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TreeReward: Improve Diffusion Model via Tree-Structured
Feedback Learning

Anonymous Authors

TreeReward
Content

Detail

Style

Color

Data Scaling
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Tree-Structured Feedback Fine-grained Evaluation 

Lighting

Layout

Aesthetics
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• Content, Style
Aesthetics
• Color, Lighting, Detail, Layout
Task:
Text-to-Image, Image-to-Image
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Figure 1: We propose TreeReward, an innovative feedback learning framework that encompasses three two components:
feedback data scaling up, and tree-structured feedback learning. TreeReward aims to enhance diffusion models from various
aspects including Content, Style, Color, Lighting, Detail, and Layout. The radar chart visually represents the improvement
achieved by our model compared to the baseline (SD1.5). In this chart, the baseline value is set at 5, and the value range is
rescaled from [-5, 5] to [0, 10] for better visualization. * means that SD1.5 that fine-tuned in JourneyDB.

ABSTRACT
Recently, there has been significant progress in leveraging human
feedback to enhance image generation, leading to the emergence
of a rapidly evolving research area. However, current work faces
several critical challenges: i) insufficient data quantity; and ii) rough
feedback learning; To tackle these challenges, we present TreeRe-
ward, a novel multi-dimensional, fine-grained, and adaptive feed-
back learning framework that aims to improve both the semantic
and aesthetic aspects of diffusion models. Specifically, To address
the limitation of the fine-grained feedback data, we first design
an efficient feedback data construction pipeline in an "AI + Ex-
pert" fashion, yielding about 2.2M high-quality feedback dataset
encompassing six fine-grained dimensions. Built upon this, we in-
troduce a tree-structure reward model to exploit the fine-grained
feedback data efficiently and provide tailored optimization during
feedback learning. Extensive experiments on both Stable Diffusion
v1.5 (SD1.5) and Stable Diffusion XL (SDXL) demonstrate the effec-
tiveness of our method in enhancing the general and fine-grained
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generation performance and the generalizability of downstream
tasks.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Diffusion Model, Feedback Learning, Tree-structured Reward

1 INTRODUCTION
Reinforcement learning from human feedback (RLHF) [1, 18, 19] has
recently made significant strides in enhancing large language mod-
els (LLM) [26, 32], attracting substantial interest in the field. This
technique, which incorporates human feedback, aims to improve
the quality and safety of outputs from language models. Concur-
rently, similar methodologies are being adopted for diffusion-based
image generation. In these applications [29, 30], diffusion mod-
els are fine-tuned using human preference ratings, with reward
functions designed to align the generated images more closely with
human preferences. However, despite these developments, diffusion
models that integrate human feedback learning still face several
ongoing challenges. (i) Insufficient Feedback Data: Existing meth-
ods suffer from the limited preference data volume, especially the
fine-grained preference feedback data, which may not sufficiently
capture the diverse range of human preferences. Nonetheless, gath-
ering large amounts of preference data is labor-intensive and costly.
(ii) Coarse Feedback Learning: Due to the scarcity of tailored fine-
grained feedback data, the majority of existing datasets primarily

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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focus on coarse feedback learning and fail to explore efficient meth-
ods for leveraging fine-grained preference fine-tuning to enhance
the performance of diffusion. To address these challenges, we pro-
pose an effective fine-grained feedback-learning method to boost
the performance of the diffusion model comprehensively. Specifi-
cally, to tackle the issue of lack of fine-grained feedback data, we
first design an efficient feedback data construction pipeline for six
fine-grained dimensions. According to the different characteris-
tics of distinct fine-grained dimensions, it incorporated both the
automatic feedback data generation and the human preference an-
notation to enable feedback data scale-up in a low-cost manner.
With this pipeline, we scale up the feedback dataset to about 2.2M,
which is the largest available dataset in the field of text-to-image
generation. Based on this dataset, we further introduce a novel
tree-structured reward model, namely TreeReward. It organizes
the fine-grained feedback dimension hierarchically and utilizes the
random sample ensemble training strategy to effectively integrate
the scoring abilities of multiple fine-grained feedback into a single
reward model. During reward feedback learning, it aggregates the
reward scores from all the leaf nodes in an adaptivemanner, offering
the case-tailored feedback signal for optimization. Extensive experi-
ments demonstrate the superiority of our method in enhancing the
generation performance of both general quality and fine-grained
dimensions. Furthermore, we validate the model’s performance in
downstream tasks, demonstrating its robustness and generalization.
Our contributions are summarized as follows:

• We design an efficient feedback data curation pipeline that
combines automated feedback generation and manual an-
notation to efficiently collect fine-grained feedback data on
various aspects such as style, content, light, structure, lay-
out, and detail, finally yielding about 2.2M feedback dataset
which is the largest dataset in the field.

