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ABSTRACT

Understanding transition pathways between meta-stable states in molecular systems
is crucial to advance material design and drug discovery. However, unbiased
molecular dynamics (MD) simulations are computationally infeasible due to the
high energy barriers separating these states. Although recent machine learning
techniques offer potential solutions, they are often limited to simple systems or
rely on collective variables (CVs) derived from costly domain expertise. In this
paper, we introduce a novel approach that trains diffusion path samplers (DPS) for
transition path sampling (TPS) without the need for CVs. We recast the problem
as an amortized sampling of the path measure of transition paths, minimizing the
log-variance divergence between the path measure induced by DPS and that of
transition paths. Leveraging the log-variance divergence, we propose learnable
control variates for reducing the variance of gradient estimators and off-policy
training objective with replay buffers and simulated annealing to improve sample
efficiency and diversity. We also propose a scale-based equivariant parameterization
of the bias forces to ensure scalability for high-dimensional tasks. We evaluate
our approach, coined TPS-DPS, on a synthetic double-well potential and three
peptides: Alanine Dipeptide, Polyproline Helix, and Chignolin. Results show that
our approach produces more realistic and diverse transition pathways compared to
existing baselines. We also provide links to our project page and code.

1 INTRODUCTION

In material design and drug discovery, it is crucial to understand the mechanisms and kinetics of
transitions between meta-stable states of molecular systems, such as protein folding and chemical
reactions (Mulholland, 2005; Piana et al., 2012; Ahn et al., 2019; Spotte-Smith et al., 2022). Their
comprehensive study requires sampling transition paths (Elber, 2016; Lee et al., 2017), which
provides insight into mechanisms and energy landscapes. However, naïvely sampling transition paths
by unbiased molecular dynamics (MD) simulations is often computationally costly due to high energy
barriers, which cause an exponential decay in probability to make a transition (Pechukas, 1981).

To address this problem, researchers have developed enhanced sampling approaches such as steered
MD (SMD; Schlitter et al., 1994; Izrailev et al., 1999), umbrella sampling (Torrie & Valleau, 1977;
Kästner, 2011), meta-dynamics (Ensing et al., 2006; Branduardi et al., 2012; Bussi & Branduardi,
2015), on-the-fly probability-enhanced sampling (OPES; Invernizzi & Parrinello, 2020), and adaptive
biasing force (ABF; Comer et al., 2015) methods. These methods rely on bias forces to facilitate
transitions across high energy barriers. They are mainly designed based on collective variables (CVs),
which are functions of atomic coordinates that capture the slow modes of the transition. Although
effective for some systems, the reliance on expensive domain knowledge limits the applicability of
the methods to systems where CVs are less understood.

Recently, machine learning has emerged as a promising paradigm for CV-free transition path sampling
(TPS) (Das et al., 2021; Lelièvre et al., 2023; Holdijk et al., 2024). The key idea is to parameterize the
bias force using a neural network and train it to sample transition paths directly with the corresponding
biased MD simulation. In particular, Lelièvre et al. (2023) considered reinforcement learning to
sample paths escaping meta-stable states. Das et al. (2021); Hua et al. (2024); Holdijk et al. (2024)
considered TPS problem as minimizing the reverse Kullback-Leibler (KL) divergence between the
path measures induced by the neural network and the target path measure. However, minimizing
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the reverse KL divergence suffers from mode collapse, capturing only a subset of modes of the
target distribution (Vargas et al., 2023; Richter & Berner, 2024). Furthermore, Das et al. (2021);
Lelièvre et al. (2023); Hua et al. (2024) limited their evaluation to low-dimensional synthetic systems.
Designing machine learning algorithms for CV-free TPS for real molecules remains an open problem.

Contribution. In this work, we propose the diffusion path sampler (DPS) to solve the transition
path sampling problem.1 Our approach, coined TPS-DPS, (1) trains the bias force by minimizing
a recently proposed log-variance divergence (Nüsken & Richter, 2021) between the path measure
induced by the biased MD and the target path measure, and (2) uses scale-based parameterization
of the bias force to handle high-dimensional tasks, e.g., Chignolin folding. Specifically, to leverage
desirable properties of the log-variance divergence, such as robustness of gradient estimator and
degree of freedom in reference path measure, we propose to learn control variates for reducing the
variance of gradient estimators and use off-policy training scheme with replay buffer and simulated
annealing to improve sample efficiency and diversity and prevent the mode collapse.

We also introduce a new SE(3) equivariant scale-based parameterization for the bias force to sample
meaningful paths more frequently in training. Our key idea is to predict the atom-wise positive
scaling factor of displacement from current molecular states to the target meta-stable state, which
guarantees the bias force to decrease the distance between them for every MD step. We also use the
Kabsch algorithm (Kabsch, 1976) to align the current molecular states with the target meta-stable
state, guaranteeing SE(3) equivariance of bias force for better generalization across the states.

We extensively evaluate our method on the synthetic double-well potential and three peptides: Alanine
Dipeptide, Polyproline Helix, and Chignolin. We compare TPS-DPS with prior ML approach (PIPS;
Holdijk et al., 2024), as well as classical non-ML methods, e.g., two-way shooting and steered MD
(SMD; Schlitter et al., 1994; Izrailev et al., 1999). Our experiments demonstrate that TPS-DPS
consistently generates realistic and diverse transition paths, similar to the ground truth ensemble.
In addition, we do ablation studies of the proposed components to verify the effectiveness of our
approach. In Appendix C, we further show the promise of our method on three fast folding proteins:
Trpcage, BBA, and BBL (Lindorff-Larsen et al., 2011).

2 RELATED WORK

Transition path sampling (TPS) without ML. Metadynamics (Branduardi et al., 2012), on-the-fly
probability-enhanced sampling (OPES; Invernizzi & Parrinello, 2020), adaptive biasing force (ABF;
Comer et al., 2015), and steered molecular dynamics (SMD; Schlitter et al., 1994; Izrailev et al.,
1999) were introduced to explore molecular conformations that are difficult to access by unbiased
molecular dynamics (MD) within limited simulation times (Hénin et al., 2022). However, they mostly
rely on collective variables (CVs) for high-dimensional problems and are inapplicable to systems
with unknown CVs. To sample transition paths without CVs, Dellago et al. (1998) proposed shooting
methods that use the Markov chain Monte Carlo (MCMC) procedure on path space. In this work, we
compare our method with SMD and variable-length two-way shooting as non-ML baselines.

Data driven ML approaches. Recently, generative models have been trained to sample new transition
paths given a dataset of transition paths. Petersen et al. (2023); Triplett & Lu (2023) and Lelièvre
et al. (2023) applied diffusion probabilistic models (Ho et al., 2020) and variational auto-encoders
(Kingma & Welling, 2013) for transition path sampling, respectively. However, these methods are
limited to small systems. Klein et al. (2024); Schreiner et al. (2024); Jing et al. (2024) proposed
to accelerate MD by generating time-coarsened dynamics, but the time-coarsed dynamics cannot
capture the fine-grained details of the transition, e.g., the transition states. Duan et al. (2023); Kim
et al. (2024) use neural networks to generate transition states of a given chemical reaction, but cannot
generate transition paths.

Data free ML approaches. Without a previously collected dataset, Das et al. (2021); Lelièvre
et al. (2023); Sipka et al. (2023); Hua et al. (2024); Holdijk et al. (2024) trained the bias forces
to directly sample transition paths using the biased MD. Lelièvre et al. (2023) used reinforcement
learning to train the bias forces but focused on escaping an initial meta-stable state rather than
targeting a given meta-stable state. Sipka et al. (2023) used differentiable biased MD simulation to

1We coin our method diffusion path sampler since it samples paths using diffusion SDE, similar to diffusion
samplers (Zhang & Chen, 2022; Vargas et al., 2023) that use diffusion SDEs for sampling the final state.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

train bias potential and introduce partial back-propagation and graph mini-batching techniques to
resolve computational issues in differentiable simulation. Das et al. (2021); Hua et al. (2024); Holdijk
et al. (2024) considered the TPS problem as minimizing the reverse KL divergence between path
distribution from biased MD and transition path distribution. Das et al. (2021); Hua et al. (2024)
limited their evaluation to low-dimensional synthetic systems. In this work, we mainly compare our
method with (PIPS; Holdijk et al., 2024). Recently, Du et al. (2024) considered the TPS problem as
minimizing Doob’s Lagrangian objective with boundary constraints. They parameterized marginal
distribution as (mixture) Gaussian path distribution to satisfy the boundary constraints without relying
on simulation in training time and sampled transition paths with the bias force derived from the
Fokker-Planck equation in inference time.

3 TRANSITION PATH SAMPLING WITH DIFFUSION PATH SAMPLERS

In this section, we introduce our method, coined transition path sampling with diffusion path
sampler (TPS-DPS). Our main idea is to formulate the transition path sampling (TPS) problem as a
minimization of log-variance divergence (Nüsken & Richter, 2021) between two path measures: the
path measure induced by DPS and that of transition paths. Our main methodological contribution
is twofold: (1) a new off-policy training algorithm that minimizes the log-variance divergence with
the learnable control variate, replay buffer, and simulated annealing (2) a SE(3) equivariant scale-
based parameterization of the bias force that provides inductive bias for dense training signals in
high-dimensional problems.

3.1 PROBLEM SETUP
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State A

Figure 1: Problem setup. Potential energy
landscape of Alanine Dipeptide, where the
sampled path from state A to state B is high-
lighted in yellow dotted lines. We visualize
snapshots in the transition path highlighted
in white circles and the transition state high-
lighted in the white star.

Our goal is to sample transition paths from one
meta-stable state to another meta-stable state given a
molecule system. We provide an example of the prob-
lem for Alanine Dipeptide in Figure 1. We view this
as a task to sample paths from an unbiased molecular
dynamics (MD) in Equation (1) conditioned on its
starting and ending points of initial and target meta-
stable states, respectively. To solve this task, we train
the bias force parameterized by a neural network to
amortize the sampling procedure.

