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ABSTRACT

Time series foundation models (TSFMs) are increasingly being adopted as highly-
capable general-purpose time series representation learners. Although their training
corpora are vast, they exclude astronomical time series data. Observations of stars
produce peta-scale time series with unique challenges including irregular sampling
and heteroskedasticity. We introduce StarEmbed, the first public benchmark for
rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time se-
ries observations (“light curves”). We benchmark on three scientifically-motivated
downstream tasks: unsupervised clustering, supervised classification, and out-of-
distribution source detection. StarEmbed integrates a catalog of expert-vetted
labels with multi-variate light curves from the Zwicky Transient Facility, yielding
∼40k hand-labeled light curves spread across seven astrophysical classes. We eval-
uate the zero-shot representation capabilities of three TSFMs (Moirai, Chronos,
Chronos-Bolt) and a domain-specific transformer (Astromer) against hand-
crafted feature extraction, the long-standing baseline in the astrophysics literature.
Our results demonstrate that these TSFMs, especially the Chronos models, which
are trained on data completely unlike the astronomical observations, can outperform
established astrophysics-specific baselines in some tasks and effectively generalize
to entirely new data. In particular, TSFMs deliver state-of-the-art performance on
our out-of-distribution source detection benchmark. With the first benchmark of
TSFMs on astronomical time series data, we test the limits of their generalization
and motivate a paradigm shift in time-domain astronomy from using task-specific,
fully supervised pipelines toward adopting generic foundation model representa-
tions for the analysis of peta-scale datasets from forthcoming observatories.

1 INTRODUCTION

The adoption of time-series foundation models (TSFMs), with pretraining corpora that span com-
merce, finance, electricity, and traffic data, is proliferating due to their highly capable, general-purpose
representation learning of time-variable signals (Zhou et al., 2021a; Nie et al., 2022; Yang et al., 2024;
Woo et al., 2024). TSFMs are not trained on astronomical observations, however, and this omission
is consequential because astronomical time series (“light curves”) present regimes that are rare in
standard benchmarks: multiple variates, irregular time sampling, missing data, and heteroscedasticity
(Figure 1). More specifically, there are frequent gaps of variable intervals in the observations (see Fig-
ure 1), and the presence of clouds, which change day-to-day and hour-by-hour, yields heteroskedastic
uncertainties for the individual observations. At the same time, modern surveys such as the Zwicky
Transient Facility (ZTF; Bellm et al., 2019) and the forthcoming Vera C. Rubin Observatory (Ivezić
et al., 2019) generate peta-scale volumes of multi-band light curves, creating both a pressing need
and a unique opportunity to evaluate TSFM generalization on real scientific data.

Stars that exhibit brightness variations over regular, periodic intervals (periodic variable stars) are
astrophysically valuable as they are unique probes of stellar interiors and evolution, galactic structure,
and can be used to measure the distance to nearby galaxies (e.g., Feast and Walker, 1987; Clementini
et al., 2003; Genovali et al., 2014; Catelan and Smith, 2015; Ripepi et al., 2017). Dozens of types of
periodic variable stars exist, and modern astronomical surveys, like ZTF, have produced an avalanche
of light curves (∼109 stars each with ∼103 observations over 7 yr from ZTF alone). These light
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curves are multi-variate because observations are conducted with a filter (or “passband") placed along
the focal path of the telescope, limiting the image to only light from a specific wavelength range. Thus,
light curves contain both brightness and “color" information (i.e., the relative brightnesses across
passbands), enabling inference of physical properties of the source. The abundance of astronomical
time series data will dramatically accelerate as the recently-commissioned Vera C. Rubin Observatory
(Ivezić et al., 2019) will discover >108 variable stars while monitoring >1010 stars over the course
of a decade. Despite this abundance of astronomical light curves, there is no standardized benchmark
for assessing time-series embeddings in this domain. The absence of common datasets, class sets, and
train-test splits has hindered fair, reproducible comparisons and obscured whether domain-specific
pipelines outperform generic representations from foundation models (cf., Pan et al., 2024).

We introduce StarEmbed, the first public benchmark for rigorous, standardized evaluation of state-
of-the-art (SOTA) TSFMs on astronomical observations. StarEmbed integrates expert-vetted labels
with multi-band ZTF light curves, yielding ∼40k expert-labeled stars across seven astrophysical
classes with fixed train/validation/test splits. To capture the scientific breadth of downstream use,
we evaluate three tasks central to time-domain astronomy: unsupervised clustering, supervised
classification, and out-of-distribution (OOD) source detection. Our study measures the zero-shot
representation quality of three SOTA TSFMs, Moirai, Chronos, and Chronos-Bolt, and a
domain-specific transformer (Astromer) against the long-standing top-performing baseline of
hand-crafted feature extraction that has been widely adopted in the astrophysics literature.

Despite being trained on data completely unlike astronomical light curves, TSFM embeddings,
particularly from the Chronos family, match or surpass established astrophysics-specific baselines
on some tasks and set a new SOTA on our OOD detection benchmark, indicating strong cross-domain
transfer and practical utility. These results suggest a possible paradigm shift in astronomy from
bespoke, fully supervised pipelines toward generic foundation representations plus lightweight heads
to enable petascale time-series analysis for forthcoming observatories.

The major contributions of our work are as follows.
• We introduce the first standardized benchmark of time-series foundation models (TSFMs)

on astrophysical light curves, revealing the limits and transferability of TSFMs on irregular,
heteroscedastic time series.

• We provide evidence for a practical paradigm shift in time-domain astronomy, from bespoke,
fully supervised pipelines to off-the-shelf foundation embeddings with lightweight heads,
enabling scalable analysis of forthcoming petascale surveys.

• We curate a benchmark dataset of ∼40k expert-labeled ZTF multi-band light curves across
seven astrophysical classes, with fixed train/validation/test splits.

• We release embeddings, datasets, code, and detailed documentation to support fair compari-
son, reproducibility, and future extensions by the community.

The remainder of this paper describes related works and the models we benchmark (Section 2);
introduces the ZTF data set (Section 3), provides our benchmark methodology (Section 4), and
presents the benchmark results (Section 5) before discussing our concluding thoughts (Section 6).

2 RELATED WORKS AND MODELS

Major recent investments in time-domain astronomy have generated incredibly large datasets that
naturally lend themselves to machine learning methods. The classification of periodic variable
stars has been a problem of significant interest for centuries, as these sources provide direct insight
into many facets of stellar astrophysics. As such, both pre- (e.g., Debosscher et al., 2007) and
post-deep learning models (e.g., Moreno-Cartagena et al., 2025) have been applied to this problem.
We summarize the embedding models and the baseline below. We aim to assess the zero-shot
generalization capabilities of the pre-trained TSFMs, so we do not fine-tune them on our data.

