and example features; $\mathbb{F}_{cand} \leftarrow \mathbb{F}_{ext}$ if \mathbb{F}_{ext} is available,								
221		otherwise $\mathbb{F}_{cand} \leftarrow \emptyset$; $\mathbb{F}_{set} \leftarrow \emptyset$								
222	2 r	epeat								
223	3	$\mathbb{F}_{LLM} = \{f_1, \dots, f_m\} \leftarrow LLM(P) \qquad \qquad \triangleright \text{ Feature generation}$								
224	4	for each $f \in \mathbb{F}_{LLM}$ do								
224	5	$f^{\circ} \leftarrow \text{Canonicalize } f$								
225	6	If f is valid and $f \notin \#_{cand}$ then \land Feature evaluation Final product of the second second of \mathcal{L} where \mathcal{L} is a product of the second s								
226	·7	Evaluate cross valuation performance score $s \leftarrow \mathcal{C}_M(\mathbb{A} \cup \{x_f^c\}, y)$ on training data $\mathbb{E} , \leftarrow \mathbb{E} , \downarrow \downarrow \{/f^c \in \mathbb{N}\}$								
227	0	$ \exists cand \leftarrow \exists cand \cup \{ \langle j \rangle, S \rangle \} $								
228	10	and								
229	10	Undeta D such that D contains the ten $h/f' c' \subset \mathbb{R}$ as ordered by c'								
230	11	opulate <i>I</i> such that <i>I</i> contains the top- $\kappa (j, s) \in \mathbb{F}_{cand}$ as ordered by <i>s</i> if fasture selection then								
231	12	for $n \leftarrow 1$ to $ \mathbb{R}_{n-2} $ do								
232	14	$\mathbb{F}_n \leftarrow \text{The top-}n \text{ features in } \mathbb{F}_{cand} \text{ as ordered by } s$								
233	15	Evaluate performance score $s_n \leftarrow \mathcal{E}_M(\mathbb{X} \cup \tilde{\mathbb{X}}_{\mathbb{F}_n}, \boldsymbol{y})$ on validation data								
234	16	end								
235	17	$\mathbb{F}_{set} \leftarrow \mathbb{F}_{set} \cup \{ \langle \mathbb{F}_{n^*}, s_{n^*} \rangle \}, \text{ where } n^* \leftarrow \operatorname{argmax}_n s_n$								
236	18	end								
230	19 U	intil stopping criteria are met								
231	20 r	eturn \mathbb{F} in \mathbb{F}_{set} with the maximum validation score								

241

242

The computation cost of feature evaluation in line 7 is also constant, preserving the efficiency and scalability of our algorithm. The evaluations in line 7 and at lines 13-16 are parallelizable.

Methodologically, we instruct the LLM to act as a problem solver (Yang et al., 2024) within our 243 algorithm. Similar to evolutionary algorithms (Smith & Bull, 2005; Zhu et al., 2022a; Morris et al., 244 2024) that generate new solutions through crossover and mutations on high-fitness candidates, we 245 maintain a pool of top-performing candidate features as examples. By learning examples and scores 246 in-context (Brown et al., 2020), the LLM can recognize patterns of promising features and propose 247 new features that are likely to be effective. For instance, it may make analogies to, modify, or 248 combine some example features in the prompt (Appendix F.3). Early in the search, we expect greater 249 exploration due to the diversity of initial examples. As iterations progress, the LLM focuses more 250 on exploiting promising feature spaces, gradually refining the search until convergence. The dataset 251 semantic information serves as a prior that guides the selection of feature attributes and operators to enhance the effectiveness of feature search. The sampling temperature of the LLM can be adjusted to balance exploration and exploitation, with higher temperatures encouraging more diverse solutions 253 and lower temperatures favoring incremental changes to existing examples. 254

We adopt the same set of transformation operators \mathbb{T} as those in (Zhu et al., 2022b), including:

255 256 257

258

259

260

261

- Unary transformations: logarithm, reciprocal, square root, and min-max normalization;
 - Binary transformations: addition, subtraction, multiplication, division, and modulo.

When computing min-max normalization, we take the minimum and maximum from the training data. Other transformations require only the information of an individual example. Hence, all our transformation operations can be performed instance by instance on each individual test example without leaking the information of other test examples. As discussed by Overman et al. (2024), data leakage is an issue that has not been properly addressed in many existing AutoFE works.

- 262 263 264
- 5 EXPERIMENTS
- 265 266 267

268

5.1 EXPERIMENTAL SETUP

269 We benchmark performance on seven public real-world datasets from Kaggle and UCI repositories covering different domains. The descriptive information of datasets and attributes is retrieved

270						
271	Name	Task	# Samples	# Features	# Numerical	# Categorical
272	Airfoil (AF)	Regression	1,503	5	5	0
070	Boston Housing (BH)	Regression	506	13	12	1
273	Bikeshare (BS)	Regression	731	10	6	4
274	Wine Quality Red (WQR)	Regression	1,599	11	11	0
	AIDS Clinical Trials (ACT)	Classification	2,139	23	9	14
275	Credit Default (CD)	Classification	30,000	23	14	9
276	German Credit (GC)	Classification	1,000	20	10	10

Table 1: Dataset statistics. The selected datasets cover different domains and vary in size. Four of them are for regression tasks and three for classification tasks.

278 from the sources without further processing. The downstream models we evaluate include lin-279 ear models (LASSO for regression tasks and logistic regression for classification tasks), Random 280 Forests (Breiman, 2001), and LightGBM (Ke et al., 2017). For linear models, we target-encode 281 categorical features and min-max scale all features. We tune downstream model parameters by ran-282 domized search prior to and post AutoFE, because the model algorithm may need reconfiguration 283 to accommodate the added features. Data are randomly split into training (64%), validation (16%), 284 and test (20%) sets. We evaluate regression performance with $1 - (relative absolute error)^1$ and 285 classification performance with accuracy. A higher evaluation score indicates better performance.

We compare our FEBP with the following state-of-the-art AutoFE methods:

- DIFER (Zhu et al., 2022b): A neural network-based method that optimizes features in the embedding space utilizing LSTMs to encode and decode features;
- OpenFE (Zhang et al., 2023): An expansion-reduction method that evaluates and ranks features up to a certain order using a feature boost algorithm;
- CAAFE (Hollmann et al., 2023): An LLM-based method that produces Python code based on dataset descriptions to manipulate Pandas data frames.

We employ gpt-3.5-turbo-0125² and $gpt-4-0613^2$ as the LLMs in our experiments. For FEBP, we 295 include k = 10 example features in the prompt and set the temperature of GPT models to 1 based 296 on validation performance. We prompt the LLM to construct m = 1 feature in each generation 297 step for more accurate control of feature generation. We perform feature selection each time 10 298 new candidate features are constructed and terminate the algorithm once we have 200 candidate 299 features. Parameters of the baseline AutoFE methods are initialized per the corresponding papers. 300 For CAAFE (Hollmann et al., 2023), we raise the number of iterations from 10 to 20. Drastically 301 increasing this limit causes failures due to the context window size of GPT models. We report results 302 from five repeated runs unless stated otherwise.

303 304 305

306

277

286

287

289

291

293

5.2 PERFORMANCE COMPARISON

Table 2 compares the performance between FEBP and baseline methods. While there is no sin-307 gle method that dominates all test cases, FEBP achieves the best mean performance score and the 308 lowest mean rank. FEBP yields over 5% average performance gain over downstream models us-309 ing raw features, with over 15% gain for linear models and around 2% gain for Random Forests 310 and LightGBM. Greater performance gain is observed using linear models because Random Forests 311 and LightGBM can model complex non-linear relationships themselves. The Friedman-Nemenyi 312 test shows that the performance difference between FEBP and baseline methods other than DIFER 313 is statistically significant at the p = 0.01 level. We note that the post-AutoFE parameter tuning 314 improves the performance of DIFER the most, as DIFER adds many more features to the datasets 315 (Appendix D.8). FEBP is considerably more efficient as it evaluates only 200 candidate features 316 during feature search, whereas DIFER evaluates over 2000 candidate features (Appendix D.9).

Additionally, we observe that the performance of FEBP or CAAFE with GPT-4 is not significantly
 different from that with GPT-3.5. On FEBP, GPT-4 yields better performance for linear models but
 slightly worse performance for Random Forests. We speculate that the stronger in-context learning
 capability of GPT-4 increases the likelihood of overfitting to the learning samples.

321 322

 $[\]frac{1}{\sum_{i} |y_i - \hat{y}_i|}{\sum_{i} |y_i - \bar{y}|}$, where y is the target and \hat{y} is the prediction.

²https://platform.openai.com/docs/models

Table 2: Summary of experimental results. For each compared method, the left and right columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively. The best results are highlighted in boldface, and the second best results are underlined.

325															
326	Model	Dataset	Raw	DII	FER	Ope	nFE	GPT	CA. [-3.5	AFE GP	T-4	GP	FEBP F-3.5	(ours) GP	T-4
327		AF	0.3474	0.5870	0.6090	0.4300	0.4303	0.4011	0.4016	0.4376	0.4378	0.6612	0.6616	0.6649	0.6647
000		BH	0.3776	0.5013	0.4994	0.3900	0.3880	0.4788	0.4765	0.4503	0.4506	0.4995	0.5025	0.5184	0.5289
328	Linear	WQR	0.2696	0.2475	0.2630	0.2713	0.2736	0.2742	0.2757	0.2776	0.2776	0.2722	0.2745	0.2713	0.2748
329	Model	ACT	0.8505	0.8715	0.8799	0.8729	0.8729	0.8519	0.8514	0.8565	0.8570	0.8729	0.8794	0.8766	0.8762
220		CD	0.8267	0.8273	0.8280	0.8265	0.8268	0.8265	0.8267	0.8238	0.8238	0.8282	0.8282	0.8288	0.8288
330	Mean	uc	0.5636	0.6248	0.7420	0.7320	0.7280	0.7330	0.7350	0.5945	0.7210	0.6485	0.7400	0.6532	0.7420
331	Mean R	ank	12.00	8.17	5.50	9.25	8.50	8.67	8.17	8.83	8.17	4.75	3.17	3.00	2.83
332		AE	0.7677	0.7650	0.7786	0 7570	0.7682	0 7711	0.7603	0.7606	0.7720	0.7700	0 7787	0.7681	0.7740
333		BH	0.5426	0.5718	0.5701	0.5658	0.5620	0.5556	0.5556	0.5512	0.5492	0.5549	0.5533	0.5543	0.5522
000	D	BS	0.9446	0.9865	0.9871	0.9901	0.9901	0.9916	0.9916	0.9818	0.9816	0.9873	0.9881	0.9845	0.9848
334	Forests	WQR	0.3662	0.3838	0.3832	0.3753	0.3729	0.3718	0.3718	0.3693	0.3693	0.3862	0.3845	0.3810	0.3810
335	Toresta	ACT	0.8808	0.8897	0.8897	0.8832	0.8841	0.8827	0.8855	0.8827	0.8827	0.8925	0.8921	0.8893	0.8864
000		CD	0.8293	0.8285	0.8291	0.8287	0.8285	0.8291	0.8289	0.8294	0.8287	0.8295	0.8294	0.8295	0.8276
336	Mean	GC	0.7430	0.7330	0.7300	0.7380	0.7376	0.7387	0.7378	0.7357	0.7352	0.7408	0.7620 0.7412	0.7392	0.7393
337	Mean R	ank	11.57	7.29	5.14	7.07	7.64	5.71	6.93	8.43	9.79	4.14	4.29	6.00	7.00
338		AF	0.8375	0.8285	0.8411	0.8188	0.8244	0.8364	0.8348	0.8430	0.8426	0.8311	0.8392	0.8366	0.8395
339		BH	0.5537	0.5607	0.5636	0.5693	0.5618	0.5540	0.5571	0.5478	0.5501	0.5619	0.5644	0.5642	0.5595
0.40	Light-	BS	0.9429	0.9763	0.9786	0.9751	0.9797	0.9555	0.9565	0.9449	0.9487	0.9737	0.9754	0.9801	0.9813
340	GBM	WQR	0.3825	0.4145	0.4182	0.3898	0.3884	0.4131	0.4035	0.3902	0.3952	0.4118	$\frac{0.4171}{0.8025}$	0.4021	0.4042
341		CD	0.8852	0.8794	0.8827	0.8808	0.8799	0.8822	0.8800	0.8827	0.8818	0.8800	0.8297	0.8902	0.8925
2/10		GC	0.7250	0.7650	0.7600	0.7550	0.7700	0.7490	0.7550	0.7450	0.7720	$\frac{0.0501}{0.7680}$	0.7720	0.7760	0.7700
342	Mean		0.7364	0.7504	0.7531	0.7454	0.7476	0.7457	0.7461	0.7405	0.7457	0.7522	0.7558	0.7542	0.7538
343	Mean R	ank	9.43	8.29	5.86	8.86	8.57	8.43	7.71	8.29	7.93	5.71	3.57	3.57	4.79
344	Mean		0.6806	0.7091	0.7140	0.6953	0.6958	0.6979	0.6976	0.6950	0.6967	0.7171	0.7185	0.7187	0.7183
3/15	Mean R	ank	10.95	7.90	5.50	8.35	8.23	7.55	7.58	8.50	8.65	4.88	3.70	4.25	4.98

Table 3: Performance comparison of FEBP with and without semantic blinding. For each compared version, the left and middle columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively, and the right column shows the number of LLM responses. The results where the full version outperforms the blinded version are highlighted in boldface.

