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Abstract

Deterministic policy gradient algorithms are foundational for actor-critic methods in control-
ling continuous systems, yet they often encounter inaccuracies due to their dependence on the
derivative of the critic’s value estimates with respect to input actions. This reliance requires
precise action-value gradient computations, a task that proves challenging under function
approximation. We introduce an actor-critic algorithm that bypasses the need for such
precision by employing a zeroth-order approximation of the action-value gradient through
two-point stochastic gradient estimation within the action space. This approach provably and
effectively addresses compatibility issues inherent in deterministic policy gradient schemes.
Empirical results further demonstrate that our algorithm not only matches but frequently
exceeds the performance of current state-of-the-art methods by a substantial extent.

1 Introduction

Reinforcement learning (RL) has established itself as a prominent and effective method for addressing
dynamic decision problems (Sutton and Barto, 2018). A fundamental strategy in tackling RL problems is via
policy gradient (PG) techniques (Sutton et al., 1999), grounded in the hypothesis that actions are selected
according to a parameterized distribution. PG methods iteratively update policies via stochastic gradient
schemes (Sutton et al., 1999), enabling solutions in complex problems featuring continuous state-action spaces
under uncertainty. PG methods are often framed within an actor-critic framework (Konda and Tsitsiklis,
1999), where an actor determines the control policy evaluated by a critic. Thus, the efficacy of the actor’s
improvements critically depends on the quality of the feedback provided by the critic. This interdependence
raises nontrivial questions on the efficiency of training strategies for both the actor and the critic (D' Oro
and Jaśkowski, 2020).

Conventionally, the critic is optimized through temporal difference (TD) learning (Sutton, 1988) to accurately
predict the expected returns led by the actor’s decisions. If the control policy is deterministic, the value
estimated by the critic is solely used to compute the action-value gradient during policy optimization (D' Oro
and Jaśkowski, 2020). This involves computing the gradient of the critic’s action-value estimates with respect
to the actions selected by the policy. More precisely, the deterministic policy gradient (DPG) (Silver et al.,
2014) is determined by chaining the actor’s Jacobian to the action-gradient of the critic. However, TD
learning optimizes a critic that learns the action-value, rather than its gradient. Generally, when function
approximation is used for the critic in DPG, the resulting PG may not align with the true gradient. In some
cases, it may not even constitute an ascent direction (Silver et al., 2014). Nevertheless, this failure mode can
be circumvented provided that Q-function estimates are compatible, meaning a set of conditions necessary for
(approximately) following the true gradient; see, e.g., Theorem 3 of Silver et al. (2014).

Integration of high-dimensional scenarios requires complex function approximations, such as deep neural
networks (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018). However, the use of neural
networks violates the classical compatibility results, which (conveniently) calls for critics with linear gradient
representations (Silver et al., 2014, Theorem 3). Hence, contemporary sample-based algorithms contradict
the very foundations of DPG (from the angle of compatibility), thereby paving the way for potential failure
scenarios (see Appendix A.2 for an illustration). Indeed, action differentiation of the Q-function (estimates),
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i.e., action-value gradients, leaves modern successors to DPG technically unsound (D' Oro and Jaśkowski,
2020).

In this paper, we introduce (off-policy) Compatible Policy Gradient (oCPG), a continuous control actor-critic
algorithm that approximates the action-value gradient using only value estimates from the critic. The
proposed method embodies a zeroth-order nature by removing the direct computation of the action-value
gradient, while provably addressing the compatibility requirement in DPG. This is achieved through evaluating
critics at low-dimensional random perturbations within the action space, resulting in (batch) two-point policy
gradient approximations whose distance to the true deterministic policy gradient is controllable at will.

The performance of oCPG is assessed on challenging OpenAI Gym continuous control tasks (Brockman
et al., 2016), in perfect (less uncertain) and imperfect (higher uncertainty) environmental conditions. Our
numerical results demonstrate that oCPG exhibits robust performance and either matches or surpasses (often
substantially) the state-of-the-art in terms of stability and mean rewards. For reproducibility purposes, we
share our code in the anonymous GitHub repository1.

2 Related Work

Policy gradient techniques are widely used in RL. Various algorithms for estimating policy gradients have
been developed; Baxter and Bartlett (2001); Metelli et al. (2018); Williams (1992) focus solely on the policy,
while Mnih et al. (2016); Schulman et al. (2015; 2017); Konda and Tsitsiklis (1999); Prokhorov and Wunsch
(1997) also incorporate a value function, known as actor-critic methods. Particularly, algorithms based on
the deterministic policy gradient (Lillicrap et al., 2016; Silver et al., 2014) rely on the action-gradient from
the critic. In function approximation, the accuracy of the critic is crucial (Barth-Maron et al., 2018); for
example, applying compatibility conditions to the critic helps achieve an unbiased estimate of the policy
gradient (Silver et al., 2014).

The incompatibility of the critic in DPG could be resolved by employing zeroth-order optimization (ZOO),
which replaces the action-value gradient computation with an approach that does not require any (first-order)
gradient information. These techniques treat the RL problem as a black-box optimization by ignoring the
underlying MDP structures and directly searching for the optimal policy without gradient computations.
Recent ZOO methods have proven to be competitive on common RL benchmarks (Mania et al., 2018b;
Salimans et al., 2017; Lei et al., 2022), benefiting especially from not being constrained to differentiable policies.
Despite these advantages, ZOO techniques suffer from high sample complexity and significant variance in
gradient updates, due to their disregard for the MDP structure (Lei et al., 2022). These issues are further
amplified with the increase in perturbation noise scale, potentially escalating dramatically as parameter
counts can reach into the millions (Duchi et al., 2015; Lei et al., 2022). Moreover, while parameter space
perturbations can induce diverse behaviors viewed as exploration, they are less beneficial in DPG methods,
which are typically framed in an off-policy context (Silver et al., 2014; Lillicrap et al., 2016; Fujimoto et al.,
2018). Exploration and policy learning are distinct processes in off-policy methods, making parameter-based
zeroth-order techniques less effective for enhancing exploration, primarily confined to on-policy and stochastic
policies (Singh et al., 2000). Contrasting with parameter space-based ZOO techniques, our approach operates
in the action space and involves low-dimensional perturbations. Perturbing the action also incorporates
Gaussian exploration (Fujimoto et al., 2018), which has been empirically shown to outperform parameter space
exploration in off-policy settings (Saglam and Kozat, 2023). Lastly, our objective is not merely to devise a pure
zeroth-order PG method but to synthesize the strengths of both ZOO and first-order approaches, employing a
differentiable policy whose Jacobian is chained to the zeroth-order approximation of the action-value gradient.

