
Published as a conference paper at ICLR 2025

IMPROVING TEST-TIME SEARCH WITH BACKTRACK-
ING AGAINST IN-CONTEXT VALUE VERIFIERS

Anikait Singh
anikait@stanford.edu

Kushal Arora
kushal.arora@tri.global

Sedrick Keh
sedrick.keh@tri.global

Jean Mercat
jean.mercat@tri.global

Tatsunori Hashimoto
thashim@stanford.edu

Chelsea Finn
cbfinn@cs.stanford.edu

Aviral Kumar
aviralku@andrew.cmu.edu

ABSTRACT

Test-time verifiers are useful for solving reasoning problems as they guide the
reasoning chain towards valid solutions, thus improving performance. However,
naı̈vely conducting search with approaches like Best-of-N sampling with these
verifiers is often inefficient, requiring the generation of multiple overlapping par-
tial solutions and incorrect completions to arrive at a correct outcome. This raises
the question: can we reduce the total amount of computation by sharing informa-
tion across multiple attempts at solving a given reasoning problem? In this paper,
we build an approach of combining process verifiers that predict likelihoods of
success per step with preemptive backtracking to maximize performance per gen-
erated token. To do this, a process reward model (PRM) can be used to identify
the problematic step in a solution trace, allowing the model to selectively resam-
ple from the problematic step of a solution. This approach can significantly reduce
the amount of computation by leveraging partial reasoning traces from previous
revisions. We also introduce in-context process supervision, where the verifier is
conditioned on the history of past revisions. This reduces uncertainty in the veri-
fication decisions and improves the verifier’s confidence with each round of back-
tracking. This framework for iterative backtracking, leveraging in-context process
supervision, enables an effective trade-off between inference and performance.

1 INTRODUCTION

One promising direction for enhancing quality of responses in reasoning problems is the strategic
use of test-time computation, where a model is given an inference compute budget that it could
leverage to improve its solution quality. Prior work such as Snell et al. (2024); Charniak & Johnson
(2005) and Cobbe et al. (2021) explore different mechanisms for solution generation given a fixed
generation budget, resulting in linear search algorithms such as BofN, Beam Search, and Look-
Ahead search. A major drawback of these linear search approaches is their compute efficiency. On
hard problems, small but consequential mistakes made at intermediate steps can lead to a cascade of
errors, rendering the entire sequence incorrect. Traditional search methods, which operate in parallel
and start from the beginning of the sequence, fail to efficiently handle these errors, often wasting
inference-time compute on parts of the solution that are already correct. Can we more efficiently
leverage inference-time compute for error recovery?

In this paper, we propose backtracking-based iterative refinement for improving LLM solutions.
Instead of generating multiple complete solutions with many redundant tokens, our method gener-
ates a single solution, identifies the problematic steps in the solution trajectory, and resamples only

1



Published as a conference paper at ICLR 2025

the parts of the sequence that need correction. This adaptive approach not only reduces the compu-
tational burden but also allows for more targeted revisions, effectively correcting uncorrelated errors
and improving the overall solution quality.

Backtracking with Process Feedback

Error
Localization

In-Context Process Supervision

Step 1: <a>
Step 2: <b>
Step 3: <c>

...
Step 10: <j>
Answer: <k> 

Problem (Math)

The solution is incorrect

Probability of Success?

Step 1: <a>
Step 2: <b>
Step 3: <c> 

0.2

Past
Attempt

Partial
Solution

Process
Supervision

Turnwise Feedback

xN

History of Attempts in context can influence Process
Predictions for Future Attempts!

Figure 1: (Left) An illustration of utilizing a value-based ver-
ifier for backtracking. Backtracking with a value-based verifier
allows for revising a potential incorrect reasoning chain. We use
an error localization criterion to identify an appropriate step to re-
generate the solution from, and continue to iteratively revise the
solution until a stopping criterion is met. (Right) Leveraging In-
Context Process Supervision. This approach conditions on prior
attempts to reduce the uncertainty of process reward estimates on
future attempts.

Our method leverages advantage es-
timates, computed using a process-
based verifier (PRMs), to predict the
points in the reasoning chain where
the model is most likely to make mis-
takes. These advantage estimates as-
sess the relative importance of each
step and guide the backtracking pro-
cess to the step that contributes least
to the solution quality. The back-
tracking algorithm then selectively
resamples the completions from that
step. These set of targeted revisions
allow for compute to be spent more
efficiently, leading to higher-quality
solutions with fewer revisions. We
also establish a stopping criterion in
this framework for early termination
of backtracking after a solution has
been found.

Ultimately the success of backtrack-
ing relies on how accurate the PRM
is on intermediate reasoning steps. In
this paper, we also propose various
methods to improve the verifier ac-
curacy. A major concern with use
of verifiers for search is distribution
shift. Verifiers are trained on static data that is either human-labeled or generated using models that
are potentially different than the ones used during the inference. To temper these distribution shift
issues, we employ on-policy verifier fine-tuning and label balancing, and propose a novel method to
smooth the verifier’s outputs to account for estimation errors. We additionally introduce in-context
process supervision which allows the PRM to condition on prior attempts at a problem to reduce
the uncertainty of the supervision on future attempts. Conditioning on a history of past revisions,
the verifier is able to identify failure modes in past attempts and subsequently avoid rating them
highly if they are present in future attempts. By providing a framework for sequentially identifying
errors and revising them, our approach offers a more scalable and effective solution for test-time
inference in LLMs, making it particularly suited for tasks that are more difficult or longer horizon.
We demonstrate the computational efficiency of our approach, showing that it significantly improves
the test-time compute tradeoff with respect to the number of generated tokens vs. the accuracy of
the generated solution.