2.1 SUPERVISED CLASSIFIERS

The first machine learning models to classify variable stars used manually engineered features
combined with classical models such as support vector machines (Debosscher et al., 2007) or gradient
boosted decision trees (Boone, 2019). Richards et al. (2011) achieved SOTA performance with
52 extracted features (including Fourier coefficients, variability amplitude, skewness, etc.) and a
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Figure 1: Example ZTF light curves illustrating unique characteristics of astronomical time series,
including multiple passbands, large observational gaps, and heteroskedastic uncertainties. Top panel:
Observed light curve of a periodic variable exhibiting typical characteristics of the observations. The
inset shows the full ∼6.5 yr duration of ZTF observations. Lower panels: Phase-folded light curves
highlighting the differing periodic patterns in three different classes. Note that most stars have few i
passband observations so we exclude these data from our analysis (see text for further details).

random forest (RF) classifier. Feature extraction varies from study to study, though some have
attempted to standardize this step (Nun et al., 2015; Malanchev et al., 2021a). Recent work has
introduced deep-learning methods to eliminate explicit feature engineering using a wide range of
architectures including recurrent neural networks (RNNs) (Muthukrishna et al., 2019; Becker et al.,
2020; Shah et al., 2025) and transformers (Cabrera-Vives et al., 2024; Moreno-Cartagena et al., 2025).
These efforts, however, do not perform meaningfully better than the established hand-crafted feature
extraction baseline: accuracies of RNN models are ±1− 3% of hand-crafted features across multiple
variable star datasets (see, e.g., Naul et al., 2018). As a result, we choose to use hand-crafted features
to establish our baseline performance.

Baseline Model: For this work, we first extract features using the FATS (Nun et al., 2015) and
light_curve (Malanchev et al., 2021a) software packages. Example features include: the best-fit
Lomb-Scargle (Lomb, 1976; Scargle, 1982) period, the scatter, the skewness, the kurtosis, and other
metrics. In total, we define 69 features per passband, yielding a total embedding size of 138 for the
two-passband ZTF data (see Appendix C for a full feature list with explanations). We normalize each
feature to have zero mean and unit variance. While very effective, hand-crafted features rely heavily
on domain knowledge, can be brittle to data quality issues, and are expensive to compute.

2.2 ASTROPHYSICS EMBEDDING MODELS

With a high cost to obtain labels for astronomical sources, there has been a growing interest in using
semi-supervised approaches to learn general representations of the data to later perform downstream
tasks. Recent approaches include variational autoencoders (Villar et al., 2020), sparse autoencoders
(Dillmann et al., 2025), and contrastive learning (Zhang et al., 2024), but they are typically limited to
a single class (e.g., supernovae). A few foundation models for astronomy attempt to produce useful
representations of light curves, such as FALCO (Zuo et al., 2025) and Astromer (Donoso-Oliva
et al., 2023; Donoso-Oliva et al., 2025). Unlike FALCO, Astromer-1 and Astromer-2 are
designed to apply to observations from any observatory (Donoso-Oliva et al., 2023; Donoso-Oliva
et al., 2025), and thus, we adopt the Astromer models as an astronomy-specific foundation model.

Astromer (Donoso-Oliva et al., 2023) is a transformer-based model to generate informative embed-
ded representations of light curves. Astromer-1 was pre-trained using self-supervised learning on
1.5 million single-band light curves from the MACHO survey (Alcock et al., 2000). The model’s
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output is a fixed-length embedding, and, as recommended by the creators, we use the 256-dimensional
embedding from the final attention layer produced using the publicly released weights. Astromer-1
was trained to reconstruct masked portions of the input sequence (i.e., masked time series model-
ing). Astromer-2 (Donoso-Oliva et al., 2025) increases the number of model parameters from
0.66M to 5.4M and adopts an uncertainty-weighted loss function for pretraining. The Astromer
models represent the SOTA domain-specific model and serve as a prime candidate for testing whether
astronomy-specific pre-training yields discernible benefits relative to general TSFMs.

2.3 TIME SERIES FOUNDATION MODELS

TSFMs have been shown to consistently outperform the traditional one-dataset-per-model schema in
multiple fields, including finance, climate science, and commerce (e.g., Yue et al., 2022; Woo et al.,
2024; Ansari et al., 2024). Astronomy, despite having an enormous collection of light curves, has
yet to examine the potential of TSFMs, which may prove transformative in our ability to accomplish
multiple downstream tasks. Furthermore, large time-domain surveys provide a unique opportunity to
evaluate TSFMs with minimal risk of data leakage because astronomical light curves are not included
in any of the training corpora. This benchmark therefore provides a new test for how TSFMs transfer
to an unseen domain.

Moirai (Woo et al., 2024) is designed to be a single foundation model that can forecast virtually
any time-series, regardless of sampling frequency, dimensionality, or distribution. It pairs a multi-
patch-size projection scheme (i.e., handling minute- to year-scale data), an any-variate attention
mechanism that scales to arbitrary numbers of variables, and a flexible mixture-distribution output
head for calibrated probabilistic forecasts. Trained on LOTSA (Woo et al., 2024), an open archive of
27 billion observations spanning nine domains, Moirai’s Small/Base/Large variants deliver SOTA
accuracy in both in-distribution and zero-shot settings, often outperforming models that are fully
fine-tuned for a particular dataset.

Chronos (Ansari et al., 2024) is another pre-trained time series model showing comparable or even
better results than Moirai. It treats forecasting as a language-modeling problem: Chronos scales
and quantizes real-valued time-series into a fixed vocabulary, then trains off-the-shelf Transformer
language models (T5-style models with 20M to 710M parameters) with an ordinary cross-entropy loss.
Augmented by TSMixup and Gaussian-process–generated synthetic data, Chronos is pre-trained
on a large collection of public datasets and evaluated on 42 benchmarks. The resulting models
deliver strong probabilistic forecasts—significantly ahead of classical and deep-learning baselines on
in-domain data and in zero-shot settings, showing that “language of time-series” tokenization alone is
enough to build a competitive universal forecaster.

2.4 RANDOM EMBEDDINGS AS A SANITY CHECK BASELINE

To establish a performance floor, we generated random vectors as a proxy for light curve embeddings.
The 256-length vectors are generated from a U [0, 1) distribution. The vectors carry no information
about the data, meaning this baseline allows confirmation that any alternative models with superior
performance capture useful information in the embeddings.

3 DATASET

The benchmark dataset includes multi-variate time-series observations of periodic variable stars.
The flux is presented in magnitudes (an astronomy specific unit), while the time is recorded as the
modified Julian date. The observations are from ZTF, which repeatedly scans all stars visible from
the Northern hemisphere every few days. ZTF observes in three different passbands, g, r, and i1 (see
Figure 1) roughly corresponding to visible green, visible red, and (outside the visible) infrared light,
respectively (Dekany et al., 2020). We use observations from ZTF data release 23 (DR23) which
spans a duration of ∼6.5 yr and contains billions of light curves.

While many labels for periodic variable stars exist within the literature, the vast majority of these
labels are derived from low-capacity machine learning models. A careful selection of light curves

1Most ZTF sources have very few or no observations in i band and we therefore exclude it from our analysis.
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Table 1: Number of periodic variable stars in our dataset across each class and in each split

Class EW EA RRab RRc RRd RS CVn LPV

Train 18998 2889 1386 3233 298 942 255
Validation 2690 410 194 463 42 134 35
Test 5387 818 397 926 83 276 70
Total after cuts 27075 4117 1977 4622 423 1352 360

is therefore warranted to prevent significant label noise within the benchmark. We thus avoid these
catalogs in establishing this benchmark.