Molecular dynamics. We consider a MD simulation
on time interval [0, T ], i.e., the motion of a molecular
state Xt = (Rt,Vt) ∈ R6N at time t where N is
the number of atoms, Rt ∈ R3N is the atom-wise
positions and Vt ∈ R3N is the atom-wise velocities.
In particular, we adopt Langevin dynamics (Bussi &
Parrinello, 2007) defined as the following SDE:

dXt = u(Xt)dt+ΣdWt, u(Xt) =

(
Vt,−

∇U(Rt)

m
− γVt

)
, Σ = diag

(
ζ,

√
2γkBλ

m

)
(1)

whereU , m, γ, kB , λ, and Wt denote the potential energy function, the atom-wise masses, the friction
term, the Boltzmann constant, the absolute temperature, and the Brownian motion, respectively, and
ζ ∈ R3N is a vector of positive infinitesimal values. MD in Equation (1) induces the path measure,
denoted by P0, which refers to the positive measure defined on measurable subsets of the path
space C([0, T ];R6N ) consisting of continuous functions X : [0, T ]→ R6N . The path (probability)
measure P0 induced by MD assigns high probability to a set of the probable paths when solving MD.

Transition path sampling. One of the challenges in sampling transition paths through unbiased MD
simulations is the meta-stability: a state remains trapped for a long time in the initial meta-stable
state A ⊆ R3N before transitioning into a distinct meta-stable state B ⊆ R3N . To capture the rare
event where transition from A to B occurs, we constrain paths X = (Xt)0≤t≤T sampled from
unbiased MD to satisfy R0 ∈ A, RT ∈ B for a fixed time T . Since the meta-stable state A and B
are not well-specified for many molecular systems, we simplify this task by (1) fixing a local minima
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RA,RB of the potential energy function in the meta-stable states A,B and (2) sampling a transition
path X that starts from the state R0 = RA and ends at the vicinity of RB.

To be specific, we aim to sample from the target path measure Q, which is obtained by reweighting
the path measure P0 with the (normalized) indicator function. The indicator function assigns zero
weight to paths that do not reach the vicinity of the target position RB. Formally, the reweighting
function is called the Radon–Nikodym derivative defined as follows:

dQ
dP0

(X) =
1B(X)

Z
, 1B(X) =

{
1 if ∥ρT ·RB −RT ∥ ≤ δ,
0 otherwise,

Z = EP0 [1B(X)] , (2)

where · denotes group action associated with the SE(3) space and ρT · RB is the aligned target
position by the optimal roto-translation ρT ∈ SE(3) to minimize its Euclidean distance to RT , i.e.,
ρT = argminρ∈SE(3)∥RT − ρ · RB∥. Such a transformation can be obtained from the Kabsch
algorithm in O(N) complexity (Kabsch, 1976).

Note that one may consider naïve rejection sampling to sample transition paths, based on running
unbiased MD to sample a path X from the path measure P0 and accepting if the path X arrives
at the neighborhood of the position RB with the radius δ. However, this method does not scale
to high-dimensional or low-temperature problems, since the sampled path by unbiased MD rarely
reaches the target states due to the high energy barriers, i.e., the rejection ratio is too high.

3.2 LOG-VARIANCE MINIMIZATION

In this section, we propose our algorithm to amortize transition path sampling. Our key idea is to
train a neural network to induce a path measure that matches the target path measure Q, using the
log-variance divergence (Nüsken & Richter, 2021) between the path measures. We propose a new
training scheme to minimize the log-variance divergence based on learning the control variate of its
gradient and a replay buffer to improve sample efficiency and diversity.

Amortizing transition path sampling with log-variance divergence. To match the target path
measure Q, we consider a biased MD defined by a policy v (or bias force b) as the following SDE:

dXt = (u(Xt) + Σv(Xt))dt+ΣdWt, v(Xt) = Σ−1

(
0,

b(Xt)

m

)
. (3)

We also let Pv denote the path measure induced by the SDE. To amortize transition path sampling,
we match the path measure Pvθ

of a parameterized policy vθ with the target path measure Q by
minimizing the log-variance divergence:

DP
LV(Pvθ

∥Q) = VP

[
log

dQ
dPvθ

]
= EP

[(
log

dQ
dPvθ

− EP

[
log

dQ
dPvθ

])2
]
, (4)

where P is an arbitrary reference path measure with EP[log(dQ/dPvθ
)] < ∞. To express the log-

variance divergence in detail, we let P = Pṽ for some policy ṽ and apply the Girsanov’s theorem to
Equation (4), deriving the following formulation:

DPṽ
LV(Pvθ

∥Q) = EPṽ

[
(Fvθ,ṽ − EPṽ

[Fvθ,ṽ])
2
]
, (5)

Fvθ,ṽ(X) =
1

2

∫ T

0

∥vθ(Xt)∥2dt−
∫ T

0

(vθ · ṽ)(Xt)dt−
∫ T

0

vθ(Xt) · dWt + log 1B(X). (6)

The first three terms in Equation (6) correspond to the deviation of the biased MD from the unbiased
MD integrated over the path sampled from Pṽ . The last term reweights the unbiased MD to the target
path measure Q. As a result, minimizing Equation (5) could be thought as minimizing the variation
between Pvθ

and Q. We provide the full derivation in Appendix A.1. Compared to KL divergence,
the log-variance divergence provides a robust gradient estimator and avoids differentiating through
the SDE solver. (Richter et al., 2020; Nüsken & Richter, 2021).

Minimizing with learnable control variate. To minimize the log-variance divergence, we consider
the following loss function that replaces the estimation of EPvθ

[Fvθ,vθ
] by learning a parameter w:

L(θ, w) = EPvθ

[
(Fvθ,vθ

− w)2
]
, (7)
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Algorithm 1 Training

1: Initialize an empty replay buffer D̂, an policy vθ, a scalar parameter w, the number of rollout I
and training per rollout J , and an annealing schedule λstart = λ1 > · · · > λI = λend.

2: for i = 1, . . . , I do
3: Generate M paths {x(m)

0:L }Mm=1 from the biased MD simulations with vθ at temperature λi.
4: Update the replay buffer D̂ ← D̂ ∪ {x(m)

0:L }Mm=1.
5: for j = 1, . . . , J do
6: Sample K data {x(k)

0:L}Kk=1 from D̂.

7: Update θ and w with the gradient of 1
K

∑K
k=1

(
log

p0(x
(k)
0:L)1B(x

(k)
0:L)

pvθ
(x

(k)
0:L)

− w
)2

.

8: end for
9: end for

where w is a control variate that controls the variance of the gradient estimator of ∇θL(θ, w)
without changing the gradient. Note that we set ṽ = vθ in Equation (6), which implies that
the gradient of Equation (7) coincides with the KL divergence (Richter et al., 2020; Nüsken &
Richter, 2021). When optimized, the control variate w estimates the expectation EPvθ

[Fvθ,vθ
] since

argminw L(θ, w) = EPvθ
[Fvθ,vθ

]. Thus, jointly optimizing (θ, w) with the gradient step can be
interpreted as jointly minimizing log-variance divergence and estimating EPvθ

[Fvθ,vθ
] using w.

Off-policy training with replay buffer and simulated annealing. To leverage the degree of freedom
in reference path measure for the log-variance divergence, we allow discrepancy between reference
path measure and current path measure, called off-policy training, which is widely used in discrete-
time reinforcement learning (Mnih et al., 2013; Bengio et al., 2021). For the sample efficiency, we
reuse the samples with a replay buffer D which stores path samples from the path measure Pvθ̄

associated with previous policies vθ̄. Our modified loss function LD with D is defined as follows:

LD(θ, w) = E(vθ̄,X)∼D[(Fvθ,vθ̄
(X)− w)2]. (8)

Using the replay buffer also prevents mode collapse, using diverse paths from different path measures.
Similar to other off-policy training algorithms (Malkin et al., 2022; Kim et al., 2023), we use simulated
annealing to collect diverse paths that cross high energy barriers.

Discretization. To implement the algorithm, we discretize Equation (8). Given a discretization step
size ∆t, we consider the discretized paths x0:L = (x0,x1, . . . ,xL) of X from MD simulations
where L = T/∆t and xℓ = X(ℓ∆t). In discrete cases, the discretized paths x0:L from previous
policies vθ̄ and their (gradient-detached) policy values (vθ̄(x0), ...,vθ̄(xL)) are used to approximate
the value Fvθ,vθ̄

(X) in Equation (6) as follows:

F̂vθ,vθ̄
(x0:L) =

1

2

L−1∑
ℓ=0

∥vθ(xℓ)∥2∆t−
L−1∑
ℓ=0

(vθ ·vθ̄)(xℓ)∆t−
L−1∑
ℓ=0

vθ(xℓ) · ϵℓ + log 1B(x0:L) , (9)

where the noise ϵℓ = Σ−1(xℓ+1−xℓ− (u(xℓ)+Σvθ̄(xℓ))∆t) is the discretized Brownian motions
of the Langevin dynamics with policy vθ̄. For implementation, we further derive a simple discretized
loss of Equation (8) from Equation (9) as follows:

Ex0:L∼D̂

[(
log

p0(x0:L)1B(x0:L)

pvθ
(x0:L)

− w
)2
]
, (10)

where the buffer D̂ stores paths x0:L sampled from the previous policies, and p0 and pvθ
denote

discrete time transition probability induced by Equations (1) and (3), respectively. We provide a
formal derivation of the discretized loss in Appendix A.2. Note that the same objective was derived
in the name of relative trajectory balance by Venkatraman et al. (2024).

We describe our training algorithm in Algorithm 1. Overall, our off-policy training algorithm iterates
through four steps: (1) sampling paths from the biased MD simulation with current policy vθ at high
temperature, (2) storing sampled paths in the replay buffer D̂, (3) sampling a batch of the paths from
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the replay buffer, and (4) training current policy vθ by minimizing the loss in Equation (10). After
minimization, biased MD simulation can directly sample transition paths by amortizing inference in
the target path measure.

3.3 PARAMETERIZATION FOR HIGH DIMENSIONAL TASKS

In this section, we introduce new parameterizations of the bias force and the indicator function
for high-dimensional tasks. Our parameterization is designed around alleviating the problem of
sparse training signal, where the model struggle to collect meaningful paths that end near the target
meta-stable state in training. This problem is especially severe in large molecules.