Model Dataset Raw Blinded Full Blinded Full Blinded Full Blinded Full Blinded Full Blinded Start				1		GPI	C-3.5			1		GP	T_4		
AF 0.3474 0.6613 0.6602 450.0 0.6612 0.6616 339.8 0.6678 0.6672 275.0 0.6649 0.6647 35 Linear WQR 0.2696 0.2643 0.2733 442.8 0.2722 0.2745 328.4 0.2645 0.2702 244.6 0.2713 0.2748 31 Model ACT 0.8505 0.8790 0.8799 422.8 0.8729 0.8794 372.2 0.8720 0.8729 238.8 0.8266 0.3766 0.8762 33 Mean 0.5636 0.6411 0.7430 432.2 0.7787 0.7430 0.7410 231.2 0.7590 0.7420 33 Mean 0.5636 0.6411 0.6433 434.4 0.6487 356.7 0.6437 0.6431 253.9 0.6532 0.6522 22 2 2 2 2 2 2 0.7690 274.2 0.7690 274.2 0.7640 .5539 0.5433 375.2 0.8284	Model	Dataset	Raw		Blinded	011	-5.5	Full			Blinded	01	1-4	Full	
BH 0.3776 0.4678 0.4794 438.0 0.4995 0.5025 378.6 0.4869 0.4996 295.6 0.5184 0.5289 33 Linear WQR 0.2696 0.2643 0.2733 442.8 0.2722 0.2745 328.4 0.2645 0.2702 244.6 0.2713 0.2748 33 Model ACT 0.8505 0.8790 0.8799 42.8 0.8722 0.8720 0.8729 238.8 0.8266 0.8276 0.8288 0.8288 0.8288 0.8288 0.8288 0.8288 0.8282 0.8282 0.8282 0.8289 238.2 0.8288 0.8288 0.8288 0.8288 0.8288 0.8288 0.8288 0.8288 0.8283 0.8283 0.8283 0.8281 0.8284 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8283 0.8284 0.8481 0.5533 374.4 0.5507 0.5491 235.4		AF	0.3474	0.6613	0.6602	450.0	0.6612	0.6616	339.8	0.6678	0.6672	275.0	0.6649	0.6647	371.4
Linear WQR 0.2696 0.2743 0.42.8 0.2722 0.2745 328.4 0.2645 0.2702 244.6 0.2713 0.2718 33 Model ACT 0.8505 0.8790 0.8799 442.8 0.8729 0.8720 0.8720 0.8720 238.2 0.8288 0.8		BH	0.3776	0.4678	0.4794	438.0	0.4995	0.5025	378.6	0.4869	0.4996	295.6	0.5184	0.5289	335.4
Model ACT 0.8505 0.8790 0.8799 44.2.8 0.8729 0.8794 372.2 0.8720 0.8720 238.8 0.8766 0.8762 32 GC 0.8267 0.8283 0.8283 454.8 0.8282 0.8282 0.8282 0.8282 0.8282 0.8282 0.8282 0.8282 0.3282 0.3280 231.2 0.7590 0.7740 331.2 0.7590 0.7740 331.2 0.7590 0.7740 331.2 0.6437 0.6437 0.6437 0.6461 253.9 0.6532 0.6526 33 Mean 0.5636 0.6411 0.6433 443.4 0.6487 0.5533 374.4 0.5507 0.5431 0.5532 0.6532 0.6532 0.6532 0.6532 0.5533 0.5517 0.5507 0.5431 0.5533 0.5517 0.5533 374.4 0.5507 0.5431 0.5432 0.5533 0.5513 0.5513 0.5513 0.5513 0.5513 0.5513 0.5513 0.5513 0.5513 <t< td=""><td>Linear</td><td>WQR</td><td>0.2696</td><td>0.2643</td><td>0.2733</td><td>442.8</td><td>0.2722</td><td>0.2745</td><td>328.4</td><td>0.2645</td><td>0.2702</td><td>244.6</td><td>0.2713</td><td>0.2748</td><td>312.6</td></t<>	Linear	WQR	0.2696	0.2643	0.2733	442.8	0.2722	0.2745	328.4	0.2645	0.2702	244.6	0.2713	0.2748	312.6
CD GC 0.8267 0.8283 0.8283 0.454.8 0.8282 0.7400 0.7410 231.2 0.7590 0.7740 0.563 0.6411 0.6433 443.4 0.6487 356.7 0.6437 0.6437 0.6431 233.2 0.7580 0.7742 0.7749 33.2 0.7610 0.7690 274.2 0.7690 0.7742 33.2 0.7610 0.7690 233.4 0.5533 0.5431 0.5533 0.553 0.5533 0.5431 233.4 0.5533 0.5533 0.5431 233.4 0.5543 0.5543 0.5543 0.5411 0.3845 0.6643 0.3626 0.3310 <	Model	ACT	0.8505	0.8790	0.8799	442.8	0.8729	0.8794	372.2	0.8720	0.8729	238.8	0.8766	0.8762	377.4
Mean GC 0.7100 0.7460 0.7390 432.2 0.7570 0.7460 379.0 0.7410 231.2 0.7590 0.7420 33 Mean 0.5636 0.6411 0.6433 443.4 0.6485 0.6487 356.7 0.6437 0.6461 253.9 0.6532 0.5533 374.4 0.5507 0.5431 0.5523 0.5533 374.4 0.5533 0.474.0 0.5843 0.5522 27 BS 0.9446 0.9628 510.0 0.9875 0.9811 386.8 0.9515 0.3510 0.3780 0.5812 0.3845 362.6 0.3666 0.3672 0.8893 0.8864 4 0.806 0.761		CD	0.8267	0.8283	0.8283	454.8	0.8282	0.8282	342.0	0.8282	0.8289	238.2	0.8288	0.8288	250.4
Mean 0.5636 0.6411 0.6433 443.4 0.6487 0.6487 0.6437 0.6461 253.9 0.6532 0.6526 32 Random AF 0.7677 0.7644 0.7743 425.2 0.7709 0.7787 393.2 0.7610 0.7690 274.2 0.7681 0.7749 31 Random BH 0.5426 0.5483 0.5428 0.5549 0.5533 374.4 0.5507 0.5411 2.88.4 0.5543 0.5522 22 Forests 0.9466 0.9628 510.0 0.9873 0.9881 386.8 0.9553 0.9543 247.4 0.9845 0.9845 22 Forests 0.3662 0.3749 0.3738 461.4 0.3862 0.821 357.6 0.8874 0.8810 22.4 0.8893 0.8864 44 CD 0.8293 0.8283 0.8282 497.0 0.7620 368.2 0.7510 0.7490 22.6 0.7680 7680 7680 7680		GC	0.7100	0.7460	0.7390	432.2	0.7570	0.7460	379.0	0.7430	0.7410	231.2	0.7590	0.7420	310.6
AF 0.7677 0.7644 0.7743 425.2 0.7799 0.7787 393.2 0.7610 0.7690 274.2 0.7681 0.7799 33 Random BH 0.5426 0.5483 0.5483 479.2 0.5549 0.5533 374.4 0.5507 0.5413 0.5543 0.5522 2 BH 0.3662 0.3749 0.3738 461.4 0.3862 0.3666 0.3674 233.4 0.5813 386.8 0.9533 247.4 0.9845 0.8816 22 Forests 0.3662 0.3749 0.3738 461.4 0.3825 0.8246 0.36461 233.4 0.8811 22.4 0.8893 0.8864 42 CD 0.8293 0.8283 0.8282 497.0 0.8295 0.8291 357.6 0.8874 0.7880 375.2 0.8295 0.8294 0.7610 0.7680 7506 0.7680 7508 0.7608 74680 0.7218 371.4 0.7285 0.8264 28.46 0.8365 <td>Mean</td> <td></td> <td>0.5636</td> <td>0.6411</td> <td>0.6433</td> <td>443.4</td> <td>0.6485</td> <td>0.6487</td> <td>356.7</td> <td>0.6437</td> <td>0.6461</td> <td>253.9</td> <td>0.6532</td> <td>0.6526</td> <td>326.3</td>	Mean		0.5636	0.6411	0.6433	443.4	0.6485	0.6487	356.7	0.6437	0.6461	253.9	0.6532	0.6526	326.3
BH 0.5426 0.5483 0.5483 479.2 0.5549 0.5533 374.4 0.5507 0.5507 0.5491 238.4 0.5522 22 BS 0.9446 0.9628 0.9628 510.0 0.9873 0.9881 366.8 0.9555 0.9543 247.4 0.9845 0.9848 22 Forests WQR 0.3662 0.3749 0.3738 461.4 0.3862 0.3845 362.6 0.3666 0.3674 235.0 0.3810 22 CD 0.8293 0.8283 0.8282 497.0 0.8295 0.8291 357.6 0.8874 0.8841 22.4 0.8893 0.8864 42 Mean 0.6806 0.7326 0.7328 472.5 0.7400 0.7220 368.2 0.712 0.704 0.7285 0.7288 362.9 0.7393 33 Mean 0.6806 0.7326 472.5 0.7328 472.5 0.7393 33 33 33 33 33 34		AF	0.7677	0.7644	0.7743	425.2	0.7709	0.7787	393.2	0.7610	0.7690	274.2	0.7681	0.7749	314.2
Random Forests S 0.9446 0.9628 0.9628 510.0 0.9873 0.9881 386.8 0.9535 0.9543 247.4 0.9845 0.9848 22 Forests ACT 0.8662 0.3749 0.3738 461.4 0.3862 0.3845 362.6 0.3666 0.3674 253.0 0.3810 0.3810 23 CD 0.8293 0.8283 0.8282 497.0 0.8292 0.8294 349.8 0.8291 0.8284 375.2 0.8295 0.8276 33 Mean 0.6806 0.7326 0.7328 472.5 0.7400 0.7620 368.2 0.7510 0.7490 229.6 0.7680 4730 33 Mean 0.6806 0.7326 0.7328 472.5 0.7408 0.7412 370.4 0.7285 0.7288 262.9 0.7392 0.7393 33 BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.560 238.4		BH	0.5426	0.5483	0.5483	479.2	0.5549	0.5533	374.4	0.5507	0.5491	238.4	0.5543	0.5522	278.6
Kandom Forests WQR 0.3662 0.3749 0.3738 461.4 0.3862 0.3845 362.6 0.3666 0.3674 253.0 0.3810 0.3810 233 Forests ACT 0.8808 0.8864 0.8841 475.8 0.8295 0.8291 357.6 0.8874 0.8841 222.4 0.8893 0.8864 4 CD 0.8293 0.8283 0.8282 497.0 0.8295 0.8294 349.8 0.8291 0.8286 375.2 0.8295 0.8276 36 GC 0.7450 0.7500 0.7580 459.2 0.7640 0.7285 0.7285 0.7286 275.2 0.7392 0.7680 47 Mean 0.6806 0.7326 0.7328 472.5 0.7408 0.712 370.4 0.7285 0.7285 0.8266 284.6 0.8366 0.8393 33 Light- MF 0.5537 0.5503 0.5467 490.8 0.5619 0.5614 342.0 0.5500 0.5609 </td <td></td> <td>BS</td> <td>0.9446</td> <td>0.9628</td> <td>0.9628</td> <td>510.0</td> <td>0.9873</td> <td>0.9881</td> <td>386.8</td> <td>0.9535</td> <td>0.9543</td> <td>247.4</td> <td>0.9845</td> <td>0.9848</td> <td>255.0</td>		BS	0.9446	0.9628	0.9628	510.0	0.9873	0.9881	386.8	0.9535	0.9543	247.4	0.9845	0.9848	255.0