• We introduce an innovative feedback learning method based
on a tree-structure reward, TreeReward, that enables multi-
dimensional, fine-grained, and adaptive preference feedback
learning, resulting in more comprehensive and effective re-
ward tuning.

• Extensive experiments on both SD1.5 and SDXL validate
the effectiveness of our method, showcasing superior perfor-
mance when compared to the state-of-the-art reward tuning
method. Additionally, the experiment on the downstream
tasks further validates the efficacy and generalization of our
method.

2 RELATEDWORKS
2.1 Text-to-Image Generation
Text-to-image generative models, including auto-regressive [4, 6,
22], GANs [7, 11, 12] and diffusion models [8, 17, 25, 33], have be-
come a prominent research area in various applications, attracting
significant attention. Among the evolving methodologies, diffusion
models have emerged as the de facto mainstream technique for text-
to-image synthesis due to their impressive generation capabilities.
The widespread adoption of diffusion models can be attributed to
their demonstrated effectiveness, as evidenced by pioneering works
[3, 9, 15, 17, 21, 23] such as DALLE-2 [21] and Stable Diffusion
[23]. However, despite diffusion models having great success in

text-to-image synthesis, they still struggle to generate images that
are well-aligned with the user preference within the text prompts.
This paper addresses this limitation by directly incorporating fine-
grained human feedback into the training of diffusion models.

2.2 Learning from Human Feedback
Due to the inherent noise of the pre-trained dataset, there is of-
ten a gap between generative models’ pre-training objectives and
human intent. To mitigate this gap, human feedback learning [1,
5, 18, 19, 31] has been utilized to align model performance with
human preference in the language domain. Inspired by these works,
several works have endeavored to incorporate human feedback
into the learning process of diffusion models to better understand
human preferences. DDPO [2] adopts a reinforcement learning
framework to align diffusion model generation with the supervi-
sion provided by an additional reward model. Approaches like HPS
[28, 29] employ a separate reward model trained on curated human
preference datasets to filter eligible preferred data for fine-tuning
stable diffusion. Another approach, Reward Weighting [14], utilizes
reward-weighted likelihood as the optimization objective. ImageRe-
ward [30] proposes the ReFL training framework to fine-tune stable
diffusion via a differentiable reward model. While these methods
have shown success in human preference learning, they rely on a
general reward model trained on coarse human preference datasets,
limiting their ability to provide fine-grained preference evaluation.
Additionally, they require training an extra reward model when
preferences change. In this paper, we address these limitations by
curating a fine-grained human preference dataset. Building upon
this dataset, we propose a tree-structured reward model that offers
more effective and flexible reward supervision for diffusion models.

3 PRELIMINARY
3.1 Text-to-Image Diffusion Model
Text-to-image models use diffusion modeling to create high-quality
images from text prompts. The diffusion model produces data sam-
ples from Gaussian noise by gradually denoising process. During
pre-training, a sampled image 𝑥 is first processed by a pre-trained
VAE encoder to derive its latent representation 𝑧. Subsequently,
random noise is injected into the latent representation through a
forward diffusion process, following a predefined schedule {𝛽𝑡 }𝑇 .
This process can be formulated as 𝑧𝑡 =

√
𝛼𝑡𝑧 +

√
1 − 𝛼𝑡𝜖 , where

𝜖 ∈ N (0, 1) is the random noise with identical dimension to 𝑧,
𝛼𝑡 =

∏𝑡
𝑠=1 𝛼𝑠 and 𝛼𝑡 = 1 − 𝛽𝑡 . To achieve the denoising process, a

UNet 𝜖𝜃 is trained to predict the added noise in the forward diffu-
sion process, conditioned on the noised latent and the text prompt
𝑐 . Formally, the optimization objective of the UNet is:

L(𝜃 ) = E𝑧,𝜖,𝑐,𝑡 [| |𝜖 − 𝜖𝜃 (
√︁
𝛼𝑡𝑧 +

√︁
1 − 𝛼𝑡𝜖, 𝑐, 𝑡) | |22] . (1)