Bias force parameterization. To frequently sample the meaningful paths, we aim to parameterize
the bias force which guarantees to reduce the distance between the current molecular state and the
target meta-stable state for every MD step. This is achieved by predicting the atom-wise positive
scaling factor of the direction to the aligned target meta-stable state rather than predicting force or
potential directly. Moreover, we design the bias force to satisfy roto-translational equivariance to the
current molecular state input Xt, aligning with the symmetry of the transition path sampling problem
for better generalization.

To be specific, we use a roto-translation ρt ∈ SE(3) to align RB with Rt, as we do for indicator
function in Equation (2). To achieve SE(3) equivariant, we parameterize the bias force as follows:

b(Xt) = diag(sθ(ρ−1
t ·Xt))(ρt ·RB −Rt), (11)

where sθ(·) ∈ R3N
+ is a neural network constrained to have positive output elements and predicts

atom-wise scaling factors. We note that the bias force (divided by atom-wise masses) is positively
correlated with the direction to target state, i.e., (b(Xt)/m)⊤(ρt ·RB −Rt) > 0.

To formalize the benefit of positive correlation between the bias force and the direction to the target
state, one can prove that there always exists a small enough step size ∆t that decrease the distance
between the current state Rt and the aligned target state ρ′t+∆t ·RB, i.e.,

∥ρ′t+∆t ·RB −R′
t+∆t∥ < ∥ρt ·RB −Rt∥, (12)

where R′
t+∆t = Rt + b(Xt)∆t/m is the position updated by the bias force with step size ∆t and

ρ′t+∆t = argminρ∈SE(3)∥R′
t+∆t − ρ ·RB∥. We formalize this statement and provide the proof of

Equation (12) in Appendix A.3.

In the experiments, we also consider other equivariant parameterizations that are less constrained:
(1) directly predicting the equivariant bias force by ρt · bθ(ρ−1

t ·Xt) ∈ R3N and (2) predicting the
invariant bias potential bθ(ρ−1

t ·Xt) ∈ R and taking gradient of it∇bθ(ρ−1
t ·Xt). We observe these

two parameterizations to be useful for low-dimensional tasks but struggle to produce meaningful
paths in large molecules during training. As shown in Figure 2, bias forces with the positive scaling
parameterization are positively correlated with the direction to the target position (white circle)
regardless of network parameters, unlike force parameterizations.

(a) Direct prediction (b) Positive scaling

Figure 2: Visualization of bias force fields
from untrained neural networks of two pa-
rameterizations. (a) directly predicting the
bias force and (b) positive scaling parameteri-
zation given the target position (white circle)

Indicator function parameterization. We propose
to relax the indicator function 1B as a radial ba-
sis function (RBF) kernel 1̃B(X) = k(RT , ρ

−1 ·
RB;σ

2) which measures the similarity between two
positions where σ > 0 controls the degree of relax-
ation. The range of RBF kernel k is bounded by
the interval (0, 1] so that log 1̃B(X) is well-defined
and 1̃B(X) represents the binary indicator function
smoothly. To capture a high training signal, we need
to consider high-quality subtrajectories of sampled
paths. To this end, we propose to take maximum
over RBF kernel values of all intermediate states by
1̃max
B (X) = maxt∈[0,T ] k(Rt, R̃B;σ

2). To extract
the subtrajectory with a high training signal, we can
truncate the paths at the time that maximizes RBF
kernel values, allowing variable path lengths. Also,
the relaxed indicator function is SE(3) invariant to Rt due to the Kabsch algorithm.
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Table 1: Benchmark scores on the double-well system and three real-world molecular systems:
Alanine Dipeptide, Polyproline Helix, and Chignolin. All metrics are averaged over 1024 paths for the
double-well system, and 64 paths for real-world molecular systems. ETS is computed for paths that
hit the target meta-stable state, and the best results are highlighted in bold. TPS-DPS predicting the
bias force, potential, and atom-wise scaling are denoted by (F), (P), and (S), respectively. UMD (λ)
denotes unbiased MD with temperature λ and SMD (k) denotes steered MD with the force constant
k. Unless otherwise specified, paths are generated by MD simulation at 1200K for double-well and
300K for real-world molecules. ∗ denotes results reported by Du et al. (2024).

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Double-well

UMD (1200K) 2.21 ± 0.10 0.00 -
UMD (2400K) 2.11 ± 0.38 3.03 1.69 ± 0.31
UMD (3600K) 1.85 ± 0.68 12.60 2.12 ± 0.41
UMD (4800K) 1.54 ± 0.81 21.58 2.77 ± 0.69
Two-way shooting 0.26 ± 0.05 100.00 1.41 ± 0.16
SMD (0.5) 0.98 ± 0.90 52.15 1.54 ± 0.21
SMD (1) 0.14 ± 0.08 99.80 1.85 ± 0.16
TPS-DPS (F, Ours) 0.01 ± 0.02 99.90 1.38 ± 0.16
TPS-DPS (P, Ours) 0.01 ± 0.03 99.71 1.36 ± 0.15
TPS-DPS (S, Ours) 0.01 ± 0.03 99.80 1.73 ± 0.20

Polyproline Helix

UMD (300K) 2.22 ± 0.11 0.00 -
UMD (1200K) 1.38 ± 0.45 10.94 1010.28 ± 38.44
SMD (5k) 1.68 ± 0.17 54.69 350.58 ± 14.36
SMD (10k) 1.26 ± 0.06 100.00 355.62 ± 14.83
PIPS (F) 2.64 ± 0.15 0.00 -
PIPS (P) 1.85 ± 0.13 93.75 574.66 ± 20.49
TPS-DPS (F, Ours) 1.53 ± 0.12 98.44 418.17 ± 45.54
TPS-DPS (P, Ours) 1.35 ± 0.12 100.00 345.00 ± 32.58
TPS-DPS (S, Ours) 1.17 ± 0.02 100.00 342.00 ± 20.28

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Alanine Dipeptide

UMD (300K) 1.59 ± 0.15 0.00 -
UMD (3600K) 1.19 ± 0.32 6.25 812.47 ± 148.80
Doob’s Lagrangian∗ - - 69.26 ± 0.21
Two-way shooting 0.38 ± 0.24 100.00 527.66 ± 450.51
SMD (20) 0.56 ± 0.27 54.69 78.40 ± 12.76
PIPS (F) 0.66 ± 0.15 43.75 28.17 ± 10.86
PIPS (P) 1.66 ± 0.03 0.00 -
TPS-DPS (F, Ours) 0.16 ± 0.06 92.19 19.82 ± 15.88
TPS-DPS (P, Ours) 0.16 ± 0.10 87.50 18.37 ± 10.86
TPS-DPS (S, Ours) 0.25 ± 0.20 76.00 22.79 ± 13.57

Chignolin

UMD (300K) 7.98 ± 0.41 0.00 -
UMD (1200K) 7.23 ± 0.93 1.56 388.17
SMD (10k) 1.26 ± 0.31 6.25 -527.95 ± 93.58
SMD (15k) 1.17 ± 0.31 23.44 -237.15 ± 122.29
PIPS (F) 4.66 ± 0.17 0.00 -
PIPS (P) 4.67 ± 0.32 0.00 -
TPS-DPS (F, Ours) 4.41 ± 0.49 0.00 -
TPS-DPS (P, Ours) 3.87 ± 0.42 0.00 -
TPS-DPS (S, Ours) 1.17 ± 0.66 59.38 -780.18 ± 216.93

4 EXPERIMENT

In this section, we compare our method, called TPS-DPS, with both classical and ML approaches,
assessing the accuracy and diversity of sampled transition paths. We begin with a synthetic double-
well system at 1200K, followed by three real-world molecular systems with various numbers of
amino acids: Alanine Dipeptide, Polyproline Helix, and Chignolin. Additionally, we conduct ablation
studies to validate the effectiveness of each component in our method. All real-world molecular
systems are simulated using the OpenMM library (Eastman et al., 2023). Details on OpenMM
simulation and model configurations are provided in Appendices B.1 and B.2, respectively. In
Appendix C, we further evaluate our method on three fast folding proteins: Trpcage, BBA, and BBL
(Lindorff-Larsen et al., 2011). In Appendix D, we analyze the time complexity of TPS-DPS and
evaluate the number of energy evaluations and runtime in training and inference time.

Evaluation Metrics. We consider three metrics to evaluate models: RMSD, THP, and ETS. The
root mean square distance (RMSD) measures the ability to produce final positions of paths close
to the target position RB, with the final positions aligned to the target. The target hit percentage
(THP) measures the ability to produce final positions of paths that successfully arrive at the target
meta-stable state B. Finally, the energy of the transition state (ETS) measures the ability to identify
probable transition states. For further details, refer to Appendix B.3.

Baselines. We compare TPS-DPS with both non-ML and ML baselines. For non-ML baselines, we
consider unbiased MD (UMD) with various temperatures, variable length two-way shooting with
uniform shooting point selection, and steered MD (SMD; Schlitter et al., 1994; Izrailev et al., 1999)
with various force constants k and collective variables (CVs). For ML baselines, we consider a
CV-free transition path sampling method, path integral path sampling (PIPS; Holdijk et al., 2024)
which also trains a bias force by minimizing the KL divergence between path measures induced by
the biased MD and the target path measure. For simplicity, we denote parameterizations for predicting
force, potential, and atom-wise scaling factors as (F), (P) and (S), respectively.
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Figure 3: Visualization of potential energy landscapes and distributions of the double-well
system. (a) Visualization of the neural bias potential bθ for TPS-DPS (P) in the double-well potential
energy landscape. (b) Distributions of the potential energy (left) and y coordinate (right) of transition
states from 1024 transition paths sampled by each method.
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Figure 4: 16 transition paths sampled from each method on the potential energy landscape of
the double-well system. White circles indicate the meta-stable states and white stars indicate the
saddle points. We sample paths from the left meta-stable state to the right. SMD (k) denotes steered
MD with the force constant k. All paths are generated by MD simulation at 1200K.

