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ABSTRACT

We study masked discrete diffusion—a flexible paradigm for text generation in
which tokens are progressively corrupted by special mask symbols before be-
ing denoised. Although this approach has demonstrated strong empirical perfor-
mance, its theoretical complexity in high-dimensional settings remains insuffi-
ciently understood. Existing analyses largely focus on uniform discrete diffusion,
and more recent attempts addressing masked diffusion either (1) overlook widely
used Euler samplers, (2) impose restrictive bounded-score assumptions, or (3) fail
to showcase the advantages of masked discrete diffusion over its uniform counter-
part. To address this gap, we show that Euler samplers can achieve ϵ-accuracy in
total variation (TV) with Õ(d2ϵ−3/2) discrete score evaluations, thereby providing
the first rigorous analysis of typical Euler sampler in masked discrete diffusion.
We then propose a Mask-Aware Truncated Uniformization (MATU) approach that
both removes bounded-score assumptions and preserves unbiased discrete score
approximation. By exploiting the property that each token can be unmasked at
most once, MATU attains a nearly ϵ-free complexity of O(d ln d · (1− ϵ2)). This
result surpasses existing uniformization methods under uniform discrete diffu-
sion, eliminating the ln(1/ϵ) factor and substantially speeding up convergence.
Our findings not only provide a rigorous theoretical foundation for masked dis-
crete diffusion, showcasing its practical advantages over uniform diffusion for
text generation, but also pave the way for future efforts to analyze diffusion-based
language models developed under masking paradigm.

1 INTRODUCTION

Diffusion language models (Sohl-Dickstein et al., 2015; Hoogeboom et al.; Austin et al., 2021; Lou
et al., 2024; Ou et al., 2024) have recently emerged as a powerful class of generative paradigms,
frequently regarded as both complements and competitors to the auto-regressive based language
models (Achiam et al., 2023; Touvron et al., 2023; Zhao et al., 2023). Whereas auto-regressive
models learn the conditional distribution of the next token given a prefix, diffusion language models
approximate the joint distribution of an entire token sequence through a noising–denoising process.
This process transforms a potentially complex data distribution into a simpler prior distribution and
then iteratively reconstructs it. In the forward (noising) direction, tokens are progressively replaced
by special mask symbols, thereby mapping the data distribution to a one-hot stationary distribution.
The reverse (denoising) direction then recovers the original text step by step by estimating discrete
scores (i.e., density ratios) over the corrupted samples.

Although masked discrete diffusion has empirically outperformed uniform discrete diffusion (where
the forward process admits a uniform stationary distribution) (Lou et al., 2024), analyzing and miti-
gating its computational overhead in high-dimensional settings remains challenging. As summa-
rized in Table 3, most existing theoretical results focus on uniform discrete diffusion. In these
analyses, Euler-type samplers approximate continuous-time scores by holding them constant over
short intervals, leading to polynomial complexity in the total variation (TV) distance ϵ. Specifi-
cally, exponential-integrator methods (Zhang et al., 2024) require Õ(ϵ−2) steps, while τ -leaping
methods (Campbell et al., 2022; Lou et al., 2024) and their higher-order variants (Ren et al., 2025)
need Õ(ϵ−1) steps. Notably, uniformization-based techniques offer a promising approach, achiev-
ing O(ln(1/ϵ)) complexity by unbiasedly simulating the reverse Markov chain. In the context of
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masked discrete diffusion, Liang et al. (2025a) rigorously examined ϵ-TV convergence, showing that
τ -leaping can take Õ(ϵ−2) steps to converge and also improves upon the dimensional dependence
found in uniform discrete diffusion. However, their stronger bounded-score assumptions make di-
rect comparisons of algorithmic complexity with existing works (Chen & Ying, 2024; Huang et al.,
2025) uncertain. Although uniformization can theoretically reach a complexity of O(ln(1/ϵ)) in
their framework, it retains the same ϵ-dependence as uniform discrete diffusion and has yet to ex-
hibit clear empirical benefits in masked diffusion. Finally, the analysis of the typical Euler sampler
used in most empirical studies (Lou et al., 2024; Ou et al., 2024) is still not fully understood.

To address the theoretical challenges of masked discrete diffusion, we first analyze a typical Euler
sampler that parallels the inference procedures used in many empirical studies (Lou et al., 2024;
Ou et al., 2024). Our findings reveal that reaching ϵ-TV convergence in masked discrete diffu-
sion with the typical Euler sampler requires Õ(d2ϵ−3/2) discrete score evaluations. This result
stands as the first rigorous analysis of the typical Euler method in masked discrete diffusion and
demonstrates faster convergence than the τ -leaping approach (Liang et al., 2025a) under stringent
accuracy demands. We then examine uniformization-based approaches for masked discrete diffu-
sion, where uniformization converts a continuous-time Markov chain (CTMC) into a discrete-time
Markov chain (DTMC) by sampling random Poisson jump times. This technique preserves the exact
transition structure of the original CTMC and provides an unbiased simulation without time-step dis-
cretization error. To eliminate the bounded-score assumption used in previous uniformization analy-
ses (Chen & Ying, 2024; Liang et al., 2025a), we propose a Mask-Aware Truncated Uniformization
(MATU) method inspired by Huang et al. (2025). Under MATU, we rescale the outgoing transition
rates of the reverse process according to the number of masked tokens in preceding states, naturally
tighting enforcing boundedness in the discrete score estimator while preserving the unbiasedness of
uniformization-based score approximation. We prove that MATU can reach the same ϵ-TV conver-
gence at a nearly ϵ-free complexity, offering a significant speedup from O(ln(1/ϵ)) to O(1 − ϵ2).
The key insight is that uniformization in the masked setting explicitly identifies which tokens re-
main masked and require denoising, thereby avoiding the redundant denoising attempts that slow
convergence in uniform discrete diffusion. Our main contributions are summarized as follows.

• We present the first rigorous theoretical analysis of typical Euler samplers for masked dis-
crete diffusion. Achieving ϵ-TV convergence requires Õ(d2ϵ−3/2) discrete score evalua-
tions, surpassing τ -leaping (Liang et al., 2025a) in high-accuracy settings.

• We propose a new method called Mask-Aware Truncated Uniformization (MATU). Un-
like simply applying uniformization to masked discrete diffusion (Liang et al., 2025a),
our approach leverages a truncation on the outgoing rate, thereby removing the need for a
score-bounded assumption. Moreover, our truncation is adaptive to the number of masked
tokens, in contrast to Huang et al. (2025) which relies on a uniform constant, thus making
full use of masked discrete diffusion properties.

• By leveraging the property that tokens cannot be unmasked multiple times, MATU signifi-
cantly accelerates convergence on the discrete space {1, 2, . . . ,K}d. Specifically, to reach
ϵ-TV convergence, MATU uses an expected number of discrete score calls on the order of

O
(
d · (1− ϵ2/d) + d ln d

)
.

Compared to uniformization-based sampler in uniform discrete diffusion (Huang et al.,
2025; Liang et al., 2025a), this result improves upon the O

(
ln(1/ϵ)

)
rate and surpasses the

linear convergence limitation. Moreover, the dependence on both vocabulary size K and
dimension d aligns with state-of-the-art performance (Zhang et al., 2024).

2 PRELIMINARIES

In this section, we establish the notation and setup for both forward and reverse Markov processes in
general discrete diffusion models. We discuss marginal and conditional distributions, the transition
rate function, neural-network-parameterized discrete scores (density ratios), and a standard training
objective. We also present the commonly adopted assumption on score estimation error, which
underlies many theoretical and empirical works (Zhang et al., 2024; Lou et al., 2024; Chen & Ying,
2024; Huang et al., 2025; Liang et al., 2025a). A comprehensive summary of the notation can be
found in Table 2 of Appendix A.
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The forward process notations. In this paper, we consider discrete distributions over Y =
{1, 2, . . . ,K}d. For any functions f, g : Y → R, we define their inner product as

⟨f, g⟩Y =
∑
y∈Y

f(y) · g(y).

Given a target distribution q∗, we define a forward Markov process {y→t }Tt=0 with q→0 = q∗, which
converges to a stationary distribution q→∞ as T → ∞. We denote by q→t its marginal at time t, and
use q→t′,t(y

′,y) and q→t′|t(y
′|y) to represent the joint and conditional distributions over times t′ and

t, respectively:

(y→t′ ,y
→
t ) ∼ q→t′,t, q→t′|t(y

′|y) = q→t′,t(y
′,y)/q→t (y) for t′ > t.

Both masked and uniform discrete diffusion models treat this forward process as a time-
homogeneous CTMC with transition rate function R→ : Y × Y → R which denotes the instan-
taneous transition rate from y′ to y. Formally,

R→(y,y′) := lim
∆t→0

[
(q→∆t|0(y|y

′)− δy′(y))/∆t
]

(1)

where δy′(y) = 1 if y = y′ and 0 otherwise. We further define R→(y′) :=
∑

y ̸=y′ R
→(y,y′) as

the outgoing rate, which denotes the instantaneous transition rate from y′ to all other feasible states.
Under this condition, the discrete forward process follows

dq→t|s

dt
(y|y0) =

〈
R→(y, ·), q→t|s(·|y0)

〉
Y
,

dq→t
dt

(y) = ⟨R→(y, ·), q→t (·)⟩Y . (2)

More details and derivation can be found in Appendix B.

The reverse process notations. To sample from q∗ = q→0 , discrete diffusion models define a
reverse process {y←t }Tt=0 such that y←t ∼ q←t = q→T−t and (y←t′ ,y

←
t ) ∼ q←t′,t. By Lemma 1 (proof

in Appendix B.2), this time-inhomogeneous Markov chain satisfies:

Lemma 1 (Adapted from Eqs. (3) and (4) of Huang et al. (2025)). The probability mass function
q←t in the reverse process follows

d q←t
d t

(y) = ⟨R←t (y, ·), q←t (·)⟩Y where R←t (y,y′) := R→(y′,y)
q←t (y)

q←t (y′)
, (3)

and the reverse transition function R←t arises as the infinitesimal operator of the reverse process:

R←t (y,y′) := lim
∆t→0

[
(q←t+∆t|t(y | y′)− δy′(y))/∆t

]
, (4)

while the outgoing rate is R←t (y′) =
∑

y ̸=y′ R
←
t (y,y′).

Under this formulation, the reverse transition rate R←t depends on the forward transition rate R→ as
well as the discrete score, defined as the density ratio q←t (y)/q←t (y′). Since this ratio is generally
intractable, it is approximated in practice by a neural network ṽ:

ṽt,y′(·) ≈ vt,y′(·) = q←t (·)/q←t (y′), (5)

yielding an approximate reverse transition rate R̃←t via Eq. (3). To train ṽ, one typically uses the
score entropy loss (Lou et al., 2024; Benton et al., 2024),

LSE(ṽ) =
1

T

∫ T

0

Eyt∼q→t

[∑
y ̸=yt

R→(yt,y)Dϕ

(
vT−t,yt(y)

∥∥ṽT−t,yt(y)
)]

dt, (6)

where Dϕ

(
·
∥∥·) is the Bregman divergence associated with ϕ(c) = c ln c. As in continuous diffu-

sion (Chen et al., 2023), practitioners often replace LSE by implicit or denoising score entropy (Lou
et al., 2024; Benton et al., 2024) for more tractable optimization but invariant minimum.
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General Assumptions. To analyze both convergence properties and the computational effort re-
quired for achieving TV distance convergence in practical settings, we assume the score entropy loss
will be upper-bounded. Formally:

[A1] Score approximation error. The discrete score ṽt obtained from Eq. (6) is well-trained,
and its estimation error is small enough so that LSE(ṽ) ≤ ϵ2score.

This assumption is standard in theoretical inference research (Chen & Ying, 2024; Zhang et al.,
2024; Lou et al., 2024), where it is commonly presumed that the score can be trained arbitrarily well
such that ϵscore ≤ ϵ for any desired ϵ > 0.

3 THE FORWARD PROCESS OF MASKED DISCRETE DIFFUSION

In this section, we instantiate the masked discrete diffusion from the framework outlined in Sec-
tion 2. We then construct a family of auxiliary distributions that approach the ideal forward marginal
distribution exponentially quickly as time progresses. This construction leverages the forward tran-
sition kernel of masked discrete diffusion for any 0 < s < t < T , and can be used as an alternative
to the reverse initialization proposed by Liang et al. (2025a).

Additional settings. Following Ou et al. (2024), we adopt a diffusion-based language modeling
framework. Our vocabulary is {1, 2, . . . ,K}, where K denotes the mask token. We aim to generate
a length-d sequence (sentence) y ∈ Y = {1, 2, . . . ,K}d. The number of mask tokens in specific
sentence y and the Hamming distance between two sentences (y and y′) are denoted as

numK(y) :=

d∑
i=1

δK(yi) and Ham(y,y′) = d−
d∑

i=1

δyi
(y′i)

respectively. Generally, we suppose the mask token is never observed in target distribution:

[A2] No mask in the target distribution. The target distribution q→0 = q∗ : Y → R assigns
positive probability only to those sequences without any mask tokens, i.e. q∗(y) > 0 if and
only if numK(y) = 0.

Masked discrete diffusion instantiation and approximation. We begin by specifying the ab-
sorbing forward transition rate function for masked discrete diffusion:

R→(y,y′) =


1 if Ham(y,y′) = 1 and yDiffIdx(y,y′) = K

−
∑d

i=1

[
1− δK(yi)

]
if y = y′

0 otherwise
. (7)

Here, DiffIdx (y,y′) denotes the single coordinate where y and y′ differ. Under this transition rule,
each non-masked coordinate tends to become masked at an exponential rate. Concretely, for any
0 < s < t < T , the forward transition kernel satisfies

q→t|s(y|y
′) =

d∏
i=1

[
δ(K,K)(yi,y

′
i) +

(
1− δ(K,K)(yi,y

′
i)
)
· δ0(yi − y′i) · e−(t−s)

+
(
1− δ(K,K)(yi,y

′
i)
)
· δK(yi) · (1− e−(t−s))

]
,

(8)

as shown in Lemma 8. To approximate the forward marginal distribution q→t at time t, we exploit
this exponential decay by modeling each non-mask coordinate under a uniform distribution and
masking coordinates at a constant rate. Specifically, we define

q̃t(y) ∝
d∏

i=1

exp
(
−t ·

[
1− δK(yi)

])
= exp

(
− t ·

[
d− numK(y)

])
. (9)

so that q̃t factorizes over coordinates and is straightforward to sample from. Moreover, as established
in Lemma 2, the KL divergence between q→t and q̃t decreases exponentially with t.
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Lemma 2 (Exponentially decreasing KL divergence between q→t and q̃t). Suppose the CTMC
{y→t }Tt=0 has transition rates R→ from Eq. (7), with y→t ∼ q→t . Let q̃t be the approximation of
q→t defined by Eq. (9). Then,

KL
(
q→t
∥∥q̃t) ≤ (1 + e−t)d − 1.

Consequently, to ensure KL
(
q→t
∥∥q̃t) ≤ ϵ, it suffices to choose t ≥ ln

(
4d/ϵ

)
.