3.2 Reward Feedback Learning
Reward feedback learning(ReFL) [30] is a preference fine-tuning
framework that aims to improve the diffusionmodel via human pref-
erence feedback. It primarily includes two phases: (1) RewardModel
Training and (2) Preference Fine-tuning. In the RewardModel Train-
ing phase, human preference data is collected. These data are then
utilized to train a human preference reward model, which serves
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Name Annotator Data Format Prompt Source Image Source # Dim. # Prompt # Pairs
HPS [29] Discord users Top-1 choice Discord users Stable Diffusion 1 25k 25k

ImageReward [30] Expert Pairwise DiffusionDB DiffusionDB 1 9k 137k
PickScore [13] Web users Pairwise Web users 4 Models 1 38k 584k
HPSv2 [28] Expert Pairwise DiffusionDB* 9 Models + real photo 1 108k 798k

Ours AI + Expert Pairwise DiffusionDB* + Web users 15 Models + real photo 6 400k 2.2M
Table 1: Comparison with other datasets. * indicates that the data has been filtered. Our data covers 6 fine-grained dimensions.
Compared with the previous largest dataset, our preferred pair data pair has been expanded by 2.75 ×.

Replaced Prompt: Sketch, Two 
boats out on a lake at sunset.

Target Prompt: Japanese anime style,
Two boats out on a lake at sunset.

Preferred Image Unpreferred Image

𝑥! 𝑥"! 𝑥""… 𝑥#… SD1

Prompt: “Perspective layout, A
couple of giraffes are in a field”

SD2

Preferred
Image

Unpreferred
Image

Prompt: “Soft lighting， A couple of
giraffes are in a field”

Preferred
Image

Unpreferred
Image

<

Original Caption:
“Listing Photo for 3463 Hidden Rd.”

LLaVA-1.5

Recaption:
"A small yellow house with a
snow-covered roof and a
chimney is situated on a snowy
street. The house is
surrounded by a snowy yard
and a few trees."

.
🌋

Preferred CaptionUnpreferred Caption

DataBase

replace target style

LDM

Contrastive Data Sample

Recaption

Filter

AI-assisted Data Construction

…

Figure 2: The overview of our "AI + Expert" fine-grained feedback data construction pipeline. For the feedback data on different
fine-grained dimensions, we design distinct strategies to generate the feedback data accordingly, leading to efficient feedback
data scaling up.

as an encoding mechanism for capturing human preferences. More
specifically, considering two candidate generations, denoted as 𝑥𝑤
(preferred generation) and 𝑥𝑙 (unpreferred one), the loss function for
training the human preference reward model 𝑟𝜃 can be formulated
as follows:

L(𝜃 )𝑟𝑚 = −E(𝑐,𝑥𝑤 ,𝑥𝑙 )∼D [𝑙𝑜𝑔(𝜎 (𝑟𝜃 (𝑐, 𝑥𝑤) − 𝑟𝜃 (𝑐, 𝑥𝑙 )))], (2)

where D denotes the collected feedback data, 𝜎 (·) represents the
sigmoid function, and 𝑐 corresponds to the text prompt. The reward
model 𝑟𝜃 is optimized to produce a preference-aligned score that
aligns with human preferences. In the Preference Fine-tuning phase,
ReFL begins with an input prompt 𝑐 , initializing a latent variable
𝑥𝑇 at random. The latent variable is then progressively denoised
until reaching a randomly selected timestep 𝑡 . At this point, the
denoised image 𝑥 ′0 is directly predicted from 𝑥𝑡 . The reward model
obtained from the previous phase is applied to this denoised image,
generating the expected preference score 𝑟𝜃 (𝑐, 𝑥 ′0). This preference
score enables the fine-tuning of the diffusion model to align more
closely with human preferences:

L(𝜃 )𝑟𝑒 𝑓 𝑙 = E𝑐∼𝑝 (𝑐 )E𝑥 ′
0∼𝑝 (𝑥 ′

0 |𝑐 ) [−𝑟 (𝑥
′
0, 𝑐)] . (3)

4 EFFICIENT FEEDBACK DATA SCALING
An essential challenge of feedback learning resides in the collec-
tion and construction of a high-quality dataset of human feedback.
Although there are already some available feedback datasets, such
as the ImageReward[30] and Pickascore[13], these datasets often
suffer from coarse feedback annotation and limited data volume.