For training, we instead adopt the Catalina Surveys Periodic Variable Star Catalog (CSPVS; Drake
et al., 2014a), a human-labeled catalog of periodic variables discovered by the Catalina Real-Time
Transient Survey (Drake et al., 2009). We extract ZTF light curves for each CSPVS star. Stars that
lack a ZTF light curve are omitted; we also remove (i) observations flagged as “bad” in ZTF DR23;
(ii) light curves with < 32 total observations; (iii) light curves that lack both g and r observations;
and (iv) light curves from classes with fewer than 350 total examples. The resulting dataset contains
∼40,000 ZTF light curves of expert-labeled periodic variable stars across seven classes. See Appendix
D for a detailed astrophysical description of each class.

Nature naturally produces an imbalance between the number of periodic variables in different
classes, which is further exacerbated by each class having a different detection efficiency (e.g.,
LPVs have large amplitude variations making them easy to identify). To ensure that each split
gets a representative number of examples from each class, we sample each class into the train,
validation, and test splits independently in a 7:1:2 ratio. Table 1 shows the counts of examples per
class in each split. We release our train-validation-test dataset splits and the generated embeddings
on an anonymous public dataset on HuggingFace (https://huggingface.co/datasets/
123anonymous123/StarEmbed).

3.1 ZTF DATASET IN CONTEXT: RELEVANCE TO UPCOMING OBSERVATORIES

Variable star science has an expansive scope that extends beyond ZTF and periodic variables; the
StarEmbed benchmark is designed to allow for the addition of new datasets and metrics in future
expansions. This flexibility is crucial to the long-term health of this benchmark as numerous new
time-domain surveys, like LSST, will begin in the coming years. Each new survey has unique
observational capabilities and priorities that will affect the resulting embeddings and downstream
task performance. As the largest astronomical time-domain experiment to date, ZTF is an apt choice
for building a preparatory benchmark dataset that has already been used to explore emerging areas
like multi-modality (e.g., Duev and van der Walt, 2021; Carrasco-Davis et al., 2021; Gagliano et al.,
2023; Rehemtulla et al., 2024) and transformers (e.g., Allam et al., 2023; Zhang et al., 2024).

All current and future datasets associated with the StarEmbed benchmark are public or will be made
public. ZTF DR23 data can be accessed through the Caltech Infrared Processing and Analysis Center2;
the CSPVS catalog is available via VizieR3 (Drake et al., 2014b); and our selection of ZTF light
curves for CSPVS stars will be available on Hugging Face. Our publicly available dataset includes
the necessary metadata and a permissive license for reuse. No personal or sensitive information is
present in these datasets (they consist of astronomical observations).

4 EVALUATION METHODOLOGY

We assess the quality of embeddings for (1) unsupervised clustering, (2) supervised classification,
and (3) out-of-distribution source detection using the embeddings as features. Together, these
give a comprehensive view of the intrinsic structure captured by the embeddings, their usefulness
for downstream tasks, and provide a unique generalization benchmark for TSFMs. Below we
detail the experimental settings including training procedures and metrics used to evaluate the
embeddings. We release our code to reproduce our benchmark experiments (https://tinyurl.
com/jwew993p). To maintain consistency throughout the benchmark, we use identical embedding

2https://irsa.ipac.caltech.edu/Missions/ztf.html
3https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJS/213/9
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sizes across different models whenever possible (i.e., when there exists such a pre-trained version
of the model). Astromer-1, Astromer-2, Chronos-Bolt-Tiny, Chronos-Tiny and the
Random Embeddings all have embedding size of 256. We adopt the smallest available pre-trained
Moirai model, Moirai-small, which uses an embedding size of 384.

4.1 UNSUPERVISED CLUSTERING

In this setting, we treat the embeddings of each model as points in a feature space and apply clustering
algorithms to see if natural groupings correspond to known variable star classes. Specifically, we use
K-means clustering with k = 7 corresponding to the number of true classes in the dataset. Before
executing the clustering algorithms, we normalize all embeddings to the standard normal because the
clustering methods compute Euclidean distances which are sensitive to the scale of entries.

We produce uncertainties on performance metrics by repeating the K-means algorithm with 10
different initializations, choosing the clustering with the lowest within-cluster variance. We also
apply Ward’s hierarchical clustering, which optimizes the same within-cluster variance objective via
agglomerative merges. It provides a robustness check since it is deterministic and initialization-free.
We then evaluate clustering quality using the following literature-standard metrics for clustering
(Huang et al., 2020; Monnier et al., 2020; Sun et al., 2024; Li et al., 2024):

Normalized Mutual Information (NMI): NMI measures the mutual information between the cluster
assignments and the true class labels, normalized to the range [0,1]. An NMI of 1 indicates perfect
correlation between clusters and classes, while an NMI near 0 indicates no better than random
assignment. NMI is invariant to label permutations, which is suitable since cluster labels are arbitrary.

Adjusted Rand Index (ARI): ARI evaluates pairwise clustering agreements. It considers how often
pairs of light curves are in the same cluster vs. the same true class. An ARI of 1 indicates perfect
clustering, ARI≈0 indicates random clustering, and ARI<0 indicates clustering worse than random.

Macro-averaged F1 score (F1): Macro-F1 is the harmonic mean of the completeness (true positive
rate) and purity (the false positive rate subtracted from unity) computed per class and then averaged
evenly across all classes. Because it treats each class equally, the Macro-averaged F1 is sensitive
to performance on minority classes. This is especially important for our CSPVS dataset because
some classes (e.g., RRd) have many fewer labels than others (e.g., EW; see Table 1). Similarly to
previous work (e.g., Monnier et al., 2020), we assign clusters to class predictions using the Hungarian
matching algorithm (Kuhn, 1955). This treats clustering as unsupervised classification and makes
results directly comparable to supervised settings.

With NMI and ARI, we can asses which embeddings have more separable class structure without any
supervised training. Large NMI/ARI scores suggest that the embedding has useful information for
differentiating the variable star classes. We also visualize the embedding spaces with dimensionality
reduction via a uniform manifold approximation and projection (UMAP) to provide an intuitive,
qualitative view of clustering performance in Appendix B.

4.2 SUPERVISED CLASSIFICATION

To directly measure how useful the embeddings are for classifying variable stars, we train four
simple classifiers on the fixed embeddings to predict the variable star class labels. This simulates
a scenario where one uses a pretrained model to produce embeddings used as feature inputs for a
classification task but does not fine-tune the embedding model (hence “zero-shot” in terms of the
embedding model). We evaluate the embeddings with four (simple) classifiers: a non-parametric
model (k-nearest neighbor, k-NN), a linear probe, a decision tree classifier (random forest, RF), and
a non-linear model (multilayer perceptron, MLP). Both k-NN and linear probes are standard in the
embedding evaluation literature (Caron et al., 2021; Zhou et al., 2021b; Neelakantan et al., 2022), as
they are simple methods that directly reflect separability in the embedding space. RF is included, in
part, because it is widely used in the astronomical literature for periodic variable star classification
(Naul et al., 2018; Sánchez-Sáez et al., 2021; Pimentel et al., 2022) and it achieves SOTA performance
across many datasets (Naul et al., 2018). Finally, an MLP is used as a modern higher capacity deep-
learning option. Detailed information on the classifiers, the hyperparameter optimization, and the
final hyperparameters for each embedding model can be found in Appendix A. We report standard
multi-class classification metrics to comprehensively assess the performance of each embedding
model on the downstream supervised classification task. Accuracy: the fraction of stars that are

6
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Table 2: Results of unsupervised clustering with K-means and Ward. The best results are highlighted
in bold, and the second-best results are underlined. The Chronos models perform very well on this
unseen data, placing first or second in all metrics and universally better than Morai-small and the
Astromer models. However, hand-crafted features perform the best overall.