Forests ACT 0.8808 0.8864 0.881 475.8 0.8925 0.8921 357.6 0.8874 0.8841 22.4 0.8893 0.8864 42.2 CD 0.8293 0.8283 0.8282 497.0 0.8295 0.8291 349.8 0.8291 0.8284 375.2 0.8295 0.8291 0.8291 0.8286 375.2 0.8295 0.8294 349.8 0.8291 0.7480 375.2 0.8295 0.8294 349.8 0.8291 0.7480 375.2 0.8295 0.8294 349.8 0.8291 0.7480 375.2 0.8295 0.8294 0.7510 0.7580 0.7680 7680<	Random	WQR	0.3662	0.3749	0.3738	461.4	0.3862	0.3845	362.6	0.3666	0.3674	253.0	0.3810	0.3810	283.2
CD GC 0.8293 0.7450 0.8283 0.7580 0.8282 0.7580 0.8295 459.2 0.8294 0.7640 0.7620 0.7640 0.8295 0.7640 0.8294 0.7620 0.8291 0.7510 0.8296 0.7400 0.7220 0.7280 0.8295 0.7328 0.8291 0.7620 0.8291 0.7500 0.8296 0.7400 0.7220 0.7600 0.7320 0.7328 0.7328 472.5 0.7400 0.7612 0.7412 0.7044 0.7285 0.7285 0.7288 262.9 0.7320 0.7338 33 Mean 0.8307 0.8304 0.8356 479.6 0.8311 0.8392 380.2 0.8185 0.8266 284.6 0.8366 0.8395 33 Light- GBM 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5609 238.4 0.5642 0.5535 34 GBM 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5609 238.4 0.5642 0.5530 GBM 0.3825 0.4087 0.4113 493.0 0.4118 0.4	Forests	ACT	0.8808	0.8864	0.8841	475.8	0.8925	0.8921	357.6	0.8874	0.8841	222.4	0.8893	0.8864	424.0
Mean GC 0.7450 0.7630 0.7580 459.2 0.7640 0.7620 368.2 0.7510 0.7490 229.6 0.7680 0.7680 470.8 Mean 0.6806 0.7326 0.7326 472.5 0.7408 0.712 370.4 0.7285 0.7288 262.9 0.7392 0.7393 33 AF 0.8375 0.8304 0.8356 479.6 0.8311 0.8392 380.2 0.8185 0.8266 284.6 0.8366 0.8395 33 BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5609 238.4 0.5612 0.5504 342.0 0.5500 238.4 0.5612 0.5803 0.9536 312.6 0.9801 0.98313 22 0.8185 0.8264 284.6 0.8010 0.8133 280.2 0.4057 0.4050 212.6 0.4518 0.5500 0.5500 0.5600 238.4 0.5612 0.5813 22 0.802 0.8		CD	0.8293	0.8283	0.8282	497.0	0.8295	0.8294	349.8	0.8291	0.8286	375.2	0.8295	0.8276	304.0
Mean 0.6806 0.7326 0.7326 0.7328 472.5 0.7408 0.7412 370.4 0.7285 0.7285 262.9 0.7392 0.7393 3333 Ken 0.6806 0.8375 0.8304 0.8356 479.6 0.8311 0.8392 380.2 0.8185 0.8266 284.6 0.8366 0.8395 36 BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5602 238.4 0.5642 0.59515 38 BB 0.3252 0.4087 0.4151 490.0 0.4117 322.8 0.4057 0.4050 0.4681 0.4021 0.4042 22 GBM ACT 0.8320 0.8284 0.8283 513.0 0.8888 0.8925 367.4 0.8813 0.8748 22.90 0.8902 0.8902 38.14 0.8215 0.4057 0.4050 0.46.8 0.4021 0.4042 25 GDM 0.8320 0.8284 0.8292		GC	0.7450	0.7630	0.7580	459.2	0.7640	0.7620	368.2	0.7510	0.7490	229.6	0.7680	0.7680	471.8
AF 0.8375 0.8304 0.8356 479.6 0.8311 0.8392 380.2 0.8185 0.8266 284.6 0.8366 0.8395 36 BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5609 238.4 0.5642 0.5642 0.5537 0.5503 0.547 490.8 0.6519 0.5644 342.0 0.5500 0.5500 238.4 0.5642 0.5642 0.5537 0.2537 0.9754 380.0 0.9539 0.9536 312.6 0.9801 0.9813 22 GBM QVQR 0.3825 0.4087 0.41151 493.0 0.41171 322.8 0.4057 0.4050 246.8 0.4021 0.4042 2 GD 0.8300 0.8284 0.8283 513.0 0.8888 0.8925 367.4 0.8813 0.8748 229.0 0.8902 0.8902 0.8902 0.7520 0.756.0 0.7550 0.255.0 0.7760 0.8903 0.8294	Mean		0.6806	0.7326	0.7328	472.5	0.7408	0.7412	370.4	0.7285	0.7288	262.9	0.7392	0.7393	333.0
BH 0.5537 0.5503 0.5467 490.8 0.5619 0.5644 342.0 0.5500 0.5609 238.4 0.5642 0.5595 33 Light- GBM 0.9429 0.9693 0.9691 480.2 0.9737 0.9754 380.0 0.9539 0.9536 312.6 0.9801 0.9813 23 GBM MQR 0.3825 0.4087 0.4115 493.0 0.41171 322.8 0.4057 0.4050 246.8 0.4021 0.4042 2 GBM 0.8325 0.8087 0.4151 493.0 0.8284 0.8295 367.4 0.8813 0.8748 22.00 0.8902 0.8902 32 CD 0.8300 0.8284 0.8292 490.8 0.8301 0.8297 352.2 0.8295 0.8292 218.6 0.8303 0.8294 33 GC 0.7620 0.7620 482.4 0.7680 0.7720 376.6 0.7550 0.750.7 0.7400 0.7433 0.820.7 0.7437		AF	0.8375	0.8304	0.8356	479.6	0.8311	0.8392	380.2	0.8185	0.8266	284.6	0.8366	0.8395	360.6
Light- GBM BS ACT 0.9429 0.9693 0.9691 480.2 0.9737 0.9754 380.0 0.9539 0.9536 312.6 0.9801 0.9813 22 GBM WQR 0.3825 0.4087 0.4151 493.0 0.4118 0.4171 322.8 0.4057 0.4050 246.8 0.4021 0.4042 25 CD 0.8300 0.8284 0.8292 490.8 0.8301 0.8297 352.2 0.8295 0.8290 0.8902 0.8902 0.8902 0.8294 35 GC 0.7250 0.7620 0.7620 482.4 0.7820 0.7720 376.6 0.7550 0.7507 0.251.0 0.7620 0.7620 482.4 0.7620 0.7720 376.6 0.7550 0.7507 0.7540 0.7700 33 Mean 0.6806 0.7179 0.7494 490.0 0.7522 0.7558 360.2 0.7420 0.7437 25.07 0.7542 0.7538 33 Mean 0.6806 </td <td></td> <td>BH</td> <td>0.5537</td> <td>0.5503</td> <td>0.5467</td> <td>490.8</td> <td>0.5619</td> <td>0.5644</td> <td>342.0</td> <td>0.5500</td> <td>0.5609</td> <td>238.4</td> <td>0.5642</td> <td>0.5595</td> <td>345.6</td>		BH	0.5537	0.5503	0.5467	490.8	0.5619	0.5644	342.0	0.5500	0.5609	238.4	0.5642	0.5595	345.6
Light- GBM WQR 0.3825 0.4087 0.4151 493.0 0.4118 0.4171 322.8 0.4057 0.4050 246.8 0.4021 0.4042 25 GBM ACT 0.8832 0.8864 0.8883 513.0 0.8888 0.8925 367.4 0.8813 0.8148 229.0 0.8902 0.8902 0.8902 0.8902 0.8252 3 CD 0.8300 0.8284 0.8292 490.8 0.8301 0.8297 352.2 0.8295 0.8299 218.6 0.8303 0.8294 3 GC 0.7250 0.7620 0.7620 482.4 0.7680 0.7700 376.6 0.7550 0.7507 0.760 0.7700 33 Mean 0.6806 0.7179 0.7494 490.0 0.7522 0.7588 360.2 0.7420 0.7437 25.07 0.7542 0.7538 33 Mean 0.6806 0.7105 0.7118 469.9 0.7117 0.7185 362.7 0.7078		BS	0.9429	0.9693	0.9691	480.2	0.9737	0.9754	380.0	0.9539	0.9536	312.6	0.9801	0.9813	236.8
GBM ACT 0.8832 0.8864 0.8883 513.0 0.8888 0.8925 367.4 0.8813 0.8748 229.0 0.8902 0.8902 0.8925 352.2 CD 0.8300 0.8284 0.8292 490.8 0.8301 0.8297 352.2 0.8295 0.8295 0.8303 0.8294 35 GC 0.7520 0.7620 482.4 0.7680 0.7720 376.6 0.7550 0.7550 0.7760 0.7760 38 Mean 0.6806 0.7494 490.0 0.7525 362.7 0.7078 0.7092 255.9 0.7187 0.7518 362.7	Light-	WQR	0.3825	0.4087	0.4151	493.0	0.4118	0.4171	322.8	0.4057	0.4050	246.8	0.4021	0.4042	293.6
CD GC 0.8300 0.7250 0.8284 0.7620 0.8292 0.7620 490.8 482.4 0.8301 0.7680 0.8297 0.7720 352.2 376.6 0.8295 0.7550 0.8299 0.7550 218.6 0.8303 0.8294 0.8294 35 352.2 Mean 0.6806 0.7479 0.7494 490.0 0.7522 0.7558 360.2 0.7420 0.7437 250.7 0.7542 0.7538 33 Mean 0.6806 0.7105 0.7118 469.9 0.7171 0.7185 362.7 0.7078 0.7092 255.9 0.7187 0.7183 33	GBM	ACT	0.8832	0.8864	0.8883	513.0	0.8888	0.8925	367.4	0.8813	0.8748	229.0	0.8902	0.8925	359.6
GC 0.7250 0.7620 0.7620 482.4 0.7680 0.7720 376.6 0.7550 0.7550 225.0 0.7760 0.7700 38 Mean 0.6806 0.7179 0.7494 490.0 0.7522 0.7558 360.2 0.7420 0.7437 250.7 0.7542 0.7538 33 Mean 0.6806 0.7105 0.7118 469.9 0.7117 0.7185 362.7 0.7092 255.9 0.7187 0.7183 33		CD	0.8300	0.8284	0.8292	490.8	0.8301	0.8297	352.2	0.8295	0.8299	218.6	0.8303	0.8294	371.2
Mean 0.6806 0.7479 0.7494 490.0 0.7522 0.7558 360.2 0.7420 0.7437 250.7 0.7542 0.7538 333 Mean 0.6806 0.7105 0.7118 469.9 0.7111 0.7185 362.7 0.7078 0.7092 255.9 0.7187 0.7183 333		GC	0.7250	0.7620	0.7620	482.4	0.7680	0.7720	376.6	0.7550	0.7550	225.0	0.7760	0.7700	382.2
Mean 0.6806 0.7105 0.7118 469.9 0.7171 0.7185 362.7 0.7078 0.7092 255.9 0.7187 0.7183 33	Mean		0.6806	0.7479	0.7494	490.0	0.7522	0.7558	360.2	0.7420	0.7437	250.7	0.7542	0.7538	335.7
	Mean		0.6806	0.7105	0.7118	469.9	0.7171	0.7185	362.7	0.7078	0.7092	255.9	0.7187	0.7183	331.9