4.1 DOUBLE-WELL SYSTEM

We begin by evaluating our method on a two-dimensional synthetic system, i.e., a double-well
potential at 1200K. This system has two global minima (white circles) representing the meta-stable
states, and two reaction pathways via saddle points (white stars). We sample transition paths from
the left meta-stable state RA to the right meta-stable states B = {R | ∥R −RB∥ < 0.5}, using
over-damped Langevin dynamics. We collect ground truth path ensembles by rejection sampling
which proposes paths sampled from the unbiased MD simulations and accepts if the final states are in
the target meta-stable states B. We provide more details on the system in Appendix B.4.

In Table 1, TPS-DPS shows superior performance for the double-well potential regardless of the
bias force design. In Figure 3, the neural bias potential accelerates the transition by increasing the
potential energy near the initial meta-stable state while decreasing the potential energy near the two
energy barriers. Moreover, the distribution of energy and y coordinates of the transition states from
TPS-DPS is closest to the ground truth compared with other baselines, successfully capturing two
reaction channels. In Figure 4, unbiased MD at 1200K fails to escape the initial state while SMD
struggles to pass the saddle points. Our approach generates transition paths more similar to the
ground truth than other methods.

4.2 ALANINE DIPEPTIDE CONFORMATION CHANGE

We first consider Alanine Dipeptide for a real-world molecule consisting of two alanine residues,
sampling transition paths from the C5 (upper left) to the C7ax (lower right) as seen in Figure 5. The
target meta-stable states are defined as B = {R | ∥ξ(R)− ξ(RB)∥ < 0.75}, where ξ(R) = (ϕ, ψ)
is a well-known collective variable which consists of two backbone dihedral angles. Also, Alanine
Dipeptide has two reaction channels between the C5 and C7ax state passing through the saddle
points marked as white stars.

In Table 1 and Figure 5, unbiased MD at 300K fails to escape the initial state, SMD with the two
backbone torsion CV generates transition paths with less probable transition states, and two-way
shooting struggle to find plausible transition states. PIPS generates transition paths of only one
reaction channel, suffering from mode collapse. Compared to the baselines, our method successfully
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(a) UMD (b) Shooting (c) SMD (20) (d) PIPS (F) (e) TPS-DPS (F) (f) TPS-DPS (P)

Figure 5: 16 sampled paths from each method on the Ramachandran plot of Alanine Dipeptide.
White circles indicate meta-stable states and white stars indicate saddle points. We sample transition
paths from the meta-stable state C5 (upper left) to C7ax (lower right). SMD (k) denotes steered MD
with the force constant k. Paths are generated by MD simulation at 300K.

Figure 6: Snapshots of transition path for Alanine Dipeptide (left) and Polyproline Helix (right).

generates diverse transition paths that pass two reaction channels and show superior performance
regardless of the bias force design. For qualitative analysis, we plot the snapshots of the transition
path sample from TPS-DPS in Figure 6.

4.3 POLYPROLINE HELIX ISOMERIZATION

Next, we consider a more complex molecule, Polyproline Helix consisting of three proline residues.
We sample transition paths from the left-handed state (PPII) in the cis-configuration to the right-
handed state (PPI) in the trans-configuration. For simplicity, we define the target meta-stable state
based on handedness H as B = {R | H(R) > 0}. For the formal definition of handedness, refer to
Appendix B.4. As seen in Table 1, our models consistently outperform all baselines: unbiased MD,
SMD, and PIPS. In Figure 8a, a transition path sampled from TPS-DPS crosses the energy barrier
around 0.4ps and changes handedness for 1.5ps. Additionally in Figure 6, we plot the snapshots of
the sampled transition path.

4.4 CHIGNOLIN FOLDING

Finally, we consider a challenging molecule, Chignolin, an artificial protein consisting of 10 amino
acids (Honda et al., 2004), which folds into a β-hairpin structure by hydrogen bonds. We sample
transition paths from the unfolded state (right white circle) to the folded state (left white circle) in
Figure 7. We define the target meta-stable state B = {R | ∥ξ(R)−ξ(RB)∥ < 0.75} where ξ consists
of the top two components of time-lagged independent component analysis (TICA; Pérez-Hernández
et al., 2013). We further describe TICA in Appendix B.4.

In Table 1 and Figure 7, unbiased MD, PIPS, TPS-DPS (F), and TPS-DPS (P) fail to hit the target meta-
stable state. While SMD hits the target meta-stable, its transition paths do not pass probable transition
states. Only TPS-DPS (S) successfully samples transition paths that pass probable transition states.
In Figure 8, we further validate the sampled paths using the potential energy and donor-acceptance
distance of the two key hydrogen bonds. The sampled path forms two key hydrogen bonds, ASP3OD-
THR6OG and ASP3N-THR8O, reducing the donor-acceptance distance below the threshold 3.5Å.
Additionally, the transition time of the sampled path by TPS-DPS is 5ps, where the average folding
time of Chignolin is known to be 0.6µs (Lindorff-Larsen et al., 2011).

4.5 ABLATION STUDY

Effectiveness of algorithmic components. First, we conduct ablation studies to verify the effec-
tiveness of the five proposed components: log-variance loss, learnable control variate, replay buffer,
simulated annealing, and maximum over RBF values for various path lengths. To be specific, we
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(a) UMD (b) SMD (10k) (c) SMD (15k) (d) PIPS (P) (e) TPS-DPS (P) (f) TPS-DPS (S)

Figure 7: 16 sampled paths from each method projected to the top two TICA components. White
circles indicate meta-stable states. We sample transition paths from the unfolded state (right) to the
folded state (left). SMD (k) denotes steered MD with the force constant k. All paths are generated by
MD simulation at 300K. (P) and (S) refer to predicting the bias potential and atom-wise scaling.

(a) Potential energy and CVs over time.
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ASP3N-THR68O
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0.0 ps
<latexit sha1_base64="s78qHaSCpawtOxoc3xMfFWJkTM8=">AAACB3icbVDJSgNBEO2JW4zbqEdBGkNAEMKMSNRb0IvHCGaBTAg9nUrSpGehu0YMQ25e/BUvHhTx6i9482/sLAdNfFDweK+Kqnp+LIVGx/m2MkvLK6tr2fXcxubW9o69u1fTUaI4VHkkI9XwmQYpQqiiQAmNWAELfAl1f3A99uv3oLSIwjscxtAKWC8UXcEZGqltHzrFS+pRD+EB01iPcgVapSfUb3vYB2RtO+8UnQnoInFnJE9mqLTtL68T8SSAELlkWjddJ8ZWyhQKLmGU8xINMeMD1oOmoSELQLfSyR8jWjBKh3YjZSpEOlF/T6Qs0HoY+KYzYNjX895Y/M9rJti9aKUijBOEkE8XdRNJMaLjUGhHKOAoh4YwroS5lfI+U4yjiS5nQnDnX14ktdOiWyqWbs/y5atZHFlyQI7IMXHJOSmTG1IhVcLJI3kmr+TNerJerHfrY9qasWYz++QPrM8fr/SXUw==</latexit>

0.9 ps
<latexit sha1_base64="6Hh97YAUG9Ujc5Tee/1NAjeSudw=">AAACB3icbVDJSgNBEO2JW4zbqEdBGkNAEMKMSvQY9OIxglkgE0JPp5I06VnorhHDkJsXf8WLB0W8+gve/Bs7y0ETHxQ83quiqp4fS6HRcb6tzNLyyupadj23sbm1vWPv7tV0lCgOVR7JSDV8pkGKEKooUEIjVsACX0LdH1yP/fo9KC2i8A6HMbQC1gtFV3CGRmrbh2fFEvWoh/CAaaxHuQKt0hPqtz3sA7K2nXeKzgR0kbgzkiczVNr2l9eJeBJAiFwyrZuuE2MrZQoFlzDKeYmGmPEB60HT0JAFoFvp5I8RLRilQ7uRMhUinai/J1IWaD0MfNMZMOzreW8s/uc1E+xetlIRxglCyKeLuomkGNFxKLQjFHCUQ0MYV8LcSnmfKcbRRJczIbjzLy+S2mnRLRVLt+f58tUsjiw5IEfkmLjkgpTJDamQKuHkkTyTV/JmPVkv1rv1MW3NWLOZffIH1ucPr/qXUw==</latexit>

3.6 ps
<latexit sha1_base64="dYJL36N2A1PGa+ZyrtpY2Flg8zA=">AAACB3icbVDLSgNBEJyNrxhfUY+CDIaAIIRdCdFj0IvHCG4SyIYwO+kkQ2YfzPSKYcnNi7/ixYMiXv0Fb/6Nk8dBEwsaiqpuurv8WAqNtv1tZVZW19Y3spu5re2d3b38/kFdR4ni4PJIRqrpMw1ShOCiQAnNWAELfAkNf3g98Rv3oLSIwjscxdAOWD8UPcEZGqmTPy6XbOpRD+EB01iPc0Xq0jPqdzwcALJOvmCX7CnoMnHmpEDmqHXyX1434kkAIXLJtG45doztlCkUXMI45yUaYsaHrA8tQ0MWgG6n0z/GtGiULu1FylSIdKr+nkhZoPUo8E1nwHCgF72J+J/XSrB32U5FGCcIIZ8t6iWSYkQnodCuUMBRjgxhXAlzK+UDphhHE13OhOAsvrxM6uclp1Kq3JYL1at5HFlyRE7IKXHIBamSG1IjLuHkkTyTV/JmPVkv1rv1MWvNWPOZQ/IH1ucPp+GXTg==</latexit>

4.0 ps
<latexit sha1_base64="CyLrJqpQztyBDNjk4ZfC0hJUDV0=">AAACB3icbVDJSgNBEO1xjXEb9ShIYwgIQpiRGD0GvXiMYBbIhNDTqSRNeha6a8Qw5ObFX/HiQRGv/oI3/8bOctDEBwWP96qoqufHUmh0nG9raXlldW09s5Hd3Nre2bX39ms6ShSHKo9kpBo+0yBFCFUUKKERK2CBL6HuD67Hfv0elBZReIfDGFoB64WiKzhDI7Xto2LhnHrUQ3jANNajbJ5W6Sn12x72AVnbzjkFZwK6SNwZyZEZKm37y+tEPAkgRC6Z1k3XibGVMoWCSxhlvURDzPiA9aBpaMgC0K108seI5o3Sod1ImQqRTtTfEykLtB4GvukMGPb1vDcW//OaCXYvW6kI4wQh5NNF3URSjOg4FNoRCjjKoSGMK2FupbzPFONoosuaENz5lxdJ7azglgql22KufDWLI0MOyTE5IS65IGVyQyqkSjh5JM/klbxZT9aL9W59TFuXrNnMAfkD6/MHr/yXUw==</latexit>

4.5 ps

(b) Visualization of hydrogen bond formation in Chignolin.