2 PRELIMINARIES AND NOTATION

A process reward model (PRM) assesses the validity of intermediate steps taken during the rea-
soning process, providing feedback on whether an intermediate step makes progress towards the
solution. One instantiation of the PRM is a value function or value verifier, learned through
Monte-Carlo (MC) regression Wang et al. (2023); Snell et al. (2024), where the value at each step is
supervised with the Monte-Carlo return-to-go,RD(s, a), which estimates the probability of success
of a rollout from a particular state s and action a. Here, D represents the static dataset used to com-
pute the target return-to-go values. The Monte-Carlo return-to-go is computed as the sum of future
discounted rewards, RD(s, a) =

∑t=T
t=i γtrt, where γ is the discount factor, and the sum is taken

over the trajectory from the current time step i to the end of the episode. We assume the reward
function to be sparse, i.e., it is 0 for each intermediate step in the reasoning problem. At the terminal
step, if the predicted answer matches the ground truth answer, a reward of 1 is provided for this
final step. The loss function is the divergence of the estimated value from the dataset Monte-Carlo

2



Published as a conference paper at ICLR 2025

return-to-go:

LQ = E(s,a)∼D
[
LKL

(
Q(s, a),RD(s, a)

)]
(1)

One instantiation of the divergence is soft binary cross-entropy, where each step (st,at) has a target
yt ∈ [0, 1]:

Lprocess = −
∑
t

[yt log ŷt + (1− yt) log(1− ŷt)] , (2)

where ŷt = RD(s, a) is the predicted probability that the step (st,at) is correct.

In contrast, an outcome reward model (ORM) only evaluates the correctness of the final answer,
disregarding individual reasoning steps. Let o represent the final outcome of the reasoning process.
We can similarly learn an ORM through binary classification, where the final outcomes o are labeled
with binary labels youtcome ∈ {0, 1}:

Loutcome = −
∑
i

[
youtcome,i log ŷoutcome,i

+ (1− youtcome,i) log(1− ŷoutcome,i)
]

(3)

where ŷoutcome,i = Routcome(oi) is the predicted probability that the final outcome oi is correct.

Linear search in test-time inference: Test-time inference often requires efficient search strategies
to navigate the potential solution space. We define linear search algorithms as those that operate
with a fixed compute budget and a predetermined width of potential completions. Prior work Snell
et al. (2024) leverages linear search algorithms like Beam Search and Best-of-N to find near-optimal
solutions during inference.

In Best-of-N, n candidate solutions are generated and the solution with the highest evaluation score
is selected:

ŷ = arg max
yi∈{y1,y2,...,yn}

S(yi) (4)

Here, S, is either an outcome or process reward or score function, and ŷ is the selected output.

In beam search, multiple solution paths are expanded in parallel. At each step t, the algorithm retains
the top k candidates based on their scores S(y1:t):

Bt = Top-k ({y1:t−1 · yt | yt ∈ Y}, S(y1:t)) (5)

where Bt represents the set of the top k sequences at step t, Y is the set of all possible tokens,
and S(y1:t) is the evaluation score of the sequence y1:t. These methods provide varying trade-
offs between computational efficiency and search accuracy, helping to explore the reasoning space
effectively during inference.

Linear Search Non-Linear Search

Fixed Compute Allocation

Adaptive Reallocation

Figure 2: Linear vs Non-Linear Search Linear search assumes
a fixed compute allocation during inference time. However, with
Non-Linear search, we can adaptively allocate inference time com-
pute to parts of the reasoning chain that require more computation.

Linear Search methods can be ef-
fective in parallel sampling scenar-
ios, where sequential revisions of a
solution are not possible, enabling
the discovery of better solutions than
single-shot sampling from the model.
A non-linear search algorithm, in
contrast, can adaptively allocate in-
ference time compute. This can al-
low for more inference time compute
to be spent on portions of the prob-
lem that are harder to get right. To
build a non-linear search algorithm,
we will formalize our intuitions in a
multi-step single-turn Markov Deci-
sion Process (MDP), which we de-
scribe next.

3



Published as a conference paper at ICLR 2025

Multi-step, Single-turn Markov Decision Process (MDP) for Reasoning: A reasoning chain in
test-time inference can be conceptualized as a multi-step Markov Decision Process (MDP). We for-
mally define a reasoning chain as a trajectory with a bounded horizon H , represented as (s, a, r, t)H0 .
These trajectories originate from a dataset of prompts x and responses y, which is decomposed into
several semantic steps a1, a2, · · · , at that, when concatenated, reconstruct the original response y.

We formally define our MDP as:

M = (S,A, T , R, γ, ρ0) , (6)

where:
• S: The state si at timestep i is the current prompt x and the set of previous semantic steps
a0...i−1.

• A: The action ai is the next semantic step in the reasoning chain.

• T : The transition dynamics function is concatenation: P (s′|s, a) = concat(s, a).

• R: The reward r = R(s, a), evaluates the quality or relevance of the current semantic step.

• γ: The discount factor.