Methods K-means Ward (Hierarchical)

NMI ARI F1 NMI ARI F1

Astromer-1 0.0041(0.0002) 0.0022(0.0011) 0.1659(0.0022) 0.0041 0.0001 0.1652
Astromer-2 0.0076(0.0003) 0.0143(0.0002) 0.1571(0.0030) 0.0091 0.0310 0.1600
Moirai-small 0.1724(0.0010) 0.0978(0.0059) 0.2816(0.0068) 0.1476 0.0828 0.2612
Chronos-tiny 0.2432(0.0000) 0.1590(0.0001) 0.3410(0.0000) 0.1890 0.1217 0.3671
Chronos-Bolt-tiny 0.2134(0.0004) 0.1245(0.0011) 0.3136(0.0001) 0.2273 0.1553 0.3662
Random Embeddings 0.0003(0.0001) 0.0000(0.0000) 0.0971(0.0014) 0.0003 0.0004 0.1122
Hand-crafted Features 0.2619(0.0058) 0.1139(0.0071) 0.4028(0.0277) 0.2508 0.1319 0.3323

correctly classified. Macro-averaged F1 Score (F1): The Macro-averaged F1 (see Sec. 4.1) is apt
because it is sensitive to performance on minority classes. Precision/Recall: The overall precision
and recall are included to provide a fully comprehensive evaluation of the classification performance.

4.3 OUT-OF-DISTRIBUTION SOURCE DETECTION

Identifying variable stars physically unlike those in labeled training sets is of great astrophysical-
interest. To test the effectiveness of the embeddings for detecting such OOD sources, we compute
OOD scores for light curves with a modified isolation forest algorithm (Gupta et al., 2025). We first
create embeddings for the ZTF light curves of CSPVS stars with too few examples to be included in
the training set (β-Lyrae, Blazhko, Anomalous Cepheids, Cepheid-II, HADS, LADS, ELL, Hump,
PCEB, and EAup; see Sec. 3). We define these as OOD sources. The embeddings of the OOD sources
are mixed with the test set and run through a “multi-class isolation forest" (Gupta et al., 2025) where
a separate isolation forest is fit to the embeddings of each of the seven inlier classes in the training set.
The minimum of the seven isolation forest scores is the OOD score we use for OOD source detection.
Isolation forest is a popular method for finding astrophysical outliers (Malanchev et al., 2021b), and
Gupta et al. (2025) show that following this multi-class prescription yields better macro-averaged
performance than a single isolation forest in many settings, including for periodic variables. Here,
the performance is benchmarked with the fraction of sources in the top N th percentile of OOD scores
which are genuine OOD sources: the OOD purity.

5 BENCHMARK RESULTS

We highlight the benchmark results below for each of the three downstream tasks: unsupervised
clustering, supervised classification, and OOD detection.

5.1 UNSUPERVISED CLUSTERING

In Table 2 we show that TSFMs generally perform well: (i) the first or second best ranked model
in each metric comes from the Chronos models; (ii) both Chronos models always outperform
Moirai-small; and (iii) Chronos-tiny outperforms Chronos-Bolt-tiny on four of our
six metrics. Still, we find that the hand-crafted features yield the best overall performance. We also
observe that the pre-trained domain-specific Astromer models generally yield poor performance,
notably always worse than the TSFMs which are not trained on light curves. We further analyze the
poor performance of Astromer-1 in Appendix E and find it’s embeddings of our ZTF light curves
have collapsed to similar directions. Appendix E further discusses how poor performance is expected
for both Astromer models based on results from previous studies. Finally, hand-crafted features
achieve the highest global separability (top NMI under both K-means and Ward), reflecting coarse
class alignment. In contrast, Chronos-tiny leads on pairwise consistency (best ARI for K-means,
and ARI is more sensitive to pairwise correctness), suggesting that its embeddings form small, pure
neighborhoods rather than single, class-wide clusters.
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Table 3: Results of supervised classification across classifiers and embedding models. The best results
are highlighted in bold, and the second-best results are underlined. The k-NN and logistic classifiers
are deterministic so only the 1-run performance is reported; the RF and MLP are run with three seeds
(42, 100, 200) and we report the mean and standard deviation of these runs. The hand-crafted features
are state-of-the-art with Chronos-tiny a clear second-best.

Classifier Metric Astromer-1 Astromer-2 Moirai-small Chronos-tiny Chronos-Bolt Random HF

k-NN

Accuracy 0.644 0.823 0.809 0.857 0.807 0.648 0.881
Precision 0.130 0.660 0.662 0.799 0.647 0.120 0.818
Recall 0.141 0.489 0.509 0.623 0.542 0.140 0.661
F1 0.122 0.537 0.554 0.672 0.570 0.120 0.712

logistic

Accuracy 0.073 0.648 0.705 0.750 0.709 0.094 0.838
Precision 0.147 0.486 0.544 0.575 0.549 0.144 0.663
Recall 0.165 0.668 0.680 0.730 0.676 0.128 0.854
F1 0.072 0.521 0.579 0.617 0.580 0.076 0.714

RF

Accuracy 0.676 (0.000) 0.846 (0.000) 0.822 (0.001) 0.863 (0.000) 0.827 (0.000) 0.676 (0.000) 0.921 (0.000)
Precision 0.144 (0.067) 0.794 (0.005) 0.706 (0.002) 0.771 (0.070) 0.705 (0.003) 0.097 (0.000) 0.865 (0.001)
Recall 0.143 (0.000) 0.525 (0.003) 0.512 (0.002) 0.599 (0.000) 0.548 (0.002) 0.143 (0.000) 0.777 (0.002)
F1 0.115 (0.000) 0.580 (0.003) 0.554 (0.001) 0.640 (0.001) 0.582 (0.002) 0.115 (0.000) 0.807 (0.002)

MLP

Accuracy 0.459 (0.162) 0.535 (0.106) 0.711 (0.045) 0.775 (0.017) 0.740 (0.013) 0.338 (0.157) 0.842 (0.011)
Precision 0.143 (0.008) 0.372 (0.036) 0.565 (0.019) 0.594 (0.001) 0.569 (0.010) 0.137 (0.024) 0.684 (0.030)
Recall 0.162 (0.003) 0.538 (0.041) 0.694 (0.014) 0.760 (0.006) 0.716 (0.004) 0.146 (0.002) 0.859 (0.001)
F1 0.134 (0.016) 0.388 (0.051) 0.592 (0.013) 0.645 (0.008) 0.612 (0.009) 0.096 (0.047) 0.735 (0.023)

5.2 SUPERVISED CLASSIFICATION

Table 3 and the left panel of Figure 2 show that (i) the Chronos models once again perform very
well compared to Moirai-small and the Astromer models; (ii) Astromer-2 performs better
than Moirai-small in some metrics; and (iii) unlike in the clustering results, Chronos-tiny
outperforms Chronos-Bolt-tiny and achieves the second best performance in nearly all metrics.
As in the clustering results, the hand-crafted features are clearly superior, yielding a F1 score of
0.807 ± 0.002 with the RF classifier. We also find that the RF classifier generally performs better
than others, although this is somewhat model-dependent.