Figure 8: Qualitative evaluation on transition path sampled from TPS-DPS. (a) Potential energies
and collective variables (CVs) of Alanine dipeptide, Polyporline Helix, and Chignolin from top to
bottom. For CVs, we plot the distance of the backbone dihedral angles between the current state and
the target state for Alanine Dipeptide, the handedness of the backbone for Polyproline Helix, and the
hydrogen bond distance for Chignolin. One can see that the sampled path successfully transitioned to
the target meta-stable state. (b) Visualization of hydrogen bond formation for Chignolin in a sampled
path. We project a sampled path on the top two TICA components. We visualize the time steps
indicated by the black circles, with each hydrogen bond highlighted in green and yellow.

(1) replace our loss with the KL divergence, (2) replace the learnable control variate with the local
control variate used in Nüsken & Richter (2021), (3) remove the replay buffer and use data only from
the current policy, (4) use only one temperature λ, and (5) remove maximum operation over RBF
kernel values using only the final state.

800 600 400 200
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25
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75
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)
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TPS-DPS (S)

Figure 9: Trade-off between
THP and ETS for various k
in SMD. The further left and
higher up (↖), the better.

As seen in Figure 10, all the proposed components improve perfor-
mance. Our loss is smaller than the KL divergence by more than two
orders of magnitude and significantly improves performance. Learn-
ing the control variate slightly improves performance, showing that
utilizing data from previous policies is effective. The replay buffer
significantly improves training efficiency, and shows that the large
performance gap between our loss and KL divergence comes from
the replay buffer. Simulated annealing for biased MD simulation is
critical to finding transition paths. RMSD does not decrease with-
out simulated annealing while loss decreases significantly. For the
relaxed indicator function, maximum operation accelerates conver-
gence and improves performance with frequent training signals from
the subtrajectories. We further compare with reverse KL divergence
qualitatively in Appendix E.
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Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Ours 0.16 ± 0.06 92.19 19.82 ± 15.88
w/ KL 0.43 ± 0.34 53.12 27.88 ± 14.38
w/ local 0.24 ± 0.15 73.44 22.53 ± 14.45
w/o replay 0.33 ± 0.27 64.06 24.38 ± 12.31
w/o annealing 0.67 ± 0.21 9.38 69.86 ± 30.15
w/o various len 0.23 ± 0.11 75.00 29.49 ± 14.13
w/o equivariance 0.34 ± 0.17 56.25 22.12 ± 16.96

(a) Component-wise performance on Alanine Dipeptide.
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(b) Loss and RMSD curve over rollouts.

Figure 10: Ablation studies on the components of TPS-DPS in the Alanine Dipeptide. (a)
Benchmark scores on Alanine Dipeptide. All metrics are averaged over 64 paths, and we highlight
the best results in bold. ETS is computed for paths that hit the target meta-stable state. (b) Loss and
RMSD curves averaged over 8 different seeds.

Steered MD with varying force constant k. The performance of Steered MD, i.e., SMD differs by
the force constant k. As seen in Figure 9, one can see the trade-off between THP and ETS for various
k values. Nevertheless, TPS-DPS outperforms SMD in THP and ETS without showing a trade-off
between them.

5 CONCLUSION

In this work, we introduced a novel CV-free diffusion path sampler, called TPS-DPS, to amortize
cost of sampling transition paths, using log-variance divergence with the learnable control variate
and off-policy training with the replay buffer and simulated annealing. We also propose new SE(3)
equivariant scale-based parameterization of bias force and relaxed indicator function for frequent
training signals. Evaluations on synthetic double-well and real-molecule systems such as Alanine
Dipeptide, Polyproline Helix, and Chignolin demonstrate superior accuracy and diversity of our
model compared to both classical and ML approaches.

Limitation. While our experiments show promise, they are limited to relatively small (up to 50
amino acids) and fast-folding proteins. The application of our method remains challenging for
real-world proteins with up to 500 amino acids since the MD simulations required for training our
model take significantly longer. For example, our algorithm can be trained for BBL protein with
47 amino acids under 170 GPU hours on a single A5000 GPU. However, training our algorithm on
Glutamine Synthetase (Yamashita et al., 1989) with 469 amino acids would take at least 1700 GPU
hours. Furthermore, our method does not generalize across unseen pairs of meta-stable states or
different molecular systems. These points to an interesting venue for future research, which would be
more appealing for practical applications in drug discovery or material design.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Seihwan Ahn, Mannkyu Hong, Mahesh Sundararajan, Daniel H Ess, and Mu-Hyun Baik. Design and
optimization of catalysts based on mechanistic insights derived from quantum chemical reaction
modeling. Chemical reviews, 119(11):6509–6560, 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Davide Branduardi, Giovanni Bussi, and Michele Parrinello. Metadynamics with adaptive gaussians.
Journal of chemical theory and computation, 8(7):2247–2254, 2012.

Giovanni Bussi and Davide Branduardi. Free-energy calculations with metadynamics: Theory and
practice. Reviews in Computational Chemistry Volume 28, pp. 1–49, 2015.

Giovanni Bussi and Michele Parrinello. Accurate sampling using langevin dynamics. Physical
Review E, 75(5):056707, 2007.

Jeffrey Comer, James C Gumbart, Jérôme Hénin, Tony Lelièvre, Andrew Pohorille, and Christophe
Chipot. The adaptive biasing force method: Everything you always wanted to know but were
afraid to ask. The Journal of Physical Chemistry B, 119(3):1129–1151, 2015.

Avishek Das, Dominic C Rose, Juan P Garrahan, and David T Limmer. Reinforcement learning of
rare diffusive dynamics. The Journal of Chemical Physics, 155(13), 2021.

Christoph Dellago, Peter G Bolhuis, and David Chandler. Efficient transition path sampling: Applica-
tion to lennard-jones cluster rearrangements. The Journal of chemical physics, 108(22):9236–9245,
1998.

Yuanqi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla P Gomes, Alan
Aspuru-Guzik, and Kirill Neklyudov. Doob’s lagrangian: A sample-efficient variational approach
to transition path sampling. In ICML 2024 AI for Science Workshop, 2024.

Chenru Duan, Yuanqi Du, Haojun Jia, and Heather J Kulik. Accurate transition state generation with
an object-aware equivariant elementary reaction diffusion model. Nature Computational Science,
3(12):1045–1055, 2023.

Peter Eastman, Raimondas Galvelis, Raúl P Peláez, Charlles RA Abreu, Stephen E Farr, Emilio
Gallicchio, Anton Gorenko, Michael M Henry, Frank Hu, Jing Huang, et al. Openmm 8: Molecular
dynamics simulation with machine learning potentials. The Journal of Physical Chemistry B, 128
(1):109–116, 2023.

Ron Elber. Perspective: Computer simulations of long time dynamics. The Journal of chemical
physics, 144(6), 2016.

Bernd Ensing, Marco De Vivo, Zhiwei Liu, Preston Moore, and Michael L Klein. Metadynamics as a
tool for exploring free energy landscapes of chemical reactions. Accounts of chemical research, 39
(2):73–81, 2006.

Jérôme Hénin, Tony Lelièvre, Michael R Shirts, Omar Valsson, and Lucie Delemotte. Enhanced sam-
pling methods for molecular dynamics simulations [article v1. 0]. Living Journal of Computational
Molecular Science, 4(1):1583–1583, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths. Advances in
Neural Information Processing Systems, 36, 2024.

Shinya Honda, Kazuhiko Yamasaki, Yoshito Sawada, and Hisayuki Morii. 10 residue folded peptide
designed by segment statistics. Structure, 12(8):1507–1518, 2004.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xinru Hua, Rasool Ahmad, Jose Blanchet, and Wei Cai. Accelerated sampling of rare events using a
neural network bias potential. arXiv preprint arXiv:2401.06936, 2024.

Michele Invernizzi and Michele Parrinello. Rethinking metadynamics: from bias potentials to
probability distributions. The journal of physical chemistry letters, 11(7):2731–2736, 2020.

Sergei Izrailev, Sergey Stepaniants, Barry Isralewitz, Dorina Kosztin, Hui Lu, Ferenc Molnar,
Willy Wriggers, and Klaus Schulten. Steered molecular dynamics. In Computational Molecular
Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on
Algorithms for Macromolecular Modelling, Berlin, May 21–24, 1997, pp. 39–65. Springer, 1999.

Bowen Jing, Hannes Stark, Tommi Jaakkola, and Bonnie Berger. Generative modeling of molecular
dynamics trajectories. In ICML’24 Workshop ML for Life and Material Science: From Theory to
Industry Applications, 2024.

Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica
Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5):922–923,
1976.

Johannes Kästner. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 1(6):932–942, 2011.

Minsu Kim, Joohwan Ko, Dinghuai Zhang, Ling Pan, Taeyoung Yun, Woo Chang Kim, Jinkyoo Park,
and Yoshua Bengio. Learning to scale logits for temperature-conditional gflownets. In NeurIPS
2023 AI for Science Workshop, 2023.

Seonghwan Kim, Jeheon Woo, and Woo Youn Kim. Diffusion-based generative ai for exploring
transition states from 2d molecular graphs. Nature Communications, 15(1):341, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In The Second International
Conference on Learning Representations, 2013.

Leon Klein, Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian Nowozin,
Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular dynamics by
learning time-coarsened dynamics. Advances in Neural Information Processing Systems, 36, 2024.

Juyong Lee, In-Ho Lee, InSuk Joung, Jooyoung Lee, and Bernard R Brooks. Finding multiple
reaction pathways via global optimization of action. Nature Communications, 8(1):15443, 2017.