However, collecting large amounts of fine-grained human feed-
back data is time-consuming and expensive. To tackle this issue,
we design an efficient pipeline to reduce the cost of feedback data
construction via a series of automatic strategies. The core insight of
our method is not all feedback data on each aspect requires accurate
human annotation and we can combine the automatic data genera-
tion with manual human annotation to reduce the cost of the data
construction. The comparison between our collected feedback data
and the existing dataset is summarized in Tab.1. In total, we collect
about 2M feedback data across six dimensions encompassing both
semantic and aesthetic aspects with such pipeline, which will be
elaborated in the following sections.

4.1 Feedback Data on Semantics Alignment
The semantic alignment between the text prompt and the generated
image is an important aspect of evaluating the performance of a
text-to-image diffusion model. Rather than treating the semantic
alignment as a whole [30], we further break down the semantic
alignment into style alignment and content alignment to aid the
fine-grained feedback data collection.
Style Alignment. To create a feedback dataset on style genera-
tion, we develop a contrastive data sample strategy to construct
the style feedback data. As depicted in Fig.2, we initially collect
a diverse set of approximately 500 commonly used target style
words from the user prompts(e.g. prompt in the JourneyDB[20]).
Subsequently, given a prompt containing a particular target style
word, we randomly substitute the target style word with another
word from the vocabulary. Then, we generated two images with the
original prompt and the replaced prompt. Thus, for the target style,
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the image generated by the target style word serves as a positive
sample, whereas the image generated by the randomly substituted
style word acts as a negative sample. To ensure the quality of the cu-
rated feedback data, we exploit the state-of-the-art diffusion model
to generate images, such as SDXL and Kindmisky. By employing
this methodology, we collect precise and detailed style feedback
data that assist in training the diffusion model to accurately capture
the desired style alignment in the generated images.
Content Alignment. Given the input prompt, we expect the diffu-
sion model to generate all the entities and attributes mentioned in
the input prompts accurately. However, the current text-to-image
diffusion model still lags in this aspect due to the noisy pre-trained
datasets like LAION. In this work, we attempt to collect a feedback
dataset on content alignment and tackle this problem via feedback
learning. Specifically, as depicted in Fig.2, we introduce a recaption
strategy to curate the feedback data with two steps. i) Identifying
Misaligned Examples: We utilized the clip model to identify image-
text pairs in the LAION dataset where the clip score fell below a
certain threshold. These pairs were considered instances of poor
content alignment and sent to re-caption. ii) Generating Detailed
Image Descriptions: Given these misaligned text-image pairs, in-
stead of generating a more aligned image, we inversely re-generate
a more aligned prompt via advanced multimodal large language
models (MLLMs) such as LLaVA. iii) Feedback Data Construction:
For each image, we considered the original caption and the regener-
ated caption from theMLLM as feedback data for content alignment
with the regenerated caption regarded as the preferred alignment
as a more detailed and accurate description of the image.

4.2 Feedback Data on Aesthetics Quality
The aesthetic quality is another critical aspect of generation perfor-
mance. Due to the inherent abstract and subjective, it is hard for the
diffusion model to grab the aesthetic essence. Therefore, the current
methods propose to exploit human preference to steer the diffusion
in the right direction. However, the abstract aesthetic concept con-
tains quality in various dimensions, such as color, lighting, layout,
and details, and the existing methods only consider coarse-grained
aesthetics and cannot refine each dimension of aesthetics, and also
has the risk of optimization conflict during feedback tuning as an-
alyzed in [27]. To address this limitation, we propose to decouple
the aesthetic into these dimensions and introduce an AI-assisted
feedback data construction strategy.
Color, Lighting, Layout, and Detail. The primary challenge of
fine-grained aesthetic feedback data curation lies in the lack of the
image pair focusing on a particular aspect to annotate. The ordi-
nary image pair generated by a text-to-image diffusion model of
the same prompt tends to have a similar aesthetic quality, leading
to hard judgment and requiring much more time to distinguish the
reference sample. To ease the human annotation burden, we design
two strategies to make the AI-assisted feedback data generation.
Specifically, we utilize a text-to-image diffusion model to generate
several images for a particular prompt and then ask the annotator
to select the preferred and unpreferred sample. During this process,
(i) To make the model to generate the image that focuses on a par-
ticular aspect, we manually curate a set of trigger words for each
aesthetic dimension. For instance, in the lighting dimension, trigger