From Lemma 2, the running time T required for q̃T to approximate q→T falls on the order of
O(ln(d/ϵ)). It precisely matches the forward mixing time for uniform discrete diffusion (Chen
& Ying, 2024; Zhang et al., 2024; Huang et al., 2025) and continuous diffusion (Chen et al., 2023)
converging to their stationary distributions. Although the final results exhibit a similar convergence
rate, the underlying analytical techniques differ substantially because the one-hot stationary distri-
bution of masked discrete diffusion does not satisfy the modified log-Sobolev condition. Further
technical details are deferred to Appendix B.3.

4 EULER SAMPLER IN MASKED DISCRETE DIFFUSION

This section first introduces the Euler sampler in masked discrete diffusion, widely used for its par-
allel coordinate updates when reverse transition can be factorized coordinate-wise. We then extend
it to handle more general reverse marginals with unknown correlations, and show how to control
accumulative errors by introducing the exponential integrator as the auxiliary process. Finally, we
provide convergence and complexity guarantees for achieving ϵ–TV convergence.

Typical Euler samplers and their extensions. Euler-type samplers have become increasingly
popular in empirical studies (Lou et al., 2024; Ou et al., 2024) because their parallel-friendly updates
often run faster than traditional auto-regressive models. Let {ŷt}Tt=0 denote the practical reverse
process, whose marginal, joint, and conditional distributions satisfy:

ŷ ∼ q̂t, (ŷt′ , ŷt) ∼ q̂t′,t, and q̂t′|t(y
′|y) = q̂t′,t(y

′,y)/q̂t(y) where t′ ≥ t.

A key assumption is that the reverse transition for each coordinate is conditionally independent:

q̂t+∆t|t(y
′|y) ∝

d∏
i=1

q̂
(i)
t+∆t|t(y[{i} → {y′i}]|y), (10)

where the token revision function

y[S : → Y ′ ⊆ Y |S|] =
d∑

i=1

ei · 1[i ̸∈ S] · yi +

|S|∑
j=1

esj · Y ′j

indicates that the coordinates of y indexed by the set S are replaced by the corresponding values
in Y ′. Then, each non-masked token can be updated independently in the reverse-time direction.
Specifically, by discretizing Eq. (4) from Lemma 1, the update for the ith coordinate takes the form:

q̂
(i)
t+h|t(y[{i} → {y′i}]|y) = δyi

(y′i) + h ·R→(y,y[{i} → {y′i}]) · ṽt,y(y[{i} → {y′i}]).

Since Ham(y, y[{i} → y′i) = 1, the definition of R→ in Eq. (7) ensures that R→
(
y, y[{i} →

y′i
)
̸= 0. Hence, q̂(i)t+h|t(y[{i} → k]|y) for any non-mask token k ̸= K, enabling all coordinates to

be updated in parallel.

However, if the assumption in Eq. (10) does not hold, parallel updates become invalid. A practical
alternative is to discretize Eq. (4) jointly, leading to the sequential update:

q̂t+h|t(y
′|y) ∝ δy(y

′) + h · R̃t(y
′,y) = δy(y

′) + h ·R→(y,y′) · ṽt,y(y′) (11)

where q̂t+∆t|t(y
′ | y) ̸= 0 only if R→(y,y′) ̸= 0, which implies Ham(y,y′) = 1 (see Eq. (7)).

Consequently, at most one masked token could be denoised per update. In the subsequent analysis,
we consider the Euler sampler using Eq. (11) in this more general setting.
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Theoretical results. For the Euler sampler, the construction of the training loss, e.g., denoising
score entropy, will be related to the step size h and share the same minimum with

LDisSE(ṽ) :=
1

T − δ

n−1∑
k=0

∫ (k+1)h

kh

Eyt∼q←t

∑
y ̸=yt

R→(yt,y)Dϕ (vkh,yt
(y)||ṽkh,yt

(y))

 dt.

Correspondingly, to suppose the neural score estimator well approximates the discrete score only
requires the following score estimation assumption, milder than Assumption [A1], i.e.,

[A1]- Score approximation error. The discrete score ṽt obtained from Eq. (6) is well-trained,
and its estimation error is small enough so that LDisSE(ṽ) ≤ ϵ2score.

Then, we summarize the convergence and complexity of Euler sampler (with proof in Section C.1).

Theorem 1. Suppose Assumption [A1]-, [A2] and Assumption 2 of Liang et al. (2025a) hold, im-
plement Euler sampler with Eq. (11), if we require

T = ln(4d/ϵ2), h ≲ min

{
ε

K2d2 log(d/ε)
,

ε
3
2

d
√

log(d/ε)

}
, and ϵscore ≤ õ(ϵ2/d),

the Euler sampler will achieve TV (p∗, p̂) ≤ 2ϵ by requiring iterations to at an Õ(d2ϵ−3/2) level.

Compared to the τ -leaping method analyzed in Liang et al. (2025a), Euler-based approaches can be
more effective in high-accuracy settings (e.g., ϵ ≤ d−2). However, establishing a clear advantage
over uniform discrete diffusion remains challenging. Due to time-discretization errors in discrete
score estimation, Euler-based inference incurs polynomial complexity in both the dimensionality d
and the error tolerance ϵ, which is still be worse than that in uniformization-based samplers.

5 TRUNCATED UNIFORMIZATION IN MASKED DISCRETE DIFFUSION

This section extends the truncated uniformization sampler of Huang et al. (2025) to masked discrete
diffusion. We first revisit the core principle of unbiased reverse process simulation via uniformiza-
tion. Next, we show that the expected complexity of uniformization-based inference depends crit-
ically on the outgoing rates of the reverse transition, and that masked discrete diffusion naturally
offers smaller outgoing rates than its uniform counterpart, leading to faster convergence. We then
introduce Mask-Aware Truncated Uniformization (MATU), which rescales the outgoing rates to
eliminate the bounded-score assumption while preserving unbiased reverse process simulation. Fi-
nally, we provide theoretical results on MATU’s convergence and computational complexity, and
compare these findings with existing approaches in the literature.

Uniformization and the expected number of discrete score calls. Consider a time-dependent
reverse transition rate R←t defined over the interval [a, b]. The evolution of the ideal reverse process
for any y,y′ can be described by

q←t+∆t|t(y
′ | y) =

{
∆t ·R←t (y′,y), y′ ̸= y,

1−∆t ·R←t (y), y′ = y,
as ∆t → 0, (12)

following Eq. (4). If the total outgoing rate–denoting the instantaneous transition rate from y to all
other feasible states–is uniformly bounded by some β, i.e.,

R←t (y) =
∑
y′ ̸=y

R←t (y′,y) ≤ βt ≤ max
t∈[a,b]

βt = β, (13)

then with probability 1 − ∆t · β, the particle remains in the same state in each infinitesimal time
step, thus requiring no additional score computation.

Based on this observation, the standard uniformization method (van Dijk, 1992; van Dijk et al., 2018;
Chen & Ying, 2024) simulates the reverse dynamics over [a, b] by iterating the following two-step
procedure in the limit ∆t → 0:

6
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1. Sample whether a transition occurs with probability ∆t · β.
2. If a transition occurs, move y←t from y to y′ with probability

Mt(y
′ | y) =

{
β−1 R←t (y′,y), y′ ̸= y,

1− β−1R←t (y), otherwise.
(14)

Under this update scheme, the reverse transitions of uniformization will be equivalent to Eq. (12)
exactly and introduce no time-discretization error (see Appendix D.2 for details). Moreover, since
the number of transitions (and hence the number of discrete score computations) over [a, b] follows
a Poisson distribution with mean β · (b − a), any tighter bound on R←t (y) reduces β and thereby
lowers the expected inference complexity.

The comparison of computational complexity and outgoing rate. By the previous discussion
of uniformization, the expected number of discrete score calls over the time interval [0, T ] can be
approximated by

W∑
w=1

max
t∈[tw−1,tw]

βt · (tw − tw−1)
W→∞
≈

∫ T

t=0

βtdt, (15)

where [t0, t1, . . . , tW ] is a partition of [0, T ]. In uniform discrete diffusion, Chen & Ying (2024);
Huang et al. (2025) show that the ideal reverse process satisfies

βt := 2K · d ·max{1, (T − t)−1} ≤ β := 2K · d ·max{1, (T − b)−1} ∀ t ∈ [a, b], (16)

providing a uniform upper bound on the total outgoing rate R←t (y).

For masked discrete diffusion, Lemma 3 (with proof in Appendix D.1) shows that the outgoing rate
can be bounded instead by
Lemma 3 (Bound of the outgoing rate). Consider a CTMC whose transition rate function R→ is
defined as Eq. (7). Then, for any y, the reverse transition rate function satisfies∑

y′ ̸=y

R←t (y′,y) = R←t (y) ≤ βt(y) :=
numK(y) ·K
e(T−t) − 1

. (17)

Compared to (16), this bound explicitly depends on numK(y), the number of mask tokens in y.
Since numK(y) ≤ d, it is strictly smaller than the uniform bound in (16). Furthermore, numK(y)
decreases monotonically as the reverse process proceeds, which progressively enlarges the gap in
outgoing rate between masked and uniform discrete diffusion. Because a lower outgoing rate im-
plies fewer expected discrete score evaluations for each time t, masked discrete diffusion can be
significantly more computationally efficient.

From an empirical perspective, a central observation is: during inference, masked discrete diffusion
only updates (denoises) masked tokens, whereas uniform discrete diffusion attempts to re-denoise
tokens that have already been denoised. Hence, in masked discrete diffusion, particles are more
likely to remain unchanged at each step, leading to a smaller outgoing rate (and thus smaller βt) over
[0, T ]. Consequently, fewer discrete score evaluations are required, underscoring the computational
advantages of masked compared to uniform discrete diffusion.

Mask-aware truncation and algorithm proposal. In practice, we approximate the reverse tran-
sition rate R←t (y′,y) by a learned neural score ṽt,y(y

′), yielding

R̃t(y
′,y) = R→(y,y′) ṽt,y(y

′),

as dictated by Lemma 1 and Eq. (5). Because ṽ is a learned estimator, the outgoing rate R̃t(y)
may have no explicit upper bounds, complicating control over the expected number of discrete score
evaluations. To mitigate unbounded transition rates, prior work typically imposes a bounded-score
assumption on R̃t(y), restricting it to remain below a fixed constant (Liang et al., 2025a) or to
grow as a function of the inference time (Chen & Ying, 2024). However, such assumptions can
severely impact inference efficiency because the chosen upper bound β directly governs Step 2 of
uniformization, as described in Eq. (14). When β is unknown, it can be treated as a hyperparameter.
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Algorithm 1 MASK-AWARE TRUNCATED UNIFORMIZATION (MATU)
1: Input: Total time T , a time partition 0 = t0 < . . . < tW = T − δ, parameters βt1 , . . . , βtW set

as Eq. (17), a reverse transition rate function R̂←t obtained by the learnt score function ṽt,y′(·).
2: Draw an initial sample ŷt0 = [K,K, . . . ,K].
3: for w = 1 to W do
4: Choose βtw = K · numK(ŷtw−1

)/(eT−tw − 1)
5: Draw N ∼ Poisson(βtw(tw − tw−1));
6: Sample N points i.i.d. uniformly from [tw−1, tw] and sort them as τ1 < τ2 < . . . < τN ;
7: Set z0 = ŷtw−1 ;
8: for n = 1 to N do
9: Find the index set M of [MASK] token appeared in random vector zn−1

10: For any i ∈ M and k ∈ {1, 2, . . . ,K − 1}, update zn−1 with

zn =

{
zn−1[zi : K → k] w.p. β−1tw · R̂τn,z0(zn−1[zi : K → k], zn−1),

zn−1, w.p. 1− β−1tw · R̂τn,z0(zn−1).

11: end for
12: Set ŷtw = zN .
13: end for
14: return ŷtW .

Setting β too small may yield an infeasible probability 1 − β−1R̃t(y) < 0, forcing the algorithm
to fail; setting it too large preserves feasibility but inflates complexity in direct proportion to β.
Thus, tightening this bounding scheme is crucial for balancing both correctness and computational
efficiency in uniformization-based inference.

Motivated by Huang et al. (2025), we propose a mask-aware truncation scheme to rescale the practi-
cal outgoing rate R̃t(y

′,y). This ensures that the non time-discretization property is preserved with-
out additional cost, even when R̃t(y) becomes large. Specifically, consider simulating the reverse
process over the (w-th) time segment [tw−1, tw], assuming the state at time tw−1 is ŷtw−1

= ytw−1
.

Following from the monotonicity of (eT−t − 1)−1 and numK(ŷt) in Lemma 3, the mask-aware
truncation is chosen as βtw(ytw−1

), then we set

R̂t,ytw−1
(y,y′) =

{
R̃t(y,y

′) βtw(ytw−1)/R̃t(y
′), if R̃t(y

′) > βtw(ytw−1),

R̃t(y,y
′), otherwise,

∀y′ ̸=y, (18)

and
R̂t,ytw−1

(y′,y′) = −
∑
y ̸=y′

R̂t,ytw−1
(y,y′). (19)

With these truncations, the corrected outgoing rate will be definitely upper bounded by βtw(ytw−1).
Then, we obtain a practical and efficient inference algorithm, summarized in Alg. 1.

Theoretical results. We summarize the convergence and complexity of Algorithm 1 for approxi-
mating q∗ in Theorem 2 (proved in Appendices D.2 and D.3).

Theorem 2 (Combination of Theorem 3 and Theorem 4). Suppose Assumption [A1] and [A2] hold,
for Alg. 1, if we require

T = ln(4d/ϵ2), δ ≤ d−1ϵ, ϵscore ≤ T−1/2ϵ, ϵ < 1,

and the partition of the reverse process satisfies

η = ϵ/2d, W = (T − δ)/η, t0 = 0, tW = T − δ, tw − tw−1 = η ∀w ∈ {1, 2, . . .W}

the expectation of iteration/score estimation complexity of Alg. 1 will be upper bounded by

2K(d− ϵ2/4) + 12Kd ln d (20)

to achieve TV (p∗, p̂) ≤ 2ϵ where p̂ denotes the underlying distribution of generated samples.

8
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Table 1: Comparison with prior works simulating reverse particle SDEs, where [A3] denotes the bounded-
score assumption used in Chen & Ying (2024) and [A3]+ denotes the bounded-score assumption used in Liang
et al. (2025a) which is a little bit stronger than [A3] due to the time-invariant requirement. All complexities are
on TV convergence (or TV convergence dedued from KL convergence via Pinsker’s inequality, e.g., Ren et al.
(2024)), which are achieved by assuming ϵscore = õ(ϵ) and setting early-stopping parameters δ = ϵ/d. Besides,
the complexity presented by Õ(·) means the ln dependencies are omitted.