5.3 EFFECT OF SEMANTIC CONTEXT

To examine the impact of dataset semantic context, we compare the full version of FEBP with the semantically blinded version where the descriptions of datasets are removed (Appendix C.2). From Table 3, the full version outperforms the blinded version in terms of the mean performance score using all three downstream models. The Friedman-Nemenyi test shows that the performance difference is statistically significant at the p = 0.01 level. The performance difference is more pronounced for Random Forests and LightGBM, likely because the inclusion of non-semantically meaningful features consumes model capacity and causes greater overfitting to the training data.

Figure 6: The order of candidate features across iterations.

(c) GC

(d) WQR

(b) BH

We also report the number of LLM responses to help assess feature construction efficiency. As shown in Table 3, GPT-4 constructs features more efficiently than GPT-3.5 due to its broader knowledge. While incorporating dataset semantic information improves the feature construction efficiency of GPT-3.5, it reduces that of GPT-4. This is because the semantic information introduces bias, leading GPT-4 to generate more similar responses.

406 407 5.4 PERFORMANCE ANALYSIS

(a) ACT

We analyze our LLM-based feature search process for deeper insights. Here, we present experimental results on the ACT, BH, GC, and WQR datasets using linear models from ten repeated runs with *gpt-3.5-turbo-0125*. The plots display the slope and *p*-value from one-tailed t-tests in OLS regressions, with the shaded area representing one standard deviation above and below the mean.

Feature Learning. We examine the cross validation score of candidate features on the training data across feature construction iterations. Figure 5 shows a general upward trend in the score as the number of iterations increases. This demonstrates that FEBP effectively improves the quality of constructed features through in-context learning of top-performing examples during feature search.

Feature Complexity. We analyze the order of candidate features across feature construction iterations. Figure 6 shows that the feature order increases more rapidly in the early iterations and stabilizes over time. On the one hand, FEBP effectively explores more complex features within promising feature spaces. On the other hand, our constraint instruction regularizes the process, preventing the generation of overly complex features.

422

398

399 400

401

402

403

404

405

412

Feature Divergence. We analyze the divergence of a new candidate features from previous ones during feature search. To measure this, we compute the edit distance between canonical feature expression trees using the algorithm from (Zhang & Shasha, 1989), normalizing the distance by the total number of nodes in both trees. Figure 7 displays the mean normalized tree edit distance between the current feature and the previous five features across iterations. The observed downward trend indicates that the feature search is converging.

429

Feature Construction Efficiency. We examine the number of LLM responses required to construct
 new candidate features. Figure 8 shows an upward trend over iterations, indicating that more responses are discarded. This is due to the increasing difficulty of constructing non-duplicate features

Figure 8: The number of LLM responses to construct a new candidate feature across iterations.

and the higher likelihood of syntactical errors as features become more complex. However, since the increase is small, FEBP remains scalable across a large number of iterations.

5.5 HYPERPARAMETER EFFECT

Number of Iterations. Figure 9 shows the validation scores on the AF and CD datasets, which contain the smallest and largest numbers of features, respectively, using Random Forests and Light-GBM. The validation score is evaluated after adding the selected set of candidate features to the dataset, as indicated by s_{n^*} in line 17 of Algorithm 1. We terminate our algorithm once we have 200 candidate features, as constructing additional features does not substantially enhance the performance, but constructing fewer features degrades the performance in some cases.

Temperature. Table 4 reports the maximum validation score across iterations along with the number of LLM responses, under different temperature settings. We observe that the best performance and feature construction efficiency are achieved when the temperature is set to 1. Lower temperatures increase the likelihood of the LLM repeating existing features, while higher temperatures make the LLM more prone to generating errors in responses, both reducing feature construction efficiency.

Number of Examples in Prompt. Table 5 reports the maximum validation score across iterations along with the number of LLM responses, using varying numbers of example features in the prompt.

score, and the right c	ore, and the right column shows the number of LLM responses.						
	Model	Dataset		Temperature			

Model	Dataset	0	.5	Temper 1	ature	1.	5
RF	AF	0.7875	794.4	0.7914	393.2	0.7916	609.2
	CD	0.8211	823.2	0.8219	349.8	0.8218	672.6
LGBM	AF	0.8365	1313.2	0.8430	380.2	0.8418	627.6
	CD	0.8225	519.8	0.8226	352.2	0.8223	662.6
Mean		0.8169	862.7	0.8197	368.9	0.8194	643.0

Table 4: Effect of the LLM temperature. For each compared setting, the left column shows the validation

Table 5: Effect of the number of example features in the prompt. For each compared setting, the left column shows the validation score, and the right column shows the number of LLM responses.

Model	Dataset	1		ן 5	Number of	f Examples 10)	20)
RF	AF	0.7910	464.0	0.7930	409.2	0.7914	393.2	0.7860	372.8
	WQR	0.3897	339.4	0.3937	329.8	0.3948	362.6	0.3940	330.0
	CD	0.8215	429.6	0.8213	371.2	0.8219	349.8	0.8218	343.2
LGBM	AF	0.8421	440.4	0.8433	404.6	0.8430	380.2	0.8420	384.2
	WQR	0.4265	336.6	0.4294	334.8	0.4301	322.8	0.4333	330.4
	CD	0.8228	449.4	0.8224	361.2	0.8226	352.2	0.8228	321.2
Mean		0.6823	409.9	0.6839	368.5	0.6840	360.1	0.6833	347.0

We observe that the best performance is achieved with 10 examples. Additionally, we observe that feature construction efficiency improves as the number of examples increases, as this helps the LLM reduce errors and generate more diverse responses. However, providing too many examples can hinder the in-context learning of optimal feature patterns, as shown by the performance decline.

6 CONCLUSION

We propose a novel LLM-based AutoFE algorithm for effective, efficient, and interpretable fea-ture engineering that leverages the semantic information of datasets. Our approach provides the LLM with dataset descriptions and example features represented in canonical RPN, prompting it to construct new features. The LLM iteratively explores the feature space and improves feature construction by learning from top-performing examples. Experimental results demonstrate that our approach significantly outperforms state-of-the-art AutoFE methods and the inclusion of seman-tic context from dataset descriptions enhances performance. We also analyze the behavior of our LLM-based feature search process. Our work paves the way for further LLM-driven applications on automated machine learning pipelines and underscores the potential of utilizing semantic informa-tion. In the future, we plan to incorporate adaptive techniques for prompt design.

ETHICAL STATEMENT

All datasets used in this work are publicly available, free of personal information, and intended for research purposes only. Our use of GPT models complies with the terms and conditions of OpenAI.

Reproducibility Statement

The anonymized source code of this work can be accessed at https://anonymous.4open.science/r/FEBP.

536 REFERENCES

537 Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models

562

566

567

568

569

570

571

575

576

577

582

592

540 are few-shot learners. In Proceedings of Advances in neural information processing systems, 541 volume 33, pp. 1877–1901, 2020. 542

- 543 Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the american statistical association, 32(200):675-701, 1937. 544
- Sainyam Galhotra, Udayan Khurana, Oktie Hassanzadeh, Kavitha Srinivas, and Horst Samu-546 lowitz. Kafe: Automated feature enhancement for predictive modeling using external knowl-547 edge. In Proceedings of NeurIPS 2019 Workshop: Knowledge Representation & Reasoning Meets 548 Machine Learning, 2019. URL https://kr2ml.github.io/2019/papers/KR2ML_ 549 2019_paper_17.pdf. 550
- 551 Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform 552 deep learning on typical tabular data? In Proceedings of the thirty-sixth Conference on Neural 553 Information Processing Systems Datasets and Benchmarks Track, 2022.
- Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data 555 science: Introducing CAAFE for context-aware automated feature engineering. In Proceedings 556 of the thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https: //openreview.net/forum?id=9WSxQZ9mG7. 558
- 559 Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature 560 engineering and selection. In Proceedings of Machine Learning and Knowledge Discovery in 561 Databases, pp. 111–120. Springer, 2020.
- 563 James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data science endeavors. In Proceedings of 2015 IEEE international conference on data science and 564 advanced analytics (DSAA), pp. 1–10. IEEE, 2015. 565
 - Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of Advances in Neural Information Processing Systems, volume 30, URL https://proceedings.neurips.cc/paper_files/paper/2017/ 2017. file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.
- Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-572 eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-573 gence, volume 32, 2018. 574
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=e2TBb5y0yFf. 578
- 579 Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and Junbo Zhao. Learning 580 a data-driven policy network for pre-training automated feature engineering. In *Proceedings of* 581 the eleventh International Conference on Learning Representations, 2023.
- Clint Morris, Michael Jurado, and Jason Zutty. Llm guided evolution the automation of models 583 advancing models. In Proceedings of the Genetic and Evolutionary Computation Conference, 584 GECCO '24, pp. 377–384, New York, NY, USA, 2024. Association for Computing Machinery. 585 URL https://doi.org/10.1145/3638529.3654178. 586
- Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga. 588 Learning feature engineering for classification. In Proceedings of International Joint Conference 589 on Artificial Intelligence, volume 17, pp. 2529-2535, 2017. 590
- 591 Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton University, 1963.
- OpenAI. Gpt-4 technical report, 2023. URL https://cdn.openai.com/papers/gpt-4. 593 pdf.

- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. In *Proceedings of Advances in Neural Information Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/ file/blefde53be364a73914f58805a001731-Paper-Conference.pdf.
- Tom Overman, Diego Klabjan, and Jean Utke. Iife: Interaction information based automated feature engineering, 2024. URL https://arxiv.org/abs/2409.04665.
- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners, 2019. URL https://d4mucfpksywv. cloudfront.net/better-language-models/language-models.pdf.
- Matthew G Smith and Larry Bull. Genetic programming with a genetic algorithm for feature construction and selection. *Genetic Programming and Evolvable Machines*, 6:265–281, 2005.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, ArJoulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 language models, 2023a. URL https://arxiv.org/abs/2302.13971.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models, 2023b. URL https://arxiv.org/abs/2307.09288.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of Advances in Neural Information Processing Systems, volume 30, 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/ 3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
- Kafeng Wang, Pengyang Wang, and Chengzhong Xu. Toward efficient automated feature engineer ing. In *Proceedings of 2023 IEEE 39th International Conference on Data Engineering (ICDE)*,
 pp. 1625–1637, 2023. doi: 10.1109/ICDE55515.2023.00128.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
 Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large lan guage models. In Advances in Neural Information Processing Systems, 2022. URL https:
 //openreview.net/forum?id=_VjQlMeSB_J.
- 628
 629
 629
 630
 630
 631
 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large language models as optimizers. In *Proceedings of the twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=
 631

633

- Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees and related problems. *SIAM J. Comput.*, 18:1245–1262, 12 1989. doi: 10.1137/0218082.
- Tianping Zhang, Zheyu Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao, and
 Jian Li. Openfe: automated feature generation with expert-level performance. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23, 2023.
- Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary automated
 feature engineering. In *Proceedings of Pacific Rim International Conference on Artificial Intelli- gence*, pp. 574–586. Springer, 2022a.
- Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: Differentiable automated feature engineering. In *Proceedings of the first International Conference on Automated Machine Learning*, volume 188 of *Proceedings of Machine Learning Research*, pp. 17/1–17. PMLR, 25–27
 Jul 2022b. URL https://proceedings.mlr.press/v188/zhu22a.html.
- Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019. URL https://arxiv.org/abs/1909.08593.

A DISCUSSION ON CANONICAL RPN FEATURE REPRESENTATION

A.1 WHY RPN

652RPN provides a compact and unambiguous form of feature representation. In contrast, infix expres-653sion requires extra information such as brackets to determine operator precedence. Without brackets,654the feature in infix expression col-0 - (col-1 + col-2) would be indistinguishable from the feature655(col-0 - col-1) + col-2, while both features are distinctively encoded in RPN. Such compactness656and unambiguity of RPN facilitate sequential modeling since there is no need to model the extra657information, e.g., the positions of brackets.

658 Compared with other forms of feature representation such as prefix expression of depth-first traversal 659 or breadth-first traversal, RPN better encodes the recursive structure of the expression tree. The bottom-up enumeration of tree nodes makes it easy for the LLM to evaluate the feature expression 660 by scanning the sequence from left to right, for instance, ((col-0 col-1 -) col-2 +) (parentheses 661 denote recursion). Using the prefix expression (+ (- col-0 col-1) col-2) or breadth-first expression 662 (+(-[col-2] col-0 col-1)), however, the LLM always needs to look back to find the operator, which 663 undermines sequential modeling. We find in our experiments that when using prefix expression, the 664 LLM encounters difficulty in generating syntactically valid feature expressions. 665

666

667

681 682

683 684

685 686 687

688 689

696 697

699 700

650

651

A.2 WHY CANONICALIZATION

While there is one-to-one mapping between feature expression trees and RPN expressions, a feature that contains commutative operators (like addition and multiplication) can be represented by different RPN expressions, since the child nodes of these operators are unordered. We introduce a canonicalization scheme: arranging operator nodes before feature nodes and lexicographically sorting the nodes within each group. Through canonicalization, we create one-to-one mapping between features and cRPN expressions. This ensures the consistency of our feature representation and facilitates the in-context learning of feature patterns.