words like "Soft lighting," "Side lighting," "rim lighting," and "Moody
lighting" are included. By incorporating these trigger words into the
input prompt, we enhance the model’s focus on specific aesthetic
dimensions during the image generation. (ii) To ease the judgment
process, we manually create the sample with aesthetic differences
as depicted in Fig.2. On one hand, we utilize diffusion models with
varying generative capabilities to generate the image pair. For ex-
ample, we take the image generated by SDXL and its improved
version Kindminsky as the candidate images for easier preference
annotation. On the other hand, we take the images generated at
different denoised timesteps to assist the fast preference annotation.
With these two strategies, we can achieve efficient fine-grained
aesthetic feedback data annotation, and reduce the annotation cost.

5 TREE-STRUCTURED FEEDBACK LEARNING
Given the collected fine-grained feedback dataset, the next question
is how to utilize these datasets efficiently. The most direct way is to
utilize these datasets as a whole and train a simple reward model as
the practice in [30]. However, this way overlooks the difference be-
tween these dimensions, leading to inefficient feedback learning. To
this end, we introduce a TreeReward, an effective way to combine
fine-grained feedback data and dynamically provide fine-grained
and adaptive preference feedback for fine-tuning diffusion models.
Fig.3 illustrates the TreeReward training and preference fine-tuning
process, which will be explained in the following sections.

5.1 TreeReward Training
In general, TreeReward exhibits a hierarchical structure comprised
of two internal nodes and six local leaf nodes. The role of the inter-
nal nodes is to determine which general aspect (such as semantic
or aesthetic) to reward, while the leaf nodes are responsible for
providing precise reward scores along fine-grained dimensions. In
line with ImageReward[30], we implement TreeReward with the
BLIP model as the backbone, which employs ViT-L14 as the image
encoder and a 12-layer transformer as the text encoder. For the in-
ternal node and leaf node of our TreeReward, we implement them
with simple 2x and 4x MLPs, respectively.

We take a random sample ensemble strategy to train our
TreeReward. Specifically, we first randomly sampled a data point
from the collected feedback dataset, which contains the reward
dimension, reward data. Then, a path is chosen from the root of
TreeReward to the leaf node according to the reward dimension.
Formally, for the internal nodes,

L𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (𝜃 ) = CrossEntropy(𝑔,𝐺 (𝑥)). (4)

Here, 𝐺 (·) represents the predicted logits of the internal node, and
𝑔 is the target internal reward label determined by the source of
the training data. This objective aims to let the model know which
aspect to reward when given a text-image pair. For the leaf node,
we expect the leaf node to output the correct reward score. We
take a similar way with E.q.2 to optimize the leaf node along a
particular reward dimension. Specifically, for the 𝑗-th reward local
leaf node denoted as 𝑅 𝑗

𝜃
, the preference feedback reward data pair

is represented as (𝑥𝑤 , 𝑥𝑙 ). Here, 𝑥𝑤 corresponds to the preferred
text-image pair, while 𝑥𝑙 represents the non-preferred text-image
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Figure 3: The overview of our TreeReward, a tree-structured reward model trained with vast high-quality fined-grained
preference data to facilitate more effective feedback learning for text-to-image generative models.

pair. The loss function for the leaf can be formulated as:

L𝑙𝑒𝑎𝑓 (𝜃 ) = −E(𝑥𝑤 , 𝑥𝑙 ) ∼ 𝐷 𝑗 [log(𝜎 (𝑟 𝑖𝜃 (𝑥𝑤)) − 𝜎 (𝑟 𝑖
𝜃
(𝑥𝑙 )))] . (5)

In the above equation, 𝑟 𝑗
𝜃
(𝑥 ·) is the scalar reward predicted by the

𝑗-th leaf node, 𝐷 𝑗 represents the feedback dataset for the corre-
sponding fine-grained reward dimension of the 𝑗-th leaf node. The
complete loss for training TreeReward is defined as:

L(𝜃 )𝑅𝑀 = L𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (𝜃 ) + L𝑙𝑒𝑎𝑓 (𝜃 ) . (6)

It is worth noting that we only optimize one particular path in the
TreeReward according to the source of the feedback data for each
time, and leave the parameters of other nodes unchanged. However,
with the random sampling training data, the whole tree reward will
be fully optimized via a path ensemble way.