Results Forward Type Inference Sampler Assumptions Complexity

Zhang et al. (2024) Uniformed Exponential Integrator [A1], [A3] Õ(d5/3ϵ−2)

Ren et al. (2024) Uniformed τ -leaping [A1],[A3] Õ(d2ϵ−2)

Chen & Ying (2024) Uniformed Uniformization [A1],[A3] O(d ln(d/ϵ))

Huang et al. (2025) Uniformed Truncated Uniformization [A1] O(d ln(d/ϵ))

Theorem 1 Masked Typical Euler [A1],[A2],[A3]+ Õ(d2ϵ−3/2)

Liang et al. (2025a) Masked τ -leaping [A1],[A2],[A3]+ O(dϵ−2)

Liang et al. (2025a) Masked Uniformization [A1],[A2],[A3] O(d ln(d/ϵ))

Theorem 2 Masked MATU [A1],[A2] O(d ln d)

From the above theorem, Eq. (20) might appear to enable exact inference by setting ϵ = 0. However,
this would require infinite mixing time T , perfect score estimates (ϵscore = 0), and infinitely many in-
tervals W , which is infeasible. Meanwhile, although each interval has length η = ϵ/(2d)—leading
to poly(d/ϵ) intervals in the reverse process—the total discrete score calls remain nearly indepen-
dent of ϵ, since many intervals involve no state transitions (see Eq. (15)). Thus, small intervals are
used primarily to match the accurate outgoing rate upper bound, without inflating complexity.

Then, We provide a complexity comparison in Table 3. MATU achieves a SOTA for both the
ϵ-free complexity and the assumption without bounded-score estimator. Compared with existing
uniformization-based method, Alg 1 achieves an O

(
ln(1/ϵ)

)
speedup, primarily because each to-

ken is denoised at most once in masked diffusion, whereas uniform diffusion renoises tokens mul-
tiple times. Formally, masked diffusion leverages the monotonic decrease of masked tokens, which
cancels the growing outgoing rate:

E

[
W∑

w=1

βtw (ŷtw−1) · (tw − tw−1)

]
≈

W∑
w=1

E[numK(y→T−tw−1
)] ·K · e−(T−tw)

1− e−(T−tw)
· η

=

W∑
w=1

d · (1− e−(T−tw−1))︸ ︷︷ ︸
decreasing factor

·K · (1− e−(T−tw))−1︸ ︷︷ ︸
increasing factor

·e−(T−tw) · η ≤ CKd ·
W∑

w=1

e−(T−tw) · η,

where the factor e−(T−tw) keeps complexity low. In uniform diffusion, the same factor remains but
grows with 1/(T − tw), leading to a higher order overall:

E

[
W∑

w=1

βtw · (tw − tw−1)

]
≲ CKd ·

W∑
w=1

max{1, (T − tw)
−1} · η.

Since the integral
∫
(1/t) dt diverges more quickly than

∫
e−t dt, masked diffusion achieves lower

inference complexity than uniform diffusion.

6 RELATED WORK

Most recently, the impressive empirical performance of discrete diffusion models (DDMs) has
sparked a proliferation of theoretical investigations aiming to elucidate DDMs from various per-
spectives.

The Sample Complexity. For example, Srikanth et al. (2025) develops a theoretical framework for
discrete-state diffusion models and presents the first rigorous sample-complexity bound of Õ(ϵ−2)
under practical assumptions about neural network training. By pursuing a structured error decom-
position, the authors illustrate how approximation, statistical, optimization, and clipping constraints

9
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jointly contribute to the total complexity, furnishing dimension-free insights for training discrete-
state diffusion models. Meanwhile, Wan et al. (2025) conducts the first non-asymptotic error analy-
sis for discrete flow models on finite state spaces. By proposing a novel Girsanov-type theorem and
bounding the KL divergence between two continuous-time Markov chains (CTMCs) with distinct
transition rates, they rigorously decompose the transition-rate estimation error (including stochastic,
approximation, and early-stopping components). Employing uniformization for sampling, the au-
thors derive an upper bound on the distribution error that avoids any additional discretization error,
thereby advancing the theory of discrete flow models beyond existing analyses of discrete diffusion.

The Inference Complexity. In addition to quantifying error tolerance and dimensional dependen-
cies, Liang et al. (2025b) introduces a differential-inequality–based analysis for discrete diffusion
models that eliminates the strong regularity assumptions required by Girsanov-based methods, re-
ducing the convergence rates for τ -leaping from quadratic to linear in vocabulary size. Furthermore,
Zheng et al. (2024) proposes the first-hitting-sampler (FHS) as a way to exactly simulate the reverse
process by analytically sampling both the transition time and position. However, when discrete
scores are parameterized by a time-dependent neural network (see Eq. 5), the uniform procedure for
selecting the next unmasking position can introduce inference errors beyond those stemming from
score estimation alone.

The key issue is that, although each masked position may share the same unmasking probability
under the ideal reverse transition q←t , this property may fail once the reverse process is learned. In
particular, there can exist i ̸= j such that∑
y′,s.t. Ham(y′,y)=1,DffIdx(y′,y)=i,yi=K

sθ,t,y(y
′) ̸=

∑
y′,s.t. Ham(y′,y)=1,DffIdx(y′,y)=j,yj=K

sθ,t,y(y
′).

so that uniformly choosing the next position to unmask biases the simulation of the learned re-
verse process, causing additional inference errors. Although this bias vanishes for time-independent
discrete parameterizations (Ou et al., 2024), such as in Devlin et al. (2019); Chang et al. (2022);
Ghazvininejad et al. (2019), where

q←t (y′)/q←t (y) =
e−t

1− e−t
· q→0 (y′i||yUM ) ≈ e−t

1− e−t
· pθ,y(y′), (21)

the strong constraints, i.e., ∑
y′,s.t. Ham(y′,y)=1,DffIdx(y′,y)=i,yi=K

pθ,y(y
′) = 1 =

∑
q0(y

′
i||yUM ),

ensure that every position has identical transition rates. Nevertheless, FHS Zheng et al. (2024)
provides no detailed or rigorous proof of its unbiasedness in this setting. In Theorem 7, we close this
theoretical gap by coupling the trajectories of FHS and MATU, thereby controlling their differences
and formally establishing FHS’s unbiasedness.

7 CONCLUSION

In this paper, we provide a rigorous analysis of masked discrete diffusion. Differ from the analysis of
uniform discrete diffusion, we show how to manage the initial KL blow-up and control the reverse-
process KL divergence without relying on Girsanov theory. Building on this framework, we prove
that Euler-type samplers TV converge in Õ(d2ϵ−3/2). We further introduce a mask-aware truncated
uniformization sampler that removes the ln(1/ϵ) factor, achieving nearly ϵ-free complexity. This
acceleration aligns with the practical observation that masked diffusion denoises each masked token
only once, whereas uniform diffusion repeatedly re-denoises already denoised tokens. Our results
not only establish the first rigorous foundations for masked discrete diffusion but also explain why
masked diffusion significantly reduces overhead in practice, opening avenues for more efficient text
generation and advanced masked sampling techniques.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. From
denoising diffusions to denoising markov models. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 86(2):286–301, 2024.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11315–11325, 2022.

Hongrui Chen and Lexing Ying. Convergence analysis of discrete diffusion model: Exact imple-
mentation through uniformization. arXiv preprint arXiv:2402.08095, 2024.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. In International
Conference on Learning Representations, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations.

Xunpeng Huang, Yingyu Lin, Nikki Lijing Kuang, Hanze Dong, Difan Zou, Yian Ma, and Tong
Zhang. Almost linear convergence under minimal score assumptions: Quantized transition diffu-
sion. arXiv preprint arXiv:2505.21892, 2025.

Yuchen Liang, Renxiang Huang, Lifeng Lai, Ness Shroff, and Yingbin Liang. Absorb and con-
verge: Provable convergence guarantee for absorbing discrete diffusion models. arXiv preprint
arXiv:2506.02318, 2025a.

Yuchen Liang, Yingbin Liang, Lifeng Lai, and Ness Shroff. Discrete diffusion models: Novel anal-
ysis and new sampler guarantees. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025b.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
ratios of the data distribution. In Proceedings of the 41st International Conference on Machine
Learning, pp. 32819–32848, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

Yinuo Ren, Haoxuan Chen, Grant M Rotskoff, and Lexing Ying. How discrete and continuous
diffusion meet: Comprehensive analysis of discrete diffusion models via a stochastic integral
framework. arXiv preprint arXiv:2410.03601, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yinuo Ren, Haoxuan Chen, Yuchen Zhu, Wei Guo, Yongxin Chen, Grant M Rotskoff, Molei Tao,
and Lexing Ying. Fast solvers for discrete diffusion models: Theory and applications of high-
order algorithms. arXiv preprint arXiv:2502.00234, 2025.
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A NOTATION SUMMARY

We summarize all notations used in the main paper and appendix in Table 2.

Table 2: Summary of key notations used in the paper.
Symbol Description

q∗ Discrete distribution on Y = {1, 2, . . . ,K}d
y→t Forward-time CTMC on Y
q→t Marginal distribution of forward process at time t, i.e., y→t ∼ q→t
q→t′,t Joint distribution of (y→t′ ,y

→
t )

q̃t Aapproximation of q→t constructing the reverse initialization, Eq. (9)
q→t′|t(y

′|y) Conditional transition probability in forward process, Eq. (37)
y←t Reverse-time CTMC defined by q←t := q→T−t, y

←
t ∼ q←t

q←t Marginal distribution of reverse process at time t, q←t = q→T−t

q←t′,t Joint distribution of (y←t′ ,y
←
t )

q←t′|t(y
′|y) Conditional transition probability of the ideal reverse process

q̂t Marginal distribution of reverse process at time t implemented by Alg. 1
q̂t′,t Joint distribution of (ŷt′ , ŷt)
q̂t′|t(y

′|y) Conditional transition probability of the ideal reverse process

R→(y,y′) Forward transition rate, i.e., Eq. (7), from state y′ to y. This follows the ordering of
the conditional distribution p(y|y′), which is the transpose of the convention used
in some other works.

R←t (y,y′) Reverse transition rate at time t from state y′ to y, R←t (y,y′) := R→(y′,y) ·
q←t (y)

q←t (y′) , Eq. (3)
R̃t(y,y

′) Estimated reverse transition rate using the learned density ratio, R̃t(y,y
′) =

R→(y′,y) · ṽt,y′(y), Eq. (6)
R̂t(·, ·) Truncated version of R̃t(·, ·) with threshold βt, Eq. (18)
R←t (y), R̃t(y), R̂t(y) Total reverse transition rate out of state y for each rate type, defined as R(y) :=∑

y′ ̸=y R(y′,y) with R ∈ {R←t , R̃t, R̂t}
βt Upper bound on R←t (y), βt = numK(y) ·K/(T − t), Eq. (17)

vt,y′(y) Density ratio q←t (y)/q←t (y′)
ṽt,y′(y) Learned approximation to vt,y′(y) = q←t (y)/q←t (y′)
numK(·) The number of [MASK] token (or token K) in a vector.
LSE(v̂) Score entropy loss used to train ṽ, Eq. (6)

ei One-hot vector with a 1 at position i and 0 elsewhere
δy(·) Indicator function with δy(y) = 1 and δy(y

′) = 0 (y′ ̸= y)

B THE MARKOV PROCESSES OF DISCRETE DIFFUSION MODELS

B.1 THE FORMULATIONS OF THE FORWARD PROCESS

Semigroup Formulation. In general, the time-homogeneous CTMC can be described by a
Markov semigroup Q→t defined as:

Q→t [f ](y) = E [f(yt)|y0 = y] =
〈
f, q→t|0(·|y)

〉
Y

(22)

where the function f : Y → R. Due to the definition, the infinitesimal operator L→ of the time
homogeneous Q→t is denoted as

L→[f ](y) = lim
t→0

[
Q→t [f ]− f

t

]
(y) =

〈
f, ∂tq

→
t|0(·|y)

∣∣∣
t=0

〉
Y
:= ⟨f,R→(·,y)⟩Y (23)

where

R→(y′,y) := ∂tq
→
t|0(y

′|y)
∣∣∣
t=0

= lim
t→0

[
q→t|0(y

′|y)− δy(y
′)

t

]
. (24)
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According to the time-homogeneous property, we have

q→t+∆t|t(y
′|y) = δy(y

′) + ∆t ·R→(y′,y) + o(∆t)

for any t. Here, the transition rate function R→ must satisfy

R→(y,y′) ≥ 0 when y′ ̸= y and R→(y′,y′) = −
∑
y ̸=y′

R→(y,y′) ≤ 0 (25)

due to the definition Eq. (24). Under this setting, we can provide the dynamic of qt|0 for any t.
Specifically, we have

∂tQ→t [f ](y) = Q→t [Lf ] (y) =
〈
L→f, q→t|0(·|y)

〉
Y
=
∑
y′∈Y

L→[f ](y′) · q→t|0(y
′|y)

=
∑
y′∈Y

∑
ỹ∈Y

f(ỹ) ·R→(ỹ,y′) · qt|0(y′|y)

 =
∑
ỹ∈Y

f(ỹ) · ∑
y′∈Y

R→(ỹ,y′) · qt|0(y′|y)

 ,

where the first inequality follows from the semigroup property. Combined with the fact

∂tQ→t [f ](y) =
〈
f, ∂tq

→
t|0(·|y)

〉
Y

derived from Eq. (22), we have

∂tq
→
t|0(ỹ|y) =

∑
y′∈Y

R(ỹ,y′) · q→t|0(y
′|y) =

〈
R(ỹ, ·), q→t|0(·|y)

〉
Y
.

According to the time-homogeneous property, the above equation can be easily extended to

∂tq
→
t|s(ỹ|y) =

∑
y′∈Y

R(ỹ,y′) · q→t|s(y
′|y) =

〈
R(ỹ, ·), q→t|s(·|y)

〉
Y
. (26)

Combining with Bayes’ Theorem, the transition of the marginal distribution is

dq→t
dt

(y) = ⟨R(y, ·), q→t ⟩Y . (27)

Matrix Formulation. Suppose the support set Y of q→t be written as Y = {y1,y2, . . . ,y|Y|}, we
may consider the marginal distribution q→s to be a vector, i.e.,

q→t =
[
qt(y1), qt(y2), . . . , qt(y|Y|)

]
,

conditional transition probability function q→t|s to be a matrix, i.e.,

Q→t|s =


q→t|s(y1|y1) q→t|s(y1|y2) . . . q→t|s(y1|y|Y|)
q→t|s(y2|y1) q→t|s(y2|y2) . . . q→t|s(y2|y|Y|)

. . . . . . . . . . . .
q→t|s(y|Y||y1) q→t|s(y|Y||y2) . . . q→t|s(y|Y||y|Y|)

 .