By arranging operator nodes before feature nodes, we also introduce left skewness to the expression tree that enhances the clarity of the recursive structure in cRPN. As illustrated in Figure 10, the original feature expression (col-2 (col-1 col-0 +) *) becomes ((col-0 col-1 +) col-2 *) after canonicalization, so that the LLM does not need to look back for col-2 when evaluating the expression. We present additional experimental results in Appendix E to validate the effectiveness of our canonicalization scheme.

Figure 10: Our canonicalization scheme introduces left skewness to the expression tree.

702 B CONVERSION BETWEEN FEATURE EXPRESSION TREE AND RPN

Algorithms 2 and 3 detail the process of conversion between a feature expression tree and an RPN feature string. We check the RPN syntactical validity of a feature string in Algorithm 3 by checking whether there is enough child node in the stack in line 6 and the size of the stack is exactly one (the root) in line 13 returning the output.

```
708
709
          Algorithm 2: Feature Expression Tree to RPN
710
          Input : A feature expression tree T
711
          Output: An RPN feature string f
712
       1 r \leftarrow the root of T
       2 Initialize string f \leftarrow \epsilon, stack S \leftarrow [r], and visited \leftarrow \emptyset
713
       3 repeat
714
              u \leftarrow S.peek()
       4
715
              if u \in visited then
       5
716
                  f.append(u)
       6
717
                  S.pop()
       7
718
              end
       8
719
              else
       9
720
                  for each child v of u in the reverse order do
       10
721
                      S.push(v)
       11
722
                  end
       12
723
                  visited \leftarrow visited \cup \{u\}
       13
724
              end
       14
725
      15 until S is empty
726
      16 return f
727
728
          Algorithm 3: RPN to Feature Expression Tree
729
730
          Input : An RPN feature string f
731
          Output: The root of a feature expression tree T
       1 Initialize stack S \leftarrow []
732
       <sup>2</sup> for i \leftarrow 1 to |f| do
733
              u \leftarrow \text{the } i\text{-th element of } f
       3
734
       4
              if u is an operator then
735
                  o \leftarrow the arity of u
       5
736
                  for j \leftarrow 1 to o do
       6
737
                       v \leftarrow S.pop()
       7
738
                       Prepend v to the list of children of u
       8
739
                  end
       9
740
       10
              end
741
       11
              S.push(u)
742
      12 end
743
      13 return S.pop()
744
745
746
747
748
749
750
751
752
753
754
755
```

756 C EXAMPLE PROMPT 757

758 C.1 Full Prompt 759

760

Figure 11 shows an example of full prompts used in our main experiments.

761	
762	Figure 11: Example full prompt on the Credit Default dataset.
763	Detect description:
764	This dataset contains information on default navments demographic factors credit data history of
765	payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.
766	Dataset contains the following columns:
767	col-0 (int) [10000, 800000]: LIMIT_BAL: Amount of given credit in NT dollars (includes individual and
768	family/supplementary credit
769	col-2 (category) $\{1, 2\}$: SEA: Gender (1=Indie, 2=IeIndie) col-2 (category) $\{0, 1, 2\}$: $\{3, 4\}$; $\{5, 6\}$; EDUCATION: (1-graduate school, 2-university, 3-high school)
770	4=others, 5=unknown, 6=unknown)
771	col-3 (category) {0, 1, 2, 3}: MARRIAGE: Marital status (1=married, 2=single, 3=others)
772	col-4 (int) [21, 79]: AGE: Age in years
773	col-5 (category) {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}: PAY_0: Repayment status in September, 2005 (-1=pay
774	duly, 1=payment delay for one month, 2=payment delay for two months, 8=payment delay for eight
775	months, 9=payment delay for mine months and above)
776	col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=ves, 0=no)
777	We have the following unary operators:
778	log: taking the log of the absolute value
779	sqrt_abs: taking the square root of the absolute value
780	min_max: min-max normalization
781	We have the following binary operators:
782	+: summing two columns
783	-: subtracting two columns
784	*: multiplying two columns
785	/: taking the division of two columns
786	mod_column: taking the modulo of two columns Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset
787	Each feature string constructs an extra column that is useful for the downstream model Random Forests
788	to predict the target col-23. The model will be trained on the dataset with the constructed columns and
789	evaluated on a holdout set. The best columns will be selected.
790	Below are feature strings arranged in ascending order based on their performance scores. Higher scores
701	are better.
702	Feature
703	col-17,col-21,*,col-20,+,sqrt_abs
70/	Score
794	0.0011
795	Eastura
790	col-4 col-6 * col-12 col-16 - sart abs *
700	Score
790	0.0014
199	
000	Give me a new feature string that is different from all strings above and has a higher score. Use
001	no more than live operators. Make sure an columns and operators exist and do not include the target column. Follow the syntax of RPN
002	column. Forlow the syntax of KEIN.
803	Output format:
804	Feature
805	
806	(Feature name and description)
807	Usefulness
808	(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
809	description)

810 C.2 SEMANTICALLY BLINDED PROMPT

Figure 12 shows an example of semantically blinded prompts used in our experiments in Section 5.3.

	Figure 12: Example semantically blinded prompt on the Credit Default dataset.
Í	Dataset contains the following columns:
	col-0
	col-1
	col-2
	col-3
'	col-4
	col-23
	We have the following unary operators:
	log: taking the log of the absolute value
	sqrt_abs: taking the square root of the absolute value
1	min_max: min-max normalization
	reciprocal: taking the reciprocal
	we have the following binary operators:
	-: subtracting two columns
	*: multiplying two columns
	/: taking the division of two columns
	mod_column: taking the modulo of two columns
	Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our c
	Each feature string constructs an extra column that is useful for the downstream model Random 1
	to predict the target col-23. The model will be trained on the dataset with the constructed column
	evaluated on a holdout set. The best columns will be selected.
	Below are feature strings arranged in ascending order based on their performance scores. Higher
	are better.
	Feature
	col-17.col-21.*.col-20.+.sort abs
	Score
	0.0011
	Feature
	col-4,col-0,*,col-12,col-16,-,sqrt_abs,*
	0.0017
	Give me a new feature string that is different from all strings above and has a higher score
	no more than five operators. Make sure all columns and operators exist and do not include the
	column. Follow the syntax of RPN.
	Output format:
	Feature
	(Feature name and description)
	(reature name and description)
	Usefulness
	(Explanation why this adds useful real world knowledge to predict the target col-23 according to
	description)

D EXPERIMENTAL DETAIL

D.1 DATASET SOURCES

Table 6 summarizes the sources of datasets used in our experiments. Datasets are selected such that they cover different domains and both regression and classification tasks. Most of them have been used in previous works (Zhu et al., 2022a;b; Zhang et al., 2023; Hollmann et al., 2023).

Table 6: Sources of datasets.

Name	Source
Airfoil (AF)	https://archive.ics.uci.edu/dataset/291/airfoil+self+noise
Boston Housing (BH)	https://www.kaggle.com/datasets/arunjangir245/boston-housing-dataset
Bikeshare (BS)	https://www.kaggle.com/datasets/marklvl/bike-sharing-dataset
Wine Quality Red (WQR)	https://archive.ics.uci.edu/dataset/186/wine+quality
AIDS Clinical Trials (ACT)	https://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175
Credit Default (CD)	https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
German Credit (GC)	https://archive.ics.uci.edu/dataset/573/south+german+credit+update

D.2 EXPERIMENTAL PLATFORM

All experiments are conducted on the Ubuntu 22.04.4 LTS operating system, 16 Intel(R) Core(TM) i7-7820X CPUs, and 4 NVIDIA GeForce RTX 2080 Ti GPUs, with the framework of Python 3.11.9 and PyTorch 1.12.1.

- D.3 FEATURE TRANSFORMATION OPERATORS
- We list the details of all feature transformation operators below.
- Unary transformations:
 - Logarithm: Element-wise logarithm of the absolute value;
 - Reciprocal: Element-wise reciprocal;
 - Square root: Element-wise square root of the absolute value;
 - Min-max normalization: Element-wise min-max normalization, with the min and max values from the training data.

898 Binary transformations:

- Addition: Element-wise addition;
- Subtraction: Element-wise subtraction;
- Multiplication: Element-wise multiplication;
- Division: Element-wise division;
- Modulo: Element-wise modulo.

918 D.4 PARAMETER TUNING OF DOWNSTREAM MODELS 919

We tune the parameters of downstream models prior to and post AutoFE using randomized search
implemented in an Sklearn package³. Table 7 lists the configurations of parameter tuning for each
downstream model. We set the number of randomized search iterations to 100.

Model	Parameter	Search Space
Linear Model	regularization	loguniform(0.00001, 100)
Random Forests	num estimators max depth max features max samples	randint(5, 250) randint(1, 250) uniform(0.01, 0.99) uniform(0.1, 0.9)
LightGBM num estimators hum estimators num leaves learning rate bagging fraction feature fraction reg lembda		randint(10, 1000) randint(8, 64) loguniform(0.001, 1) uniform(0.1, 0.9) uniform(0.1, 0.9) loguniform(0.001, 100)

Table 7: Hyperparameter search space for downstream models.

939 D.5 RELATIVE PERFORMANCE IMPROVEMENT

Tables 8 and 9 report the percentage improvement of FEBP over the baseline methods with GPT-3.5 and GPT-4, respectively, corresponding to the experimental results in Table 2.

943 944 D.6 STANDARD DEVIATIONS

Tables 10-13 report the sample standard deviations corresponding to the experimental results in Tables 2-5, respectively.

947 948

949

940

941

942

923

D.7 STATISTICAL TESTS

950 We perform the Friedman test (Friedman, 1937) to determine whether there is statistically signifi-951 cant difference among the compared AutoFE methods. The Friedman test p-values for the results in Tables 2 and 3 are 1.16×10^{-47} and 3.95×10^{-34} , respectively. Hence, we can reject the null 952 hypothesis that the performance is the same for all methods. We perform the Nemenyi post-hoc 953 test (Nemenyi, 1963) to further determine which AutoFE methods have different performance. Ta-954 bles 14 and 15 summarize the *p*-values for the pairwise comparisons in Tables 2 and 3, respectively. 955 From Table 14, the performance difference between our method FEBP and baseline methods other 956 than DIFER (Zhu et al., 2022b) is statistically significant at the p = 0.01 level. From Table 15, the 957 performance difference between the full version of FEBP and the semantically blinded version is 958 statistically significant at the p = 0.01 level. 959

To highlight the performance difference when using Random Forests and LightGBM, we perform additional statistical tests for the results in Table 2 excluding the linear model results. The Friedman test *p*-value is 6.14×10^{-23} . Table 16 summarizes the *p*-values from the Nemenyi post-hoc test for pairwise comparison. We observe that FEBP with GPT-3.5 and post-AutoFE parameter tuning significantly outperforms all baselines except DIFER at the p = 0.05 level. With GPT-4, the performance difference between FEBP and CAAFE (Hollmann et al., 2023) is statistically significant at the p = 0.05 level.

- 968
- 969
- 970 971

⁹⁶⁷

³https://scikit-learn.org/1.5/modules/generated/sklearn.model_ selection.RandomizedSearchCV.html

Table 8: The percentage improvement of FEBP over the baseline methods, with GPT-3.5. For each compared method, the left and right columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively.