5.2 TreeReward Feedback Learning
Aligned with the practice in ImageReward [30], we adopt the direct
preference fine-tuning fashion to harness the reward guidance
offered by our TreeReward. However, rather than obtaining a coarse
reward score, we utilize an adaptive reward score derived from
our tree-structured reward model to fine-tune the diffusion model
comprehensively.

Specifically, given the generated image 𝑦𝑖 and the corresponding
prompt 𝑥𝑖 , we calculate the reward score for the input text-image
pair (𝑥𝑖 , 𝑦𝑖 ) hierarchically and adaptively. Starting from the root
node, we first calculate the internal node logits and obtain the
reward weights for the semantic alignment and aesthetic quality.
Formally, we have:

𝑤𝑏 =
𝑒𝑟𝑏 (𝑥𝑖 ,𝑦𝑖 )∑
𝑒𝑟𝑏 (𝑥𝑖 ,𝑦𝑖 )

, (7)

where 𝑟𝑏
𝜃
(𝑥) with 𝑏 ∈ {semantic, aesthetic} represents the pre-

diction output of the internal node, and𝑤𝑏 is the reward weight of
along these two aspects. Next, we obtain all the fine-grained reward
scores on the leaf node and compute the adaptive weight of each

leaf node under the internal node:

𝑤𝑘 =
𝑒𝑟𝑘 (𝑥𝑖 ,𝑦𝑖 )∑
𝑒𝑟𝑘 (𝑥𝑖 ,𝑦𝑖 )

,

where 𝑘 is the leaf nodes under a internal node and 𝑤𝑘 is the
corresponding weight. The final reward 𝑅 is obtained by combining
the rewards hierarchically from the root to the leaf:

𝑅𝑡𝑟 (𝑦𝑖 , 𝑔𝜃 (𝑦𝑖 )) =
𝑀∑︁
𝑏=0

𝑤𝑏

𝑁𝑏∑︁
𝑘=0

𝑤𝑘 · 𝑟𝑘 (𝑥𝑖 , 𝑦𝑖 ), (8)

where 𝑁𝑏 is the number of reward leaf nodes under the branch
𝑏, and𝑀 is the number of global reward branches. By combining
the fine-grained rewards from all nodes, our model can adaptively
focus on the reward dimensions that have not been well optimized
yet, providing case-tailored preference feedback for the diffusion
model via:

L𝑟𝑒𝑤𝑎𝑟𝑑 = E𝑦𝑖 ∼ 𝑦 [−𝑅𝑡𝑟 (𝑥𝑖 , 𝑦𝑖 )] . (9)
Following [30], we also incorporate the naive diffusion pre-train

loss [30] as a regularization term:

L𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = E(𝑦𝑖 ,𝑥𝑖 )∼𝐷
(
EE(𝑥𝑖 ),𝑦𝑖 ,𝜖∼N(0,1),𝑡

[
∥𝜖 − 𝜖𝜃 (𝑧𝑖 , 𝑡, 𝜏𝜃 (𝑦𝑖 ))∥22

] )
.

(10)
Therefore, the final training objective is:

L = L𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 + 𝜆L𝑟𝑒𝑤𝑎𝑟𝑑 , (11)

where 𝜆 is the loss weight and is set to 0.05 by default.

6 EXPERIMENTS
6.1 Implementation Details
Dataset andTraining Setting.Weutilize the collected fine-grained
preference data to train our TreeReward. We randomly sample a
prompt set from DiffusionDB following [30] for preference fine-
tuning. We conduct experiments with Stable Diffusion v1.5 and
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Figure 4: Visual comparison of SOTA models. TreeReward has achieved more excellent results than other competitive methods.

Table 2: The quantitative results between the SOTA model
and ours in clip and aesthetic score. Among them, * means
that the model has been fine-tuned in JourneyDB.