In addition to the zeroth-order perspective, GProp (Balduzzi and Ghifary, 2015) and MAGE (D' Oro and
Jaśkowski, 2020) are the closest known methods to our study that directly focus on optimizing and ensuring
accuracy in the action-value gradient computation. GProp modifies traditional TD learning (Sutton, 1988)
by using an additional neural network that predicts the action-value gradient. MAGE, drawing on recent
theoretical (Saremi, 2019) and practical (Saremi and Hyvärinen, 2019) insights, trains an additional network
to simulate environmental dynamics, employing it as a proxy to sample states for double gradient descent on

1https://anonymous.4open.science/r/compat-grad-approx
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the Q-function. In stark contrast, our method (CPG) simplifies the DPG approach by directly estimating
the action-value through a zeroth-order method, employing two-point evaluations of the existing critic
network. This eliminates the need to train additional networks, modify TD learning frameworks, or depend
on model-based settings. CPG is adaptable to a broader range of problems, bypassing the requirements for
double differentiability of the Q-function and detailed modeling of transition dynamics. Additionally, our
approach seamlessly integrates with any TD learning method and policy learning framework, and requires
only a few lines of code to adapt to modern DPG-based algorithms.

3 Technical Preliminaries

We consider a standardized RL problem in which an agent moves through an environment characterized by a
continuous compact state space S ⊂ Rq and takes actions in a finite-dimensional action space A = Rp. Based
on its action selection, the agent receives a reward from a reward function (bounded, for simplicity) R, where
R : S ×A → R, and observes the next state s′ ∈ S. This generic problem is often abstracted by a Markov
decision process (MDP) as a tuple (S,A, P,R, γ), where P denotes the environment dynamics, that is, the
probabilities P (s′|s, a) of moving to state s′ from state s and if action a performed, satisfying the Markov
property: P (st+1|si, ai;∀i ≤ t) = P (st+1|st, at). The value γ ∈ (0, 1) is the discount factor that prioritizes
future rewards.

The action behavior of the agent is described by a policy πθ : S → A parameterized by θ ∈ Θ, which
can be either a deterministic function or represent a probability distribution. Note that we may occa-
sionally omit the parameter subscript. The agent’s objective is to maximize the expected discounted
sum of rewards, as quantified by the value function: V πθ (s) := E[

∑∞
t=0 γ

tR (st, at ∼ πθ(· | st)) |s0 =
s]. By conditioning on an action, we may also define the action-value function Qπθ (s, a) :=
E [R(s0, a0) +

∑∞
t=1 γ

tR(st, at ∼ πθ(· | st))|s0 = s, a0 = a]. Lastly, let ρ0 be the initial state distribution,
and let ρπ be the γ-discounted state probability distribution induced by policy π, defined as ρπ(s′) =∫

S(1− γ)
∑∞
t=0 γ

tp0(s)p(s→ s′, t, θ) ds, where p(s→ s′, t, θ) denotes the probability density (we assume such
a density exists for simplicity) at state s′ after starting from state s and transitioning for t time steps under
a policy parameterized by θ.

At the initial state s, by selecting the first action according to the policy and advancing the system, the
Q-function becomes equivalent to the value function. Consequently, the problem is expressed as

max
θ

{
J(θ) := Es∼ρ0,a∼πθ(·|s)

[
Qπθ (s, a)

]}
.

When the search is confined to deterministic policy parameterizations (and we do so hereafter), the objective
above reduces to a simpler form, i.e.,

J(θ) = Es∼ρ0
[
Qπθ (s, πθ(s))

]
. (1)

Under mild problem regularity conditions, it has been demonstrated by Silver et al. (2014) that the gradient
of a deterministic policy may be expressed as

∇J(θ) = 1
1− γ

∫
S
ρπθ (s)∇θπθ(s)∇aQπθ (s, a)

∣∣
a=πθ(s) ds

= 1
1− γEs∼ρπθ

[
∇θπθ(s)∇aQπθ (s, a)

∣∣
a=πθ(s)

]
, (2)

where we use the normalizing term 1/(1 − γ) since ρπθ is proper. The latter equation is known as the
deterministic policy gradient theorem (Silver et al., 2014), which has been instrumental in the development
state-of-the-art policy gradient methods essentially relying on stochastic approximation, such as Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) and Twin Delayed DDPG (TD3) (Fujimoto
et al., 2018).
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4 Off-Policy Compatible Policy Gradient

4.1 Problem Statement

Contemporary state-of-the-art (SOTA) first-order PG methods, such as DDPG (Lillicrap et al., 2016) and
TD3 (Fujimoto et al., 2018), approximate the Q-function in equation 2 using a finite number of samples,
which correspond to collected transition tuples. However, accurately approximating function values Qπθ does
not necessarily imply accurate gradient approximation ∇aQπθ , and whether this happens for SOTA methods
is unclear and remains an open problem. In fact, for any finite number of samples, it is possible to fit a
function with zero approximation error (say, in mean-square sense) but with arbitrarily distinct gradients at
each point, unlike the original function. This concept is illustrated with an intuitive example in Appendix A.2.
In the context of PG for RL, this issue is very well-known and has been documented in detail in, e.g., (Silver
et al., 2014), among several other influential papers in the literature. The hypothesis that we investigate in
this work is that, if such fitting is to be employed whatsoever, then PG should be directly connected to the
values of the fitted Q-function (using finite samples), rather than the gradients of the fitted Q-function.

The accuracy of the approximated PG can still be maintained with a function-approximated Q-function,
however rather stringent conditions have to be met (Silver et al., 2014, Theorem 3). For completeness, we
provide a detailed summary of these compatibility requirements in Appendix A.1. A critical point in Silver
et al. (2014) for ensuring such compatibility is the convenient assumption that the gradient of the Q-function
is linear in its parameters, i.e., ∇aQω(s, a)|a=πθ(s) = ∇θπθ(s)⊤ω, where ω denotes the parameters. However,
it has been demonstrated that scaling to large and complex state-action spaces inevitably requires the use
of more expressive representations, such as deep neural networks (Lillicrap et al., 2016). This necessity
potentially compromises compatibility and results in Q-function gradients that may not accurately follow the
true policy gradient (Silver et al., 2014).

This failure mode has recently been linked to the need to minimize the norm of the action-value gradient of
the policy evaluation error, rather than its value, in order to reduce the approximation error of the computed
PG (D' Oro and Jaśkowski, 2020, Proposition 3.1). Aligning with this insight, double backpropagation
through the TD error may address this issue in scenarios where model-based approaches are feasible (D' Oro
and Jaśkowski, 2020). However, model-free RL is often preferred due to its effectiveness in environments with
complex or unknown dynamics, offering enhanced flexibility and robustness for direct policy learning via
interactions with the environment (Sutton and Barto, 2018); this is the path taken herein.