Tony Lelièvre, Geneviève Robin, Innas Sekkat, Gabriel Stoltz, and Gabriel Victorino Cardoso.
Generative methods for sampling transition paths in molecular dynamics. ESAIM: Proceedings
and Surveys, 73:238–256, 2023.

Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L Klepeis, Ron O Dror,
and David E Shaw. Improved side-chain torsion potentials for the amber ff99sb protein force field.
Proteins, 78:1950–1958, 2010.

Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins
fold. Science, 334(6055):517–520, 2011.

JA Maier, C Martinez, K Kasavajhala, L Wickstrom, KE Hauser, and C Simmerling ff14SB. Im-
proving the accuracy of protein side chain and backbone parameters from ff99sb., 2015, 11. DOI:
https://doi. org/10.1021/acs. jctc. 5b00255, pp. 3696–3713, 2015.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:
5955–5967, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Mahmoud Moradi, Volodymyr Babin, Christopher Roland, Thomas A Darden, and Celeste Sagui.
Conformations and free energy landscapes of polyproline peptides. Proceedings of the National
Academy of Sciences, 106(49):20746–20751, 2009.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adrian J Mulholland. Modelling enzyme reaction mechanisms, specificity and catalysis. Drug
discovery today, 10(20):1393–1402, 2005.

Nikolas Nüsken and Lorenz Richter. Solving high-dimensional hamilton–jacobi–bellman pdes using
neural networks: perspectives from the theory of controlled diffusions and measures on path space.
Partial differential equations and applications, 2(4):48, 2021.

Philip Pechukas. Transition state theory. Annual Review of Physical Chemistry, 32(1):159–177, 1981.

Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and Frank Noé.
Identification of slow molecular order parameters for markov model construction. The Journal of
chemical physics, 139(1), 2013.

Magnus Petersen, Gemma Roig, and Roberto Covino. Dynamicsdiffusion: Generating and rare
event sampling of molecular dynamic trajectories using diffusion models. In NeurIPS 2023 AI for
Science Workshop, 2023.

Stefano Piana, Kresten Lindorff-Larsen, and David E Shaw. Protein folding kinetics and thermody-
namics from atomistic simulation. Proceedings of the National Academy of Sciences, 109(44):
17845–17850, 2012.

Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=h4pNROsO06.

Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz. Vargrad:
a low-variance gradient estimator for variational inference. Advances in Neural Information
Processing Systems, 33:13481–13492, 2020.

Martin K Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo Pérez-Hernández, Moritz
Hoffmann, Nuria Plattner, Christoph Wehmeyer, Jan-Hendrik Prinz, and Frank Noé. Pyemma 2: A
software package for estimation, validation, and analysis of markov models. Journal of chemical
theory and computation, 11(11):5525–5542, 2015.

Jürgen Schlitter, Michael Engels, and Peter Krüger. Targeted molecular dynamics: a new approach
for searching pathways of conformational transitions. Journal of molecular graphics, 12(2):84–89,
1994.

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: Multiple
time-resolution models for molecular dynamics. Advances in Neural Information Processing
Systems, 36, 2024.

Martin Sipka, Johannes CB Dietschreit, Lukáš Grajciar, and Rafael Gómez-Bombarelli. Differentiable
simulations for enhanced sampling of rare events. In International Conference on Machine
Learning, pp. 31990–32007. PMLR, 2023.

David A Sivak, John D Chodera, and Gavin E Crooks. Time step rescaling recovers continuous-time
dynamical properties for discrete-time langevin integration of nonequilibrium systems. The Journal
of Physical Chemistry B, 118(24):6466–6474, 2014.

Evan Walter Clark Spotte-Smith, Ronald L Kam, Daniel Barter, Xiaowei Xie, Tingzheng Hou,
Shyam Dwaraknath, Samuel M Blau, and Kristin A Persson. Toward a mechanistic model of
solid–electrolyte interphase formation and evolution in lithium-ion batteries. ACS Energy Letters,
7(4):1446–1453, 2022.

Glenn M Torrie and John P Valleau. Nonphysical sampling distributions in monte carlo free-energy
estimation: Umbrella sampling. Journal of computational physics, 23(2):187–199, 1977.

Luke Triplett and Jianfeng Lu. Diffusion methods for generating transition paths. arXiv preprint
arXiv:2309.10276, 2023.

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=8pvnfTAbu1f.

14

https://openreview.net/forum?id=h4pNROsO06
https://openreview.net/forum?id=h4pNROsO06
https://openreview.net/forum?id=8pvnfTAbu1f
https://openreview.net/forum?id=8pvnfTAbu1f


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke
Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable inference in
diffusion models for vision, language, and control. arXiv preprint arXiv:2405.20971, 2024.

MM Yamashita, RJ Almassy, CA Janson, D Cascio, and D Eisenberg. Refined atomic model of
glutamine synthetase at 3.5 å resolution. Journal of Biological Chemistry, 264(30):17681–17690,
1989.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for
sampling. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=_uCb2ynRu7Y.

Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li. Improving deep neural
networks using softplus units. In 2015 International joint conference on neural networks (IJCNN),
pp. 1–4. IEEE, 2015.

15

https://openreview.net/forum?id=_uCb2ynRu7Y
https://openreview.net/forum?id=_uCb2ynRu7Y


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A METHOD DETAILS

A.1 LOG VARIANCE FORMULATION

In this section, we derive Equation (5) from Equation (4) to get the explicit expression for log-variance
divergence in terms of SDE in Equation (1) and Equation (3). We refer to Nüsken & Richter (2021,
Appendix A.1) for the derivation in more general settings.

Our goal is to derive that

EPṽ

[(
log

dQ
dPvθ

− EPṽ

[
log

dQ
dPvθ

])2
]
= EPṽ

[
(Fvθ,ṽ − EPṽ

[Fvθ,ṽ])
2
]
, (13)

To this end, we focus on calculating log dQ
dPvθ

(X) when X ∼ Pṽ. Following (Nüsken & Richter,

2021, Lemma A.1), we apply Girsanov’s Theorem to calculate the Radon-Nikodym derivative dPvθ

dP0

as follows:

dPvθ

dP0
(X) = exp

(∫ T

0

(vT
θ Σ

−1)(Xt) · dXt −
∫ T

0

(Σ−1u · vθ)(Xt)dt−
1

2

∫ T

0

∥vθ(Xt)∥2dt
)
.

(14)
Since the state Xt follows the SDE dXt = (u(Xt) + Σṽ(Xt))dt + ΣdWt. We plug it into
Equation (14) and utilize the definition of the target path measure Q in Equation (2) to compute
log dQ

dP0
as follows:

log
dQ
dPvθ

(X) = log
dQ
dP0

dP0

dPvθ

(X) (15)

= log 1B(X)− logZ −
∫ T

0

(vT
θ Σ

−1)(Xt) · dXt (16)

+

∫ T

0

(Σ−1u · vθ)(Xt)dt+
1

2

∫ T

0

∥vθ(Xt)∥2dt (17)

= log 1B(X)− logZ −
∫ T

0

(vθ · ṽ)(Xt)dt (18)

−
∫ T

0

vθ(Xt) · dWt +
1

2

∫ T

0

∥vθ(Xt)∥2dt (19)

= Fvθ,ṽ(X)− logZ (20)

Since logZ is the constant, it is canceled out in the log-variance divergence as follows:

EPṽ

[(
log

dQ
dPvθ

− EPṽ

[
log

dQ
dPvθ

])2
]
= EPṽ

[
(Fvθ,ṽ − EPṽ

[Fvθ,ṽ])
2
]
, (21)

A.2 CONNECTION TO EXISTING LOSS FUNCTIONS ON DISCRETE-TIME DOMAIN

In this section, we connect our discretized loss of Equation (8) to the loss function, called relative
trajectory balance (Venkatraman et al., 2024, RTB). Like our methods, RTB also amortized inference
in target path distribution by training forward distribution on discrete-time domains such as vision,
language, and control tasks. When discretized, our loss function is equivalent to the RTB objective.

Our goal is to show that for every paths x0:L sampled from the path measure Pvθ̄
,

(F̂vθ,vθ̄
(x0:L)− w)2 =

(
log

p0(x0:L)1B(x0:L)

Zθpvθ
(x0:L)

)2

, (22)

where w = logZθ is a learnable scalar parameter, and path distribution pv(x0:L) =∏L−1
ℓ=0 pv(xl+1|xl) is Markovian, and its transition kernel pv(xl+1|xl) are derived from Euler-

Maruyama discretization of the SDE in Equation (3) as follows:

xl+1 = xl + u(xl)∆t+Σv(xl)∆t+Σϵl, (23)
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where ϵl ∼ N (0,∆t). To this end, we can calculate as follows:
log p0(x0:L)− log pvθ

(x0:L) (24)

=

L−1∑
ℓ=0

log pvθ
(xl+1|xl)−

L−1∑
ℓ=0

log p0(xl+1|xl) (25)

=
1

2

L−1∑
ℓ=0

(Σvθ̄∆t+Σϵl − Σvθ∆t)
T (ΣTΣ∆t)−1(Σvθ̄∆t+Σϵl − Σvθ∆t) (26)

− 1

2

L−1∑
ℓ=0

(Σvθ̄∆t+Σϵl)
T (ΣTΣ∆t)−1(Σvθ̄∆t+Σϵl) (27)

=
1

2∆t

L−1∑
ℓ=0

(∥vθ̄∆t+ ϵl − vθ∆t∥2 − ∥vθ̄∆t+ ϵl∥2) (28)

=
1

2

L−1∑
ℓ=0

∥vθ(xℓ)∥2∆t−
L−1∑
ℓ=0

(vθ · vθ̄)(xℓ)∆t−
L−1∑
ℓ=0

vθ(xℓ) · ϵℓ (29)

= F̂vθ,vθ̄
(x0:L)− log 1B(x0:L) (30)

which implies

F̂vθ,vθ̄
(x0:L) = log

p0(x0:L)1B(x0:L)

pvθ
(x0:L)

, (31)

by subtracting w and squaring both sides, we have

(F̂vθ,vθ̄
(x0:L)− w)2 =

(
log

p0(x0:L)1B(x0:L)

Zθpvθ
(x0:L)

)2

(32)

We can view p0(x0:L)1B(x0:L) as the unnormalized target distribution discretized from the target
path measure Q, and Zθ as the estimator for normalizing constant Z =

∫
p0(x0:L)1B(x0:L)dx0:L,

and pvθ
(x0:L) as forward probability distribution to amortize inference in the target distribution.