• ρ0: The initial state distribution, representing the distribution of initial prompts xi.

3 BACKTRACKING FOR SEQUENTIAL IMPROVEMENT

To motivate our backtracking approach, we first consider a didactic problem where an LLM has the
goal of generating a repeating sequence of digits from 0 to 9. The task involves producing a correct
sequence over N = 1500 tokens, evaluated by exact match. This setup is depicted in Figure 3.
Suppose a base model performs well overall but consistently struggles with generating the digit 6
when t ≡ 6 mod 10, outputting 6 only 5% of the time and incorrectly outputting 1 otherwise. The
base policy is defined as:

πbase(at | st) =


Pr(at = 6) = 0.05, if t ≡ 6 mod 10,

Pr(at = 1) = 0.95, if t ≡ 6 mod 10,

Pr(at = d ̸= 6) = 1, if t ≡ d mod 10.

With over 150 opportunities to generate the digit 6, this model outputs it correctly only ≈ 8 times,
leading to 142 errors that compound across the sequence.

Mod 10 Didactic Task
State

(context) 01234567890123

Action
(single token) 4

Reward
(Outcome)

Gen: 01234567890123..51789
Targ: 01234567890123..56789

0

Horizon
(N) 1500

Figure 3: Didactic Task: Mod 10 sequence genera-
tion. The state is the context or the set of characters
generated so far. The action is a single character that
is generated. The horizon of generation is 1500 char-
acters. The reward is provided at the outcome level,
whether the sequence matches the target sequence.

Linear Search is not enough: Linear search
algorithms like Best-of-N struggle in this sce-
nario, and would need to generate E[N ] =
20150 tokens, which is computationally infeasi-
ble. For these types of uncorrelated errors, the
expected number of tokens required to produce
a fully correct sequence increases exponentially
with the number of errors. In contrast, non-
linear search algorithms, such as backtracking,
can use compute resources more efficiently. By
allowing the model to retry from before an er-
roneous state, it can iteratively correct mistakes
without regenerating correct parts of the se-
quence. For example, if an oracle identifies the
error location in a solution, backtracking to it
and applying Best-of-N from there can fix a sin-
gle mistake with E[N ] = 20. Repeating this
process across 150 errors yields an expected
sample complexity of E[N ] = 20× 150, which
is linear in the number of errors. This high-
lights the need for non-linear search methods
like backtracking, which avoid wasted compu-
tation. We will now devise a framework for effective backtracking.

4



Published as a conference paper at ICLR 2025

3.1 BACKTRACKING FRAMEWORK FOR SOLUTION REVISION

In this work, we develop an effective framework for non-linear search via backtracking. Doing so
requires answering the following key questions: (1) How can we identify problematic parts of a
solution and revise them? (2) Can we leverage the history of sequential revisions to better guide
search and identify problematic parts of a solution? (3) What are practical considerations to max-
imize efficacy and robustness of such a backtracking framework? In the following discussion, we
answer each of these questions.

Localizing incorrect steps with PRMs. The first key component of the framework is identifying
where in the solution a mistake appears. One natural choice for this is the advantage function,
Aπ(s, a), which measures the difference in the expected success of a particular action at a particular
state (i.e., step of a reasoning chain) compared to a baseline V π(s), or the expected success of
actions queried from a proposal distribution or base policy. More formally, this is defined as:

Aπ(s, a) = Qπ(s, a)− V π(s) (7)

Intuitively, here the baseline can be viewed as a form of calibration/normalization, where the ad-
vantage function not only considers the expected success rate (PRM, Qπ(s, a)) but the success rate
relative to the performance of the proposal distribution or policy.

When the advantage function is low for a step, this means that this step is largely reducing the
probability of arriving at the right answer. Therefore, backtracking and resampling may be desirable
as a better step can be obtained from the proposal distribution. This motivates using the minimum
advantage step within a trajectory τ to revise from:

irevise = min
i

A(si, ai), i ∈ {1, . . . ,H} (8)

where H is the horizon of a trajectory τ .

Modeling two different functions, Qπ(s, a) and V π(s) is undesirable due to computational ineffi-
ciencies in training and querying both functions. One thing we can leverage is that the dynamics of
the underlying MDP (as seen in Section 2) is deterministic. Thus, we can choose to model only a
Q-value function (PRM), Qπ(s, a) and use it to compute V π(s). This can be done by querying the
function at the previous state, computing the advantage as the value difference between subsequent
steps within the trajectory.

Aπ(s′, a′) = Qπ(s′, a′)−Qπ(s, a), where s′ = concat(a, s),
irevise = min

i
Qπ(si, ai)−Qπ(si−1, ai−1) (9)

This reformulation allows us to additionally view the advantage as a measure of progress, or how
much an action contributes to the success of a trajectory.

Completing revisions and stopping criterion. Once the problematic step irevise has been identi-
fied, we can re-sample the entire suffix of the solution, conditioned on the partial solution before
the minimum advantage step with a linear search algorithm such as Best-Of-N sampling or Beam
Search. The value function evaluated at the final step serves the role of an outcome-level reward sig-
nal. Therefore, we can use the value-function for this search procedure that seeks to generate the full
revised solution. Additionally, we can do this process for multiple rounds, allowing for subsequent
revisions from the previously modified reasoning chain(s). We perform this backtracking process a
maximum of M times, ensuring that the revision process does not continue indefinitely and we can
control the sample budget.