The center and right panels of Figure 2 show the confusion matrix of one of the best performing TSFM-
classifier pairings (Chronos-tinywith the MLP) and best overall performing model-classifier pair-
ing (hand-crafted features with an RF). These confusion matrices show that (i) both Chronos-tiny
and the hand-crafted features often confuse RRd sources as RRc; (ii) Chronos-tiny yields better
performance on most classes (EA, RRd, RS CVn, and LPV) although loses overall due to the larger
margins in the classes where the hand-crafted features perform better (EW, RRab, RRc). In general,
these results show that, despite having never seen astronomical time series, Chronos-tiny clearly
extracts useful information from the data for supervised classification. The complete set of confusion
matrices across all embedding–classifier combinations is presented in Appendix F.

Figure 2: Left: F1 Ranking across all baselines with different classifier heads. The Chronos-tiny
model consistently outperforms other TSFMs and the domain-specific Astromer models, but
the hand-crafted features provide the best overall performance. Right: Confusion matrix of
Chronos-tiny + MLP, one of the best performing TSFM-classifier combinations, and the confu-
sion matrix of hand-crafted features with the RF classification, the SOTA baseline in astrophysics.
Chronos-tiny yields better performance on most classes (EA, RRd, RS CVn, and LPV), indicat-
ing that the TSFM is effectively extracting appropriate information for classification.
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5.3 OUT-OF-DISTRIBUTION SOURCE DETECTION

Table 4: Results for out of distribution source detection. The best results are highlighted in bold, and
the second-best results are underlined. The Chronos-Bolt-tiny performs very well on this task,
ranking first across all metrics with hand-crafted features being a distant second.

Purity
Top 1 percentile Top 5 percentile Top 10 percentile

Astromer-1 0.014 (0.020) 0.087 (0.018) 0.121 (0.001)
Astromer-2 0.139 (0.019) 0.124 (0.001) 0.119 (0.001)
Moirai-small 0.172 (0.023) 0.143 (0.003) 0.152 (0.002)
Chronos-tiny 0.165 (0.005) 0.129 (0.017) 0.158 (0.021)
Chronos-Bolt-tiny 0.569 (0.037) 0.536 (0.053) 0.528 (0.050)
Random Embeddings 0.116 0.116 0.116
Hand-crafted features 0.213(0.009) 0.280(0.006) 0.260(0.002)

Table 4 shows that: (i) Chronos-Bolt-tiny is exceptional at isolating OOD sources from the
inliers; (ii) by comparison, hand-crafted features deliver a much lower OOD purity; and (iii) every
other model we tested provides only a marginal gain, if any, over evaluating the whole dataset. Of all
the sources evaluated for this test, ∼ 11% are OOD samples. This implies that by applying the MCIF
approach to the Chronos-Bolt-tiny embeddings, we would be able to recover nearly half of
the OOD sources, by evaluating just 10% of the data, a ∼ 5× improvement in search efficiency over
the random embeddings. As these OOD events often correspond to astrophysically rare or anomalous
sources, they are of great interest for the astrophysical community. To interpret the performance
of Chronos-Bolt-tiny model, we hypothesize that Chronos-Bolt-tiny’s patch-based,
multi-step objective is less sensitive to step-level variation than Chronos’s autoregressive next-
token training, hence encouraging a tighter inlier manifold and larger off-manifold distances for rare
morphologies. This yields weaker clustering of inliers but stronger OOD isolation. A more careful
analysis is left to future work. While these results show promise, it’s worth noting that 50% purity
implies that we would still need an expert in the loop to vet candidates flagged by such a system.

6 DISCUSSION AND CONCLUSIONS

We have introduced StarEmbed, a public benchmark for evaluating time series foundation mod-
els (TSFMs) on observed multi-band stellar light curves, which pose unique challenges, irregular
sampling and heteroskedasticity, relative to typical TSFM pretraining corpora. By harmonizing
expert-vetted CSPVS labels with ∼40,000 multi-band ZTF light curves, we deliver a rigorously
curated, seven-class dataset together with a thorough evaluation of three core tasks in light curve
analysis: unsupervised clustering, variable-star classification, and OOD detection. Using this bench-
mark, we perform a comprehensive comparison of (i) domain-specific embeddings (the Astromer
models), (ii) embeddings from three SOTA general-purpose TSFMs (Moirai and Chronos fam-
ilies), and (iii) hand-crafted features as the primary baseline. Three main findings emerge: (i) for
clustering, Chronos provides comparable performance to hand-crafted features; (ii) for super-
vised classification, hand-crafted features outperform all other models, while Chronos is consis-
tently second, trailing the hand-crafted features by a small margin; and (iii) for OOD detection
Chronos-Bolt-tiny significantly outperforms hand-crafted features. For all three tasks the
TSFMs almost always outperform the Astromer models in zero-shot.

Taken together, our results demonstrate the limits of TSFMs’ generalization ability and advocate for
a shift from bespoke, fully-supervised pipelines toward off-the-shelf foundation representations plus
lightweight task heads for variable-star analysis and, by extension, for other forthcoming petascale
time-series challenges. By releasing all data, code, and model wrappers, we hope StarEmbed to
serve as a community reference benchmark for self-supervised and foundation-model advances, spur
work on even broader time-series corpora, and catalyze progress on downstream tasks such as period
estimation and real-time alert triage in next-generation sky surveys like LSST.
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grammar. We also use LLMs to search for works related to those described here. All the technical
results are original contributions by the authors.

REPRODUCIBILITY STATEMENT

We release all code required to reproduce our results, including dataset construction (Section 3),
embedding generation, training with hyperparameter optimization and three-run scripts, evaluation
routines, plotting utilities, and supporting bash scripts. All the code are provided in the supplementary
materials and the following anonymous link: https://tinyurl.com/jwew993p. We host a
anonymous public dataset on HuggingFace for our curated benchmark dataset and all the produced em-
beddings (https://huggingface.co/datasets/123anonymous123/StarEmbed).

A DETAILS OF EXPERIMENTS FOR CLASSIFICATION

We report the hyperparameter tuning process and summary for all classifiers in this section. To
fairly compare the different embeddings, we conduct a hyperparameter search on each model when
training the downstream MLP and random forest classifier. We use MLP with three hidden layers of
sizes 1024, 512 and 256 and an output layer for class predictions. we search over batch size B ∈
{128, 256, 512, 1024}, learning rate lr ∈ {0.01, 0.001, 0.0001} and dropout rate ∈ {0.0, 0.1}. Every
hyperparameter triple runs once on NVIDIA H100 4 GPUs. The training process is at most 50 epochs,
and stops early if the validation loss fails to improve for 3 epochs. In practice this training takes less
than 30 epochs for all models before the early stopping is triggered. For random forest, we search over
maximum depth of the tree ∈ {None, 10, 20, 30}, the minimum number of samples to split an internal
node ∈ {2, 5, 10}, and number of estimator ∈ {100, 200, 500}. We summarize the hyperparameters
of the MLP and random forest classifiers in Table 5 and 6. For linear classifier, since the current
training set is relatively small, we use the LogisticRegression (L-BFGS) from Scikit-learn
library (Buitinck et al., 2013), with max_iter = 5000, class_weight = "balanced",
and all other with default settings. L-BFGS is a deterministic full-batch method that converges to
the global minimizer without learning rate tuning. For k-NN, we use KNeighborsClassifier
from Scikit-learn with default settings. Since k-NN and the default solver of logistic regression are
both deterministic, we only report the 1 run result.