While several studies have pursued the goal of overcoming the incompatibility of the critic (D' Oro and
Jaśkowski, 2020; Balduzzi and Ghifary, 2015), our goal herein is to consistently approximate the deterministic
policy gradient ∇J as

∇̂J(θ) = 1
1− γEs∼ρπ

[
∇θπθ(s)∇̂aQπθ (s, a))

∣∣
a=πθ(s)

]
, (3)

where ∇̂aQπθ (s, a) represents an appropriately designed approximation of ∇aQπθ (s, a), resulting in a ∇̂J that
is provably compatible, general and implementable in a model-free manner. To the best of our knowledge, no
study has yet proposed a gradient surrogate (i.e., ∇̂J) that possesses all aforementioned features simultaneously,
in a model-free deep RL setting. As we empirically demonstrate later (Section 5), such an approach in fact
results in substantial operational benefits over the state-of-the-art.

4.2 Provably Compatible Policy Gradient Approximations

To begin, we temporarily assume that Qπθ is available and, for a smoothing parameter µ > 0, we consider the
µ-smoothed Q-function defined as

Qπθ
µ (s, a) := Eu

[
Qπθ (s, a+ µu)

]
, u ∼ N (0, Ip), (4)

provided that the smoothing is well-defined. Smoothing may be equivalently thought of as enforcing
exploration, and the random perturbation µu may be thought of as the purely stochastic part of a standard
Gaussian policy πµθ (· | s) := πθ(s) + µu, with u ∼ N (0, Ip). Here, it is helpful to view such a Gaussian
policy as a deterministic policy perturbed by noise in the action space, which is usually of substantially
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lower dimension as compared with the dimension of the corresponding parameter space (Mania et al., 2018a;
Maheswaranathan et al., 2019; Faccio et al., 2021; Müller et al., 2021).

Implementing (Gaussian) smoothing on deterministic actions aligns with approaches used in seminal works
such as by Lillicrap et al. (2016); Fujimoto et al. (2018). As mentioned above, this technique introduces
stochasticity in action selection, which prevents premature convergence to suboptimal policies by promoting
exploration of a broader range of state-action pairs (Sutton and Barto, 2018; Fujimoto et al., 2018). In any
case, though, the ultimate goal is to discover a near-optimal deterministic control policy that near-solves
equation 1. In our context, we achieve this by learning a deterministic policy through trajectories generated
by a smoothed/perturbed policy, with all performance assessments based on deterministic actions.

Our development will be relying on the following basic result by Nesterov and Spokoiny (2017), which is
central in the development and analysis of zeroth-order optimization methods, and establishes that the
gradient of smoothed functions such as that in equation 4 may be evaluated in a model-free fashion, through
batches of two-point evaluations of the function itself.
Proposition 1 (Nesterov and Spokoiny 2017). Let f : Rp → R be a bounded function. For every µ > 0,
the smoothed function fµ(x) := Eu

[
f(x+ µu)

]
, u ∼ N (0, Ip) is well-defined, differentiable and its gradient

admits the representation

∇fµ(x) = Eu∼N (0,Ip)

[
f(x+ µu)− f(x)

µ
u

]
, ∀x ∈ Rp.

Further, if f is G-smooth (i.e., with G-Lipschitz gradients), it holds that

supx∥∇fµ(x)−∇f(x)∥ ≤ µG√p.

Proposition 1 easily motivates the Q-function zeroth-order gradient approximation

∇aQπθ
µ (s, a) = Eu

[
Qπθ (s, a+ µu)−Qπθ (s, a)

µ
u

]
,

resulting in a deterministic policy gradient approximation reading (cf. 3)

∇̂µJ(θ) := 1
1− γEs∼ρπθ ,u∼N (0,Ip)

[
∇θπθ(s)×

Qπθ (s, a+ µu)−Qπθ (s, a)
µ

u

∣∣∣∣∣
a=πθ(s)

]
.

While ∇̂µJ is a genuine and consistent model-free approximation of the deterministic policy gradient ∇J
(through Proposition 1), it requires access to (evaluations of) the Q-function itself, the latter being both
unknown (in the majority of cases) and also hard, or at least non-trivial to sample.

Approximating the Q-function Following the actor-critic paradigm (Konda and Tsitsiklis, 1999), we
approximate the Q-function by a parameterized learning representation Qψ (the critic), for instance, a
deep neural network (i.e., Q-network), similarly to the control policy πθ (or actor). We denote Q-network
parameters abstractly with the subscript ψ (different than the smoothing parameter µ). Then, we propose
the parameterized deterministic policy gradient approximation

∇̂µ,ψJ(θ) := 1
1− γEs∼ρπθ ,u

[
∇θπθ(s)×

Qψ(s, a+ µu)−Qψ(s, a)
µ

u

∣∣∣∣∣
a=πθ(s)

]
. (5)

Given equation 5, a natural question is how the representation Qψ should be trained, in order for ∇̂µ,ψJ to
achieve a small approximation error as compared with the true policy gradient ∇J . In other words, instead
of approximating in value, we would like to choose ψ such that the representation Qψ is (approximately)
compatible to Qπθ (in the standard sense of Silver et al.). To this end, let us first define the perturbation
representation error (PRE):

επθ

µ,ψ :=
√
Es,u

[∣∣Qψ(s, πθ(s) + µu)−Qπθ (s, πθ(s) + µu)
∣∣2]
,

where θ, µ and ψ are given. We have the following result (see Appendix A.3 for the proof).
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Theorem 1 (ϵ-Compatible Policy Gradient). Let B > 0 satisfy sup(s,θ)∈S×Θ ∥∇θπθ(s)∥ ≤ B. Then the
gradient approximation ∇̂µ,ψJ satisfies, for every θ ∈ Θ, µ > 0 and ψ,

∥∇̂µ,ψJ(θ)−∇J(θ)∥ ≤ B

1− γ

[
επθ

µ,ψ

µ

√
p+ Es

[∥∥∇aQπθ
µ (s, a)−∇aQπθ (s, a)

∥∥∣∣
a=πθ(s)

]]
.

In particular, if Qπθ (s, ·) is itself G-smooth (uniformly), it follows that, for every θ ∈ Θ,

∥∇̂µ,ψJ(θ)−∇J(θ)∥ ≤
B
√
p

1− γ

[
επθ

µ,ψ

µ
+Gµ

]
.