3.2 IN-CONTEXT VALUE VERIFIERS

So far, we built a simple algorithm to identify problematic steps in a reasoning chain and find al-
ternative completions. While effective, this approach is fairly naı̈ve by itself: most of the efficiency
gains so far come only from prefix sharing. This means that if the base model were prone to repeat-
edly making the same underlying mistake, but it does so in several diverse natural language phrases,
our approach may not be the most effective at improving token efficiency. One way to address this
problem is ensure that the value function used for scoring completions is made aware of the mistakes
made by the LLM in previous search attempts. To do so, in this section, we will extend verifiers to
include some notion of “state” of the search process. This can be done by conditioning the verifier
on a linearization of the entire search procedure so far, which we denote as in-context verifiers.

5



Published as a conference paper at ICLR 2025

Formally, sequential revisions for test-time inference can be viewed as a multi-step and multi-turn
Markov Decision Process (MDP). We define a multi-turn revision trajectory τ as τ = {s, a, r, t}H0
of a bounded horizon H , where each of the N revisions has a sub-horizon (i.e., token lengths)
H1, H2, · · ·HN . These revision trajectories are constructed from several individual reasoning chains
consisting of a prompt x and response y. Here, the response is broken into several semantic steps
a1, a2, · · · at, which when concatenated form the original response y.

Given a dataset of revision traces, we can formally we define a modified MDPMmultiturn from our
Multi-Step, Single-Turn MDPM (Defined in Section 2) as:

Mmultiturn = (Smultiturn,A, T , R, γ, ρ0) , (10)

where the state si ∈ Smultiturn at step i in revision turn k consists of the current prompt x, the
sequence of current turn reasoning steps a(k)0...i−1, and previous turns’ reasoning steps a(1...k−1)

0...H , and
the turnwise context c0...k−1.

Figure 4: Learnt PRM Values: Here we plot the value
based PRM for successful and unsuccessful trajectories.
For successful trajectories (left), we see monotonically
increasing values that match the target Monte-Carlo Re-
turn. For negative trajectories (right), we see the value
increase and then decrease after a mistake is made, al-
lowing us to identify, where to revise from.

Training in-context verifiers. Given the MDP
Mmultiturn, we can define familiar reinforcement
learning objects such as a policy π(a|s) and a
value function Qπ(s, a). These objects can be
designed to interact at both a stepwise and turn-
wise level, enabling a comprehensive supervi-
sion process that leverages the history of past
revisions and turnwise feedback, to be adaptive
to prior attempts.

In particular, the value function Q(s, a) can
be conditioned on both the current reasoning
chain and the steps from prior revisions. Let
{y1, y2, . . . , yk−1} represent the set of past k−
1 revisions, where each revision yj has its own
sequence of steps {a(j)1 , a

(j)
2 , . . . , a

(j)
Hj
}. The value function at any step i within the k-th revision can

then be expressed as Q(snew, a), where snew is defined as:

snew = (x, a
(1)
1 , a

(1)
2 , . . . , a

(1)
H1

, . . . , a
(k)
i , c0...k−1, k) (11)

Here the turnwise context c0...k−1 are additional tokens in the form: ”Is the turn correct? [yes/no]”.
This allows the model to understand whether the steps taken in prior revisions were correct or incor-
rect, providing the value function the outcome of its previous attempts in context.

We can model the cumulative Monte-Carlo return-to-go estimate over all future revisions (given a
fixed horizon of revisions), accounting for the potential improvement or deterioration of the solution
as further revisions are made. The cumulative returnRt for step t in the k-th revision is:

Rt =

Hk∑
i=t

R(si, ai) +

N∑
j=k+1

Hj∑
o=1

R(so, ao) (12)

where Hk is the subhorizon of the current revision, N is the total number of revisions, and so, ao
denotes the states and actions in future revisions. This cumulative return models the expected fu-
ture rewards from both the current revision and subsequent revisions, allowing the policy to make
decisions that optimize long-term performance across all revision stages.

Intuitively, leveraging the context of prior revisions enables the model to implement effective strate-
gies such as becoming more confident about a certain mistake, allowing for error correction in
subsequent attempts, or more confident about previously successful steps, allowing for further pos-
itive reinforcement. In contrast, the single-turn value function would potentially lead to the same
deterministic set of failure actions over revision turns as the value function is unable to adapt to pre-
vious attempts that the policy has tried. This allows the algorithm to be adaptive to new problems,
where multiple attempts may be needed to solve a task successfully. Let’s now consider additional
practical considerations for instantiating such a backtracking framework.

6



Published as a conference paper at ICLR 2025

3.3 PRACTICAL CONSIDERATIONS FOR BACKTRACKING

Below, we will lay out two practical considerations: (1) tempering distribution with a balanced
verifier trained on on-policy samples, and (2) Advantage smoothing for effective backtrack step
selection.

Figure 5: Outcome Accuracy of PRM. We evaluate
the outcome accuracy of different variants of the pro-
cess supervision models. Here, both on-policy sam-
pling and label-balancing leads to higher accuracies
for successful and failure trajectories.