Based on these results, we provide our training algorithm in Algorithm 1.

A.3 PROOF OF SCALE-BASED PARAMETERIZATION

In this section, we prove that our scale-based parameterization of bias force strictly decreases the
distance to the (aligned) target position for small step sizes, improving the ability to find informative
paths in large molecules.
Proposition 1. Consider the molecular state Rt at the t-th time step and the next state R′

t+∆t = Rt+

b(Xt)∆t/m updated by step size ∆t and the bias force b(Xt) = diag(sθ(ρ−1
t ·Xt))(ρt ·RB−Rt).

Then there always exists a small enough ∆t that strictly decreases the distance towards the target
state RB:

∥ρ′t+∆t ·RB −R′
t+∆t∥ < ∥ρt ·RB −Rt∥, (33)

where ρ′t+∆t = argminρ∈SE(3)∥ρ ·RB−R′
t+∆t∥ and we assume that there does not exist a rotation

that exactly aligns the current molecular state to the target state, i.e., ∥ρt ·RB −Rt∥ > 0.

Proof. The proof consists of two steps. We first show the (strictly) positive correlation between the
bias force and the direction from the t-th state Rt to the target state RB. Next, we show that the
positive correlation gaurantees a strict decrease in distance between the states, i.e., ∥ρt ·RB −Rt∥,
given that the distance was not already zero.

Step 1: First, we show that the bias force (divided by atom-wise masses) is positively correlated with
the direction to the target position, i.e., (b(Xt)/m)⊤(ρt ·RB −Rt) > 0. This follows from:

(b(Xt)/m)⊤(ρt ·RB −Rt) = (ρt ·RB −Rt)
T diag(sθ(ρ−1

t ·Xt))

m
(ρt ·RB −Rt) (34)

=

3N∑
i=1

(
si
mi

)
(ρt ·RB −Rt)

2
i > 0, (35)
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where si > 0 is the i-th element of sθ(ρ−1
t ·Xt) and (ρt ·RB −Rt)i is the i-th element of the

direction to the target position.

Step 2: Next, we show that the positive correlation ensures distance reduction for a small enough
step size. Consider the squared distance between the target position ρt ·RB and updated position R′

by bias force

∥ρt ·RB −R′
t+∆t∥2

= ∥ρt ·RB − (Rt + b(Xt)∆t/m)∥2 (36)

= ∥(ρt ·RB −Rt)− b(Xt)∆t/m∥2 (37)

= ∥ρt ·RB −Rt∥2 − 2∆t(b(Xt)/m)⊤(ρt ·RB −Rt) + (∆t)2∥b(Xt)/m∥2. (38)

Due to step 1, i.e., (b(Xt)/m)⊤(ρt ·RB −Rt) > 0, there exists a step size ∆t satisfying:

0 < ∆t <
2(b(Xt)/m)⊤(ρt ·RB −Rt)

∥b(Xt)/m∥2
. (39)

With this choice of ∆t, multiplying ∆t∥b(Xt)/m∥2 leads to the following inequaliity:

(∆t)2∥b(Xt)/m∥2 < 2∆t(b(Xt)/m)⊤(ρt ·RB −Rt). (40)

By subtracting the right-hand side from both sides and adding ∥ρt ·RB −Rt∥2 to both sides, we
have the following inequality:

∥ρt ·RB −R′
t+∆t∥2 < ∥ρt ·RB −Rt∥2. (41)

Taking the square root of both sides, we have the following inequality:

∥ρ′t+∆t ·RB −R′
t+∆t∥ ≤ ∥ρt ·RB −R′

t+∆t∥ < ∥ρt ·RB −Rt∥, (42)

where the first inequality follows from the definition of ρ′t+∆t = argminρ∈SE(3)∥ρ ·RB −R′
t+∆t∥.

This completes the proof.
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B EXPERIMENT DETAILS

B.1 OPENMM CONFIGURATIONS

For real-world molecules, we use the VVVR integrator (Sivak et al., 2014) with the step size ∆t = 1 fs
and the friction term γ = 1 ps−1. In the TPS-DPS training algorithm, we start simulations at a
temperature λstart = 600K, and end at a temperature λend = 300K for Alanine Dipeptide, Polyproline
Helix, and Chingolin and λend = 400K for Trpcage, BBA, and BBL. Other OpenMM configurations
are shown in Table 2.

Table 2: OpenMM configurations for real-world molecular systems.

Molecule Simulation time (T ) Force field Solvent

Alanine Dipeptide 1000 amber99sbildn (Lindorff-Larsen et al., 2010) vaccum
Polyproline Helix 10000 amber/protein.ff14SBonlysc (Maier et al., 2015) implicit/gbn2
Chignolin 5000 amber/protein.ff14SBonlysc implicit/gbn2
Trpcage 5000 amber/protein.ff14SBonlysc implicit/gbn2
BBA 5000 amber/protein.ff14SBonlysc implicit/gbn2
BBL 5000 amber/protein.ff14SBonlysc implicit/gbn2

B.2 MODEL CONFIGURATIONS

We use a 3-layer MLP for the double-well system, and a 6-layer MLP for real-world molecules with
ReLU activation functions for neural bias force, potential, and scale. To constrain the output of the
neural bias scale parameterization to a positive value, we apply Softplus (Zheng et al., 2015) to the
MLP output. As an input to the neural network, we concatenate the current position (Rt)i of the
i-th atom with its distance to the target position di = ∥(R̃B)i − (Rt)i∥2. For real-world molecules,
we apply the Kabsch algorithm (Kabsch, 1976) for heavy atoms to align RB with Rt. We update
the parameters of the neural network with a learning rate of 0.0001, while the scalar parameter w
is updated with a learning rate of 0.001. We clip the gradient norm with 1 to prevent loss from
exploding. we train J = 1000 times per rollout. We report other model configurations in Table 3.
For PIPS, we use the model configurations reported by Holdijk et al. (2024). For CVs of SMD, we
use backbone dihedral angles (ϕ, ψ) for Alanine Dipeptide and RMSD for Polyproline Helix and
Chignolin.

Table 3: Model configurations of TPS-DPS.

System # of rollouts (I) # of samples (M ) Batch size (K) Buffer size Relaxation (σ)

Double-well 20 512 512 10000 3
Alanine Dipeptide 1000 16 16 1000 0.1
Polyproline Helix 100 16 4 200 0.2
Chignolin 100 16 4 200 0.5
Trpcage 100 16 4 100 0.5
BBA 100 16 4 100 0.5
BBL 100 16 2 100 0.5

B.3 EVALUATION METRICS

Root mean square distance (RMSD). We use the Kabsch algorithm (Kabsch, 1976) for heavy
atoms to align the final position with the target position RB, using the optimal (proper) rotation and
translation to superimpose two heavy atom positions. We calculate RMSD between heavy atoms of
the final position and the target position RB.

Target hit percentage (THP). THP measures the success rate of paths arriving at the target meta-
stable state B in a binary manner. Formally, given the final positions {R(i)}Mi=1 of M paths, THP is
defined as follows:

THP =
|{i : R(i) ∈ B}|

M
(43)
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Energy of transition state (ETS). ETS measures the ability of the method to find probable transition
states when crossing the energy barrier. ETS refers to the maximum potential energy among states in
a transition path. Formally, given a transition path x0:L of length L that reaches the target meta-stable
state i.e., RL ∈ B, ETS is defined as follows:

ETS(x0:L) = max
ℓ∈[0,L]

U(Rℓ) (44)

B.4 SYSTEM DETAILS

Double-well potential and dynamics. Double-well system follows the overdamped Langevin
dynamics defined as follows:

dRt =
−∇U(Rt)

m
dt+

√
2γkBλ

m
dWt . (45)

For simplicity, we let R = (x, y) ∈ R2, m = I, γ = 1,∆ = 0.01, T = 10, and λ = 1200K. To
evaluate the ability to find diverse transition paths, we consider the following double-well potential
(Hua et al., 2024):

U(x, y) =
1

6

(
4(1− x2 − y2)2 + 2(x2 − 2)2 + [(x+ y)2 − 1]2 + [(x− y)2 − 1]2 − 2

)
. (46)

This potential has global minima and two saddle points, having two meta-stable states and two
reaction channels.

Handedness. For four points A,B,C,D, we define a handedness (Moradi et al., 2009) as follows:

HABCD =

−−→
EF · (−−→CD ×−−→AB)

|−−→EF | · |−−→CD| · |−−→AB|
. (47)

Here, E and F are the midpoints of the vectors
−−→
AB and

−−→
CD, respectively. With the backbone

atoms X1, X2, ..., XN of a Polyproline Helix, we can define the handedness for N atoms as H =∑N−3
i=1 HXiXi+1Xi+2Xi+3

. In our experiments, we take the alpha carbon X1, the carbonyl carbon X2

of the first proline residue, the alpha carbon X3 of the second residue and alpha carbon X4 of third
residues to compute the handedness.

Time-lagged independent components (TICA). To extract the collective variable (CV) for fast
folding proteins, we consider components of time-lagged independent component analysis (TICA;
Pérez-Hernández et al., 2013). We run 1µs unbiased MD simulations with 2fs step size and record
states per 2ps to collect MD trajectories, using the OpenMM library with the same configuration as in
Appendix B.1. For the top two TICA components, we use PyEMMA library (Scherer et al., 2015)
with a time lag τ = 500ps for Chignolin and τ = 200 for Trpcage, BBA, and BBL.

Reproducibility. We describe experiment details in Appendix B, including detailed simulation
configuration and hyper-parameters. In the anonymous link, we provide the code for TPS-DPS.
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C EXPERIMENTS ON FAST FOLDING PROTEINS

In this section, we evaluate our method, called TPS-DPS, on three fast-folding proteins (Lindorff-
Larsen et al., 2011): Trpcage, BBA, and BBL at 400K.