The usefulness of the stated result is twofold: On one hand, Theorem 1 quantifies the performance of ∇̂µ,ψJ
in terms of smoothing parameter (µ) and the PRE (ψ). On the other hand, Theorem 1 reveals how ψ can be
chosen such that the gradient approximation error achieved by adopting ∇̂µ,ψJ is controlled at will, achieving
the desirable policy gradient alignment. To illustrate this, consider a smooth Q-function for clarity. Theorem
1 then implies that

inf
ψ
∥∇̂µ,ψJ(θ)−∇J(θ)∥ ≤

B
√
p

1− γ

[ infψ επθ

µ,ψ

µ
+Gµ

]
. (6)

We first observe that the smoothing term µ appears in both the numerator and denominator of the upper
bound. For any fixed µ > 0 (and at each actor instance indexed by θ), one can optimally train the critic Qψ
to minimize the perturbation representation error επθ

µ,ψ. With a sufficiently expressive function class, it is
theoretically possible to achieve an arbitrarily small gradient approximation error. In the ideal case, one
could overfit the critic at each gradient evaluation step, eliminating the first term on the right-hand side of
equation 6 and reducing the total gradient approximation error to O(µ).

In practice, however, this term does not vanish entirely. A positive µ > 0 must balance compatibility and
exploration by acting as a smoothing factor. Achieving this balance requires sufficiently accurate Q-value
estimation—in the sense of minimizing επθ

µ,ψ—to preserve gradient fidelity under a fixed µ, which also controls
the degree of Gaussian exploration (Fujimoto et al., 2018). In any case, minimizing the PRE with respect
to ψ is a well-justified strategy for ensuring policy gradient compatibility, as supported by Theorem 1. By
contrast, standard DPG methods may suffer from uncontrolled gradient error due to potential incompatibility
(see Section 4.1).

Motivated by these observations, we refer to ∇̂µ,ψJ as a (ϵ-)Compatible Policy Gradient (CPG). Further
discussion on our notion of (approximate) ϵ-compatibility intruduced herein and its generality when compared
with standard (exact) compatibility as originally formulated in Silver et al. (2014) is presented in Appendix A.4.

4.2.1 Further Remarks

First, we note that Theorem 1 is general in scope—it does not assume any specific state distribution (see also
the proof in the supplement). The use of the on-policy distribution ρπθ in this section is purely a narrative
choice. The arguments leading up to, and including, Theorem 1 apply to any state distribution, including
empirical ones—such as those induced from the replay buffer in off-policy settings (see Section 4.3). The
use of the notation Es[·] in Theorem 1 is deliberate, highlighting that no particular sampling distribution is
assumed.

Second, the reader may notice that the term Qψ(s, a)u|a=πθ(s) in equation 5 has mean zero and could be
omitted. This is also true in Proposition 1, and indeed, Theorem 1 holds verbatim for the resulting one-sided
gradient surrogate. We retain this term in equation 5 to ensure finite variance under the expectation Es,u,
where it functions analogously to a baseline. In practice, this additional term improves the stability of the
gradient approximation—often substantially.

Third, convergence guarantees can be obtained using standard techniques in settings such as on-policy
actor-critic schemes, where the critic is fully optimized before or after each actor update. While this direction
is beyond the scope of our current work, it offers promising avenues for future research.
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Lastly, while the Gaussian exploration noise appears in the definition of επθ

µ,ψ, the objective remains deterministic
policy optimization—as in off-policy methods like DDPG (Lillicrap et al., 2016, Algorithm 1, lines 8–13)
and TD3 (Fujimoto et al., 2018, Algorithm 1, lines 6–11). However, both methods use gradients of fitted
Q-functions, which may violate compatibility, as discussed in Section 4.1. Theorem 1 suggests that equation 5
can be used instead as a provably compatible alternative for gradient approximation.

4.3 Off-Policy Deep Reinforcement Learning

To devise an efficient learning framework centered on CPG, we incorporate standard components from existing
literature.

Clipped Double Q-learning (Fujimoto et al., 2018) Based on our discussion above, to exploit ∇̂µ,ψJ
as a gradient surrogate (and thus harness the benefits of Theorem 1), we should learn a Qψ∗ such that
ψ∗ ∈ arg minψ επθ

µ,ψ (iteration-wise for fixed θ and µ). However, learning such a Qψ∗ assumes the feasibility of
obtaining unbiased estimates of the Q-function at any state-action (perturbation) pair, as well as sampling
from the discounted state distribution ρπ. Specifically for obtaining unbiased Q-value estimates in the context
of deep RL, one can employ the practical clipped double Q-learning algorithm (Fujimoto et al., 2018) to learn
the Q-network (in conjunction with an experience replay buffer – see next paragraph), which has been shown
to eliminate the estimation bias effectively.

Off-Policy Learning Our selection of an off-policy learning approach is driven by its potential for high
sample efficiency, notably through the use of an experience replay buffer (Lin, 1992). The agent stores
samples as transition tuples (s, a,R(s, a), s′) in the buffer and periodically samples a minibatch of these
transitions for policy and Q-network updates. Building upon this, CPG, although theoretically on-policy, is
implemented in an off-policy framework. This approach, however, inherently involves a distributional shift, as
the samples used may significantly diverge from the current agent’s policy (Sutton and Barto, 2018). Despite
this, our method draws on the strategy employed by modern off-policy algorithms (Silver et al., 2014; Lillicrap
et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018), which simplifies the complexities by approximating
off-policy samples as on-policy.

Combining the components introduced, we present our proposed CPG method in an off-policy deep RL
setting, implementing stochastic gradient ascent via the implementable gradient approximation

∇̂µ,ψJ(θ) ≈ ∇̂µ,ψβ J(θ) = 1
1− γEs∼ρβ ,u

[
∇θπθ(s)

Qψ(s, a+ µu)−Qψ(s, a)
µ

u

∣∣∣∣∣
a=πθ(s)

]
,

where β denotes the set of policies that collected the off-policy samples (referring to the replay buffer), which
can also be on-policy, and ρβ represents the corresponding (approximation to the) state visitation distribution.
Recognizing the limitations of this approximation, we focus on the immediate performance of our algorithm.
We note that a detailed analysis of the “off-policyness” (see, e.g., Munos et al.; Saglam et al.), as well as the
complexity and convergence analysis of this actor-critic setup under CPG, are not the topics of our current
scope, and thus deferred for future research.

The pseudocode for the off-policy CPG (oCPG) is provided in Algorithm 1. The inclusion of dual Q-networks,
target parameters, and delayed policy updates draws from the structure of Clipped Double Q-learning. We
also consistently optimize the policy with respect to the first Q-network to ensure stability.