Similarly, the function R can also be presented as

R→ =

 R→(y1,y1) R→(y1,y2) . . . R→(y1,y|Y|)
R→(y2,y1) R→(y2,y2) . . . R→(y2,y|Y|)

. . . . . . . . . . . .
R→(y|Y|,y1) R→(y|Y|,y2) . . . R→(y|Y|,y|Y|)

 . (28)

Under this condition, Eq. (27) can be written as

dq→t /dt = R→ · q→t (29)

matching the usual presentation shown in Chen & Ying (2024); Zhang et al. (2024).
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B.2 THE PROOF OF LEMMA 1

The proof of Lemma 1. For any t ∈ [0, T ], the marginal, joint, and conditional distribution w.r.t.
{y←t } are denoted as

y←t ∼ q←t , (y←t ,y←t′ ) ∼ q←t,t′ , and q←t′|t = qt′,t/qt,

which have q←t = q→T−t. Then, we start to check the dynamic of q←t|s, i.e.,

∂tq
←
t|s(y

′|y) = −1 · ∂T−tq→T−t|T−s(y
′|y) = −1 · ∂T−t

[
q→T−s|T−t(y|y

′) · q→T−t(y′)
q→T−s(y)

]

= − ∂T−tq
→
T−s|T−t(y|y

′) ·
q→T−t(y

′)

q→T−s(y)︸ ︷︷ ︸
Term 1

−
q→T−s|T−t(y|y

′)

q→T−s(y)
· ∂T−tq→T−t(y′)︸ ︷︷ ︸

Term 2

.
(30)

For Term 1 of Eq. (30), we have

Term 1 = −
∑
ỹ∈Y

R→(ỹ,y′) · q→T−s|T−t(y|ỹ) ·
q→T−t(ỹ)

q→T−s(y)
·
q→T−t(y

′)

q→T−t(ỹ)

= −
∑
ỹ∈Y

R→(ỹ,y′) ·
q→T−t(y

′)

q→T−t(ỹ)
· q→T−t|T−s(ỹ|y),

where the first equation follows from the Kolmogorov backward theorem (Lemma 14) and Eq. (23):

∂T−tq
→
T−s|T−t(y|y

′) = −L→[q→T−s|T−t(y|·)](y
′) = −

〈
q→T−s|T−t(y|·), R

→(·,y′)
〉
Y
.

For Term 2 of Eq. (30), we have

Term 2 =
q→T−s|T−t(y|y

′)

q→T−s(y)
·
∑
ỹ∈Y

R→(y′, ỹ) · q→T−t(ỹ)

=
q→T−s|T−t(y|y

′) · q→T−t(y′)
q→T−s(y)

·
∑
ỹ∈Y

R→(y′, ỹ) ·
q→T−t(ỹ)

q→T−t(y
′)

= 0,

where the first equation follows from Eq. (27) and the last equation follows from the fact∑
ỹ∈Y

R→(y′, ỹ) ·
q→T−t(ỹ)

q→T−t(y
′)

=
∑
ỹ∈Y

lim
t→0

[
q→t|0(y

′|ỹ)− δỹ(y
′)

t

]
·
q→T−t(ỹ)

q→T−t(y
′)

=
∑
ỹ∈Y

lim
t′→T−t

[
q→t′|T−t(y

′|ỹ)− δỹ(y
′)

t′ − (T − t)

]
· lim
t′→T−t

q→T−t(ỹ)

q→t′ (y
′)

=
∑
ỹ∈Y

lim
t′→T−t

[
q→T−t|t′(ỹ|y

′)− δy′(ỹ)

t′ − (T − t)

]
= 0.

Under this condition, by setting

R←t (y′, ỹ) := R(ỹ,y′) · q
←
t (y′)

q←t (ỹ)
,

then Eq. (30) can be summarized as

∂tq
←
t|s(y

′|y) =
〈
R←t (y′, ·), q←t|s(·|y)

〉
Y
=
∑
ỹ∈Y

R←t (y′, ỹ) · q←t|s(ỹ|y). (31)

Combining with Bayes’ Theorem, we have

dq←t
dt

(y) = ⟨R←t (y, ·), q←t ⟩Y . (32)

Hence, Eq. (3) establishes.
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Moreover, since the RHS of Eq. (4) satisfies

lim
∆t→0

[
q←t+∆t|t(y|y

′)− δy′(y)

∆t

]
= lim

s→t
∂tq
←
t|s(y|y

′).

Besides, we have

lim
s→t

∂tq
←
t|s(y|y

′) = lim
s→t

∂t

[
q→T−s|T−t(y

′|y) ·
q→T−t(y)

q→T−s(y
′)

]
= lim

s→t

[
∂t(q

→
T−s|T−t(y

′|y)) ·
q→T−t(y)

q→T−s(y
′)

+ q→T−s|T−t(y
′|y) ·

∂tq
→
T−t(y)

q→T−s(y
′)

]
.

When y ̸= y′, we have
lim
s→t

q→T−s|T−t(y
′|y) = 0,

which implies

lim
s→t

∂tq
←
t|s(y|y

′) = lim
s→t

∂t(q
→
T−s|T−t(y

′|y)) ·
q→T−t(y)

q→T−s(y
′)

= R→(y′,y) ·
q→T−t(y)

q→T−t(y
′)
.

The last equation follows from the Kolmogorov backward theorem, i.e., Lemma 14 and Eq. (23)

∂T−tq
→
T−s|T−t(y

′|y) = −L→[q→T−s|T−t(y
′|·)](y) = −

〈
q→T−s|T−t(y

′|·), R→(·,y)
〉
Y
= R→(y′,y).

Combining with Eq. (3), we have

lim
∆t→0

[
q←t+∆t|t(y|y

′)− δy′(y)

∆t

]
= lim

s→t
∂tq
←
t|s(y|y

′) = R→(y′,y) ·
q→T−t(y)

q→T−t(y
′)

= R←t (y,y′) (33)

when y′ ̸= y. Besides, we have∑
y∈Y

R←t (y,y′) =
∑
y∈Y

R→(y′,y) ·
q→T−t(y)

q→T−t(y
′)

=
∑
y∈Y

lim
∆t→0

[
q→T−t+∆t|T−t(y

′|y)− δy(y
′)

∆t

]
·
q→T−t(y)

q→T−t(y
′)

=
∑
y∈Y

lim
∆t→0

[
q→T−t+∆t|T−t(y|y

′)− δy′(y)

∆t

]
= 0,

which means

R←t (y′,y′) = −
∑
y ̸=y′

R←t (y,y′) = lim
∆t→0

−

[
1−

∑
y ̸=y′ q

←
t+∆t|t(y|y

′)

∆t

]
,

where the last inequality follows from Eq. (33). Hence, Eq. (3) establishes, and the proof is com-
pleted.

B.3 THE PROOF OF LEMMA 2

Lemma 4. The close solution of Eq. (29) is

q→t = exp(tR→) · q→0 where exp(tR→) =

∞∑
i=0

1

i!
(tR→)i = I + tR→ +

(tR→)2

2
+ . . . .

Proof. We can easily verify that
dq→t
dt

=
d

dt
[exp(tR→)q→0 ] =

d

dt
[exp(tR→)] q→0 .

With the following equation,

d

dt
[exp(tR→)] =

d

dt

[ ∞∑
i=0

(tR→)i

i!

]
=

∞∑
i=1

ti−1

(i− 1)!
· (R→)i = R→ ·

∞∑
j=0

(tR→)j

j!
= R→ · exp(tR→),

we have
dq→t
dt

= R→ · exp(tR→) · q→0 = R→ · q→t .

Hence, the proof is completed.
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Lemma 5. Suppose the transition rate matrix R→ shown as Eq. (28) satisfies Eq. (7). It can be
decomposed as

R→ =

d∑
i=1

R→i where R→i = I ⊗ · · ·︸ ︷︷ ︸
i−1 terms

⊗A ⊗ · · · ⊗ I,

where ⊗ denotes the Kronecker product, I denotes the identity matrix on RK×K , and A satisfies

A =


−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
1 1 . . . 0

 . (34)

Proof. According to the calculation of the Kronecker product, we have

R→i (y,y′) = I(y1,y
′
1) · . . . ·A(yi,y

′
i) · . . . · I(yd,y

′
d).

Under this condition, suppose Ham(y,y′) ≥ 2 and DiffIdx (y,y′) = {j1, j2, . . .} without loss of
generality, for any j ̸∈ {j1, j2}, we have

R→j (y,y′) = A(yj ,y
′
j) · I(y1,y

′
1) · . . . · I(yj1 ,y

′
j1)︸ ︷︷ ︸

=0

· . . . · I(yj2 ,y
′
j2)︸ ︷︷ ︸

=0

· . . . · I(yd,y
′
d) = 0.

Besides, for j = j1, we have

R→j1 (y,y
′) = A(yj1 ,y

′
j1) · I(y1,y

′
1) · . . . · I(yj2 ,y

′
j2)︸ ︷︷ ︸

=0

· . . . · I(yd,y
′
d) = 0.

A similar result will be satisfied for j = j2. Hence, it has

R→(y,y′) =

d∑
i=1

R→i (y,y′) = 0 when Ham(y,y′) ≥ 2

Then, suppose Ham(y,y′) = 1 and DiffIdx (y,y′) = j1, for any j ̸= j1, we have

R→j (y,y′) = A(yj ,y
′
j) · I(y0,y

′
0) · . . . · I(yj1 ,y

′
j1)︸ ︷︷ ︸

=0

· . . . · I(yd,y
′
d) = 0.

Otherwise, when j = j1, we have

R→j1 (y,y
′) = A(yj1 ,y

′
j1) · I(y1,y

′
1) · . . . · I(yd,y

′
d) = A(yj1 ,y

′
j1)

where the second equation establishes since Ham(y,y′) = 1 and yj = y′j when j ̸= j1. Then,
only when yj1 = K, we will have A(yj1 ,y

′
j1
) = 1 otherwise A(yj1 ,y

′
j1
) = 0 due to the definition

Eq. (34). That means

R→(y,y′) =

d∑
i=1

R→i (y,y′) = 0 when Ham(y,y′) = 1 and yDiffIdx(y,y′) ̸= K

R→(y,y′) =

d∑
i=1

R→i (y,y′) = 1 when Ham(y,y′) = 1 and yDiffIdx(y,y′) = K.

Then, suppose Ham(y,y′) = 0, i.e., y = y′, for any j ∈ {1, 2, . . . , d}, we have

R→j (y,y′) = A(yj ,y
′
j) · I(y1,y

′
1) · . . . · I(yd,y

′
d) = A(yj ,y

′
j),

and
d∑

i=1

R→i (y,y′) =

d∑
j=1

A(yj ,yj) = −
d∑

i=1

(1− δK(yi)),

which implies we have R→(y,y′) =
∑d−1

i=0 R→i (y,y′) when y = y′. Hence, the proof is com-
pleted.
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Lemma 6. With the decomposition shown in Lemma 5, i.e.,

R→ =

d∑
i=1

R→i where R→i = I ⊗ . . . ⊗ I︸ ︷︷ ︸
i−1 terms

⊗A ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
d−i terms

,

for any i, j ∈ {1, 2, . . . , d}, the matrices R→i and R→j satisfy

R→i ·R→j = R→j ·R→i ,

which implies

exp(tR→) = exp

(
t

d∑
i=1

R→i

)
=

d∏
i=1

exp (tR→i ) = exp(tA)⊗d

Proof. According to Lemma 5, the matrix R→ has the following decomposition, i.e.,

R→ =

d∑
i=1

R→i where R→i = I ⊗ . . . ⊗ I︸ ︷︷ ︸
i−1 terms

⊗A ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
d−i terms

,

where ⊗ denotes the Kronecker product, I denotes the identity matrix on RK×K , and A satisfies

A =


−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
1 1 . . . 0

 .

We can easily verify that the matrix A can be decomposed as[
−IK−1 0
11×(K−1) 0

]
=

[
IK−1 0

−11×(K−1) 1

]
︸ ︷︷ ︸

U

·
[
−IK−1 0

0 0

]
︸ ︷︷ ︸

Λ

·
[

IK−1 0
11×(K−1) 1

]
︸ ︷︷ ︸

U−1

where UU−1 = U−1U = IK .

(35)
Under this condition, R→i can be reformulated as

R→i =(UU−1)⊗ . . .⊗ (UU−1)︸ ︷︷ ︸
i−1 terms

⊗(UΛU−1)⊗ (UU−1)⊗ . . . (UU−1)

= (U ⊗ . . .⊗U) ·

I ⊗ . . .⊗ I︸ ︷︷ ︸
i−1 terms

⊗Λ⊗ I . . .⊗ I

 ·
(
U−1 ⊗ . . .⊗U−1

)
:= U⊗d · Λi · (U−1)⊗d

where the last inequality follows from Lemma 13. Under this condition, it has

R→i ·R→j = U⊗d · Λi · (U−1)⊗d ·U⊗d · Λj · (U−1)⊗d = U⊗d · Λi · Λj · (U−1)⊗d

= U⊗d · Λj · Λi · (U−1)⊗d = U⊗d · Λi · (U−1)⊗d ·U⊗d · Λj · (U−1)⊗d = R→j ·R→i ,

where the second and forth equations follows from Lemma 13 and Eq. (35).

For the property about the matrix exponential, we start from investigating the case of two commuting
matrices, i.e., R→1 and R→2 . By definition, we have

exp(R→1 +R→2 ) =

∞∑
i=0

1

i!
(R→1 +R→2 )

i
=

∞∑
i=0

1

i!

i∑
j=0

Cj
i · (R→1 )j · (R→2 )i−j

where the last equation establishes since R→1 and R→2 are commute. Then, we have
∞∑
i=0

1

i!

i∑
j=0

Cj
i · (R→1 )j · (R→2 )i−j =

∞∑
i=0

i∑
j=0

1

i!
· i!

j!(i− j)!
· (R→1 )j · (R→2 )i−j

=

∞∑
i=0

i∑
j=0

1

j!(i− j)!
· (R→1 )j · (R→2 )i−j =

 ∞∑
j=0

(R→1 )j

j!

 ·

( ∞∑
i=0

(R→2 )i

i!

)
= exp(R→1 ) · exp(R→2 ).
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According to the definition of the matrix exponential, we will have exp(A⊗B) = exp(A)⊗exp(B)
when one of the factors is the identity. When we multiply all these exponentials, it has

exp(R→1 ) · exp(R→2 ) = [exp(A)⊗ I ⊗ . . .⊗ I] · [I ⊗ exp(A)⊗ . . .⊗ I]

= [exp(A) · I]⊗ [I · exp(A)]⊗ I . . .⊗ I.

Then, following a recursive manner, we have

exp

(
t

d∑
i=1

R→i

)
=

d∏
i=1

exp (tR→i ) = exp(tA)⊗d,

hence the proof is completed.

Lemma 7. Suppose matrix A is

A =


−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
1 1 . . . 0

 ,

the matrix exponential exp(tA) becomes

exp(tA) =


e−t 0 . . . 0 0
0 e−t . . . 0 0
...

...
. . .

...
...

1− e−t 1− e−t . . . 1− e−t 1

 .

Proof. According to Lemma 4, Ā(t) := exp(tA) can be considered as the close solution of the
following matrix ODE, i.e.,

dĀ(t)

dt
= A · Ā(t), where Ā(0) = I. (36)

To provide a close form of Āt, we first decompose the matrix A as follows

A =

[
B 0
C 0

]
where B := −IK−1 ∈ R(K−1)×(K−1) and C := [1, 1, . . . , 1] ∈ R1×(K−1).

Then, the ODE. (36) can be equivalently think column-by-column, the j–th column of Ā(t) solves

d

dt
ā(t) = Aā(t) where a(0) = ej .