Tempering Distribution Shift of PRMs with
On-Policy Sampling and Label Balancing. A
primary challenge in maintaining the robust-
ness of the value function is the distribution of
responses it is trained on. Typically, the PRM
is initialized using an offline dataset, such as
PRM800K, but a significant distribution shift
often occurs between the policy’s responses
during inference and the data used for the ini-
tial value function training. This shift can lead
to the value function inaccurately assessing the
quality of the base policy’s step proposals, re-
sulting in sub-optimal outcomes.

To counteract this distribution shift, both the
PRM and in-context value verifier are fine-
tuned with on-policy samples, following Snell
et al. (2024) and Luo et al. (2024), allowing the PRM to better identify specific types of errors made
by the proposal model during inference.

Another source of distribution shift is that the set of traces encountered with backtracking at test
time are primarily unsuccessful as successful traces are no longer revised as the success threshold
would be met. Thus, we introduce a label-balancing mechanism during the fine-tuning of the PRM
and in-context value verifier to bring the label distribution closer to what is seen during inference
with backtracking. Specifically, let D = Dpositive ∪ Dnegative be a dataset where Dpositive and Dnegative
represent successful and unsuccessful trajectories respectively, and both sets are balanced such that
|Dpositive| = |Dnegative|.
Advantage smoothing for effective backtrack step selection. Depending on the model’s capacity
and expressivity, value predictions can be incorrect or even ambiguous, leading to the predictions
not satisfying basic constraints such as positive monotonicity of values for a trajectory that reaches a
desired goal. Therefore, approaches such as temporal smoothing Lee et al. (2024) are used in model-
based RL to stabilize reward prediction. For backtracking, similar estimation errors in computing
the advantage function can lead to suboptimal revision step selections. Thus, we introduce a strategy
to smooth the value function during the selection process, which we denote as minimum advantage
with tie margin, where the revision step with the smallest advantage value is selected, but a margin
of tolerance is allowed.

Formally, let A(i) = A(si, ai) denote the advantage for step i in a trajectory τ = {(si, ai)}H0 , and
ω denote the tie margin. We identify the minimum advantage value Amin = mini A(i), and then
select the first step ismooth satisfying:

ismooth = min
j
{j : |Amin −A(j)| ≤ ω} (13)

This relaxation allows for a more conservative step to be selected for backtracking, reducing like-
lihood of unrecoverable states, which can significantly hinder the success of the solution chain of
thought. In particular, if the revision point precedes where an unrecoverable error is introduced, the
revision process can more likely correct the trajectory.

We provide an algorithmic representation for our backtracking framework for multiple turns of se-
quential revision, given a fixed test-time budget in Algorithm 1.

4 EXPERIMENTAL EVALUATION

To evaluate how backtracking would perform on reasoning problems, we consider mathematical
reasoning problems from the Hendrycks MATH dataset (Hendrycks et al., 2021) and competitive
programming problems from CodeContests (Li et al., 2022). These datasets span a broad level of

7



Published as a conference paper at ICLR 2025

Figure 6: Backtracking allows for better test time sample efficiency, measured by generated tokens vs
accuracy. Here we allow for up to 4 revisions using the Oracle PRM (math [left], code [middle]) and 8
revisions with the learnt PRM (right). We compare with two baselines: Best-of-N and revising from a random
step to show the efficacy of localizing errors with the PRM. The choice of suffix generation after a step to revise
from is identified is Best-of-N sampling with N=4 for the oracle PRM and N=16 for the learnt PRM.

mathematical and coding topics ranging from high school to university level. We use the Llama
3.1 8B Instruct Model (Dubey et al., 2024) for MATH and Yi Coder 9B Chat (AI et al., 2025) for
CodeContests. For verification labels and evaluation, we using scoring from Lightman et al. (2023)
and Brown et al. (2024). To validate the backtracking framework, we explore three key experimental
questions.

Figure 7: Outcome and Process Metrics for Value
Functions: We plot the aggregate (left) outcome accu-
racy and (right) process-wise MSE from ground truth
monte-carlo return-to-go estimate. For both metrics, we
find that parameterizing the PRM in the Multi-Turn for-
mulation leads to better performance.

1. Can backtracking more efficiently lever-
age test-time compute than linear search al-
gorithms? Our main results can be found in
Figure 6. To measure compute vs performance,
we compare the number of generated tokens vs
accuracy (coverage). We consider two settings:

(a) Oracle PRM – In this setting, we use
an oracle PRM as our verifier. We
compare our advantage-based back-
tracking algorithm with two baselines,
one which backtracks to the first step
(i.e., linear search), and one which
backtracks to a random step.

(b) Learnt PRM – For our second setting,
we learn two PRMs or value function, one single-turn and other multi-turn (in-context)
which conditions on prior-revisions in history. We use the learnt PRM for backtracking
and the baselines.

Figure 8: Evolution of Values over Backtracking It-
erations in a Reasoning Problem: We plot the evolu-
tion of (left) value (PRM) and (right) advantages for
steps in a reasoning problem. In revision iterations dur-
ing backtracking, the value of the trajectory is able to
be successfully optimized to be monotonically increas-
ing over steps. The advantage can successfully identify
a problematic step midway in the trajectory, leading to
successful revisions.

For the oracle PRM, we find that backtrack-
ing leads to a ≈ 15% improvement over linear
search (backtracking from the first step). We
also observe significant performance gain over
the random step baseline, demonstrating the ne-
cessity of accurate error localization. We see
similar trends with the learned value functions,
comparing a single-turn value function, multi-
turn (in-context) value function, and baselines
of revising from the first and random steps.