Model	Dataset	Ra	aw	DIF	ER	Ope	nFE	CA/	AFE
	AF	90.34	90.46	12.65	8.64	53.77	53.77	64.86	64.76
	BH	32.27	33.06	-0.37	0.61	28.06	29.51	4.32	5.46
Linear	WQR	0.96	1.80	9.97	4.37	0.35	0.32	-0.74	-0.46
Model	ACT	2.64	3.41	0.16	-0.05	0.00	0.75	2.47	3.29
	CD	0.18	0.19	0.10	0.03	0.21	0.17	0.20	0.19
	GC	6.62	5.07	6.02	0.54	3.42	2.47	2.99	1.77
Mean		22.17	22.33	4.76	2.36	14.30	14.50	12.35	12.50
	AF	0.42	1.44	0.78	0.02	1.72	1.37	-0.02	1.23
	BH	2.26	1.97	-2.95	-2.95	-1.92	-1.55	-0.13	-0.41
Devilen	BS	4.52	4.60	0.08	0.10	-0.29	-0.21	-0.43	-0.35
Random	WQR	5.44	5.00	0.61	0.34	2.89	3.11	3.86	3.42
Folests	ACT	1.33	1.27	0.32	0.26	1.06	0.90	1.11	0.74
	CD	0.02	0.01	0.12	0.04	0.09	0.10	0.05	0.06
	GC	2.55	2.28	1.19	1.60	-0.13	0.66	-0.65	0.00
Mean		2.36	2.37	0.02	-0.08	0.49	0.63	0.54	0.67
	AF	-0.76	0.20	0.32	-0.23	1.51	1.80	-0.63	0.53
	BH	1.48	1.94	0.21	0.14	-1.30	0.47	1.42	1.32
Light	BS	3.27	3.45	-0.27	-0.32	-0.15	-0.43	1.91	1.98
CDM	WQR	7.67	9.04	-0.63	-0.27	5.66	7.40	-0.29	3.36
ODM	ACT	0.63	1.06	1.06	1.11	0.90	1.43	0.74	0.74
	CD	0.02	-0.04	0.22	0.25	0.10	0.12	0.06	-0.01
	GC	5.93	6.48	0.39	1.58	1.72	0.26	2.54	2.25
Mean		2.60	3.16	0.18	0.32	1.21	1.58	0.82	1.45
Mean		8.39	8.63	1.50	0.79	4.88	5.12	4.18	4.49

Table 9: The percentage improvement of FEBP over the baseline methods, with GPT-4. For each compared method, the left and right columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively.

Model	Dataset	Ra	aw	DIF	ER	Ope	nFE	CA.	AFE
	AF	91.40	91.34	13.27	9.14	54.62	54.48	51.94	51.8
	BH	37.28	40.06	3.41	5.90	32.92	36.33	15.14	17.3
Linear	WQR	0.64	1.94	9.62	4.51	0.03	0.46	-2.25	-0.9
Model	ACT	3.08	3.02	0.59	-0.42	0.43	0.37	2.35	2.2
	CD	0.26	0.26	0.18	0.10	0.28	0.25	0.61	0.6
	GC	6.90	4.51	6.30	0.00	3.69	1.92	5.27	2.9
Mean		23.26	23.52	5.56	3.21	15.33	15.64	12.17	12.3
	AF	0.05	0.93	0.41	-0.47	1.35	0.86	-0.20	0.3
	BH	2.16	1.76	-3.05	-3.15	-2.02	-1.76	0.56	0.5
Dendem	BS	4.23	4.25	-0.20	-0.23	-0.57	-0.54	0.28	0.3
Forests	WQR	4.03	4.03	-0.74	-0.58	1.51	2.16	3.17	3.1
	ACT	0.95	0.64	-0.05	-0.37	0.69	0.26	0.74	0.4
	CD	0.02	-0.20	0.13	-0.18	0.10	-0.11	0.02	-0.1
	GC	3.09	3.09	1.72	2.40	0.39	1.45	0.26	0.6
Mean		2.08	2.07	-0.26	-0.37	0.21	0.33	0.69	0.7
	AF	-0.11	0.24	0.98	-0.19	2.18	1.84	-0.75	-0.3
	BH	1.90	1.04	0.63	-0.74	-0.89	-0.41	3.00	1.7
Light	BS	3.94	4.08	0.38	0.28	0.51	0.17	3.72	3.4
CDM	WQR	5.12	5.67	-2.98	-3.35	3.16	4.08	3.04	2.2
OBM	ACT	0.79	1.06	1.22	1.11	1.06	1.43	0.85	1.2
	CD	0.04	-0.07	0.24	0.21	0.12	0.08	0.03	0.0
	GC	7.03	6.21	1.44	1.32	2.78	0.00	4.16	-0.2
Mean		2.67	2.60	0.27	-0.19	1.27	1.03	2.01	1.1
Mean		8.64	8.69	1.67	0.76	5.12	5.17	4.60	4.3

Model	Dotocet	Paw		ΈD	000	nFF		CA	AFE			FEBP	(ours)	
Widdei	Dataset	Kaw		LK		an E	GPT	-3.5	GP	T-4	GPT	Г-3.5	GP	T-4
	AF	-	0.2559	0.2012	0.0015	0.0014	0.0099	0.0102	0.0511	0.0513	0.0101	0.0100	0.0267	0.026
	BH	-	0.0092	0.0153	0.0169	0.0188	0.0196	0.0184	0.0408	0.0419	0.0111	0.0149	0.0254	0.01
Linear	WQR	-	0.0305	0.0223	0.0058	0.0055	0.0046	0.0038	0.0060	0.0060	0.0135	0.0112	0.0068	0.004
Model	ACT	-	0.0179	0.0073	0.0140	0.0105	0.0035	0.0021	0.0054	0.0053	0.0085	0.0051	0.0040	0.006
	CD	-	0.0014	0.0006	0.0006	0.0002	0.0006	0.0007	0.0057	0.0051	0.0013	0.0007	0.0006	0.000
	GC	-	0.0272	0.0104	0.0097	0.0076	0.0100	0.0125	0.0134	0.0108	0.0120	0.0213	0.0108	0.015
	AF	-	0.0054	0.0044	0.0032	0.0036	0.0032	0.0034	0.0108	0.0084	0.0090	0.0086	0.0059	0.009
	BH	-	0.0142	0.0131	0.0034	0.0068	0.0050	0.0050	0.0084	0.0113	0.0057	0.0077	0.0059	0.004
Dandam	BS	-	0.0128	0.0113	0.0003	0.0003	0.0003	0.0003	0.0208	0.0207	0.0088	0.0070	0.0157	0.015
Canadolli	WQR	-	0.0108	0.0109	0.0030	0.0076	0.0022	0.0022	0.0051	0.0051	0.0034	0.0069	0.0022	0.002
TOICSIS	ACT	-	0.0048	0.0058	0.0037	0.0087	0.0030	0.0055	0.0020	0.0030	0.0055	0.0051	0.0043	0.005
	CD	-	0.0010	0.0011	0.0003	0.0004	0.0005	0.0004	0.0008	0.0001	0.0011	0.0010	0.0009	0.001
	GC	-	0.0184	0.0177	0.0154	0.0110	0.0082	0.0076	0.0065	0.0164	0.0114	0.0067	0.0097	0.009
	AF	-	0.0029	0.0029	0.0058	0.0036	0.0067	0.0027	0.0072	0.0077	0.0129	0.0054	0.0061	0.004
	BH	-	0.0147	0.0260	0.0128	0.0150	0.0114	0.0111	0.0145	0.0188	0.0169	0.0076	0.0134	0.007
Links	BS	-	0.0092	0.0070	0.0007	0.0004	0.0159	0.0198	0.0056	0.0139	0.0151	0.0139	0.0033	0.003
CBM	WQR	-	0.0134	0.0164	0.0072	0.0133	0.0084	0.0080	0.0116	0.0134	0.0123	0.0085	0.0097	0.009
ODM	ACT	-	0.0048	0.0042	0.0068	0.0094	0.0061	0.0045	0.0045	0.0027	0.0027	0.0017	0.0050	0.00
	CD	-	0.0009	0.0013	0.0004	0.0010	0.0008	0.0005	0.0010	0.0007	0.0004	0.0004	0.0004	0.00
	GC	-	0.0141	0.0184	0.0184	0.0184	0.0222	0.0166	0.0079	0.0199	0.0076	0.0045	0.0096	0.01

Table 10: Standard deviations of Table 2, summary of experimental results.

Table 11: Standard deviations of Table 3, performance comparison of FEBP with and without semantic blinding.

		1	1		CDT	2.5			1		CI	VT 4		
Model	Dataset	Raw		Blinded	GPI	-3.3	Full			Blinded	G	1-4	Full	
	AF	-	0.0147	0.0156	36.1	0.0101	0.0100	28.8	0.0162	0.0161	25.8	0.0267	0.0268	92.3
	BH	-	0.0444	0.0519	39.0	0.0111	0.0149	42.2	0.0161	0.0131	66.7	0.0254	0.0184	58.6
Linear	WQR	-	0.0133	0.0032	48.9	0.0135	0.0112	15.3	0.0128	0.0046	23.5	0.0068	0.0044	80.6
Model	ACT	-	0.0088	0.0107	15.4	0.0085	0.0051	17.5	0.0056	0.0085	15.5	0.0040	0.0062	54.8
	CD	-	0.0014	0.0003	27.6	0.0013	0.0007	13.1	0.0021	0.0011	13.2	0.0006	0.0009	14.8
	GC	-	0.0114	0.0042	32.3	0.0120	0.0213	14.3	0.0125	0.0114	11.0	0.0108	0.0152	36.4
	AF	-	0.0086	0.0058	60.3	0.0090	0.0086	47.3	0.0092	0.0079	27.9	0.0059	0.0095	93.6
	BH	-	0.0068	0.0068	45.3	0.0057	0.0077	14.5	0.0142	0.0132	24.7	0.0059	0.0046	23.0
Pandom	BS	-	0.0186	0.0181	112.1	0.0088	0.0070	47.8	0.0103	0.0088	38.8	0.0157	0.0154	39.2
Forests	WQR	-	0.0078	0.0081	40.5	0.0034	0.0069	18.5	0.0092	0.0075	19.1	0.0022	0.0026	45.2
1010303	ACT	-	0.0099	0.0035	33.7	0.0055	0.0051	13.1	0.0100	0.0093	16.6	0.0043	0.0054	85.7
	CD	-	0.0015	0.0008	53.3	0.0011	0.0010	14.5	0.0005	0.0008	83.4	0.0009	0.0017	56.9
	GC	-	0.0067	0.0057	28.9	0.0114	0.0067	17.3	0.0210	0.0143	12.8	0.0097	0.0097	113.1
	AF	-	0.0104	0.0060	66.8	0.0129	0.0054	21.7	0.0142	0.0155	39.6	0.0061	0.0041	73.1
	BH	-	0.0131	0.0170	60.7	0.0169	0.0076	20.7	0.0119	0.0121	25.7	0.0134	0.0073	36.1
Light	BS	-	0.0152	0.0178	76.3	0.0151	0.0139	31.8	0.0048	0.0049	74.5	0.0033	0.0034	32.1
CRM	WQR	-	0.0151	0.0028	36.9	0.0123	0.0085	17.3	0.0195	0.0190	21.1	0.0097	0.0092	46.3
ODM	ACT	-	0.0021	0.0030	44.2	0.0027	0.0017	28.5	0.0042	0.0128	15.7	0.0050	0.0077	49.6
	CD	-	0.0011	0.0011	59.4	0.0004	0.0004	15.7	0.0007	0.0010	5.6	0.0004	0.0008	85.7
	GC	-	0.0130	0.0148	41.7	0.0076	0.0045	23.0	0.0117	0.0094	13.7	0.0096	0.0146	46.9

Table 12: Standard deviations of Table 4, effect of temperature.

Model	Dataset	0.	5	Tempera 1	ature	1.5			
RF	AF CD	0.0071 0.0005	160.9 324.3	0.0042 0.0004	47.3 14.5	$0.0040 \\ 0.0005$	34.7 64.1		
LGBM	AF CD	0.0042	523.3 174.7	0.0044 0.0007	21.7 15.7	0.0022 0.0005	59.8 73.0		

Table 13: Standard deviations of Table 5, effect of the number of example features in the prompt.

Model	Dataset	1		Nui 5	mber of	Examples 10)	20		
RF	AF	0.0054	55.8	0.0035	45.0	0.0042	47.3	0.0056	24.0	
	WQR	0.0088	19.6	0.0038	11.4	0.0027	18.5	0.0096	29.6	
	CD	0.0005	46.5	0.0007	19.1	0.0004	14.5	0.0006	17.8	
LGBM	AF	0.0065	103.2	0.0031	21.6	0.0044	21.7	0.0044	56.4	
	WQR	0.0048	16.9	0.0057	32.4	0.0064	17.3	0.0064	26.5	
	CD	0.0003	71.2	0.0002	39.0	0.0007	15.7	0.0005	17.5	

Table 14: The Nemenyi post-hoc test <i>p</i> -values for pairwise comparison of the methods in Table 2. Results that
are significant at the $p = 0.05$ confidence level are highlighted in boldface.