We use the block structure to split ā(t) ∈ RK into two parts, i.e., ā(t) = [ā1(t), āK(t)] where
q1(t) ∈ RK−1 and aK(t) ∈ R denotes the last coordinate. Under this condition, we have

d

dt
ā1(t) = Bā1(t) + 0 · āK(t) = Bā1(t).

According to the definition of B = −IK−1, we have

d

dt
ā1(t) = −ā1(t) ⇒ ā1(t) = e−tā1(0).

If we consider the solution of āK(t), it has

d

dt
āK(t) = C · ā1(t) + 0 · āK(t) = C · e−t · ā1(0).

For the initial condition, i.e., ā(0) = ej , where j ∈ {1, 2, . . . ,K − 1} and C · ā1(0) = 1, then it
has

d

dt
āK(t) = C · ā1(t) + 0 · āK(t) = e−t,
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which implies
āK(t) = āK(0) + 1− e−t = 1− e−t.

For the initial condition, ā(0) = eK , we have C · ā1(0) = 0 and

āK(t) = āK(0) + 0 = 1.

Therefore, we have

exp(tA) =


e−t 0 . . . 0 0
0 e−t . . . 0 0
...

...
. . .

...
...

1− e−t 1− e−t . . . 1− e−t 1

 .

Lemma 8 (Forward transition kernel). Consider the forward CTMC, i.e., {yt}Tt=0 with the infinites-
imal operator R→ given in Eq. (7). Then, for any two timestamps s ≤ t, the forward transition
probability satisfies, for any y,y′ ∈ Y ,

q→t|s(y|y
′) =

d∏
i=1

[
δ(K,K)(yi,y

′
i) +

(
1− δ(K,K)(yi,y

′
i)
)
· δ0(yi − y′i) · e−(t−s)

+
(
1− δ(K,K)(yi,y

′
i)
)
· δK(yi) · (1− e−(t−s))

]
.

(37)

Proof. Under the matrix presentation, Eq. (26) implies the transition matrix Q→t|s can be considered
as the solution of the ODE

dQ→t|s/dt = R→ ·Q→t|s where Q→s|s = I.

Combining Lemma 4 and 6, we have

Q→t|s = exp ((t− s)R→) = exp ((t− s)A)
⊗d

, (38)

which implies

Q→t|s =


e−(t−s) 0 . . . 0 0

0 e−(t−s) . . . 0 0
...

...
. . .

...
...

1− e−(t−s) 1− e−(t−s) . . . 1− e−(t−s) 1


⊗d

due to the close solution of exp((t − s)A) shown in Lemma 7. Combining this result with the
calculation of the Kronecker product Lemma 12, we have

q→t|s(y|y
′) =

d∏
i=1

[
δ(K,K)(yi,y

′
i) +

(
1− δ(K,K)(yi,y

′
i)
)
· δ0(yi − y′i) · e−(t−s)

+
(
1− δ(K,K)(yi,y

′
i)
)
· δK(yi) · (1− e−(t−s))

]
.

where y,y′ ∈ Y . Hence, the proof is completed.

The proof of Lemma 2. According to Eq. (29), the solution of q→t can be calculated as

q→t = exp(tR→) · q→0 = exp(tA)⊗d · q→0 =


e−t 0 . . . 0 0
0 e−t . . . 0 0
...

...
. . .

...
...

0 0 . . . e−t 0
1− e−t 1− e−t . . . 1− e−t 1


⊗d

· q→0
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where the first equation follows from Lemma 4, the second equation follows from Lemma 6, and
the last equation follows from Lemma 7. With the calculation of the Kronecker product Lemma 12,
we have

q→t (y) =
∑
y′∈Y

exp(tA)⊗d(y,y′) · q→0 (y′) =
∑
y′

[
d∏

i=1

exp(tA)(yi,y
′
i)

]
· q→0 (y′). (39)

Under this condition, for any y, we denote the coordinate set of token K as K satisfying yi =
K ∀ i ∈ K(y), and

yKc(y) = y′Kc(y) ⇔ yi = y′i ∀ i ̸∈ K(y).

Then, Eq. (39) can be rewritten as

q→t (y) =
∑

y′Kc(y)
=yKc(y)

∏
j ̸∈K

exp(tA)(yj ,y
′
j) ·

d∏
j ̸=i

exp(tA)(K,y′j)

 · q→0 (y′)

+
∑

y′Kc(y)
̸=yKc(y)

 d∏
j=1

exp(tA)(yj ,y
′
j)

 · q→0 (y′)

=
∑

y′Kc(y)
=yKc(y)

[
e−t·|K

c(y)| · (1− e−t)|K(y)|
]
· q→0 (y′)

≤e−t·(d−numK(y)) ·
∑

y′Kc(y)
=yKc(y)

q→0 (y′) ≤ exp(−t · (d− numK(y))),

where the second equation establishes since we have

exp(tA)(yj ,y
′
j) =


e−t yj = y′j and yj ̸= K

1K(y′j) · (1− e−t) + (1− 1K(y′j)) yj = K

0 otherwise

.

According to the definition of q̃(y), we can calculate the normalizing constant of q̃ as

Z̃t =
∑
y

exp(−t·(d−numK(y))) =

d∑
i=0

∑
numK(y)=i

exp(−t·(d−i)) =

d∑
i=1

Ci
d·e−t·i = (1+e−t)d.

Therefore, the KL divergence between q→t and q̃t can be written as

KL
(
q→t
∥∥q̃t) = ∑

y∈Y
q→t (y) · ln q→t (y)

q̃t(y)
= q→t ([K, . . . ,K]) · ln q→t ([K, . . . ,K])

q̃t([K, . . . ,K])
+

∑
y ̸=[K,...,K]

q→t (y) · ln q→t (y)

q̃t(y)

≤ ln Z̃t +
∑

y ̸=[K,...,K]

q→t (y) ln
q→t (y)

exp(−t · (d− numK(y)))/Z̃t

= ln Z̃t +
∑

y ̸=[K,...,K]

q→t (y) ln Z̃t

≤ 2 ln Z̃t = 2 ln
[
1 + (1 + e−t)d − 1

]
≤ 2 · (1 + e−t)d − 2.

Suppose we require the TV distance to be small enough, e.g.,

KL
(
q→t
∥∥q̃t) ≤ ϵ ⇔ (1 + e−t)d − 1 ≤ ϵ/2 ⇔ d ln(1 + e−t) ≤ ln(1 + ϵ/2),

then, since ln(1 + c) ≤ c when c > 0, the sufficient condition for the establishment of the above
equation is to require

d · e−t ≤ ln(1 + ϵ/2) ⇔ t ≥ ln(d/ ln(1 + ϵ/2)) ⇐ t ≥ ln(4d/ϵ),

where the last derivation establishes since ϵ/4 ≤ ln(1+ ϵ/2) when ϵ ≤ 1 without loss of generality.
Hence, the proof is completed.
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C EULER DISCRETIZATION ANALYSIS

By Assumption 2 of Liang et al. (2025a), ṽt,y(y′) ≤ M .

[A1]- Score approximation error assumption The discrete score ṽt obtained from Eq. (6) is
well-trained, and its estimation error satisfies for the chosen discretization step size h, and
T = nh+ δ:

1

T − δ

n−1∑
k=0

∫ (k+1)h

kh

Eyt∼q←t

∑
y ̸=yt

R→(yt,y)Dϕ (vkh,yt
(y)||ṽkh,yt

(y))

 dt ≤ ϵ2score.

C.1 PROOF OF THEOREM 1

Consider the Euler-discretization update in Eq. (11):

qEu
t+∆t|t(y

′|y) ∝ δy(y
′) + ∆t · R̃t(y

′,y) = δy(y
′) + ∆t ·R→(y,y′) · ṽt,y(y′)

Without loss of generality, assume that R̃t(y
′,y)⊤ satisfies the two sufficient conditions of the

transition rate matrix: its off-diagonal entries are non-negative, and each row sums to zero 1. In this
way, both ehR̃t and I+hR̃t are the transpose of valid transition matrices. The probability transition
matrix of the Euler discretization can then be written as QEu

t,t+h = I + hR̃⊤t , where each element
can be written as

QEu
t,t+h(y,y

′) = qEu
t+h|t(y

′|y) = δy(y
′) + h · R̃t(y

′,y) (40)

To prove the convergence bound for TV
(
q←δ , qEu

T−δ
)
, we introduce an auxiliary process qEI using

the exponential integrator update QEu
t,t+h = ehR̃t

⊤
(Zhang et al., 2024). We first prove the bound

for TV
(
qEu
T−δ, q

EI
T−δ

)
and TV

(
q←δ , qEI

T−δ
)

separately, and use the triangle inequality to conclude the
proof. Take T = nh+ δ.

Bound for TV
(
qEu
T−δ, q

EI
T−δ

)
. For time interval [kh, (k + 1)h], by the chain rule of TV distance

(Lemma 16), we have

TV
(
qEu
(k+1)h, q

EI
(k+1)h

)
≤ TV

(
qEu
kh , qEI

kh

)
+ Ey∼qEu

kh
TV

(
qEu
(k+1)h|kh(· | y), q

EI
(k+1)h|kh(· | y)

)
(41)

By the definition of total variation distance, we have

TV
(
qEu
(k+1)h|kh(· | y), q

EI
(k+1)h|kh(· | y)

)
=
∑
y′

∣∣∣qEu
(k+1)h|kh(y

′ | y)− qEI
(k+1)h|kh(y

′ | y)
∣∣∣

=
∑
y′

∣∣∣QEu
kh,(k+1)h(y,y

′)−QEI
kh,(k+1)h(y,y

′)
∣∣∣ (42)

Writing out the difference between QEu
kh,(k+1)h = I + hR̃⊤kh and QEI

kh,(k+1)h = ehR̃
⊤
kh using the

Taylor series expansion for the matrix exponential:

QEI
kh,(k+1)h = ehR̃

⊤
kh =

∞∑
i=0

1

i!
(hR̃⊤kh)

i = I + hR̃⊤kh +
1

2!
h2(R̃⊤kh)

2 +
1

3!
h3(R̃⊤kh)

3 + . . . ,

we have

QEI
kh,(k+1)h −QEu

kh,(k+1)h = ehR̃
⊤
kh −

(
I + hR̃⊤kh

)
=

∞∑
i=2

1

i!
(hR̃⊤kh)

i.

1Notice that our notation of R is the transpose of the convention used in some other works.
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Thus, by the triangle inequality, we have∑
y′∈Y

∣∣∣QEI
kh,(k+1)h(y,y

′)−QEu
kh,(k+1)h(y,y

′)
∣∣∣ = ∑

y′∈Y

∣∣∣∣∣
∞∑
i=2

1

i!

(
(hR̃⊤kh)

i
)
(y,y′)

∣∣∣∣∣
≤
∑
y′∈Y

∞∑
i=2

hi

i!

∣∣∣((R̃⊤kh)i) (y,y′)∣∣∣
=

∞∑
i=2

hi

i!

∑
y′∈Y

∣∣∣((R̃⊤kh)i) (y,y′)∣∣∣ (Tonelli’s theorem for series)

=

∞∑
i=2

hi

i!

∑
y′∈Y

∣∣∣((R̃kh)
i
)
(y′,y)

∣∣∣ ≤ ∞∑
i=2

hi

i!

∥∥∥(R̃kh)
i
∥∥∥
1
≤
∞∑
i=2

hi

i!

∥∥∥R̃kh

∥∥∥i
1
,

where ∥A∥1 = max1≤j≤n
∑m

i=1 |ai,j | = maxx ̸=0 ∥Ax∥1 / ∥x∥1 denotes the 1-norm of the matrix.
And the last inequality is due to the multiplicative property of this matrix norm.

Therefore,∑
y′∈Y

∣∣∣QEI
kh,(k+1)h(y,y

′)−QEu
kh,(k+1)h(y,y

′)
∣∣∣ ≤ ∞∑

i=2

hi

i!

∥∥∥R̃kh

∥∥∥i
1
= eh∥R̃kh∥

1 − 1− h
∥∥∥R̃kh

∥∥∥
1

≤
(
h
∥∥∥R̃kh

∥∥∥
1

)2
,

when h
∥∥∥R̃kh

∥∥∥
1
≤ 1. Plugging this into Eq. (41) and (42), we have

TV
(
qEu
(k+1)h, q

EI
(k+1)h

)
≤ TV

(
qEu
kh , qEI

kh

)
+
(
h
∥∥∥R̃kh

∥∥∥
1

)2
, (43)

when h
∥∥∥R̃kh

∥∥∥
1
≤ 1.

By Assumption 2 of Liang et al. (2025a), ṽt,y(y′) ≤ M . We have

∥∥∥R̃t

∥∥∥
1
= max

y

∑
y′∈Y

∣∣∣R̃t(y
′,y)

∣∣∣ = max
y

∑
y′∈Y

|R→(y,y′) · ṽt,y(y′)|

= max
y

(d− numK(y)) +
∑

Ham(y,y′)=1 and yDiffIdx(y,y′)=K

|ṽt,y(y′)|

 (By Eq. 7)

≤ max
y

(d− numK(y) +KdM)

≤ 2KdM.

Thus
∥∥∥R̃kh

∥∥∥
1
≤ 2KdM . By (43) we have

TV
(
qEu
nh , q

EI
nh

)
≤ TV

(
qEu
0 , qEI

0

)
+

n∑
k=1

(
h
∥∥∥R̃kh

∥∥∥
1

)2
≤ K2d2

n∑
k=1

h2M2 ≤ K2d2nh2M2 ≤ K2(T − δ)hd2M2.

(44)

By taking h ≤ ε
K2d2M2 log(d/ε) , then TV

(
qEu
nh , q

EI
nh

)
≤ ε.

Bound for TV
(
qEI
T−δ, q

←
T−δ

)
. We first prove KL

(
q←T−δ

∥∥qEI
T−δ

)
, then use Pinsker’s inequality to

derive the bound for TV
(
qEI
T−δ, q

←
T−δ

)
.
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For time interval [kh, (k + 1)h], we have

KL
(
q←(k+1)h

∥∥qEI
(k+1)h

)
= KL

(
q←kh
∥∥qEI

kh

)
+

∫ (k+1)h

kh

dKL
(
q←t
∥∥qEI

t

)
dt

dt. (45)

By the chain rule of KL divergence (Lemma 15)

d
dt
KL
(
q←t
∥∥qEI

t

)
= lim

∆t→0

KL
(
q←t+∆t

∥∥qEI
t+∆t

)
−KL

(
q←t
∥∥qEI

t

)
∆t

≤ lim
∆t→0

Ey∼q←t

KL
(
q←t+∆t|t(· | y)

∥∥qEI
t+∆t|t(· | y)

)
∆t

= Ey∼q←t lim
∆t→0

KL
(
q←t+∆t|t(· | y)

∥∥qEI
t+∆t|t(· | y)

)
∆t︸ ︷︷ ︸

Term 1

(46)

For each y ∈ Y , we focus on Term 1 of Eq. (46), and have

Term 1 = lim
∆t→0

∆t−1 ·
∑
y′∈Y

q←t+∆t|t(y
′|y) · ln

q←t+∆t|t(y
′|y)

qEI
t+∆t|t(y

′|y)


= lim

∆t→0

∑
y′ ̸=y

q←t+∆t|t(y
′|y)

∆t
· ln

q←t+∆t|t(y
′|y)

qEI
t+∆t|t(y

′|y)


︸ ︷︷ ︸

Term 1.1

+

lim
∆t→0

∆t−1 ·

1−
∑
y′ ̸=y

q←t+∆t|t(y
′|y)

 · ln
1−

∑
y′ ̸=y q←t+∆t|t(y

′|y)
1−

∑
y′ ̸=y qEI

t+∆t|t(y
′|y)


︸ ︷︷ ︸

Term 1.2

.