2. How effective are the learnt PRMs at lo-
calizing errors for backtracking? To further
supplement our findings, we verify in Figure
7 that the learnt PRM indeed scores reasoning
steps correctly. We consider two metrics: (1)
outcome accuracy of the PRM, allowing us to
determine if the PRM can correctly identify if a
reasoning chain is incorrect/correct, and (2) step-wise Mean Squared Error (MSE) from the ground
truth monte-carlo return-to-go estimate, to evaluate how the PRM performs on intermediate rea-
soning steps on held-out queries and steps. We additionally use this metric to compare different
parameterizations of our value function such as the turn-independent PRM and turn-dependent in-

8



Published as a conference paper at ICLR 2025

Solution with Mistake


# Question


Two bicycle racers cross the starting line on a circular track at 12:15 PM. One cyclist 
takes $12$ minutes per lap, while the other completes a lap every $16$ minutes. 
Assuming their speeds remain constant, what is the next time they cross the starting 
line together?  Your answer should be in the form $h:m_1m_2,$ like 3:45.


# Solution


[STEP] 0. I need to find the time it takes for both cyclists to complete a whole number of 
laps, since that would mean they cross the starting line together. [/STEP]


[STEP] 1. I can use the least common multiple (LCM) of $12$ and $16$ to find that time. 
[/STEP]


[STEP] 2. The LCM of $12$ and $16$ is $48,$ since that is the smallest positive number 
that both $12$ and $16$ divide into evenly. [/STEP]


[STEP] 3. This means that every $48$ minutes, both cyclists complete a whole number 
of laps and cross the starting line together. [/STEP]


[STEP] 4. To find the next time they do this, I need to add $48$ minutes to the current 
time of $12:15$ PM. [/STEP]


[STEP] 5. I can add the minutes by keeping the hours the same and adding $6$ to the 
minutes, since $15 + 33 = 48.$ [/STEP]


[STEP] 6. This gives me $12:51$ PM as the next time they cross the starting line 
together. [/STEP]


[STEP] # Answer


12:51 [/STEP]


Backtracking


# Question


Two bicycle racers cross the starting line on a circular track at 12:15 PM. One cyclist 
takes $12$ minutes per lap, while the other completes a lap every $16$ minutes. 
Assuming their speeds remain constant, what is the next time they cross the starting 
line together?  Your answer should be in the form $h:m_1m_2,$ like 3:45.


# Solution


[STEP] 0. I need to find the time it takes for both cyclists to complete a whole number of 
laps, since that would mean they cross the starting line together. [/STEP]


[STEP] 1. I can use the least common multiple (LCM) of $12$ and $16$ to find that time. 
[/STEP]


[STEP] 2. The LCM of $12$ and $16$ is $48,$ since that is the smallest positive number 
that both $12$ and $16$ divide into evenly. [/STEP]


[STEP] 3. This means that every $48$ minutes, both cyclists complete a whole number 
of laps and cross the starting line together. [/STEP]


[STEP] 4. To find the next time they do this, I need to add $48$ minutes to the current 
time of $12:15$ PM. [/STEP]


[STEP] 5. Adding $48$ minutes to $12:15$ PM gives me $1:03$ PM. [/STEP]


[STEP] 6. Therefore, the next time they cross the starting line together is $1:03$ PM. [/
STEP]


[STEP] # Answer


1:03 [/STEP]<|eot_id|>


Error  
Localization 
with PRM

Correct  
Revision

Figure 9: Qualitative Example of Revision: In the example revision, the PRM is able to localize where an
error is made in the incorrect solution and correct a modular arithmetic mistake.

context value verifier. As seen in Figure 7, the absolute performance of the PRM is high for both
variants with a high outcome accuracy and low step-wise MSE. Additionally, the in-context, multi-
turn PRM can lead to both better outcome accuracy and step-wise MSE. These metrics show the
efficacy of the learnt PRM at both an outcome and process level, enabling to use the PRM for both
identifying if an error occurred in a reasoning chain and where it did.

Furthermore, we qualitatively examine how the behavior of the PRM (value function) evolves over
reasoning steps as seen in Figure 4. For correct solutions, the value function should predict mono-
tonically increasing values, while for incorrect solutions, a drop in the value occurs after a mistake
has been made.

3. Do sequential revisions through backtracking exhibit desired behaviors? We conduct a
qualitative analysis of the revision trajectories generated by our backtracking framework. We present
a visualization of the revision trajectories in Figure 9, highlighting in an example reasoning problem
in the MATH dataset, an error in modular arithmetic that was correctly identified by the PRM.

We also provide visualizations of the evolution of the learnt value function and corresponding ad-
vantage over sequential revisions in Figure 8. The advantage is a useful criterion to identify where a
mistake has been made in the trajectory, where resampling just a single revision leads to a successful
outcome. Additionally, backtracking enables effective ”optimization” over the learnt values, where
future revisions have a larger value over reasoning steps than previous revisions.

5 RELATED WORK

Learning and leveraging process-level supervision for LLMs The idea of using process-level
supervision was popularized in Uesato et al. (2022) and more recently in Lightman et al. (2023).
Both of these works show the promise of using PRMs for MATH. Building upon this idea, papers
such as Math-Shepherd (Wang et al., 2023), MiPS (Wang et al., 2024), and OmegaPRM (Luo et al.,
2024) present more efficient automated ways to gather data for process-level rewards.