Table 5: Best hyper-parameters for each model with the MLP classifier

Method Hyperparameters Training epochs
Astromer-1 batch_size=32, learning_rate=0.0001, dropout=0.0 17
Astromer-2 batch_size=32, learning_rate=0.0001, dropout=0.0 23
Moirai-small batch_size=64, learning_rate=0.001, dropout=0.0 11
Chronos-tiny batch_size=32, learning_rate=0.0001, dropout=0.0 26
Chronos-Bolt-tiny batch_size=128, learning_rate=0.0001, dropout=0.1 17
Random Embeddings batch_size=128, learning_rate=0.0001, dropout=0.0 5
Hand-crafted features batch_size=32, learning_rate=0.0001, dropout=0.1 30

B VISUALIZATIONS OF EMBEDDINGS

We include the UMAP visualizations for the embeddings from each embedding models to provide
more intuitions regarding the embedding space. As shown by Figure 3, all time series pretrained
models’ embeddings are showing clear distinction and distribution of different clusters corresponding
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Table 6: Best hyperparameters for each model with the random forest classifier

Method Hyper-parameters Training time (s)
Astromer-1 max_depth=10, min_samples_split=2, n_estimators=200 84
Astromer-2 max_depth=30, min_samples_split=10, n_estimators=500 456
Moirai-small max_depth=None, min_samples_split=2, n_estimators=500 738
Chronos-tiny max_depth=None, min_samples_split=5, n_estimators=100 126
Chronos-Bolt-tiny max_depth=30, min_samples_split=2, n_estimators=500 450
Random Embeddings max_depth=None, min_samples_split=2, n_estimators=100 198
Hand-crafted features max_depth=None, min_samples_split=10, n_estimators=100 36.4

Table 7: FATS features and plain-language descriptions.

Feature Intuitive one-sentence description
PeriodLS Best-fit period of the light curve using the Lomb–Scargle

method.
Period_fit The false alarm probability of the largest Lomb–Scargle

periodogram value.
Psi_CS The range of a cumulative sum metric computed on the

phase-folded light curve.
Psi_eta The variability index ηe computed on the phase-folded

light curve.
Autocor_length The cross-correlation of the light curve with itself.
PairSlopeTrend The fraction of increasing first differences subtracted

from the fraction of decreasing first differences, com-
puted on the 30 most recent magnitude measurements.

Freq{N}_harmonics_amplitude_{M} Amplitude of the M th harmonic of the N th dominant
frequency.

Freq{N}_harmonics_rel_phase_{M} Relative phase of the M th harmonic of the N th dominant
frequency.

CAR_sigma Short-term variability amplitude in a continuous auto-
regressive (CAR) model.

CAR_tau Characteristic timescale of correlations in the CAR
model.

CAR_mean Long-term mean magnitude level in the CAR model.
See here for a detailed description: http://isadoranun.github.io/tsfeat/FeaturesDocumentation.html

to different ground truth classes. In comparison, as a baseline, the random embeddings show no clear
clusters at all. Astromer-1’s embeddings and hand crafted features do not show clear clusters
either. Astromer-2’s embeddings show clearer cluster distribution but for some classes, the
clusters are not distinctive with others either. These UMAP visualizations further demonstrate the
promising potentials of using time series pretrained models as light curve embedding models.

C FULL LIST OF HAND-CRAFTED FEATURES

We select hand-crafted features from the libraries of established software packages: FATS (Nun et al.,
2015) and light_curve (Malanchev et al., 2021a). Each feature described here is computed for
each passband individually and the embeddings are formed by concatenating the feature lists of the
g and r embeddings. Tables 7 and 8 show the full list of features and descriptions from FATS and
light_curve, respectively.

D ASTROPHYSICAL DESCRIPTION OF CLASSES

Our dataset contains seven total classes of periodic variable stars: EW, EA, RRab, RRc, RRd, RS
CVn, and LPV. Here, we provide a high-level astrophysical description of each of these classes,
including each class’ observational characteristics and utility. In some cases, multiple classes are
closely related so we describe them together. We also include descriptions of the classes which,
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Figure 3: UMAP projections for each embedding model included in our analysis using the test set.
Inset plots at the bottom of each figure show clustering of different classes.
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Table 8: light_curve features and plain-language descriptions

Feature Intuitive one-sentence description
Amplitude Half the peak-to-peak range—how far the light curve swings

between brightest and faintest points.
AndersonDarlingNormal Scores how strongly the magnitude distribution departs from an

ideal bell curve.
BeyondNStd Proportion of data points that sit more than N standard deviations

away from the mean, flagging outliers.
Cusum Total vertical span of the running cumulative sum, revealing slow

drifts or trends.
Eta Von Neumann ratio: compares successive-point differences to

overall scatter to catch rapid variability.
EtaE Eta re-weighted by time gaps so uneven sampling doesn’t skew

the variability estimate.
InterPercentileRange(p) Distance between the p and (1 − p) quantiles—a robust width

such as the IQR (when p=0.25).
Kurtosis Indicates whether the distribution is more peaked or heavy-tailed

than a normal curve.
LinearFit Slope, error, and fit quality for a straight line that accounts for

measurement uncertainties.
LinearTrend Slope and error of a simple least-squares line that ignores the

error bars.
MagnitudePercentageRatio Ratio of inner to outer percentile widths, contrasting core spread

with overall spread.
MaximumSlope Steepest single-step change in magnitude per unit time between

consecutive points.
Mean Ordinary average magnitude.
Median Mid-point magnitude that splits the data into equal halves.
MedianAbsoluteDeviation Typical absolute distance from the median—a robust scatter mea-

sure.
MedianBufferRangePercentage Fraction of points that fall inside a narrow buffer zone around

the median.
OtsuSplit Statistics describing the two groups produced by Otsu’s auto-

matic thresholding of magnitudes.
PercentAmplitude Largest absolute deviation of any point from the median magni-

tude.
ReducedChi2 Reduced χ2 showing how well the data match their (weighted)

mean given the quoted errors.
Skew Tells whether the distribution leans toward brighter or fainter

extremes (positive or negative tail).
StandardDeviation Classical root-mean-square scatter of the magnitudes.
StetsonK Error-weighted “peakedness” measure that is robust to outliers

in light-curve shape.
WeightedMean Average magnitude that gives greater weight to points with

smaller measurement errors.
See here for a detailed description: https://github.com/light-curve/light-curve-python

due to their rarity, are considered out-of-distribution in this work: β-Lyrae, Blazhko, Anomalous
Cepheids, Cepheid-II, HADS, LADS, ELL, Hump, PCEB, and EAup.

D.1 ECLIPSING BINARIES (EW, EA)

Eclipsing binary stars are pairs of stars orbiting each other and aligned with the observer in such a
way that either star periodically blocks the light from the other. When neither star is eclipsed, the
system is at maximum brightness, but when one star is eclipsed by the other, the total flux received
from the system is suppressed, giving the binary star system periodic light curve behavior. This type
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of variability is described as extrinsic because it is not due to astrophysical properties of the stars
themselves. Sub-categorization of eclipsing binaries is based on the configuration of the stars in the
pair.