(47)

For Term 1.1, we have

Term 1.1 =
∑
y′ ̸=y

lim
∆t→0

[
q←t+∆t|t(y

′|y)
∆t

]
· lim
∆t→0

[
ln

q←t+∆t|t(y
′|y)

qEI
t+∆t|t(y

′|y)

]

=
∑
y′ ̸=y

R←t (y′,y) · ln

[
lim

∆t→0

(
q←t+∆t|t(y

′|y)
∆t

· ∆t

qEI
t+∆t|t(y

′|y)

)]

=
∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̃kh(y′,y)
,

(48)

where the second equation follows from the composition rule of the limit calculation. For Term 1.2,
we have

Term 1.2 = lim
∆t→0

1− ∑
y′ ̸=y

q←t+∆t|t(y
′|y)

 · lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t(y
′|y)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)

]

=
∑
y′ ̸=y

(
R̃kh(y

′,y)−R←t (y′,y)
)
= R̃kh(y)−R←t (y)

(49)
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where the first inequality follows from Lemma 9. Plugging Eq. (48), Eq. (49) and Eq. (47), into
Eq. (46) we have

dKL
(
q←t
∥∥qEI

t

)
dt

≤
∑
y∈Y

q←t (y) ·

∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̃kh(y′,y)
+ R̃kh(y)−R←t (y)


=
∑
y∈Y

q←t (y) ·

∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̃kh(y′,y)
+
∑
y′ ̸=y

R̃kh(y
′,y)−

∑
y′ ̸=y

R←t (y′,y)


=
∑
y∈Y

q←t (y) ·
∑
y′ ̸=y

R→(y,y′) ·
[
−q←t (y′)

q←t (y)
+ ṽkh,y(y

′) +
q←t (y′)

q←t (y)
ln

q←t (y′)

q←t (y)ṽkh,y(y′)

]

=
∑
y∈Y

q←t (y) ·
∑
y′ ̸=y

R→(y,y′) ·
[
−vt,y(y

′) + ṽkh,y(y
′) + vt,y(y

′) ln
vt,y(y

′)

ṽkh,y(y′)

]

=
∑
y∈Y

q←t (y) ·
∑

Ham(y,y′)=1 and yDiffIdx(y,y′)=K

[
−vt,y(y

′) + ṽkh,y(y
′) + vt,y(y

′) ln
vt,y(y

′)

ṽkh,y(y′)

]
︸ ︷︷ ︸

Term 2
(50)

For y′ = y[yi → k], by Eq. (55) we have vt,y(y
′) =

q←t (y[yi→k])
q←t (y) ≤ 1

e(T−t)−1 . By (Liang et al.,

2025a, Lemma 2), there exist c > 0 such that vt,y(y′) ≥ 1
c e
−(T−t). Therefore, by (Zhang et al.,

2024, Proposition 3), letting C = max{M, ceT }, Term 2 satisfies

Term 2 ≤
∑

Ham(y,y′)=1 and yDiffIdx(y,y′)=K

(
C ∥vt,y(y′)− vkh,y(y

′)∥2 + 2C2Dϕ(vkh,y(y
′)||ṽkh,y(y′))

)
where Dϕ is the Bregman divergence with ϕ(x) = x lnx (as Eq. (6)), i.e.,

Dϕ(u∥v) = ϕ(u)− ϕ(v)− ⟨∇ϕ(v), u− v⟩ = u ln
u

v
− u+ v.

By (Liang et al., 2025a, Lemma 7), we have ∥vt,y(y′)− vkh,y(y
′)∥ ≲ γ−1(t − kh) ≲ h, where γ

is defined in (Liang et al., 2025a, Assumption 4). We therefore have

Term 2 ≲ CKnumK(y)h2 + C2
∑

Ham(y,y′)=1 and yDiffIdx(y,y′)=K

(Dϕ(vkh,y(y
′)||ṽkh,y(y′)))

≲ CKdh2 + C2
∑

Ham(y,y′)=1 and yDiffIdx(y,y′)=K

(Dϕ(vkh,y(y
′)||ṽkh,y(y′)))

(51)

Since by Eq. (45), we have

KL
(
q←nh
∥∥qEI

nh

)
= KL

(
q←0
∥∥qEI

0

)
+

n−1∑
k=0

∫ (k+1)h

kh

dKL
(
q←t
∥∥qEI

t

)
dt

dt.

Then, by Eq. (50), Eq. (51), Eq. (6) and Assumption [A1]-, we have

KL
(
q←T−δ

∥∥qEI
T−δ

)
≲ (T − δ)C2ϵ2score + C(T − δ)Kdh2.

By Pinsker’s inequality, we have

TV
(
q←T−δ, q

EI
T−δ

)
≤
√

1

2
KL
(
q←T−δ

∥∥qEI
T−δ

)
≲

√
1

2

√
(T − δ)C2ϵ2score + C(T − δ)Kdh2
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By taking ϵscore ≲ ε/(
√
TC), and h ≲ ε/

√
CdT , we have TV

(
q←T−δ, q

EI
T−δ

)
≤ ε.

Therefore, taking h ≲ min{ ε
K2d2M2 log(d/ε) ,

ε√
Cd log(d/ε)

}, by the triangle inequality, we have

TV
(
q←δ , qEu

T−δ
)
≤ TV

(
qEu
T−δ, q

EI
T−δ

)
+TV

(
q←δ , qEI

T−δ
)
≲ ε.

Plugging in C = Θ(d/ε), we have for h ≲ min{ ε
K2d2M2 log(d/ε) ,

ε
3
2

d
√

log(d/ε)
}, we have

TV
(
q←δ , qEu

T−δ
)
≲ ε.

Hence, the proof is completed.
Lemma 9. Following the notations shown in Section 2, for t ∈ [kh, (k + 1)h], we have

lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t(y
′|y)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)

]
= R̃kh(y)−R←t (y).

Proof. Since we have required ∆t → 0, that is to say

qEI
t+∆t|t(y

′|y) → qEI
t|t (y

′|y) = 0 and q←t+∆t|t(y
′|y) → q←t|t(y

′|y) = 0 ∀y′ ̸= y,

which automatically makes∣∣∣∣∣∣
∑

y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)

∣∣∣∣∣∣ ≤ 1

2
< 1.

Under this condition, we have

ln
1−

∑
y′ ̸=y q←t+∆t|t(y

′|y)
1−

∑
y′ ̸=y qEI

t+∆t|t(y
′|y)

= ln

1 + ∑
y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)


=

∞∑
i=1

(−1)i+1

i
·

∑y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)

i

,

which implies (with the dominated convergence theorem)

lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t(y
′|y)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)

]

=

∞∑
i=1

(−1)i+1

i
· lim
∆t→0

∑
y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
)

∆t

· lim
∆t→0

(∑
y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
))i−1

(
1−

∑
y′ ̸=y qEI

t+∆t|t(y
′|y)
)i .

Only when i = 1, we have

lim
∆t→0

(∑
y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
))i−1

(
1−

∑
y′ ̸=y qEI

t+∆t|t(y
′|y)
)i = 1,

otherwise it will be equivalent to 0. Therefore, we have

lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t(y
′|y)

1−
∑

y′ ̸=y qEI
t+∆t|t(y

′|y)

]
= lim

∆t→0

∑
y′ ̸=y

(
qEI
t+∆t|t(y

′|y)− q←t+∆t|t(y
′|y)
)

∆t

=
∑
y′ ̸=y

(
R̃kh(y

′,y)−R←t (y′,y)
)
= R̃kh(y)−R←t (y).

Hence, the proof is completed.
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D TRUNCATED UNIFORMIZATION INFERENCE ANALYSIS

D.1 THE PROOF OF LEMMA 3

The proof of Lemma 3. According to the definition, we have

R←t (y) =
∑
y′ ̸=y

R←t (y′,y) =
∑
y′ ̸=y

R→(y,y′) · q
←
t (y′)

q←t (y)

Since the definition of the transition rate matrix, i.e., Eq. (7), for any y′ with Ham(y′,y) > 1, it has
R→(y,y′) = 0. Moreover, even when Ham(y′,y) = 1, it has

R→(y,y′) = 0 when yDiffIdx(y,y′) ̸= K.

Define the function to transfer the i–th element of y (yi) from k′ to k as

y[yi : k
′ → k] = [y1,y2, . . . ,yi−1, k,yi+1, . . . ,yd] .

That means R←t (y) can be rewritten as

R←t (y) =
∑

i,yi=K

[
K−1∑
k=1

R→(y,y[yi : K → k]) · q
←
t (y[yi : K → k])

q←t (y)

]
. (52)

To upper bound the RHS of the above equation, we consider controlling

q←t (y[yi : K → k])

q←t (y)
=

q→T−t(y[yi : K → k])

q→T−t(y)
=

∑
y0∈Y q

→
0 (y0) · q→T−t|0(y[yi : K → k]|y0)∑
y0∈Y q

→
0 (y0) · q→T−t|0(y|y0)

=

∑
y0∈Y q

→
0 (y0) · q→T−t|0(y|y0) ·

q→T−t|0(y[yi : K→k]|y0)

q→
T−t|0(y|y0)∑

y0∈Y q
→
0 (y0) · q→T−t|0(y|y0)

= Ey0∼q→0|T−t
(·|y)

[
q→T−t|0(y[yi : K → k]|y0)

q→T−t|0(y|y0)

]
,

(53)
where the last equation follows from Bayes’ Theorem, i.e.,

q→0|T−t(y0|y) · q→T−t(y) = q→T−t|0(y|y0) · q→0 (y0) ⇔ q→0|T−t(y0|y) ∝ q→T−t|0(y|y0) · q→0 (y0).

Then, we only need to control q→T−t|0(y[yi → k]|y0)/q
→
T−t|0(y|y0) where both the denominator

and the numerator can be calculated accurately by Lemma 8. Specifically, we have

q→T−t|0(y|y0) =
∏

j∈{1,...,i−1,i+1,...,d}

[
1(K,K)(yj ,y0,j) +

(
1− 1(K,K)(yj ,y0,j)

)
· 10(yj − y0,j) · e−(T−t)

+
(
1− 1(K,K)(yj ,y0,j)

)
· 1K(yj) · (1− e−(T−t))

]
·[

1(K,K)(K,y0,i) +
(
1− 1(K,K)(K,y0,i)

)
· (1− e−(T−t))

]
and

q→T−t|0(y[yi : K → k]|y0) =
∏

j∈{1,...,i−1,i+1,...,d}

[
1(K,K)(yj ,y0,j) +

(
1− 1(K,K)(yj ,y0,j)

)
· 10(yj − y0,j) · e−(T−t)

+
(
1− 1(K,K)(yj ,y0,j)

)
· 1K(yj) · (1− e−(T−t))

]
·[(

1− 1(K,K)(k,y0,i)
)
· 10(k − y0,i) · e−(T−t)

]
.

Since the factor except for the i–th term will be canceled, we have

q→T−t|0(y[yi → k]|y0)

q→T−t|0(y|y0)
=

(
1− 1(K,K)(k,y0,i)

)
· 10(k − y0,i) · e−(T−t)

1(K,K)(K,y0,i) +
(
1− 1(K,K)(K,y0,i)

)
· (1− e−(T−t))

=
10(k − y0,i) · e−(T−t)

1− e−(T−t)
≤ e−(T−t)

1− e−(T−t)
=

1

e(T−t) − 1
.

(54)
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Plugging this result into Eq. (53), the density ratio of the reverse process will have

q←t (y[yi → k])

q←t (y)
= Ey0∼q→0|T−t

(·|y)

[
q→T−t|0(y[yi : K → k]|y0)

q→T−t|0(y|y0)

]
≤ 1

e(T−t) − 1
. (55)

Combining with the fact, i.e.,
R→(y,y[yi : K → k]) = 1

from Eq. (7), Eq. (52) can be upper bounded as

R←t (y) =
∑

i,yi=K

[
K−1∑
k=1

q←t (y[yi : K → k])

q←t (y)

]
≤ numK(y) ·K

e(T−t) − 1
.

Hence, the proof is completed.

Remark 1. Here, an interesting property is that compared with the upper bound of βt(y) in the
uniform forward process Chen & Ying (2024), i.e.,∑

y′ ̸=y

R←t (y′,y) ≤ K · d · 1 + e−2(T−t)

1− e−2(T−t)
≤ K · d · (1 + (T − t)−1).

the upper bound of βt(y) in absorbing forward process will only be∑
y′ ̸=y

R←t (y′,y) ≤ K · numK(y) · e−(T−t)

1− e−(T−t)
.

The latter upper bound is strictly better compared with the former one, since the number of mask
tokens, i.e., numK(y) ≤ d. Besides, with the time growth (from 0 to T ), numK(y) will be monotonic
decrease for R←t (y) (from d to 0). Since the dominating term in the complexity analysis of truncated
uniformization is βt, the discrete diffusion models with absorbing forward process are expected to
have a better result. The mechanism of the acceleration can be explained in one sentence, i.e.,

At each uniformization step, absorbing the discrete diffusion model knows the token needs
(masked token)/ or does not need (unmasked token) to denoise, and an unmasked token will

not be denoised twice.

Rigorously, this property can be summarized by Lemma 10.
Lemma 10. Suppose Assumption [A2] hold, and 0 < t0 ≤ t, we have q←t|t0(y|y0) ̸= 0 if and only if

y ∈ Y←(y0) = {y′|∀i, y0,i = K or y′i = y0,i} .

Proof. According to the Bayes’ theorem, for any t ≥ t0, it has

q←t,t0(y,y0) = q←t|t0(y|y0) · q←t0 (y0) = q→T−t,T−t0(y,y0)

= q→T−t0,T−t(y0,y) = q→T−t0|T−t(y0|y) · q→T−t(y),
(56)

where the third equation follows from the reversibility of the absorbing forward process shown
in Campbell et al. (2022). Following from the forward transition kernel shown in Lemma 8, we
know that

q→T−t0|T−t(y0|y) ̸= 0 ⇔ y0 ∈ Y→(y) = {y′| ∀i, y′i = yi or y′i = K} . (57)

Combining Assumption [A2] and Lemma 8, we have q→τ (y) > 0 for all y ∈ Y , which implies

q←t0 (y0) = q→T−t0(y0) > 0 and q→t (y) > 0. (58)

Then, we can summarize

q←t|t0(y|y0) ̸= 0 ⇔ y ∈ Y←(y0) = {y′|∀i, y0,i = K or y′i = y0,i} .