Model CLIP Score Aesthetic Score

SD1.5 25.60 5.41
SD1.5+ImageReward 26.20 5.55
SD1.5+TreeReward 26.70 5.62

SD1.5* 26.60 5.89
SD1.5*+ImageReward 26.90 5.90
SD1.5*+TreeReward 27.40 5.96

SDXL* 27.28 5.69
SDXL+ImageReward 27.35 5.66
SDXL+TreeReward 27.39 5.84

Stable Diffusion XL base 1.0. Additionally, to validate the effec-
tiveness and generalization of our method, we further utilize the
JourneyDB [20], a large-scale generated image dataset collected
from Midjourney, to fine-tune the base SD1.5 to acquire an im-
proved base diffusion model where we subsequently conduct the
preference fine-tuning.
Fine-Grained Evaluation. In addition to the general performance
evaluation on the overall quality, we further constructed a fine-
grained evaluation benchmark to comprehensively evaluate the
model performance on the fine-grained dimensions. Specifically, we
request the ChatGPT to write several typical prompts for each fine-
grained dimension (i.e., content alignment, style alignment, color,
lighting, detail, and layout). These prompts ensure that describe
the picture that is most relevant to the corresponding fine-grained
dimension. We further execute the manual check to filter out the in-
valid prompt. This finally results in 100 prompts for each dimension
and 600 prompts in total. The examples of these prompts and details

of the evaluation procedure are displayed in the supplementary
material.

6.2 Comparision with State-of-the-art
Qualitative Results. We compared our method with ImageRe-
ward, the current state-of-the-art SD preference modeling method.
It clearly shows that our method exhibits a superior preference for
learning performance in both semantic alignment and aesthetic
quality enhancement. As shown in Fig.4, our method exhibits su-
perior overall visual quality. Take SD1.5 and the prompt of “A
dolphin leaps through the waves, set against a backdrop of bright
blues and teal hues” as an example, there are no dolphins in the
image generated by SD1.5. The dolphin generated by ImageReward
is either too small, or the waves are blurry. By contrast, both the
waves and dolphins generated by TreeReward are rich in detail and
highly realistic. As depicted in Fig.5, TreeReward also shows superi-
ority in generating images with better visual quality in various
fine-grained aspects. For example, only TreeReward generates
the correct result for prompt “a horse without a rider", while both
the base model and ImageReward generate the mismatched content
(The riders). And for prompt “A mountain retreat’s spa, zen-inspired,
... overlook forest views”, both SD1.5 and ImageReward present un-
reasonable layouts for the tables and swimming pool (Too small
tables and truncated swimming pool), while TreeReward displays
the more aesthetic layout. Note that the ImageReward does not
exhibit much improvement when applied to the improved stable
diffusion base model which is fine-tuned with JourneyDB. As a
comparison, Our TreeReward still delivers notable improvement,
which demonstrates the superiority of our method.
Quantitative results. To evaluate the performance of our method
quantitatively, we conducted comparisons using CLIP scores and
aesthetic scores, which provide metrics for semantic alignment
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Method SD1.5 JourneyDB-tuned SD1.5
Content Style Color Lighting Detail Layout Content Style Color Lighting Detail Layout

ImageReward [30] 0.58 1.50 0.24 0.71 0.82 0.58 0.96 0.40 0.66 0.57 0.38 0.33
TreeReward (Ours) 0.98 1.95 1.74 1.09 0.98 0.95 1.72 0.82 1.80 1.42 2.58 1.22

Table 3: Human fine-grained evaluation results for 2 base models optimized via 2 different reward models. It can be seen that
TreeReward brings greater improvement than ImageReward in all dimensions. The value is the absolute value of improvement,
and the range is [-5, 5].

Color

Lighting

Detail

Figure 5: Visual comparison of each evaluation dimension. Among them, * means that the model has been fine-tuned in
JourneyDB. TreeReward has achieved excellent results in terms of Content, Style, Color, Lighting, Detail, and Layout.

and aesthetic quality, respectively. The results are presented in
Tab. 2. It demonstrates that our method outperforms the baseline
model in both semantic alignment and aesthetic quality and also
surpasses the performance of ImageReward. For instance, on SD1.5,
our method achieved a 2% improvement in semantic alignment com-
pared to ImageReward, along with a 1.6% enhancement in aesthetic
quality. These results indicate the superiority of our method in
generating images that are not only visually appealing but also se-
mantically aligned. It is worth emphasizing that the score achieved
by the SD1.5 model with fine-tuning using journey-db data is higher
than that of the SDXL model. This observation underscores the
significance of utilizing high-quality fine-tuned data to enhance