Parallel sampling in test-time inference Test-time inference with search has been extensively stud-
ied in works such as Feng et al. (2024); Yao et al. (2023); Hao et al. (2023). One key part of this
equation is the way samples are selected (Welleck et al., 2024). A common paradigm involves gen-
erating multiple trajectories in parallel, then employing some type of model or function to merge
these trajectories. In particular, during test-time inference, the integration of a reward model with
a proposal distribution (LLM) can be employed to refine the output responses to a given prompt.
For instance, search algorithms such as best-of-N (Charniak & Johnson, 2005) and beam search
have been explored in works such as Snell et al. (2024), which leverage reward models to select
the most promising candidate samples in reasoning tasks. Another notable family of techniques
include self-consistency (Wang et al., 2023) and weighted majority voting (Uesato et al., 2022). In

9



Published as a conference paper at ICLR 2025

self-consistency, the model selects the responses generated with highest frequency across multiple
samples. This can be used jointly with our approach, being verifier agnostic.

Iterative revisions in test-time inference An alternative paradigm to parallel sampling in test-
time inference is iterative revisions of reasoning steps. Prior work such as RISE (Qu et al., 2024),
SCoRe (Kumar et al., 2024) and Self-Refine (Madaan et al., 2023) parameterize a proposal distribu-
tion that can correct mistakes in an incorrect solution. This approach is complementary as our fixed
proposal distribution can be substituted with the modified learned distribution from these works.

6 DISCUSSION, CONCLUSION, AND LIMITATIONS

In this work, we present a framework for sequential response improvement for reasoning problems
with PRM-based backtracking. Backtracking allows the model to localize where an error has been
made in the response and make targeted revisions to resolve mistakes in a reasoning chain efficiently.
We additionally introduce in-context verifiers to allow the verifier to adapt its predictions throughout
the search process conditioned on prior attempts at a solution, increasing confidence about a mistake
it has made in the past and reinforcing behavior that has led to success. Evaluating this framework
with oracle and learned verifiers in the MATH domain, we achieve a ≈ 15% improvement in test-
time compute efficiency compared to linear search algorithms.

There are many open questions and limitations. While we used a fixed proposal distribution for
the responses, methods like RISE (Qu et al., 2024) use self-improvement to steer the distribution.
Could this be combined to enhance sequential corrections? Additionally, our analysis focused on
training a verifier on a single reasoning domain. Can we develop a general verifier applicable across
domains such as legal reasoning and robotic planning? How does scaling to multiple domains af-
fect performance, especially in areas where stepwise reasoning is less clearly defined, like creative
writing?

7 IMPACT AND REPRODUCABILITY STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here. For reproducibility, we provide the following details so readers can replicate the results found
in our paper. Firstly, we provide algorithm pseudocode as seen in Algorithm 1, giving the reader
transparency in how to replicate the backtracking framework. Additionally, we provide details on
how the dataset is curated such as the prompt template as seen in Appendix A.2 and Hyperparameter
Details in Appendix A.5. Finally, we provide evaluation details in both the main text in Section 4
and Appendix A.6.

10



Published as a conference paper at ICLR 2025

REFERENCES

01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin
Wang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu,
Shawn Yue, Senbin Yang, Shiming Yang, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren,
Xinyao Niu, Pengcheng Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu
Gu, Zhiyuan Liu, and Zonghong Dai. Yi: Open foundation models by 01.ai, 2025. URL https:
//arxiv.org/abs/2403.04652.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics, ACL ’05, pp. 173–180, USA, 2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219862. URL https://doi.org/10.3115/1219840.1219862.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha

11

https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2407.21787
https://doi.org/10.3115/1219840.1219862
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168


Published as a conference paper at ICLR 2025

Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training,
2024. URL https://arxiv.org/abs/2309.17179.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023. URL https://arxiv.
org/abs/2305.14992.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992


Published as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksan-
dra Faust. Training language models to self-correct via reinforcement learning, 2024. URL
https://arxiv.org/abs/2409.12917.

Vint Lee, Pieter Abbeel, and Youngwoon Lee. Dreamsmooth: Improving model-based rein-
forcement learning via reward smoothing, 2024. URL https://arxiv.org/abs/2311.
01450.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-
9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.
abq1158.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step. arXiv e-prints,
art. arXiv:2305.20050, May 2023. doi: 10.48550/arXiv.2305.20050.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision, 2024. URL https://arxiv.org/abs/2406.
06592.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine:
Iterative Refinement with Self-Feedback. arXiv e-prints, art. arXiv:2303.17651, March 2023. doi:
10.48550/arXiv.2303.17651.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive Introspection: Teaching
Language Model Agents How to Self-Improve. arXiv e-prints, art. arXiv:2407.18219, July 2024.
doi: 10.48550/arXiv.2407.18219.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Com-
pute Optimally can be More Effective than Scaling Model Parameters. arXiv e-prints, art.
arXiv:2408.03314, August 2024. doi: 10.48550/arXiv.2408.03314.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision. arXiv e-
prints, art. arXiv:2403.09472, March 2024. doi: 10.48550/arXiv.2403.09472.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations.
arXiv e-prints, art. arXiv:2312.08935, December 2023. doi: 10.48550/arXiv.2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