Hence, the proof is completed.
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D.2 THE CONVERGENCE OF ALG. 1

Suppose, with the infinitesimal reverse transition rate, the particles in Alg. 1 during the reverse
process are denotes as random variables {ŷt}T−δt=0 , whose underlying distributions are q̂t. Then, the
implementation will be equivalent to the following Poisson process. For t ∈ (tw−1, tw], ŷtw−1

= y0

and ŷt = y,

1. With probability ∆t · βtw(y0), allow a state transition.

2. Conditioning on an allowed transition, move from y to y′ with probability

M̂t|tw−1
(y′|y,y0) =

{
β−1tw (y0) · R̂t,y0(y

′,y) y′ ̸= y

1− β−1tw (y0)R̂t,y0(y) otherwise
.

Here we should note that

R̂t,y0(y) ≤ βt(y) = K · numK(y) · 1

eT−t − 1
≤ K · numK(y0) ·

1

eT−tw − 1
= βtw(y0),

where the second inequality established since numK(ŷt) ≤ numK
(
ŷtw−1

)
and (eT−t − 1)−1 is

monotonic increasing. Under these two steps, the practical conditional probability satisfies

q̂t+∆t|t,tw−1
(y′|y,y0) =

{
∆t · βtw(y0) · R̂t,y0

(y′,y) · β−1tw (y0) y′ ̸= y

1−∆t · βtw(y0) + ∆t · βtw(y0) · (1− βtw(y0)
−1 · R̂t,y0

(y)) y′ = y,

=

{
∆t · R̂t,y0

(y′,y) y′ ̸= y

1−∆t · R̂t,y0
(y) y′ = y

.

(59)

Lemma 11. Following the notations shown in Section A, we have

lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t,tw−1
(y′|y,y0)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)

]
= R̂t,y0

(y)−R←t (y).

Proof. Since we have required ∆t → 0, for any y′ ̸= y, it has

q̂t+∆t|t,tw−1
(y′|y,y0) → q̂t|t(y

′|y,y0) = 0

and q←t+∆t|t,tw−1
(y′|y,y0) = q←t+∆t|t(y

′|y) → q←t|t(y
′|y) = 0,

where the first row follows from Eq. (59) and the second row follows from Lemma. 1. This auto-
matically makes∣∣∣∣∣∣

∑
y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t,tw−1
(y′|y,y0)

)
1−

∑
y′ ̸=y q̂t+∆t|t,tw−1

(y′|y,y0)

∣∣∣∣∣∣ ≤ 1

2
< 1.

Under this condition, we have

ln
1−

∑
y′ ̸=y q←t+∆t|t,tw−1

(y′|y,y0)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)

= ln

1 + ∑
y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t(y
′|y)
)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)


=

∞∑
i=1

(−1)i+1

i
·

∑y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t,tw−1
(y′|y,y0)

)
1−

∑
y′ ̸=y q̂t+∆t|t,tw−1

(y′|y,y0)

i

,
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which implies (with the dominated convergence theorem)

lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t,tw−1
(y′|y,y0)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)

]

=

∞∑
i=1

(−1)i+1

i
· lim
∆t→0

∑
y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t,tw−1
(y′|y,y0)

)
∆t

· lim
∆t→0

(∑
y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t,tw−1
(y′|y,y0)

))i−1
(
1−

∑
y′ ̸=y q̂t+∆t|t,tw−1

(y′|y,y0)
)i .

Only when i = 1, we have

lim
∆t→0

(∑
y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t,tw−1
(y′|y,y0)

))i−1
(
1−

∑
y′ ̸=y q̂t+∆t|t(y′|y)

)i = 1,

otherwise it will be equivalent to 0. Therefore, we have

lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t,tw−1
(y′|y,y0)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)

]

= lim
∆t→0

∑
y′ ̸=y

(
q̂t+∆t|t,tw−1

(y′|y,y0)− q←t+∆t|t,tw−1
(y′|y,y0)

)
∆t

=
∑
y′ ̸=y

(
R̂t,y0

(y′,y)−R←t (y′,y)
)
= R̂t,y0

(y)−R←t (y),

where the second equation follows from Eq. (59) and the second row follows from Lemma. 1. Hence,
the proof is completed.

Theorem 3 (The convergence of Alg. 1). Suppose Assumption [A1] and [A2] hold, if Alg. 1 has

t0 = 0, tW = T − δ, and ϵscore ≤ T−1/2 · ϵ where T = ln(4d/ϵ2) and δ ≤ d−1ϵ,

the TV distance between the target discrete distribution q∗ and the underlying distribution of the
output particle q̂T−δ will satisfy TV (q∗, q̂T−δ) ≤ 2ϵ.

Proof. Here we provide the upper bound of TV distance accumulation in a specific segment, e.g.,
from tw−1 to tw. According to the chain rule of KL divergence, i.e., Lemma 15, we have

KL
(
q←tw
∥∥q̂tw) ≤ KL

(
q←tw−1

∥∥q̂tw−1

)
+ Ey0∼q←tw−1

[
KL
(
q←tw|tw−1

(·|y0)
∥∥q̂tw|tw−1

(·|y0)
)]

= KL
(
q←tw−1

∥∥q̂tw−1

)
+

∫ tw

tw−1

dEy0∼q←tw−1

[
KL
(
q←t|tw−1

(·|y0)
∥∥q̂t|tw−1

(·|y0)
)] (60)

Then, it has

dEy0∼q←tw−1

[
KL
(
q←t|tw−1

(·|y←0 )
∥∥q̂t|tw−1

(·|y←0 )
)]

/dt

= lim
∆→0

(∆t)−1 · Ey0∼q←tw−1

[
KL
(
q←t+∆t|tw−1

(·|y0)
∥∥q̂t+∆t|tw−1

(·|y0)
)
−KL

(
q←t|tw−1

(·|y0)
∥∥q̂t|tw−1

(·|y0)
)]

≤ lim
∆→0

(∆t)−1 · Ey0∼q←tw−1

[
Ey∼q←

t|tw−1
(·|y0)

(
KL
(
q←t+∆t|t,tw−1

(·|y,y0)
∥∥q̂t+∆t|t,tw−1

(·|y,y0)
))]

where the inequality follows from the chain rule of the KL divergence, i.e., Lemma 15. Then, it has

dEy0∼q←tw−1

[
KL
(
q←t|tw−1

(·|y0)
∥∥q̂t|tw−1

(·|y0)
)]

/dt

≤
∑

y∈Y,y0∈Y→(y)

q←t,tw−1
(y,y0) · lim

∆t→0

KL
(
q←t+∆t|t,tw−1

(·|y,y0)
∥∥q̂t+∆t|t,tw−1

(·|y,y0)
)

∆t


︸ ︷︷ ︸

Term 1
(61)
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where the inequality and the notation Y→(·) follows from Lemma 10. For each y← ∈ Y,y←0 ∈
Y→(y), we focus on Term 1 of Eq. (61), and have

Term 1 = lim
∆t→0

∆t−1 ·
∑
y′∈Y

q←t+∆t|t,tw−1
(y′|y,y0) · ln

q←t+∆t|t,tw−1
(y′|y,y0)

q̂t+∆t|t,tw−1
(y′|y,y0)


= lim

∆t→0

∑
y′ ̸=y

q←t+∆t|t,tw−1
(y′|y,y0)

∆t
· ln

q←t+∆t|t,tw−1
(y′|y,y0)

q̂t+∆t|t,tw−1
(y′|y,y0)


︸ ︷︷ ︸

Term 1.1

+

lim
∆t→0

∆t−1 ·

1−
∑
y′ ̸=y

q←t+∆t|t,tw−1
(y′|y,y0)

 · ln
1−

∑
y′ ̸=y q←t+∆t|t,tw−1

(y′|y,y0)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)


︸ ︷︷ ︸

Term 1.2

.

(62)
For Term 1.1, we have

Term 1.1 =
∑
y′ ̸=y

lim
∆t→0

[
q←t+∆t|t,tw−1

(y′|y,y0)

∆t

]
· lim
∆t→0

[
ln

q←t+∆t|t,tw−1
(y′|y,y0)

q̂t+∆t|t,tw−1
(y′|y,y0)

]

=
∑
y′ ̸=y

R←t (y′,y) · ln

[
lim

∆t→0

(
q←t+∆t|t,tw−1

(y′|y,y0)

∆t
· ∆t

q̂t+∆t|t,tw−1
(y′|y,y0)

)]

=
∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̂t,y0
(y′,y)

,

(63)
where the last equation follows from Lemma 1 and Eq. (59). For Term 1.2, we have

Term 1.2 = lim
∆t→0

1− ∑
y′ ̸=y

q←t+∆t|t,tw−1
(y′|y,y0)


· lim
∆t→0

[
∆t−1 · ln

1−
∑

y′ ̸=y q←t+∆t|t,tw−1
(y′|y,y0)

1−
∑

y′ ̸=y q̂t+∆t|t,tw−1
(y′|y,y0)

]
≤ 1 · (R̂t,y0

(y)−R←t (y))

(64)
where the first inequality follows from Lemma 11. Plugging Eq. (63), Eq. (64) and Eq. (62), into
Eq. (61) we have

dEy0∼q←tw−1

[
KL
(
q←t|tw−1

(·|y0)
∥∥q̂t|tw−1

(·|y0)
)]

/dt

≤
∑

y∈Y,y0∈Y→(y)

q←t,tw−1
(y,y0) ·

∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̂t,y0
(y′,y)

+ R̂t,y0(y)−R←t (y)

 .

(65)
Then, for any y ∈ Y and y0 ∈ Y→(y), we have∑

y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̂t,y0
(y′,y)

+ R̂t,y0
(y)−R←t (y)

=
∑
y′ ̸=y

R←t (y′,y) ln
R←t (y′,y)

R̃t(y′,y)
+ R̃t(y)−R←t (y)

+
∑
y′ ̸=y

R←t (y′,y) ln
R̃t(y

′,y)

R̂t,y0
(y′,y)

+ R̂t,y0
(y)− R̃t(y)︸ ︷︷ ︸

Term 2

.

(66)
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When R̃t(y) ≤ βtw(y0), due to Eq. (18), we have

R̂t,y0(y
′,y) = R̃t(y

′,y) and R̂t,y0(y) =
∑
y′ ̸=y

R̂t,y0(y
′,y) =

∑
y′ ̸=y

R̃t(y
′,y) = R̃t(y)

which implies Term 2 = 0 in Eq. (66). Otherwise, we have

R̂t,y0
(y′,y)

R̃t(y′,y)
=

βtw(y0)

R̃t(y)
and

R̂t,y0
(y)

R̃t(y)
=

βtw(y0)

R̃t(y)
,

which implies

Term 2 =
∑
y′ ̸=y

R←t (y′,y) · ln R̃t(y)

βtw(y0)
+ βtw(y0)− R̃t(y)

= R←t (y) · ln

[
1 +

R̃t(y)− βtw(y0)

βtw(y0)

]
+ βtw(y0)− R̃t(y)

≤ βtw(y0) ·

[
R̃t(y)− βtw(y0)

βtw(y0)

]
+ βtw(y0)− R̃t(y) = 0,

where the last inequality follows from

y0 ∈ Y→(y) ⇒ numK(y) ≤ numK(y0) ⇒ R←t (y) ≤ βtw(y0).

Combining with Eq. (66) and Eq. (65), we have

dEy0∼q←tw−1

[
KL
(
q←t|tw−1

(·|y0)
∥∥q̂t|tw−1

(·|y0)
)]

/dt

≤
∑
y∈Y

q←t (y) ·

∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̃t(y′,y)
+ R̃t(y)−R←t (y)


=
∑
y∈Y

q←t (y) ·

∑
y′ ̸=y

R←t (y′,y) · ln R←t (y′,y)

R̃t(y′,y)
+
∑
y′ ̸=y

R̃t(y
′,y)−

∑
y′ ̸=y

R←t (y′,y)


=
∑
y∈Y

q←t (y) ·
∑
y′ ̸=y

R→(y,y′) ·
[
−q←t (y′)

q←t (y)
+ ṽt,y(y

′) +
q←t (y′)

q←t (y)
ln

q←t (y′)

q←t (y)ṽt,y(y′)

]

=
∑
y∈Y

q←t (y) ·
∑
y′ ̸=y

R→(y,y′)Dϕ

(
q←t (y′)

q←t (y)

∥∥ṽt,y(y′)) ,

(67)

where Dϕ is the Bregman divergence with ϕ(c) = c ln c (as Eq. (6)), and the last equation follows
from the definition of Bregman divergence:

Dϕ(u∥v) = ϕ(u)− ϕ(v)− ⟨∇ϕ(v), u− v⟩ = u ln
u

v
− u+ v.

Therefore, Eq. (60) can be rewritten as

KL
(
q←tw
∥∥q̂tw) ≤ KL

(
q←tw−1

∥∥q̂tw−1

)
+

∫ tw

tw−1

Ey∼q→T−t

∑
y′ ̸=y

R→(y,y′) ·Dϕ

(
vt,y(y

′)
∥∥ṽt,y(y′))

dt.

With a recursive manner, we have

KL
(
q←T−δ

∥∥q̂T−δ) ≤ KL
(
q←0
∥∥q̂0)+ LSE(ṽ) = KL

(
q→T
∥∥q̂0)+ LSE(ṽ) ≤ (1 + e−T )d − 1 + Tϵ2score,

where the last inequality follows from Lemma 2 and Assumption [A1]

q̂0(y) = q̃T (y) ∝ exp(−T · (d− numK(y))).

If we set
T ≥ ln(4d/ϵ2) and ϵscore ≤ T−1/2 · ϵ,

it has (1 + e−T )d − 1 ≤ ϵ2 and Tϵ2score ≤ ϵ2, which means KL
(
q←T−δ

∥∥q̂T−δ) ≤ 2ϵ2.
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Bounding TV (q∗, q
→
δ ) We adopt the proof strategy of Theorem 6 in Chen & Ying (2024). Con-

sider the forward process (Xt)t≥0. By the coupling characterization of the total variation distance,
we have

TV (q∗, q
→
δ ) := inf

γ∈Γ(q∗,q→δ )
P(u,v)∼γ [u ̸= v] ≤ P(y ̸= y′),

where Γ(q∗, q→δ ) is the set of all couplings of (q∗, q→δ ), and the inequality holds because (y,y′) gives
a coupling of (q∗, q→δ ). Without loss of generality, we suppose q→0 (y) > 0 for all numK(y) = 0,
then, combining the transition kernel given Lemma 8 and Assumption [A2], we have

P(y = y′) =
∑

y∈Y,numK(y)=0

q→0 [y] · q→δ|0(y|y) =
∑

y∈Y,numK(y)=0

q→0 (y) · e−δd = e−δd.

Thus, by choosing δ ≤ ϵ/d, we have

δ ≤ d−1ϵ ≤ d−1 · ln
(

1

1− ϵ

)
⇒ eδd ≤ 1

1− ϵ
⇒ TV (q∗, q

→
δ ) ≤ 1− e−δd ≤ ϵ. (68)

Finally, we have

TV
(
q→0 , q̂←T−δ

)
≤ TV (q→0 , q→δ ) + TV

(
q←T−δ, q̂T−δ

)
≤ ϵ+

√
1

2
KL
(
q←T−δ

∥∥q̂T−δ) ≤ 2ϵ.