model performance. However, it is important to note that these
metrics only provide a general overview. To obtain more detailed
insights, we further conducted fine-grained human evaluation to
validate the superiority of our method in generating high-quality
images across diverse dimensions. Specifically, we take the original
SD1.5 and JourneyDB-tuned SD1.5 as our baselines. Then, we evalu-
ated the performance of the models optimized by ImageReward and
TreeReward, respectively. Concretely, human raters were tasked
with scoring the images generated by these two models ranging
from -5 to 5 across various dimensions against the baseline mod-
els.The results of the fine-grained evaluation are presented in Tab.3.
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Figure 6: Comparison of visual results on the downstream task with SD1.5 and SD1.5 optimized by our method.
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Figure 7: The user study to validate feedback data scaling
up, tree-structured reward feedback learning. The result is
evaluated by 10 annotators on the generation of 100 prompts.

Table 4: ‘IR’: ImageReward. ‘TR’: TreeReward.
Setting Data Volume Structure Reward Nums
ImageReward 137K IR single
Data-Scale 2.2M IR single
Decouple 2.2M IR multiple
TreeReward (Ours) 2.2M TR single

It is evident that our TreeReward feedback learning approach sig-
nificantly outperforms the ImageReward across all the dimensions.
Remarkably, our TreeReward approach demonstrates a notable en-
hancement of 1.5 points in the ‘Color’ dimension when compared
to the ImageReward method on SD1.5. Moreover, when applied
on JourneyDB-tuned SD1.5, our TreeReward approach showcases
a significant improvement of 2.2 points in the ‘Detail’ dimension,
surpassing the ImageReward model by a substantial margin. Such
comparison is also visualized in Fig.1, clearly demonstrating that
our method outperforms ImageReward across all dimensions.

6.3 Ablation Study
We have conducted a series of ablation experiments to showcase the
key contributions of our method, specifically the fine-grained feed-
back data scaling and the design and tree-structured reward fine-
tuning. These experiments encompass several settings: (i) "Data-
Scale": We employ the same reward model as ImageReward but
utilize our collected feedback data for training the reward model
without distinguishing the different fine-grained dimensions. (ii)
"Decouple": Instead of training a single reward model, we train
separate reward models for each fine-grained dimension using our
feedback data and utilize these models for preference fine-tuning
simultaneously. (iii) "ImageReward": Preference fine-tuning using
the reward model provided by ImageReward. (iv) "TreeReward":
Preference fine-tuning using the reward model provided by our

TreeReward approach. The detailed comparison between these
settings is presented in Tab.4. As illustrated in Fig.7, incorporat-
ing more feedback data significantly enhances the performance of
preference fine-tuning, resulting in an impressive increase of 18%
compared to the naive ImageReward approach. This finding under-
scores the importance of gathering a larger quantity of high-quality
feedback data, even without considering fine-grained distinctive-
ness. Building upon this, the decoupling of the reward model for
different fine-grained dimensions leads to a further improvement
(44% vs 32%). This demonstrates the necessity of the decoupled
reward model design, which effectively eliminates potential con-
flicts in preference tuning as analyzed in [27]. However, training
multiple reward models not only results in memory inefficiency
but also achieves sub-optimal multiple reward fine-tuning. In com-
parison, our TreeReward approach leverages fine-grained feedback
data hierarchically and rewards in an adaptive manner, offering
greater flexibility and delivering superior performance compared
to naive fine-tuning with multiple reward models (54% vs 35%).
By incorporating these two improvements, our method ultimately
achieves a 32% increase in user preference compared to ImageRe-
ward, highlighting the significant advantages of our approach.

6.4 Generalization Study
We conduct an extensive study to evaluate the generalization poten-
tial of our method in adapting to various downstream tasks, such
as LORA [10], DreamBooth [24], Image-to-Image[16], and Control-
Net [34]. As illustrated in Fig.6, our model showcases remarkable
compacity in style learning, IP preservation, reference generation,
and controllable generation.

7 CONCLUSION
We propose TreeReward, an effective method to boost the diffusion
model across various fine-grained dimensions. It includes an effi-
cient "AI + Expert" fine-grained feedback data construction pipeline,
and a tree-structured reward model to achieve fine-grained, multi-
dimension, and adaptive reward feedback learning. Extensive exper-
iments on both SD1.5 and SDXLmodels demonstrate the superiority
of our method in both boosting the general quality and fine-grained
generation and at the same exhibiting excellent generalization.
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