EW-type eclipsing binaries (also called W Ursae Majoris-type after the original EW system) are
contact binaries. In this case, the two stars, typically dwarf stars, share a common outer envelope
which entirely encapsulates them. This common envelope allows for the exchange of mass and energy
between the pair, equilibrating their temperature. Their light curves exhibit constant and smooth
variations where the dips from either star being eclipsed are of similar or identical depth. EW-type
variables typically have short periods (0.2 ≲ P [d] ≲ 0.5), with a notably unsolved period cut-off at
∼ 0.2 days (Rucinski, 2007; Drake et al., 2014a). These systems are astrophysically valuable, in part,
because they are expected to emit gravitational waves due to their tight orbits, and they also have the
possibility of merging and triggering transient events (Tylenda et al., 2011).

EA-type eclipsing binaries (also called Algol-type binaries after the original EA system) are detached
binaries. In this case, the two stars are not in contact and thus can have different temperatures and
more varied orbits, manifesting as different light curve properties. The ellipticity of the orbit and
the brightnesses of the stars affect the spacing and depths of the brightness dips. Multiple additional
factors can affect their light curves, e.g., the presence of an accretion disk. EA systems tend to have
longer periods than EW systems due to their wider orbits: 0.3 ≲ P [d] ≲ 100. EA systems are key
for studying binary stellar evolution and populations, especially the exchange of mass between stars
in a binary.

D.2 ACTIVE BINARIES (RS CVN)

RS Canum Venaticorum (RS CVn) stars are also stars in binary systems and are characterized by one
of the stars exhibiting large magnetic spots on its surface. This manifests as observable variability as
the RS CVn stars also have rapid rotational velocities. The resulting light curve affect also depends
on the difference between the star’s rotational period and the systems orbital period, and most RS
CVn systems are tidally locked, meaning the two periods are closely matched. Some RS CVn are
also eclipsing binaries, so their light curves can also show variability due to eclipses. Their periods
tend to be 3 ≲ P [d] ≲ 14. RS CVn systems serve as extreme testbeds for studying stellar magnetic
phenomena and evolution.

D.3 RR LYRAE (RRAB, RRC, RRD)

RR Lyrae stars are low-mass stars exhibiting pulsations, cyclically expanding and contracting radially
due to internal changes in opacity. Because RR Lyrae occur with only a small range of intrinsic
brightnesses, their distances can be easily measured from their observed brightness. Among other
utilities, this allows RR Lyrae to be used for measuring distances within the Milky Way and to nearby
Galaxies. Their periods are also related to their chemical composition, so they can provide crucial
information about Galactic structure and formation.

RR Lyrae can occur in different pulsation modes which define the various RR Lyrae subclasses.
RRab stars pulsate in the fundamental mode; RRc in the first-overtone; and RRd are double-mode
pulsators. RRab stars have light curves with a rapid brightening episode followed by a gradual
fading, producing a sawtooth-like pattern. RRab typically have periods 0.4 ≲ P [d] ≲ 1.0. RRc
stars exhibit sinusoid-like variability with typical periods of 0.2 ≲ P [d] ≲ 0.5. They also tend to
exhibit a constant, slow drift in their periods. RRd stars pulsate in both the fundamental mode and
the first-overtone and thus show a combination of two periodic signals in their light curves, typically
with the first-overtone dominating.

D.4 LONG PERIOD VARIABLES (LPVS)

LPVs are giant stars exhibiting pulsations with periods of 3 ≲ P [d] ≲ 1000. They include multiple
subtypes each with different period-luminosity relations but we, as in Drake et al. (2014a), consider
these a single class. They pulsate with a similar mechanism to the RR Lyrae but have dramatically
larger radii. Their outer layers are not very tightly bound to the rest of the star, which can lead to
the star expunging mass and polluting the surrounding environment with gas. Thus, studying LPVs
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provides insights into the cycles of gas into and out of stars. Their period-luminosity relations also
allow LPVs to act as distance measures.

D.5 BETA-LYRAE

Beta-Lyrae (β-Lyrae) stars are close binary star systems in which the outer gaseous layers of both
stars have expanded to the point that the pair is enveloped in a shared gaseous envelope. At this stage,
gaseous material can be transferred from one star to another, altering either star’s evolution. Their
periods are typically a few days, and their light curves display continuous variations in brightness
rather than flat maxima or minima like EA-type binaries, for example. Their dynamics provide direct
information on gaseous mass transfer between binary stars, stellar structure under extreme tidal
distortion, and the role of binarity in late stellar evolution.

D.6 BLAZHKO

Blazhko variables are a sub-class of RR Lyrae variables, which exhibit the rare Blazhko effect in
which their light curve amplitudes and phases are modulated over long time periods (tens to hundreds
of days). In part owing to its rarity relative to normal RR Lyrae stars, there is not yet a consensus
to the physical mechanism driving the Blazhko effect. The effect may be explained with magnetic
fields or resonances within the star, so these stars are useful for studying exotic phenomena which
can occur in stars.

D.7 TYPE II CEPHEIDS (CEPHEID-II) AND ANOMALOUS CEPHEIDS (ACEP)

Cepheid-II stars have old, low-mass stars with periods typically of tens of days and can produce a
variety of light curve morphologies. They deviate from classical Cepheids because they are much
fainter, but they do follow their own period-luminosity relation, enabling them to also be used as
distance measures.

ACEPs have periods and luminosities inbetween those of RR Lyrae and classical Cepheids (roughly
0.3–2 days) with amplitudes of about 0.3–1.0 magnitudes, and their light curves typically resemble
those of RRab stars. Their physical nature is not very well understood, but they have be proposed to
be a product of gaseous mass transfer in a binary star system. ACEPs provide special astrophysical
insights into stellar evolution pathways involving binary interaction, as well as into the environments
where they typically occur.

D.8 HIGH-AMPLITUDE DELTA-SCUTIS (HADS) AND LOW-AMPLITUDE DELTA-SCUTIS
(LADS)

Delta-Scuti (δ-Scuti) stars are pulsating variables stars with short periods and are typically divided
into the HADS and LADS subclasses based on the morphology of their light curves. HADS have
simple, regular, sawtooth-like light curves with periods <0.3 days and amplitudes greater than ∼0.3
magnitudes. In contrast, LADS exhibit complex, multi-periodic light curves with amplitudes below
∼0.1 magnitudes. HADS provide clean tests of stellar pulsation theory and scaling relations, while
LADS are testbeds for asteroseismology.

D.9 ELLIPSOIDAL BINARIES (ELL)

ELLs are close binary star systems in which the stars are tidally distorted into ellipsoidal shapes,
producing photometric variability without eclipses. ELL light curves have smooth, nearly sinusoidal
variations with two unequal minima per cycle, arising from the elongated parts rotating in and out of
view. They are astrophysically important because they reveal details of binary star evolution, stellar
shapes, and the presence of companion objects such as white dwarfs, neutron stars, or black holes.