5 Experiments

We benchmark the performance of oCPG against state-of-the-art PG-based actor-critic algorithms: TD3
(Fujimoto et al., 2018), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Proximal Policy Optimization
(PPO). Since TD3 is a variant of DPG, comparing it with CPG provides a strong test of our proposed PG
method against traditional DPG in deep RL. Likewise, as SAC extends the standard stochastic PG algorithm,
comparisons with SAC highlight CPG’s effectiveness relative to stochastic PG in the deep RL setting.
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Algorithm 1 Off-Policy Compatible Policy Gradient (oCPG)
1: Initialize the policy network πθ, and critic networks Qψ1 , Qψ2 with random parameters θ, ψ1, ψ2
2: Initialize target networks θ′ ← θ, ψ′

1 ← ψ1, ψ′
2 ← ψ2

3: Initialize the experience replay buffer: B = ∅
4: for t = 1 to T do
5: Select action with Gaussian exploration noise a = πθ(s) + µu, where u ∼ N (0, Ip)
6: Execute action a, receive reward r = R(s, a), and observe new state s′

7: Store the collected transition tuple in the replay buffer: B ← B ∪ (s, a, r, s′)
8: Sample a minibatch of N transitions from the replay buffer: (s,a, r, s′) ∼ B
9: ã← πθ′(s′) + ϵ, where {ϵi ∼ clip

(
N (0, σ2Ip),−c, c

)
}Ni=1 ▷ Clipped Double Q-learning

10: y← r + γ mini=1,2Qψ′
i
(s′, ã) ▷ Clipped Double Q-learning

11: Update critics: ψj ← argminψj

1
N

∑
i

(
yi −Qψj

(si,ai)
)2

▷ Clipped Double Q-learning
12: if t mod d then ▷ Delayed policy updates
13: Update the policy by CPG:

∇̂µ,ψβ J(θ) = 1
N

∑
i

∇θπθ(si)
Qψ1(si,ai + µui)−Qψ1(si,ai)

µ
ui

∣∣∣∣∣ ai=πθ(si)
ui∼N (0,Ip)

14: Update target networks:

θ′ ← τ · θ + (1− τ) · θ′

ψ′
i ← τ · ψi + (1− τ) · ψ′

i

15: end if
16: end for

5.1 Experimental Setup

Evaluation Performance is assessed on continuous control tasks from the MuJoCo suite (Todorov et al., 2012)
using OpenAI Gym (Brockman et al., 2016). Each algorithm is trained until convergence in evaluation reward,
with evaluations performed every 1,000 steps in a noise-free environment using deterministic actions. Results
are averaged over 10 random seeds, capturing variability from the Gym simulator, network initialization, and
stochastic processes.

Implementation and Hyperparameters For simplicity, the implementation of CPG omits the 1− γ
term in the denominator. To ensure a fair comparison with TD3 and isolate the impact of our proposed
PG method, we used the same hyperparameters (e.g., learning rate), with the only difference being how the
policy gradient is computed.

Selection of µ In Section 4.2, we highlighted the importance of selecting the smoothing term µ. Initial
simulations tested µ = {0.025, 0.05, 0.075, 0.1, 0.125}. While 0.1 and 0.125 performed similarly, results
worsened as µ decreased. This reflects the nuanced balanced between µ and the Q-function approximation
error επθ

µ,ψ in the PG error’s upper bound, i.e., equation 6. It appears that the Q-function approximation could
not sufficiently compensate for µ < 0.1, suggesting a more expressive Q-function approximation. To choose
between 0.1 and 0.125, we aligned µ with the standard deviation of the Gaussian exploration noise used in
TD3, which is 0.1. This alignment ensures (i) fair evaluations with TD3, (ii) an adequate exploration, and
(iii) a moderate value for smoothing. Notably, our method does not introduce any additional hyperparameters,
as compared to the current state-of-the-art.

A detailed description of the experimental setup and implementation can be found in Appendix B.2.
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Figure 1: Learning curves for benchmark MuJoCo environments, averaged over 10 random seeds. Evaluation
reward is calculated as the undiscounted sum of rewards collected by the agent during each evaluation episode.
The shaded region indicates the 95% confidence interval of the mean performance.

5.2 Results

The results are presented in Figure 1. Additionally, Table 1 reports the converged rewards, calculated as
the mean of the last 50 evaluation rewards, along with several statistical tests to assess the significance of
performance differences. We examine these statistical tests in Appendix C.1, highlighting their computational
differences and underlying assumptions.

In most environments, oCPG achieves faster convergence to higher final rewards. Although the performance
curves are intertwined, making it challenging to visually identify a clear leader, the four statistical tests
reported in Table 1 confirm that oCPG is the best-performing algorithm in three out of six environments. In
the remaining environments, it is on par with the baselines.

Notice that the only difference between oCPG and TD3 lies in how the PG is computed. All other
configurations, including the degree of exploration µ (which also influences the smoothness in our PG
algorithm), remain unchanged. Thus, the statistically significant performance improvement can be attributed
to the PG computation. While we do not explicitly claim it, this observation suggests that CPG may produce
more accurate PG estimates than DPG.

We observe that oCPG converges more slowly than TD3 in the Humanoid environment, where the combined
state-action dimension is 393. In our experiments, the Q-networks have only 256 hidden units per layer, and
neural networks are sensitive to input noise, which becomes more noticeable as the input size surpasses the
network’s capacity. This issue arises due to the smoothing step on line 13 in Algorithm 1; however, using
larger networks could mitigate this limitation. Despite this, oCPG achieves the highest converged rewards in
five of six environments. While its performance in the Swimmer task is statistically significant, the rewards
show high variance because some seeds converge to suboptimal levels, leading to wide confidence intervals.
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Table 1: Mean of the last 50 evaluation rewards on benchmark MuJoCo environments, averaged over 10
random seeds, with ± denoting a 95% confidence interval. The highest performance is marked in boldface.
The statistically superior algorithm is highlighted (where applicable), while the highest performances shared
by multiple algorithms are indicated. Welch’s test, Student’s t-test, paired t-test, and the Wilcoxon rank-sum
test are conducted at a significance level of 0.05, all yielding consistent results across methods.

Environment TD3 SAC PPO oCPG

Ant 4225.080 ± 835.236 3945.508 ± 673.329 221.918 ± 136.231 5284.923 ± 412.932
HalfCheetah 6744.592 ± 671.739 6074.230 ± 405.968 5089.677 ± 2058.217 7956.502 ± 1178.024
Hopper 3620.488 ± 137.280 3585.355 ± 186.848 2785.950 ± 1433.114 3687.673 ± 118.093
Humanoid 5289.623 ± 148.741 5567.597 ± 141.133 582.319 ± 79.251 5348.386 ± 109.030
Swimmer 59.806 ± 9.477 58.396 ± 10.990 76.471 ± 9.124 123.130 ± 59.253
Walker2d 4842.336 ± 723.696 4337.161 ± 2313.581 4725.314 ± 492.717 4953.588 ± 298.321

Moreover, discrepancies in reported reward levels compared to the TD3 and SAC papers may result from
differences in environmental stochasticity and the MuJoCo simulator version. Nevertheless, consistent
performance across multiple random seeds provides a reliable basis for evaluating our method. This approach
aligns with established deep RL experimentation standards (Henderson et al., 2018), which prioritize
comparative analysis over absolute performance.