13

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2311.01450
https://arxiv.org/abs/2311.01450
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2203.11171


Published as a conference paper at ICLR 2025

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision, 2024. URL https://arxiv.org/abs/2402.02658.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models, 2024. URL https://arxiv.org/abs/2406.16838.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

14

https://arxiv.org/abs/2402.02658
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2305.10601


Published as a conference paper at ICLR 2025

A APPENDIX

A.1 ALGORITHM

Algorithm 1 Iterative Backtracking and Solution Revision
Require: Initial solution trajectory τ = {s1, s2, . . . , sN}, Maximum iterations M , Advantage

threshold ω, Success threshold pdes
Ensure: Revised solution trajectory τ ′

1: m← 0
2: τbest ← τ
3: Compute the initial advantage function A(si, ai) for each step i in τ
4: while m < M do
5: irevise ← argmini A(si, ai)
6: Compute ismooth via: ismooth = argminj{j : |A(sirevise , airevise)−A(sj , aj)| ≤ ω}
7: Resample the suffix of the trajectory starting from step T ← ismooth − 1
8: Update the trajectory:

τ ′ ← {s1, . . . , sT−1, s
′
T , . . . , s

′
N}

9: Use a linear search algorithm (e.g., Best-Of-N , Beam-Search) as a subroutine, conditioning
on the prefix up to step T − 1

10: if Improved solution found then
11: τbest ← τ ′

12: end if
13: Let (sN , aN ) be the last state and action in τbest
14: if Q(sN , aN ) ≥ pdes then
15: break {Stop if success threshold met.}
16: end if
17: m← m+ 1
18: end while
19: return τbest

A.2 DATASET CURATION

We provide additional details in the training datasets used to train the base policy πbase and PRM.

A.2.1 PROMPT TEMPLATE FOR MATH

We use the prompt template in Figure 10 in the training of our PRM and base policy πbase (proposal
distribution). We add four additional tokens ’[STEP]’, ’[/STEP]’, ’[TURN]’, ’[/TURN]’ to the vo-
cabulary of our tokenizer that corresponds to the beginning and end of a step or the beginning and
end of a revision.

A.3 OFFLINE DATASETS

For the base policy πbase and the offline verifier, we utilize the dataloaders from Sun et al. (2024),
which study the PRM800K (Lightman et al., 2023) dataset. Here we use all levels of math problems
(1-5) for both our policy and PRM datasets. We construct a Monte Carlo Estimate using the ground
truth outcome supervision provided in PRM800K (from Stage 1 + 2).

A.4 ON-POLICY DATASET COLLECTION

The on-policy dataset was collected using the following approach. For each question, four rollouts
were generated with the base policy πbase (proposal distribution). These rollouts were then decom-
posed into partial completions, and 20% of these partial completions were further completed using
the current policy and evaluated based on the ground truth reward. In the multiturn setup, each
question underwent up to a fixed number of revisions, ranging from 0 to 4. To construct multiturn
trajectories, with K revisions and N responses per revision, N perm K potential revision trajecto-
ries were considered. Given the large number of possible trajectories, the process was simplified

15



Published as a conference paper at ICLR 2025

Figure 10: Prompt Template for MATH: The prompt template above is used for the MATH dataset. Each
step and revision turn are surrounded by special start and end tokens.

by subsampling J = 100 trajectories from the set of
(
N
K

)
combinations to avoid redundancy and

manage computational complexity.

A.5 HYPERPARAMETERS FOR VALUE FUNCTION TRAINING + POLICY LEARNING

The base policy πbase is initialized with SFT using the following hyperparameters:

Name Values

Learning Rate (lr) 1× 10−6, 1× 10−7

Schedule Cosine

Warmup Ratio 10%

Model LLama 3.1 8B Instruct (Dubey et al.,
2024), Yi 9B Coder Chat (AI et al., 2025)

Table 1: Hyperparameters used for SFT

The PRM Qπ(s, a) is initialized with Monte-Carlo Regression using the following hyperparameters:

A.6 ADDITIONAL EVALUATION DETAILS

We leverage 100 validation queries from the Hendryks Math (Hendrycks et al., 2021) and failure
on-policy reasoning chains to construct the dataset for the Performance-Efficiency tradeoff analysis
and the evaluation of the learnt PRMs. We ensure that each of the validation queries is unique. You
may include other additional sections here.

16



Published as a conference paper at ICLR 2025

Name Values

Learning Rate (lr) 1× 10−5, 1× 10−6

Schedule Cosine

Warmup Ratio 10%

PRM Type Single-Turn, Multi-Turn

Model LLama 3.1 8B Instruct (Dubey et al.,
2024), Yi 9B Coder Chat (AI et al., 2025)

Discount γ 0.8, 0.9, 1.0

Table 2: Hyperparameters used for PRM Training

17


	Introduction
	Preliminaries and Notation
	Backtracking for Sequential Improvement
	Backtracking Framework for Solution Revision
	In-Context Value Verifiers
	Practical considerations for Backtracking

	Experimental Evaluation
	Related Work
	Discussion, Conclusion, and Limitations
	Impact and Reproducability Statement
	Appendix
	Algorithm
	Dataset Curation
	Prompt Template for MATH

	Offline Datasets
	On-Policy Dataset Collection
	Hyperparameters for Value Function Training + Policy Learning
	Additional Evaluation Details