D.10 HUMP VARIABLES

The Hump class is used as a catch-all for the small amount of periodic variables which Drake et al.
(2014a) were unable to classify into any other known classes but do show clear periodic variability.
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Figure 4: Comparison of Embedding Elignment for Astromer-1 (left) and Chronos-tiny
(right) models. The plots show the distribution of cosine similarities between light curve embed-
dings, both within the MACHO survey (green) and across surveys (ZTF vs. MACHO, orange).
Astromer-1 exhibits embedding collapse, with cosine similarities approaching 1.0 no matter
within- or cross-survey. This indicates that the model encodes little discriminative structure. In
contrast, Chronos-tiny produces more meaningful embeddings. The wider distribution of cosine
similarities preserves structural information, and the clear separation between within-survey and
cross-survey pairs demonstrates its ability to capture the domain shift between datasets.

Some of these objects exhibit vaguely sawtooth-like variability, like what is seen in RRab stars, but
others have smoother variability.

D.11 POST-COMMON-ENVELOPE BINARIES (PCEB)

PCEBs are close binary stars that have recently emerged from a common-envelope evolutionary
phase, in which one star expanded and engulfed its companion star inside its expanded outer layers
(“envelope"). Their light curves show a wide range of morphologies, including eclipses and ellipsoidal
modulations, depending on the physical properties of the system like the inclination of the orbit
relative to our line-of-sight and the nature of either of the stars in the binary system. Their periods
tend to be very short as the common-envelope phase drives angular momentum out of the orbit. The
smaller star in these systems are often a white dwarf, so these systems are an opportunity to study
potential progenitors of Type Ia supernovae.

D.12 EA WITH UNKNOWN PERIOD (EAUP)

EAup are EA-type stars where Drake et al. (2014a) were unable to determine their periods for any
reason.

E ASTROMER PERFORMANCE AND ASTROMER-1 EMBEDDING QUALITY

We provide detailed analysis and provide experiments on the issue of the poor performance of
Astromer-1. First, Astromer-1 needs further finetuning on the dataset of the downstream task
to achieve good performance on the variable star classification task, according to Donoso-Oliva et al.
(2023). This is evidenced in their Fig. 11 (a), which shows a clear increase of F1 score from 0.25 to
0.6 when finetuned on 20 to 500 variable stars per class of the MACHO dataset. A similar trend is
observed for other datasets, including OGLE-III and ATLAS. Astromer-2 (Donoso-Oliva et al.,
2025) also shows improvement with finetuning, though its performance starts higher (around 0.65)
even with just 20 samples per class. Please refer to (Donoso-Oliva et al., 2025, Figs. 11 and 12) for
the details. These results indicate that Astromer’s low zero-shot performance in our benchmark is
expected, as we intentionally evaluate the pretrained checkpoints without any task-specific tuning.

Second, we provides empirical analysis to show that Astromer-1 embedding collapse into similar
direction. Specifically, we randomly sample 1000 pairs of ZTF–MACHO data in r-band, and compute
the cosine similarity of embedding from two model, Astromer-1 and Chronos-tiny. For
comparison, we do the same for within-MACHO pairs. The result is in Figure 4. For Astromer-1,
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it is clear that its embedding collapse to one direction. Even the 10th percentile of cosine similarity
of embedding within MACHO is 0.995, this means every star is almost parallel to each other. Even if
the survey data shift, the 10th percentile is still 0.948. From above to we conclude the embedding
of frozen Astromer-1 encodes very little discriminative structure. This explain why downstream
classifier has a hard time to distinguish different class (low F1 score). For Chronos-tiny (right
figure), the cosine similarity within MACHO (green) shows a wide range of angles, indicating the
embeddings preserve class information. Furthermore, the embedding has a clear domain shift. The
cosine similarity of ZTF-MACHO pairs (orange) is lower than the one of within-MACHO pair.
Unlike frozen Astromer-1, Chronos-tiny doesn’t collapse everything into a single direction.
It still has room to spread out unseen patterns instead of forcing them into the old manifold.

F ADDITIONAL EXPERIMENTS RESULTS ON CONFUSION MATRIX
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Figure 5: Confusion matrix of Chronos-tiny on four classifiers.

To provide detailed information about classification performance across different variable star classes,
we report the confusion matrices for all embeddings and the hand-crafted features in this section. For
the random forest and MLP classifiers, the per-class accuracies are obtained by averaging over the
results of three runs.
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Figure 6: Confusion matrix of hand-crafted features on four classifiers.
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Figure 7: Confusion matrix of Chronos-Bolt on four classifiers.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

EW EA
RRa

b
RRc

RRd

RS C
Vn

LPV

Predicted

EW

EA

RRab

RRc

RRd

RS CVn

LPV

Tr
ue

0.957 0.020 0.003 0.017 0.001 0.002 0.000

0.207 0.791 0.000 0.001 0.000 0.000 0.001

0.340 0.003 0.559 0.086 0.005 0.008 0.000

0.624 0.001 0.027 0.343 0.002 0.002 0.000

0.675 0.000 0.108 0.181 0.000 0.036 0.000

0.790 0.022 0.004 0.029 0.000 0.145 0.011

0.086 0.000 0.000 0.000 0.000 0.143 0.771

KNN Classifier

EW EA
RRa

b
RRc

RRd

RS C
Vn

LPV

Predicted

EW

EA

RRab

RRc

RRd

RS CVn

LPV

Tr
ue

0.696 0.050 0.019 0.095 0.043 0.097 0.000

0.071 0.901 0.000 0.002 0.001 0.023 0.001

0.013 0.010 0.746 0.093 0.096 0.040 0.003

0.095 0.002 0.100 0.618 0.135 0.049 0.001

0.084 0.000 0.181 0.361 0.301 0.060 0.012

0.141 0.036 0.043 0.062 0.058 0.627 0.033

0.000 0.043 0.000 0.000 0.000 0.086 0.871

Logistic Classifier

EW EA
RRa

b
RRc

RRd

RS C
Vn

LPV

Predicted

EW

EA

RRab

RRc

RRd

RS CVn

LPV

Tr
ue

0.968 0.017 0.004 0.011 0.000 0.000 0.000

0.230 0.770 0.000 0.000 0.000 0.000 0.000

0.285 0.000 0.626 0.089 0.000 0.000 0.000

0.562 0.001 0.032 0.405 0.000 0.000 0.000

0.747 0.000 0.092 0.137 0.000 0.024 0.000

0.876 0.024 0.007 0.016 0.000 0.062 0.016

0.190 0.019 0.000 0.000 0.000 0.038 0.752

Random Forest Classifier

EW EA
RRa

b
RRc

RRd

RS C
Vn

LPV

Predicted

EW

EA

RRab

RRc

RRd

RS CVn

LPV

Tr
ue

0.650 0.067 0.006 0.079 0.019 0.176 0.002

0.023 0.949 0.000 0.000 0.001 0.023 0.005

0.008 0.004 0.680 0.087 0.137 0.074 0.010

0.111 0.004 0.053 0.681 0.062 0.086 0.002

0.133 0.000 0.042 0.343 0.283 0.187 0.012

0.069 0.042 0.018 0.045 0.047 0.737 0.042

0.000 0.000 0.000 0.000 0.000 0.064 0.936

MLP Classifier

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Figure 8: Confusion matrix of Moirai on four classifiers.
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Figure 9: Confusion matrix of Astromer-1 on four classifiers.
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Figure 10: Confusion matrix of Astromer-2 on four classifiers.
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