Finally, the smoothing parameter µ is linked to exploration levels, eliminating the need for environment-specific
tuning. Our experiments show that a fixed value of µ = 0.1 generalizes well across diverse environments,
ensuring effective policy gradient approximation while preserving exploratory behavior.

Imperfect Environmental Conditions To evaluate the performance of our method under uncertainty,
we present results with perturbed rewards in Appendix C. Convergence is noticeably affected in environments
with altered rewards, as uncertainty distorts the agent’s received rewards, directly influencing the Q-value
used by CPG for policy gradient computation. Although the baselines also depend on Q-value estimates
for their gradients, reward modifications have minimal effect on their final performance. This demonstrates
that the precision of value gradient estimates does not necessarily correlate with the accuracy of the value
estimates themselves, as discussed in Appendix A.2. Despite these challenges, oCPG achieves higher reward
levels over time.

6 Conclusion and Future Work

We introduced Compatible Policy Gradient (CPG), a policy gradient technique for actor-critic algorithms that
employs a zeroth-order approximation method to estimate the action-value gradient in deterministic policy
gradient (DPG) algorithms. By employing stochastic two-point gradient estimation with low-dimensional
perturbations in action space, our approach eliminates the need for explicit action-value gradient computation,
addressing compatibility issues commonly faced in traditional DPG methods with deep function approximation.
Empirical results on various continuous control tasks demonstrate that CPG outperforms state-of-the-art
methods.

Our findings highlight two key implications. First, they reveal the potential of zeroth-order (gradient-free)
methods to overcome challenges related to accurate derivative computations in policy optimization. Second,
the strong performance of CPG in complex continuous control environments suggests that similar approaches
could prove effective in other reinforcement learning domains characterized by uncertain dynamics or imperfect
system models.

Future Work An off-policy correction mechanism for CPG could be developed by leveraging the probability
ratio between the agent’s current policy and its behavioral policy. Additionally, while we did not investigate
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convergence results for on-policy actor-critic methods with fully optimized critics that achieve near-zero
approximation error, this remains a compelling direction for future research.
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A Supporting Details for Section 4

A.1 Compatibility Requirements in Deterministic Policy Gradients

Here, for completeness we recall the classical result of Silver et al. (2014) (specifically Theorem 3 of Silver
et al.), which ensures exact gradient compatibility, however at the expense of restrictive conditions on the
form of the adopted Q-function approximation (in particular, its gradient must be of linear form).
Theorem 2 (Compatible Function Approximation). A function approximator Qω(s, a) is compatible
with a deterministic policy πθ(s), ∇J(θ) = Es∼ρπθ

[
∇θπθ(s)∇aQω(s, a)

∣∣
a=πθ(s)

]
, if

1. ∇aQω(s, a)
∣∣
a=πθ(s) = ∇θπθ(s)⊤ω and

2. ω minimizes the gradient mean-squared error Es
[∥∥∇aQω(s, a)|a=πθ(s) −∇aQπθ (s, a)|a=πθ(s)

∥∥2]
.
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A.2 Concept Illustration: Accurate Value Approximation does not Guarantee Accurate Gradient
Approximation

We consider the function fitting problem (also sometimes called Runge’s phenomenon) illustrated in Figure
2. As shown in the figure, two distinct functions are fitted to a finite set of sample points, each achieving
zero approximation error—e.g., in the mean-square sense—since they align exactly with the true function at
those points. However, given the finite nature of the samples, there exist infinitely many such interpolants.
While the approximation error is identically zero, their gradients (i.e., slopes) can differ significantly from one
another and from the true function, leading to arbitrarily different gradient directions—particularly at the
sample locations.

This highlights a fundamental issue: even as function approximations improve, gradient estimates may remain
inconsistent due to the inherent ambiguity in interpolating between a finite set of samples. Each interpolation
yields a different gradient profile, regardless of approximation accuracy. Our randomized smoothing approach,
grounded in Proposition 1, directly addresses this issue by mitigating gradient inconsistency.

This observation has direct implications for sample-based RL methods. No matter the size of the replay
buffer, the Q-function is always trained on a finite dataset. As a result, gradient inconsistencies are inevitable
when computing the policy gradient using the (generally incompatible) gradients of the fitted Q-function.

True function: 1
25x2 + 1 Function approximation with a polynomial of degree 10

Function approximation with barycentric Lagrange interpolation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
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2
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Figure 2: Sketch of a function fitting problem (Runge’s phenomenon) containing finite number of samples.
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A.3 Proof of Theorem 1

We may write, for every θ ∈ Θ, ψ, µ > 0,

(1− γ)∥∇̂J(θ)−∇J(θ)∥

=
∥∥∥∥Es,u[

∇θπθ(s)
Qψ(s, a+ µu)−Qψ(s, a)

µ
u

]∣∣∣∣
a=πθ(s)

− Es
[
∇θπθ(s)∇aQπθ (s, a)

]∣∣
a=πθ(s)

∥∥∥∥
=

∥∥∥∥Es[∇θπθ(s)Eu

[
Qψ(s, a+ µu)−Qψ(s, a)

µ
u−∇aQπθ (s, a)

]∣∣∣∣
a=πθ(s)

]∥∥∥∥
≤ Es

[∥∥∥∥∇θπθ(s)Eu

[
Qψ(s, a+ µu)−Qψ(s, a)

µ
u−∇aQπθ (s, a)

]∣∣∣∣
a=πθ(s)

∥∥∥∥]
≤ BEs

[∥∥∥∥Eu

[
Qψ(s, a+ µu)−Qψ(s, a)

µ
u−∇aQπθ (s, a)

]∥∥∥∥∣∣∣∣
a=πθ(s)

]
,

where we have used Jensen (norms are convex), (matrix) Cauchy-Schwarz, and the assumption that
sups,θ ∥∇θπθ(s)∥ ≤ B. In passing, we note that a non-standard (i.e., transposed) definition for the Ja-
cobian ∇θπθ(s) was used when applying the chain rule. Additionally, the latter expression remains valid as
µ→ 0 in which case we obtain the deterministic policy gradient error reading

(1− γ)∥∇̂J(θ)−∇J(θ)∥ ≤ BEs
[∥∥∇aQψ(s, a)−∇aQπθ (s, a)

∥∥∣∣
a=πθ(s)

]
.