		D	DI	TD	0	- 55		CA	AFE			FEBP	(ours)	
		Kaw	DI	EK	Ope	nfe	GPT	-3.5	GP	T-4	GPT	-3.5	GP	T-4
Raw		1.0000	0.0010	0.0010	0.0203	0.0086	0.0010	0.0010	0.0409	0.0179	0.0010	0.0010	0.0010	0.0010
DIFER		0.0010	1.0000	0.3235	0.4051	0.5626	0.9000	0.9000	0.2697	0.4310	0.0397	0.0010	0.0028	0.1535
DIFER		0.0010	0.3235	1.0000	0.0010	0.0010	0.0343	0.0397	0.0010	0.0010	0.9000	0.7526	0.9000	0.9000
OnerEE		0.0203	0.4051	0.0010	1.0000	0.9000	0.9000	0.9000	0.9000	0.9000	0.0010	0.0010	0.0010	0.0010
OpenFE		0.0086	0.5626	0.0010	0.9000	1.0000	0.9000	0.9000	0.9000	0.9000	0.0010	0.0010	0.0010	0.0010
	(1977 A 5	0.0010	0.9000	0.0343	0.9000	0.9000	1.0000	0.9000	0.8216	0.9000	0.0016	0.0010	0.0010	0.0105
	GP1-3.5	0.0010	0.9000	0.0397	0.9000	0.9000	0.9000	1.0000	0.7929	0.9000	0.0019	0.0010	0.0010	0.0125
CAAFE	(1977) (0.0409	0.2697	0.0010	0.9000	0.9000	0.8216	0.7929	1.0000	0.9000	0.0010	0.0010	0.0010	0.0010
	GP1-4	0.0179	0.4310	0.0010	0.9000	0.9000	0.9000	0.9000	0.9000	1.0000	0.0010	0.0010	0.0010	0.0010
		0.0010	0.0397	0.9000	0.0010	0.0010	0.0016	0.0019	0.0010	0.0010	1.0000	0.9000	0.9000	0.9000
FERR	GP1-3.5	0.0010	0.0010	0.7526	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.9000	1.0000	0.9000	0.9000
FEBP		0.0010	0.0028	0.9000	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.9000	0.9000	1.0000	0.9000
	GPT-4	0.0010	0.1535	0.9000	0.0010	0.0010	0.0105	0.0125	0.0010	0.0010	0.9000	0.9000	0.9000	1.0000

Table 15: The Nemenyi post-hoc test *p*-values for pairwise comparison of the methods in Table 3. Results that are significant at the p = 0.05 confidence level are highlighted in boldface.

		Dow		GPT	Г-3.5		GPT-4				
		Kaw	Blir	nded	F	ull	Blir	nded	Full		
Raw		1.0000	0.0010	0.0010	0.0010	0.0010	0.0017	0.0010	0.0010	0.001	
	Dlindad	0.0010	1.0000	0.9000	0.0062	0.0010	0.9000	0.9000	0.0010	0.005	
CDT 2	- Dillided	0.0010	0.9000	1.0000	0.1775	0.0066	0.3858	0.9000	0.0105	0.167	
GPI-3.	5	0.0010	0.0062	0.1775	1.0000	0.9000	0.0010	0.0069	0.9000	0.900	
	Full	0.0010	0.0010	0.0066	0.9000	1.0000	0.0010	0.0010	0.9000	0.900	
	~	0.0017	0.9000	0.3858	0.0010	0.0010	1.0000	0.9000	0.0010	0.001	
	Blinded	0.0010	0.9000	0.9000	0.0069	0.0010	0.9000	1.0000	0.0010	0.006	
GPT-4		0.0010	0.0010	0.0105	0.9000	0.9000	0.0010	0.0010	1.0000	0.900	
	Full	0.0010	0.0057	0.1677	0.9000	0.9000	0.0010	0.0062	0.9000	1.000	

Table 16: The Nemenyi post-hoc test *p*-values for pairwise comparison of the methods in Table 2, excluding linear model results. Results that are significant at the p = 0.05 confidence level are highlighted in boldface.

		Raw	ווס	TER	One	nFF		CA.	AFE		FEBP (ours)			
		Kaw	DI			Openi'E		GPT-3.5		T-4	GPT-3.5		GPT-4	
Raw		1.0000	0.0010	0.0010	0.5006	0.3953	0.0010	0.0012	0.3875	0.2344	0.0010	0.0010	0.0010	
		0.0010	1.0000	0.9000	0.6382	0.7345	0.9000	0.9000	0.7414	0.8996	0.4263	0.0299	0.1392	
DIFER		0.0010	0.9000	1.0000	0.0098	0.0171	0.9000	0.8308	0.0178	0.0412	0.9000	0.8377	0.9000	
0		0.5006	0.6382	0.0098	1.0000	0.9000	0.6175	0.7138	0.9000	0.9000	0.0010	0.0010	0.0010	
OpenF	E	0.3953	0.7345	0.0171	0.9000	1.0000	0.7138	0.8102	0.9000	0.9000	0.0010	0.0010	0.0010	
	CDT 2.5	0.0010	0.9000	0.9000	0.6175	0.7138	1.0000	0.9000	0.7207	0.8790	0.4493	0.0334	0.1516	
CAAE	GP1-3.5	0.0012	0.9000	0.8308	0.7138	0.8102	0.9000	1.0000	0.8170	0.9000	0.3422	0.0199	0.1017	
CAAF	CDT 4	0.3875	0.7414	0.0178	0.9000	0.9000	0.7207	0.8170	1.0000	0.9000	0.0010	0.0010	0.0010	
	GP1-4	0.2344	0.8996	0.0412	0.9000	0.9000	0.8790	0.9000	0.9000	1.0000	0.0026	0.0010	0.0010	
	CDT 2.5	0.0010	0.4263	0.9000	0.0010	0.0010	0.4493	0.3422	0.0010	0.0026	1.0000	0.9000	0.9000	
FEDD	GF1-5.5	0.0010	0.0299	0.8377	0.0010	0.0010	0.0334	0.0199	0.0010	0.0010	0.9000	1.0000	0.9000	
FEBP	CDT 4	0.0010	0.1392	0.9000	0.0010	0.0010	0.1516	0.1017	0.0010	0.0010	0.9000	0.9000	1.0000	
	GF1-4	0.0010	0.9000	0.9000	0.0171	0.0289	0.9000	0.9000	0.0299	0.0661	0.9000	0.7414	0.9000	

1134 D.8 NUMBER OF SELECTED FEATURES

Table 17 compares the number of features added to the datasets. Our method FEBP adaptively determines the number of features and selects fewer features than DIFER (Zhu et al., 2022b), demonstrating the effectiveness of the features generated by our method.

		1					
Model	Dataset	DIFER	OpenFE	FEBP B	linded	FEI	3P
	Dutubet	Dir Bit	optili	GPT-3.5	GPT-4	GPT-3.5	GPT-4
	AF	310	10	167	165	162	183
	BH	156	10	104	141	144	90
Linear	WQR	109	10	57	80	43	55
Model	ACT	113	10	84	49	85	14
	CD	157	10	92	68	74	74
	GC	105	10	75	97	120	51
	AF	387	10	39	19	15	34
	BH	186	10	4	6	19	77
Dondom	BS	46	10	9	7	9	65
Forosta	WQR	63	10	9	44	39	45
rolesis	ACT	339	10	55	35	69	61
	CD	178	10	97	74	94	89
	GC	92	10	68	84	31	59
	AF	325	10	30	55	42	24
	BH	118	10	15	17	16	25
Light	BS	287	10	119	48	68	116
CBM	WQR	454	10	64	29	129	128
ODM	ACT	132	10	54	46	16	51
	CD	409	10	68	53	12	50
	GC	501	10	61	86	16	35
Mean		223	10	64	60	60	66

 Table 17: Comparison of the number of selected features.

1188 D.9 COMPUTATION COST

Table 18 compares the number of features evaluated during the feature search process. Guided by
domain knowledge, our method FEBP evaluates much fewer features than DIFER (Zhu et al., 2022b)
and OpenFE (Zhang et al., 2023).

Tables 19 and 20 summarize the computation time, with *gpt-3.5-turbo-0125* as the LLM. For FEBP, the computation time of LLM generation and feature evaluation is relatively stable across datasets of varying sizes. We note that the LLM generation time can be substantially reduced by instructing the LLM to generate multiple features in a generation step.

Table 18: Comparison of the number of evaluated features during feature search.

Model	Dataset	DIFER	OpenFE	FEBP
	AF	2083	224	200
	BH	2081	1167	200
Linear	WQR	2083	929	200
Model	ACT	2077	4310	200
	CD	2088	3385	200
	GC	2076	4169	200
	AF	2085	224	200
Random	BH	2079	1051	200
	BS	2082	310	200
	WQR	2085	929	200
Forests	ACT	2079	1636	200
	CD	2086	1801	200
	GC	2078	2139	200
	AF	2084	224	200
	BH	2080	1051	200
Light	BS	2083	310	200
CDM	WQR	2084	929	200
GBM	ACT	2079	1636	200
	CD	2087	1801	200
	GC	2078	2139	200
Mean		2082	1518	200

				,	
Model	Dataset	DIFER	OpenFE	CAAFE	FEB
	AF	33.49	0.21	1.73	42.8
	BH	41.17	0.21	1.18	41.2
Linear	WQR	34.94	0.25	1.21	42.3
Model	ACT	44.18	0.40	1.25	43.6
	CD	433.94	1.49	3.17	57.8
	GC	29.30	0.37	1.68	43.7
	AF	178.50	0.23	4.22	63.3
	BH	89.07	0.24	5.52	51.7
Dandam	BS	98.50	0.23	4.05	51.1
Forests	WQR	298.46	0.29	9.35	63.1
rorests	ACT	78.44	0.28	3.82	44.6
	CD	571.33	1.12	14.05	94.(
	GC	60.41	0.28	3.24	45.0
	AF	301.56	0.25	5.81	63.0
	BH	62.30	0.24	3.01	44.8
Light	BS	74.59	0.24	2.55	45.2
GRM	WQR	361.19	0.29	5.68	58.9
ODM	ACT	36.39	0.28	1.73	42.7
	CD	102.04	1.07	2.49	46.3
	GC	48.63	0.28	2.97	43.0
Mean		148.92	0.41	3.94	51.4

Table 19: Comparison of computation time, in minutes.

Table 20: Computation time of different components of FEBP, in minutes.

Model	Dataset	LLM Generation	Feature Evaluation	Feature Selection
	AF	16.73	22.98	3.08
	BH	18.50	20.18	2.60
Linear	WQR	19.07	20.24	3.02
Model	ACT	18.92	20.97	3.71
	CD	16.73	25.14	15.95
	GC	17.01	23.24	3.47
	AF	15.34	25.32	22.64
Random	BH	18.60	23.69	9.41
	BS	15.12	25.16	10.87
	WQR	12.75	23.81	26.56
rolests	ACT	13.79	21.67	9.20
	CD	12.48	25.89	55.71
	GC	14.80	21.91	8.35
	AF	17.37	21.06	24.63
	BH	19.70	20.40	4.74
Light- GBM	BS	17.03	22.18	6.02
	WQR	16.27	21.19	21.51
	ACT	19.18	20.24	3.29
	CD	16.53	21.68	8.13
	GC	17.00	20.40	5.63
Mean		16.65	22.37	12.43

1296 E ADDITIONAL ABLATION STUDY

1298 To validate the effectiveness of our canonicalization scheme, we compare the full version of FEBP 1299 with the reduced version without RPN canonicalization. From Table 21, the full version outperforms 1300 the reduced version in terms of the mean performance score using all three downstream models. The Friedman test p-value is 1.29×10^{-28} . Table 22 summarizes the p-values from the Nemenyi post-hoc 1301 test for pairwise comparison, which shows that the performance difference is statistically significant 1302 at the p = 0.05 level for the cases with GPT-3.5 and post-AutoFE parameter tuning as well as 1303 GPT-4 without post-AutoFE parameter tuning. We also observe a decrease in the number of LLM 1304 responses without canonicalization. This is because the expression becomes more flexible, reducing 1305 the likelihood of duplication with existing features during feature generation. 1306

Additionally, we find that when switching to prefix feature expressions, the LLM encounters difficulty generating syntactically valid feature expressions, leading to a failure to complete one single run in our experiments.

Table 21: Performance comparison of FEBP with and without RPN canonicalization. For each compared version, the left and middle columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively, and the right column shows the number of LLM responses. The results where the full version outperforms the reduced version are highlighted in boldface.