Trpcage, BBA, and BBL are more challenging proteins than Chignolin since they have 20, 28, and 47
amino acids, respectively. As in previous experiments, we adopt three metrics: RMSD, THP, and
ETS. We compare our methods with unbiased MD (UMD) steered MD (SMD). We define the target
meta-stable state B = {R | ∥ξ(R)− ξ(RB)∥ < 0.75} where ξ consists of the top two components
of time-lagged independent component analysis.

As shown in Table 4 and Figure 11-13, UMD and TPS-DPS (F) fail to sample transition paths.
TPS-DPS (P) only succeeds in sampling transition paths of Trpcage and outperforms baselines in
finding plausible transition states. TPS-DPS (S) outperforms baselines in RMSD and THP and finds
more plausible transition states than SMD.

Table 4: Benchmark scores on fast folding proteins, all metrics are averaged over 64 paths. ETS is
computed for paths that hit the target meta-stable state, and the best results are highlighted in bold.
TPS-DPS predicting the bias force, potential, and atom-wise scaling are denoted by (F), (P), and (S),
respectively. UMD (λ) denotes unbiased MD with temperature λ and SMD (k) denotes steered MD
with the force constant k. Unless otherwise specified, paths are generated by MD simulation at 400K.

Molecule system Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Trpcage

UMD 7.94 ± 0.65 0.00 -
UMD (1200K) 8.27 ± 1.13 0.00 -
SMD (10K) 1.68 ± 0.23 3.12 -312.54 ± 20.67
SMD (20K) 1.20 ± 0.20 42.19 -226.40 ± 85.59
TPS-DPS (F, Ours) 6.35 ± 0.31 0.00 -
TPS-DPS (P, Ours) 3.15 ± 0.52 12.50 -512.97 ± 56.89
TPS-DPS (S, Ours) 0.76 ± 0.12 81.25 -317.61 ± 140.89

BBA

UMD 10.03 ± 0.39 0.00 -
UMD (1200K) 10.81 ± 1.05 0.00 -
SMD (10K) 2.89 ± 0.32 0.00 -
SMD (20K) 1.66 ± 0.30 26.56 -3104.95 ± 97.57
TPS-DPS (F, Ours) 9.48 ± 0.18 0.00 -
TPS-DPS (P, Ours) 3.89 ± 0.35 0.00 -
TPS-DPS (S, Ours) 1.21 ± 0.09 84.38 -3801.68 ± 139.38

BBL

UMD 18.48 ± 0.63 0.00 -
UMD (1200K) 18.90 ± 1.16 0.00 -
SMD (10K) 3.67 ± 0.22 0.00 -
SMD (20K) 2.97 ± 0.33 7.81 -1738.57 ± 386.81
TPS-DPS (F, Ours) 10.15 ± 0.54 0.00 -
TPS-DPS (P, Ours) 6.45 ± 0.26 0.00 -
TPS-DPS (S, Ours) 1.60 ± 0.19 43.75 -3616.32 ± 213.66

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) UMD (b) SMD (10k) (c) SMD (15k) (d) TPS-DPS (F) (e) TPS-DPS (P) (f) TPS-DPS (S)

Figure 11: 64 sampled paths of Trpcage from each method projected to the top two TICA
components. White circles indicate meta-stable states. We aim to sample transition paths from the
unfolded state (right) to the folded state (left). SMD (k) denotes steered MD with the force constant
k. All paths are generated by MD simulation at 400K. (F), (P) and (S) refer to predicting the bias
force, the bias potential, and atom-wise scaling, respectively.

(a) UMD (b) SMD (10k) (c) SMD (15k) (d) TPS-DPS (F) (e) TPS-DPS (P) (f) TPS-DPS (S)

Figure 12: 64 sampled paths of BBA from each method projected to the top two TICA compo-
nents. White circles indicate meta-stable states. We aim to sample transition paths from the unfolded
state (lower left) to the folded state (upper right). SMD (k) denotes steered MD with the force
constant k. All paths are generated by MD simulation at 400K. (F), (P) and (S) refer to predicting the
bias force, the bias potential, and atom-wise scaling, respectively.

(a) UMD (b) SMD (10k) (c) SMD (15k) (d) TPS-DPS (F) (e) TPS-DPS (P) (f) TPS-DPS (S)

Figure 13: 64 sampled paths of BBL from each method projected to the top two TICA compo-
nents. White circles indicate meta-stable states. We aim to sample transition paths from the unfolded
state (left) to the folded state (right). SMD (k) denotes steered MD with the force constant k. All
paths are generated by MD simulation at 400K. (F), (P) and (S) refer to predicting the bias force, the
bias potential, and atom-wise scaling, respectively.
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D COMPUTATIONAL COST

In this section, we analyze the time complexity of TPS-DPS and provide the number of energy
evaluations and runtime in training and inference time for real molecules.

The training and inference time complexity of TPS-DPS is O(NMLJ) and O(NML), respectively,
where N is the number of atoms, M is the number of samples, L is the number of MD steps, and J
is the number of rollouts. To be specific, training consists of biased MD simulations with O(NML)
time complexity. Given the number of samples M , the total complexity of one biased MD step of
TPS-DPS is O(N).

To justify it, we note that the biased MD step consists of three stages: (1) calculating bias force, (2)
calculating OpenMM force field, and (3) integrating the biased MD. Given the number of layers, and
hidden units, MLP for bias force requires O(N) and the Kabsch algorithm for equivariance requires
O(N). Calculating force field with cut-off and integrating MD with VVVR integrator (Sivak et al.,
2014) also requires O(N).

To measure computational cost, we consider the number of energy evaluations and runtime per
rollout in training and inference time. As shown in Tables 5-7, the inference cost of TPS-DPS is
proportional to UMD and SMD which have time complexity O(NML). TPS-DPS requires less
energy evaluations than PIPS in training since TPS-DPS finds transition paths faster than PIPS by
utilizing the replay buffer and simulated annealing.

Table 5: Cost comparison on Alanine Dipeptide system. EET and EEI refer to the total number of
energy evaluations in training and inference, respectively. RT and RI refer to runtime per rollout in
training and inference with a single RTX A5000. For all methods, we simulate MD for T = 1ps with
the step size ∆t = 1fs.

Method EET (↓) RT (↓) EEI (↓) RI (↓)
s s

UMD - - 64K 29.49
SMD - - 64K 47.45
PIPS (F) 240M 44.22 64K 71.05
PIPS (P) 240M 50.54 64K 75.67
TPS-DPS (F, Ours) 16M 24.93 64K 70.50
TPS-DPS (P, Ours) 16M 27.25 64K 78.83
TPS-DPS (S, Ours) 16M 25.11 64K 73.04

Table 6: Cost comparison on Chignolin system. EET and EEI refer to the total number of energy
evaluations in training and inference, respectively. RT and RI refer to runtime per rollout in training
and inference with a single RTX A5000, respectively. For all methods, we simulate MD for T = 5ps
with the step size ∆t = 1fs.

Method EET (↓) RT (↓) EEI (↓) RI (↓)
s s

UMD - - 320K 224.23
SMD - - 320K 283.45
PIPS (F) 40M 553.82 320K 565.58
PIPS (P) 40M 632.89 320K 622.87
TPS-DPS (F, Ours) 8M 209.29 320K 562.90
TPS-DPS (P, Ours) 8M 224.36 320K 623.63
TPS-DPS (S, Ours) 8M 215.18 320K 581.26
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Table 7: Cost comparison on Trpcage system. EET and EEI refer to the number of energy
evaluations in training and inference, respectively. RT and RI refer to runtime per rollout in training
and inference with a single RTX A5000. For all molecular systems and methods, MD simulations are
done for T = 5ps with the step size ∆t = 1fs.

Molecule Method EET (↓) RT (↓) EEI (↓) RI (↓)
s s

Trp-Cage

UMD - - 320K 258.29
SMD - - 320K 323.52
TPS-DPS (F, Ours) 8M 289.10 320K 655.22
TPS-DPS (P, Ours) 8M 301.76 320K 699.44
TPS-DPS (S, Ours) 8M 293.51 320K 673.00

BBA

UMD - - 320K 395.12
SMD - - 320K 542.35
TPS-DPS (F, Ours) 8M 422.23 320K 1042.81
TPS-DPS (P, Ours) 8M 430.24 320K 1091.97
TPS-DPS (S, Ours) 8M 426.48 320K 1068.68

BBL

UMD - - 320K 673.55
SMD - - 320K 853.77
TPS-DPS (F, Ours) 8M 560.95 320K 1520.05
TPS-DPS (P, Ours) 8M 572.77 320K 1607.62
TPS-DPS (S, Ours) 8M 563.45 320K 1553.89
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E COMPARISION WITH REVERSE KL DIVERGENCE

Table 8: Benchmark scores of reverse KL divergence and TPS-DPS on Alanine Dipeptide system.
Metrics are averaged over 64 paths, and ETS is computed for paths that hit the target meta-stable state.
The best results are highlighted in bold. TPS-DPS consistently outperforms reverse KL divergence
on all metrics regardless of predicting bias force or potential.

Method RMSD (↓) THP (↑) ETS (↓)
Å % kJmol−1

Reverse KL (F) 0.43 ± 0.34 53.12 27.88 ± 14.38
Reverse KL (P) 0.58 ± 0.34 48.43 21.61 ± 11.76
TPS-DPS (F, Ours) 0.16 ± 0.06 92.19 19.82 ± 15.88
TPS-DPS (P, Ours) 0.16 ± 0.10 87.50 18.37 ± 10.86

(a) Reverse KL (F) (b) Reverse KL (P) (c) TPS-DPS (F) (d) TPS-DPS (P)

Figure 14: 16 sampled paths from each method on the Ramachandran plot of Alanine Dipeptide.
White circles indicate meta-stable states and white stars indicate saddle points. We sample transition
paths from the meta-stable state C5 (upper left) to C7ax (lower right). Paths are generated by MD
simulation at 300K. The reverse KL divergence struggles to find diverse reaction channels, suffering
from mode collapse issues while the log-variance divergence of our method can capture two reaction
channels and reach the target states better.
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