We further have, for every (s, a) ∈ S ×A,

∥∥∥∥Eu

[
Qψ(s, a+ µu)−Qψ(s, a)

µ
u

]
−∇aQπθ (s, a)

∥∥∥∥
=

∥∥∥∥Eu

[
Qψ(s, a+ µu)−Qψ(s, a)

µ
u

]
−∇aQπθ

µ (s, a) +∇aQπθ
µ (s, a)−∇aQπθ (s, a)

∥∥∥∥
=

∥∥∥∥Eu

[
Qψ(s, a+ µu)

µ
u

]
− Eu

[
Qψ(s, a)

µ
u

]
︸ ︷︷ ︸

=0

−∇aQπθ
µ (s, a) +∇aQπθ

µ (s, a)−∇aQπθ (s, a)
∥∥∥∥, (7)

=
∥∥∥∥Eu

[
Qψ(s, a+ µu)

µ
u

]
− Eu

[
Qπθ (s, a+ µu)

µ
u

]
+∇aQπθ

µ (s, a)−∇aQπθ (s, a)
∥∥∥∥, (8)

=
∥∥∥∥Eu

[
Qψ(s, a+ µu)−Qπθ (s, a+ µu)

µ
u

]
+∇aQπθ

µ (s, a)−∇aQπθ (s, a)
∥∥∥∥

≤
∥∥∥∥Eu

[
Qψ(s, a+ µu)−Qπθ (s, a+ µu)

µ
u

]∥∥∥∥ +
∥∥∇aQπθ

µ (s, a)−∇aQπθ (s, a)
∥∥

≤ 1
µ

√
Eu[|Qψ(s, a+ µu)−Qπθ (s, a+ µu)|2]

√
Eu[∥u∥2] +

∥∥∇aQπθ
µ (s, a)−∇aQπθ (s, a)

∥∥
=
√
p

µ

√
Eu[|Qψ(s, a+ µu)−Qπθ (s, a+ µu)|2] +

∥∥∇aQπθ
µ (s, a)−∇aQπθ (s, a)

∥∥,
where we have used the Cauchy–Schwarz inequality in the penultimate line and applied Proposition 1 to
reduce equation 7 to equation 8, replacing∇aQπθ

µ (s, a) with Eu

[
Qπθ (s,a+µu)−Qπθ (s,a)

µ u
]

= Eu

[
Qπθ (s,a+µu)

µ u
]
.
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Continuing further, taking expectations over s, we obtain
(1− γ)
B

∥∇̂J(θ)−∇J(θ)∥

≤ Es
[√

p

µ

√
Eu[|Qψ(s, a+ µu)−Qπθ (s, a+ µu)|2] +

∥∥∇aQπθ
µ (s, a)−∇aQπθ (s, a)

∥∥∣∣∣∣
a=πθ(s)

]
=
√
p

µ
Es

[√
Eu[|Qψ(s, πθ(s) + µu)−Qπθ (s, πθ(s) + µu)|2]

]
+ Es

[∥∥∇aQπθ
µ (s, a)−∇aQπθ (s, a)

∥∥∣∣
a=πθ(s)

]
≤
√
p

µ

√
Es,u[|Qψ(s, πθ(s) + µu)−Qπθ (s, πθ(s) + µu)|2]

+ Es
[∥∥∇aQπθ

µ (s, a)−∇aQπθ (s, a)
∥∥∣∣
a=πθ(s)

]
=
√
p

µ
επθ

µ,ψ + Es
[∥∥∇aQπθ

µ (s, a)−∇aQπθ (s, a)
∥∥∣∣
a=πθ(s)

]
,

where we have used Jensen in the third line (the root function is concave). The rest of the theorem follows
trivially from Proposition 1, which is based on the results invoked from Nesterov and Spokoiny (2017), and
we are done.

A.4 A Relaxed Notion of Compatibility via ϵ-Compatible Critics

We may formalize the notion of approximate (ϵ-)compatibility put forth in this work by introducing the
following definition:
Definition 1 (ϵ-Compatibility). Let ϵ ≥ 0 and θ ∈ Θ. We say that a critic Q̂ is (pointwise) ϵ-compatible
at θ if the corresponding deterministic policy gradient approximation ∇̂ satisfies

∥∇̂J(θ)−∇J(θ)∥ ≤ ϵ.

In this case, we also say that ∇̂J is ϵ-compatible at θ.

We note that the error ϵ may depend on the policy parameters θ, as well as on additional parameters used in
the construction of Q̂ and ∇̂J (e.g., µ and ψ in Theorem 1).

This formulation generalizes the classical notion of compatibility from Silver et al. (2014, Section 4.3). In
particular, if a critic is compatible in the sense of Silver et al. (2014), then it is trivially ϵ-compatible with
ϵ = 0 at every θ ∈ Θ. However, the converse does not hold unless ϵ = 0: a critic that is ϵ-compatible for ϵ > 0
need not satisfy exact compatibility.

Compared to the conventional approach of using the gradient of a fitted Q-network trained on finite samples,
the advantage of ϵ-compatibility lies in its theoretical consistency across a broader class of approximators.
This is confirmed by Theorem 1, and has direct algorithmic relevance. In this sense, designing a critic
that satisfies ϵ-compatibility is theoretically preferable—and practically beneficial, as our empirical results
indicate—due to the following reasons:

• The classical compatibility condition in Silver et al. (2014) only applies to critics whose gradients are
linear in their parameters, which severely restricts model expressivity.

• More generally, using gradients of arbitrary fitted critics does not guarantee compatibility unless
additional constraints (e.g., smoothness or regularization) are imposed. As illustrated in Appendix A.2,
our zeroth-order, Gaussian smoothing-based gradient estimator implicitly imposes such constraints,
and is provably ϵ-compatible by Theorem 1.

A.5 Compatible Policy Gradient with Learnable Exploration Noise

Recent studies have explored learning exploration noise through neural networks. For instance, the closest
off-policy RL framework is used by Saglam and Kozat (2023), where the noise term, typically sampled from
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an isotropic Gaussian, is replaced with the output of a neural network initialized as the policy network. This
exploration policy outputs the noise based on the observed state, aiming to maximize uncertainty (i.e., where
the loss of the Q-network is highest). A natural question that arises is what would happen if we combined
such methods with oCPG.

We do not believe it would negatively impact performance because, from the policy perspective, exploratory
action noise remains just noise, regardless of the distribution from which it is sampled. Unless the norm of
the noise increases significantly, the computed PG would not differ greatly from that computed with Gaussian
noise. However, we did not include any learnable exploration method in our experiments, as our focus is
solely on studying the pure effects of PG computation, and any additional technique could have confounded
our conclusions.

B Experimental Details

In Section B.1, we provide details of the hyperparameters and network architectures. Additionally, the
experimental setup, such as simulation and performance assessment, is examined in Section B.2.