Model Dataset		Dow	GPT-3.5					GPT-4						
Widdei	Dataset	Kaw	w/o Canonicalization				Full		w/o Canonicalization			Full		
	AF	0.3474	0.6679	0.6688	338.6	0.6612	0.6616	339.8	0.6538	0.6529	321.2	0.6649	0.6647	371.4
	BH	0.3776	0.5048	0.5076	351.2	0.4995	0.5025	378.6	0.4987	0.5030	310.8	0.5184	0.5289	335.4
Linear	WQR	0.2696	0.2702	0.2735	336.2	0.2722	0.2745	328.4	0.2690	0.2706	279.0	0.2713	0.2748	312.6
Model	ACT	0.8505	0.8748	0.8794	366.4	0.8729	0.8794	372.2	0.8738	0.8752	298.0	0.8766	0.8762	377.4
	CD	0.8267	0.8280	0.8290	350.4	0.8282	0.8282	342.0	0.8270	0.82/1	285.4	0.8288	0.8288	250.4
Mana	GC	0./100	0./3/0	0.7330	352.0	0.7570	0.7460	3/9.0	0.7550	0.7490	447.2	0.7590	0.7420	310.6
Mean		0.5636	0.6471	0.6486	349.1	0.6485	0.6487	336.7	0.6462	0.6463	323.0	0.6532	0.6526	326.3
	AF	0.7677	0.7628	0.7762	358.0	0.7709	0.7787	393.2	0.7743	0.7843	340.2	0.7681	0.7749	314.2
	BH	0.5426	0.5573	0.5573	364.0	0.5549	0.5533	374.4	0.5491	0.5460	322.4	0.5543	0.5522	278.6
Random	BS	0.9446	0.9804	0.9807	372.2	0.9873	0.9881	386.8	0.9778	0.9777	284.4	0.9845	0.9848	255.0
Forests	WQR	0.3662	0.3776	0.3726	334.6	0.3862	0.3845	362.6	0.3739	0.3719	269.8	0.3810	0.3810	283.2
	ACT	0.8808	0.8879	0.8841	353.4	0.8925	0.8921	357.6	0.8841	0.8864	327.6	0.8893	0.8864	424.0
	CD	0.8293	0.8283	0.8285	381.6	0.8295	0.8294	349.8	0.8290	0.8287	297.2	0.8295	0.8276	304.0
Mana	GC	0.7450	0.7000	0.7620	342.2	0.7640	0.7620	308.2	0.7680	0.7010	215.7	0.7680	0.7080	4/1.8
Mean		0.0800	0.7572	0.7575	558.0	0.7408	0.7412	570.4	0.7500	0.7500	515.7	0.7392	0.7393	355.0
	AF	0.8375	0.8322	0.8365	343.6	0.8311	0.8392	380.2	0.8280	0.8350	376.0	0.8366	0.8395	360.6
	BH	0.5537	0.5599	0.5556	339.2	0.5619	0.5644	342.0	0.5577	0.5548	315.2	0.5642	0.5595	345.6
Light-	BS	0.9429	0.9643	0.9664	368.8	0.9737	0.9754	380.0	0.9597	0.9609	276.2	0.9801	0.9813	236.8
GBM	WQR	0.3825	0.4075	0.4042	346.4	0.4118	0.4171	322.8	0.4036	0.4032	288.2	0.4021	0.4042	293.6
	ACT	0.8832	0.8813	0.8860	342.4	0.8888	0.8925	367.4	0.8822	0.8879	313.2	0.8902	0.8925	359.6
	CD	0.8300	0.8302	0.8291	355.8	0.8301	0.8297	352.2	0.8295	0.8291	301.6	0.8303	0.8294	371.2
Mana	GC	0.7250	0.7495	0.7650	346.2	0.7680	0.7720	3/0.0	0.7620	0.7650	428.8	0.7760	0.7700	382.2
wean		0.0806	0.7485	0.7490	348.9	0.7522	0./558	300.2	0.7461	0.7480	328.5	0.7542	0.7538	335.7
Mean		0.6806	0.7141	0.7148	352.2	0.7171	0.7185	362.7	0.7128	0.7135	322.5	0.7187	0.7183	331.9

Table 22: The Nemenyi post-hoc test *p*-values for pairwise comparison of the methods in Table 21. Results that are significant at the p = 0.05 confidence level are highlighted in boldface.

		Dow	GPT-3.5				GPT-4				
		Kaw	w/o		Full		w/o		Full		
Raw		1.0000	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.001	
	,	0.0010	1.0000	0.9000	0.2977	0.0060	0.9000	0.9000	0.0224	0.429	
CDT A	W/O	0.0010	0.9000	1.0000	0.6618	0.0433	0.8811	0.8889	0.1230	0.787	
GPT-3.5		0.0010	0.2977	0.6618	1.0000	0.9000	0.0341	0.0355	0.9000	0.900	
	Full	0.0010	0.0060	0.0433	0.9000	1.0000	0.0010	0.0010	0.9000	0.802	
		0.0010	0.9000	0.8811	0.0341	0.0010	1.0000	0.9000	0.0010	0.063	
	w/o	0.0010	0.9000	0.8889	0.0355	0.0010	0.9000	1.0000	0.0010	0.065	
GPT-4		0.0010	0.0224	0.1230	0.9000	0.9000	0.0010	0.0010	1.0000	0.900	
	Full	0.0010	0.4293	0.7871	0.9000	0.8028	0.0635	0.0659	0.9000	1.000	

1348

1333

1334

1335

1350 F ADDITIONAL ANALYSIS 1351

1352 F.1 FEATURE ANALYSIS 1353

1403

1354 Figure 13 compares the proportions of generated features selecting each feature attribute across different datasets and downstream models (linear models and Random Forests) for both the full and 1355 semantically blinded versions of FEBP. In the blinded version, we observe that the LLM tends to 1356 prioritize earlier feature attributes in the dataset while paying less attention to later ones, reflecting 1357 an inherent bias of the language model. In contrast, in the full version, the selection of feature 1358 attributes is guided by the semantic information of the dataset rather than the positional order of the 1359 attributes. Specifically, Attribute 19 CD4 at baseline in AIDS Clinical Trials (ACT) and Attribute 1360 10 alcohol in Wine Quality Red (WQR), which contain useful information for predicting the targets 1361 *censoring indicator* and *quality*, respectively, are included in the majority of the generated features. 1362 This demonstrates the role of dataset semantic information in the LLM-based feature search process. 1363

Figure 13: The proportions of generated features selecting each feature attribute in the dataset.

1404 F.2 FEATURE IMPORTANCE

Figure 14 shows the feature importance across different datasets and downstream models. For linear models, we use the magnitudes of coefficients; for Random Forests (Breiman, 2001), we use the impurity-based feature importance; for LightGBM (Ke et al., 2017), we use the total gains of splits.
FEBP enhances the datasets by constructing new features that provide valuable information for predicting the target. Additionally, we observe that Random Forests and LightGBM benefit from more complex features compared to linear models, as they are capable of synthesizing features internally. Our method adaptively adjusts the feature complexity to suit different downstream models.

1458 F.3 FEATURE SEARCH EXAMPLE

Figure 15 shows samples of the LLM-based feature search process from a single run. In iteration 1461 155, the generated feature is derived from the combination of three example features. In iteration 1462 158, the generated feature is derived from the combination of two example features, with the fea-1463 ture attributes modified. Iteration 160 exhibits an instance of modification on the example feature. 1464 Iteration 161 exhibits an instance of analogy of the example feature.

1466	Figure 15: Examples of feature search. The prompt examples that relate to the generated feature
1467	are highlighted in red.
1468	Iteration 155
1469	Generated feature:
1470	6, 12, division, 18, *, min_max
1471	Prompt examples:
1472	4, log, 13, *, 17, min_max, sqrt_abs, +
1473	6, 12, *, 21, sqrt_abs, +
1474	4, 14, +, 18, *, min_max
1475	11, 21, +, 6, *, sqrt_abs
1476	2, 4, +, 0, division, log
1/177	$4, 0, +, 10, -, 17, +, \min $
1477	12. min_max. 18. *. 5. mod_column
1470	2, 6, mod_column, 17, +, sqrt_abs
1479	2, 3, +, 4, sqrt_abs, *
1480	4, 12, division, 16, *, min_max, sqrt_abs
1481	
1482	Iteration 158
1483	Generated feature:
1484	5, 10g, 19, **, 15, +, min_max Prompt examples:
1485	4 log 13 * 17 min max sort abs $+$
1486	$6, 12, *, 21, \text{sqrt}_abs, +$
1487	4, 14, +, 18, *, min_max
1488	11, 21, +, 6, *, sqrt_abs
1489	2, 4, +, 6, division, log
1/100	4, 6, +, 16, *, 17, +, min_max
1490	6, 21, division, 17, log, *
1491	12, min_max, 18, ~, 5, mod_column
1492	2, 0, mod_column, 17, \pm , sqlt_abs 2, 3 + 4 sqrt abs *
1493	4, 12. division, 16, *, min_max, sqrt_abs
1494	
1495	Iteration 160
1496	Generated feature:
1497	11, 21, *, 4, +, 14, mod_column
1498	Prompt examples:
1499	4, 10g, 15, 17, 1111-1110x, sqn(-a0s, + 6, 12 * 21) sort abs +
1500	$4, 14, +, 18, *, \min \max$
1501	$11, 21, +, 6, *, sqrt_abs$
1502	2, 4, +, 6, division, log
1503	4, 6, +, 16, *, 17, +, min_max
1504	6, 21, division, 17, log, *
1505	12, min_max, 18, *, 5, mod_column
1505	2, 6, mod_column, 17 , +, sqrt_abs
1500	$4, 5, \pm, \pm, \text{syllads}, \pm$
1500	T, 12, uivision, 10, , inin-max, squ-aus
1508	Iteration 161
1509	Generated feature:
1510	6, 12, +, 17, *, min_max
1511	Prompt examples:

1512	
1513	6, 12, *, 21, sqrt_abs, +
	4, 14, +, 18, *, min_max
1514	11, 21, *, 4, +, 14, mod_column
1515	11, 21, +, 6, *, sqrt_abs
1516	2, 4, +, 6, division, log
1517	4, 6, +, 16, *, 17, +, min_max
1518	6, 21, division, 17, log, *
1510	12, min_max, 18, *, 5, mod_column
1519	2, 6, mod_column, 17, +, sqrt_abs
1520	2, 3, +, 4, sqrt_abs, *
1521	4, 12, division, 16, *, min_max, sqrt_abs
1500	

G DIFFERENCES TO CAAFE

While our work FEBP and CAAFE (Hollmann et al., 2023) both utilize LLMs to construct new 1526 features incorporating dataset semantic information, they differ in several key aspects. We design 1527 FEBP such that it taps into the in-context learning capability of LLMs and performs effective feature search. In FEBP, we provide top-performing constructed features in the prompt as learning 1529 examples, label them with performance scores, and rank them by score. We demonstrate that the 1530 LLM learns to optimize feature construction over the course of algorithm. CAAFE instead stores 1531 all previous instructions and code snippets in the conversation history, which hinders the in-context 1532 learning of optimal feature patterns. It quickly consumes the LLM's context as the algorithm iter-1533 ates, incurring more and more LLM generation costs. In comparison, the LLM generation cost of 1534 FEBP stays constant across iterations, without a maximum limit on the number of iterations it can 1535 perform. Therefore, our method FEBP has stronger capability of performing feature search in large search spaces requiring many iterations, such as datasets with numerous feature attributes. 1536

1537 In FEBP, we also explore representing features in a different form, i.e., canonical RPN (cRPN). We 1538 refer to Appendix A for further detail. Compared with the Python code representation in CAAFE, 1539 cRPN is more compact, which not only reduces LLM generation costs but also makes the in-context 1540 learning of feature patterns easier, and more human interpretable. The use of pre-defined operators reduces the search space and simplifies the learning process for optimizing feature construction. 1541 Together, our approach gives better control than code representation and helps avoid undesirable 1542 or unexpected LLM outputs. Another advantage of cRPN is that it is convenient to import exter-1543 nal features (as outlined in Algorithm 1) and export the results as individual features, providing 1544 compatibility with other feature engineering methods. 1545

More fundamentally, we demonstrate in this work that general-purpose LLMs like GPTs can effectively model recursive tree structures in the form of cRPN feature expressions and reason about the structures in the context of semantic information, paving the way for further LLM-driven applications. We hereby underscore the importance of adopting proper representation for the downstream task to tap into LLMs' potential.

1523

- 1560
- 1561
- 1562
- 1563
- 1564
- 1565