B.1 Hyperparameters and Neural Networks

Architecture All algorithms use two Q-networks following the Clipped Double Q-learning algorithm, and
one actor network. Each network consists of two hidden layers with 256 units each, using ReLU activations.
The Q-networks process state-action pairs (s, a) and output a scalar value. The actor network inputs state s
and outputs an action a using a tanh activation, scaled to the action range of the environment.

Table 2: Hyperparameters used in the experiments

Hyperparameter Value
Optimizer Adam
Learning rate (all networks) 3× 10−4

Learning rate (CPG actor only) 5× 10−5

Minibatch size 256
Discount factor γ 0.99
Target update rate 0.005
Initial exploration steps 25,000
Exploration noise µ 0.1
TD3 target policy noise σ 0.2
TD3 policy noise clipping (−0.5, 0.5)
SAC log-standard deviation clipping (−20, 2)
SAC log constant 10−6

SAC reward scale (except Humanoid) 5
SAC reward scale (Humanoid) 20

Hyperparameters The Adam optimizer (Kingma and Ba, 2015) is used for training the networks, with a
learning rate set to 3×10−4. When sampling from the replay buffer, minibatches of 256 samples are employed.
We update the target networks using polyak averaging, with a rate of τ = 0.005. This process follows the
update rule: θ′ ← 0.995× θ′ + 0.005× θ.

Hyperparameter Optimization For SAC, hyperparameter optimization was performed, particularly
for the Swimmer task, as the original paper did not specify the reward scale. We tested reward scales of
{5, 10, 20} and found that a factor of 5 delivered the best performance in this environment. Beyond this,
all algorithms strictly followed the parameter settings from their papers or the latest GitHub versions of
their code. Specifically, SAC followed the hyperparameters from its original paper, with the exception of
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increasing exploration steps (i.e., a purely exploratory policy with no learning) to 25,000. For TD3, we used
the author’s GitHub repository2, which introduced slight parameter changes compared to the paper. Notably,
this version increased the start steps to 25,000 and the batch size to 256 across all environments, resulting in
improved performance. The full hyperparameter settings are provided in Table 2.

B.2 Experimental Setup

Simulation Environments All agents are evaluated using continuous control benchmarks from the
MuJoCo3 physics engine, accessed through OpenAI Gym4 with v3 environments. We maintained the original
state-action spaces and reward functions in these environments to ensure reproducibility and fair comparison
with existing empirical results. Each environment features a multi-dimensional action space within the range
of [-1, 1], except for Humanoid, which has a range of [-0.4, 0.4].

Terminal Transitions In computing the target Q-value, we apply a discount factor of γ = 0.99 for
non-terminal transitions, and zero for terminal ones. A transition is considered as terminal only if it ends due
to a termination condition, such as a failure or exceeding the time limit or fall of the agent.

Evaluation Evaluations are performed every 1000 time steps, with each evaluation representing the average
reward across 10 episodes. These evaluations use the deterministic policy from oCPG and TD3 without
exploration noise, and the deterministic mean action from SAC. To minimize variation due to different seeds,
a new environment with a fixed seed (the training seed plus a constant) is used for each evaluation. This
approach ensures consistent initial start states for each evaluation.

Visualization of the Learning Curves Learning curves, illustrating performance, are plotted as averages
from 10 trials. A shaded region around each curve represents the 95% confidence interval across these
trials. For enhanced visual clarity, the curves are smoothed using a sliding window averaging over a number
evaluations determined by 0.05 of the length of the curves.

B.3 Computational Resources

Our experiments were conducted on a high-performance computing system with an AMD Ryzen Threadripper
PRO 3995WX processor (64 cores) and 512 GB of RAM. Neural network training utilized a single NVIDIA
RTX A6000 GPU with 48 GB of VRAM, providing sufficient computational resources for our tasks.

C Complementary Results

C.1 Numerical Comparison Under Different Statistical Tests

In the main body, we consider four different statistical tests. To ensure a comprehensive statistical comparison,
we provide brief descriptions of each method and their approach to conducting statistical analysis.

• Welch’s t-test: It accounts for potential differences in variances between the two groups being
compared, providing a more robust analysis when variances are unequal. Although our sample sizes
are identical, differences in performance variance between our method and the baselines could exist,
making Welch’s t-test the most appropriate choice to ensure the validity of our statistical significance
claims.

• Student’s t-test: Unlike Welch’s test, it compares the means of two independent groups under the
assumption that the variances are equal. It is suitable when the distribution of the data is normal,
and the variances between groups do not differ significantly.

2https://github.com/sfujim/TD3
3https://mujoco.org/
4https://www.gymlibrary.ml/
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• Paired t-test: It is used to compare the means of two related groups, such as measurements taken
from the same subjects under different conditions. It is ideal for designs where each subject serves as
their own control, thereby reducing the impact of variability. Specifically, we aim to reflect the sole
difference between oCPG and TD3, which is the PG computation that will serve as the subject’s
own control.

• Wilcoxon rank-sum test: To complement the assumption of Gaussian-distributed sample data,
we employ this non-parametric alternative to the independent t-test. It compares two independent
groups without assuming a normal distribution. It is particularly useful when the data is skewed or
contains outliers.

We observe that the statistical significance of the improvement offered by CPG is consistent across different
tests, as highlighted in Table 1. This strengthens the validity of our empirical studies and underscores the
benefits of our proposed method.
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(a) Sparse rewards
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(b) Delayed rewards
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(c) Noisy rewards

Figure 3: Learning curves for the benchmark MuJoCo environments, averaged over 10 random seeds, under
imperfect environment conditions: (a) the agent observes the true reward with a probability of 0.5, otherwise
zero; (b) rewards are delayed by 10 time steps; and (c) rewards are perturbed by a zero-mean Gaussian noise
with a standard deviation equal to 0.1 of the reward range in the replay buffer. The shaded area represents
the 95% confidence interval of the mean performance.

C.2 Learning Curves for Imperfect Environmental Conditions

Uncertainty in the Environments To evaluate the robustness of oCPG, we simulate imperfect environ-
mental conditions by introducing uncertainty. This includes considering scenarios with noisy, sparse, and
delayed rewards. In the noisy reward scenario, each reward is subject to perturbation with random noise. For
the sparse reward setup, the agent observes the reward with a probability less than 1; otherwise, it receives a
reward of zero. In the delayed setting, the agent observes the reward after a fixed number of time steps.

Setup The delayed reward setting delays the instantaneous rewards received by the agent by 10 time
steps. For noisy rewards, we monitor the range of rewards collected by the agent, specifically the mini-
mum and maximum values. The reward-perturbation noise is then sampled from a normal distribution
N (0, 0.1 · (rmax − rmin)), where rmax and rmin are the maximum and minimum of the rewards in the replay
buffer. In the case of sparse rewards, with a random probability of 0.5, the agent either observes the actual
instantaneous reward or zero.
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