Hence the proof is completed.

D.3 THE COMPLEXITY OF ALG. 1

Theorem 4 (The complexity of Alg. 1). Suppose Assumption [A1] and [A2] hold, following from
the settings shown in Theorem 3, if we implement Alg. 1 with

tw − tw−1 = η where w ∈ {1, 2, . . .W}, W = (T − δ)/η, η = ϵ/2d, and ϵ < 1

the expectation of iteration/score estimation complexity of Alg. 1 will be upper bounded by
2K(d− ϵ2/4) + 12Kd ln d

to achieve TV (q∗, q̂) ≤ 2ϵ where p̂ denotes the underlying distribution of generated samples.

Proof. We denote {ŷt}T−δt=0 to present the reverse process. For a specific trajectory, e.g., {ŷt}T−δt=0 =

{ŷ}T−δt=0 , the total expected iteration number will be equivalent to the summation of Poisson expec-
tations of W segments, i.e.,

W∑
i=1

βtw(ŷtw−1
) · (tw − tw−1) =

K · numK
(
ŷtw−1

)
eT−tw − 1

· (tw − tw−1),

which means the expected iteration number of the reverse process can be written as

E

[
W∑

w=1

βtw(ŷtw−1) · (tw − tw−1)

]
=

W∑
w=1

E[numK(ŷtw−1)] ·
K

e(T−tw) − 1
· (tw − tw−1). (69)

Although E[numK(ŷtw−1
)] is respect to the practical distribution ŷtw−1

∼ q̂tw−1
, we can approxi-

mate it by the forward marginal distribution, i.e.,
E[numK(y←tw−1

)] = E[numK(y→T−tw−1
)] where y←tw−1

∼ q←tw−1
and y→T−tw−1

∼ q→tw−1

Specifically, with Assumption [A2], we have E[numK (y→0 )] = 0. Under this condition, the transi-
tion kernel becomes

q→t|0(y|y
′) =

d∏
i=1

(1− 1(K,K)(yi,y
′
i)
)
· 10(yi − y′i) · e−t︸ ︷︷ ︸

remain non-mask token

+
(
1− 1(K,K)(yi,y

′
i)
)
· 1K(yi) · (1− e−t)︸ ︷︷ ︸

turn into mask token

 .

due to Lemma 8. Let P[numK (y→t ) = k] be the probability that exactly k out of the d coordinates
are mask tokens (K) at time t. Because each of the d coordinates evolves independently (and
identically, each with probability 1 − e−t of being the mask token at time t), we get a standard
Binomial random variable:
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• Each coordinate is K with probability 1− e−t.

• Each coordinate is non-K with probability e−t.

Hence, we have

P[numK (y→t ) = k] = Ck
d · (1− e−t)k · (e−t)d−k and E[numK (y→t ) = k] = d · (1− e−t).

Then, for any w, we have E[numK(y→T−tw−1
)] = d · (1 − e−(T−tw−1)). Under the settings shown

in Theorem 3, we have

TV
(
q→T−tw−1

, q̂tw−1

)
≤ TV

(
q→T−tW , q̂tW

)
≤ 2ϵ,

which implies∣∣∣E[numK(ŷtw−1
)]− E[numK(y←tw−1

)]
∣∣∣ ≤ d · TV

(
q→T−tw−1

, q̂tw−1

)
≤ 2dϵ.

Then, we have
E[numK(ŷtw−1

)] ≤ E[numK(y←tw−1
)] + 2dϵ = E[numK(y→T−tw−1

)] + 2dϵ

= d · (1− e−(T−tw−1)) + 2dϵ.
(70)

Plugging Eq. (70) into Eq. (69), we have

E

[
W∑

w=1

βtw(ŷtw−1) · (tw − tw−1)

]

≤
W∑

w=1

d · (1− e−(T−tw−1))
K

e(T−tw) − 1
· (tw − tw−1)

+

W∑
w=1

2dϵ · K

e(T−tw) − 1
· (tw − tw−1)

= Kd ·
W∑

w=1

e−(T−tw) · (tw − tw−1) ·
1− e−(T−tw−1)

1− e−(T−tw)︸ ︷︷ ︸
Term 1

+ 2Kdϵ ·
W∑

w=1

(
eT−tw − 1

)−1 · (tw − tw−1)︸ ︷︷ ︸
Term 2

(71)

Then, we suppose the segments share the same length η, i.e.,

tw − tw−1 = η where w ∈ {1, 2, . . .W}, W = (T − δ)/η, and η = ϵ/2d.

Under these conditions, we have

η ≤ δ

2
≤ ln(

1

2
+

eδ

2
) ⇒ eη ≤ eδ

2
+

1

2
≤ e(T−tw−1)

2
+

1

2
∀ w ∈ {1, . . . ,W}

⇒ eη ≤ 1 + e−(T−tw−1)

2e−(T−tw−1)
⇒ 2 · e−(T−tw−1−η) ≤ 1 + e−(T−tw−1)

⇒ 1− e−(T−tw−1) ≤ 2− 2e−(T−tw−1−η) ⇒ 1− e−(T−tw−1)

1− e−(T−tw)
≤ 2.

(72)

Plugging these results into Term 1 of Eq. (71), we have

Term 1 = 2Kd ·
W∑

w=1

e−(T−tw) · η = 2Kd ·
W∑

w=1

e−(T−wη) · η

= 2Kd · η · e−T · e
(W+1)η − eη

eη − 1
≤ 2Kd · eη ·

(
e−δ − e−T

)
≤ 2Kd · (1− e−T )

= 2Kd ·
(
1− ϵ2

4d

)
.

(73)
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Moreover, we have

eT−tw−1 − 1

eT−tw − 1
=

eT−tw−1

eT−tw
· 1− e−(T−tw−1)

1− e−(T−tw)
≤ eη · 2 ≤ 2e,

where the first inequality follows from Eq. (72) and the last inequality is established when η ≤ 1.
Then, Term 2 of Eq. (71) can be upper bounded as

Term 2 = 2Kdϵ ·
W∑

w=1

η

eT−tw − 1
≤ 4e ·Kdϵ ·

W∑
w=1

η

eT−tw−1 − 1
≤ 4e ·Kdϵ ·

W∑
w=1

η

T − tw−1

≤ 4e · dKϵ ·
∫ T−δ

0

1

T − t
dt = 4e · dKϵ · ln T

δ
≤ 4e · dKϵ · ln 4d2

ϵ3
≤ 12e ·Kd ln d · ϵ ln 1

ϵ
(74)

where the last inequality follows from

4 ≤ d and ln
d3

ϵ3
= 3 ln

d

ϵ
≤ 3 ln d ln

1

ϵ

without loss of generality. Moreover, when ϵ < 1, we have

ϵ ln
1

ϵ
≤ e−1,

which follows from the monotonicity of the function x lnx. Under this condition, the RHS of
Eq. (74) has the following bound

Term 2 ≤ 12 ·Kd ln d. (75)
Finally, plugging Eq. (73) and Eq. (75) into Eq. (71), the expected calls of discrete scores will be

E

[
W∑

w=1

βtw(ŷtw−1) · (tw − tw−1)

]
≤ 2K(d− ϵ2) + 12Kd ln d.

Hence, the proof is completed.

Corollary 5. Suppose Assumption [A1] hold, following from the settings shown in Theorem 3, if we
implement Alg. 1 with

tw − tw−1 = η where w ∈ {1, 2, . . .W}, W = (T − δ)/η, η = ϵ/2d, and ϵ < 1

the expectation of iteration/score estimation complexity of Alg. 1 will be upper bounded by

min

{
O(Kd ln(d/ϵ)), O

(
Kd · E[numK (y→0 )]

ϵ

)}
+O(Kd ln d)

to achieve TV (q∗, q̂) ≤ 2ϵ where p̂ denotes the underlying distribution of generated samples.

Proof. Similar to the proof shown in Theorem 4, the expected iteration number of the reverse process
can be written as

E

[
W∑

w=1

βtw(ŷtw−1) · (tw − tw−1)

]
=

W∑
w=1

E[numK(ŷtw−1)] ·
K

e(T−tw) − 1
· (tw − tw−1).

Although E[numK(ŷtw−1)] is respect to the practical distribution ŷtw−1 ∼ q̂tw−1 , we can approxi-
mate it by the forward marginal distribution, i.e.,

E[numK(y←tw−1
)] = E[numK(y→T−tw−1

)] where y←tw−1
∼ q←tw−1

and y→T−tw−1
∼ q→tw−1

.

Let P[numK (y→t ) = k] be the probability that exactly k out of the d coordinates are mask tokens
(K) at time t presented as

P[numK (y→t ) = k] =

k∑
i=0

P[numK (y→t ) = k|numK(y→0 ) = i] · Pr[numK(y→0 ) = i].

Because each of the d coordinates evolves independently (and identically, each with probability
1− e−t of being the mask token at time t), we get a standard Binomial random variable:
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• Each coordinate is K with probability 1− e−t.

• Each coordinate is non-K with probability e−t.

Hence, we have

P[numK(y→t ) = k|numK(y→0 ) = i] = Ck−i
d−i︸ ︷︷ ︸

unmask→mask count

· (1− e−t)k−i︸ ︷︷ ︸
prob of mask transition

· (e−t)d−k︸ ︷︷ ︸
prob of unmask kept

.

Under this condition, the expected number of MASK token at forward time t will become

E[numK (y→t )] =

d∑
k=0

k · P[numK (y→t ) = k]

=

d∑
k=0

k∑
i=0

Ck−i
d−i · (1− e−t)k−i · (e−t)d−k · P[numK (y→0 ) = i]

=

d∑
i=0

P[numK (y→0 ) = i] ·
d∑

k=i

Ck−i
d−i · (1− e−t)k−i · (e−t)d−k︸ ︷︷ ︸

Term 1

.

(76)

For Term 1 in Eq. (76), suppose j = k − i, we have

Term 1 =

d−i∑
j=0

(j + i) · Cj
d−i · (1− e−t)j · (e−t)(d−i−j)

=

d−i∑
j=0

j · Cj
d−i · (1− e−t)j · (e−t)(d−i−j) + i ·

d−i∑
j=0

Cj
d−i · (1− e−t)j · (e−t)(d−i−j)

=

d−i∑
j=0

j · Cj
d−i · (1− e−t)j · (e−t)(d−i−j) + i · (1− e−t + e−t)d−i = d− (d− i)e−t

where the last equation follows from the expectation of binomial distributions. Then, Eq. (76) can
be written as

E[numK (y→t )] =

d∑
i=0

P[numK (y→0 ) = i] ·
(
d− d · e−t + i · e−t

)
= d ·

(
1− (1− E[numK (y→0 )]/d) · e−t

)
.

Without loss of generality, we suppose

r0 := 1− E[numK (y→0 )]/d > 0.

Then, following from Eq. (70), we have

E[numK(ŷtw−1
)] ≤ d · (1− r0 · e−(T−tw−1)) + 2dϵ,

and

E

[
W∑

w=1

βtw(ŷtw−1
) · (tw − tw−1)

]
≤Kd ·

W∑
w=1

e−(T−tw) · (tw − tw−1) ·
1− r0 · e−(T−tw−1)

1− e−(T−tw)︸ ︷︷ ︸
Term 1

+ 2Kdϵ ·
W∑

w=1

(
eT−tw − 1

)−1 · (tw − tw−1)︸ ︷︷ ︸
Term 2

(77)
Here the second term can be upper bounded as

Term 2 ≤ 12 ·Kd ln d
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by choosing the mixing time T and early stopping time δ as Theorem 3, which follows from Eq. (74).

For Term 1 of Eq. (77), we will discuss it in categories. Suppose the expected number of mask token
satisfies

E[numK (y→0 )] ≤ C0 · ϵ ⇔ r0 ≥ 1− C0 · ϵ/d,
and the segments share the same length η, i.e.,

tw − tw−1 = η where w ∈ {1, 2, . . .W}, W = (T − δ)/η, and η = ϵ/2d,

following from Eq. (72), we have

η ≤ δ

2
⇒ 1− e−(T−tw−1)

1− e−(T−tw)
≤ 2.

Combining with the following fact, i.e.,

(1− r0) · e−(T−tw−1)

1− e−(T−tw)
=

1− r0
e(T−tw−1) − eη

= (1− r0) · e−η ·
(
eT−tw−1−η − 1

)−1
≤ (1− r0) · δ−1 = C0,

Eq. (73) demonstrates that

Term 1 ≤ (2 + C0) ·Kd ·
(
1− ϵ2

4d

)
.

On the other hand, we have

Term 1 ≤ Kd ·
W∑

w=1

η

eT−tw − 1
≤ Kd

W∑
w=1

η

T − tw
≤ 1.5Kd

W∑
w=1

η

T − tw−1

≲ 1.5Kd ·
∫ 1

δ

t−1dt ≤ 1.5Kd ln(1/δ) = 1.5Kd ln(d/ϵ),

where the forth inequality follows from the choice of η, i.e.,

η ≤ δ/2 ⇒ (T − tw−1)− (T − tw) = η ≤ δ

2
≤ T − tw

2
.

Hence, the total complexity will be

min

{
O(Kd ln(d/ϵ)), O

(
Kd · E[numK (y→0 )]

ϵ

)}
+O(Kd ln d).

Hence, the proof is completed.

Corollary 6. Suppose Assumption [A1] and [A2] hold, if Alg. 1 has

t0 = 0, tW = T − δ, and ϵscore ≤ T−1/2 · ϵ where T = ln(4d/ϵ2) and δ ≤ d−1ϵ,

and draw initial y0 ∼ δ[K,...,K](·), the TV distance between the target discrete distribution q∗ and
the underlying distribution of the output particle qT−δ will satisfy TV

(
q∗, qT−δ

)
≤ 2.5ϵ.

Proof. We consider a stochastic process {yt}T−δt=0 which satisfies yt ∼ qt. The initial distribution is
y0 ∼ q0 = δ[K,K,...,K](y). Suppose the joint and conditional distribution are

(yt′ ,yt) ∼ qt′,t and qt|t′(yt||yt′) = qt,t′(yt,yt′)/qt′(yt′) where t > t′.

Specifically, we suppose the random variables {yt}T−δt=0 share the same transition as that in {ŷt}T−δt=0

shown in Theorem 3, which means qt|t′ = q̂t|t′ for any t > t′, which implies {yt}T−δt=0 can be
implemented by

1. Initialize the particles as y0 ∼ q0 = δ[K,K,...,K](y)

2. Update {yt}T−δt>0 with Alg. 1
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Then, due to the chain rule of TV distance, i.e., Lemma 16, we have

TV
(
q̂T−δ, qT−δ

)
≤ TV

(
q̂T−δ,0, qT−δ,0

)
≤ TV (q̂0, q0) + Eŷ0∼q̂0

[
TV

(
q̂T−δ|0, qT−δ|0

)]
= TV (q̂0, q0) .

(78)

Since q0 is the mask token dirac measure, we have

TV (q̂0, q0) = 1− q̂0([K,K, . . . ,K]).

According to the proof of Lemma 2, we can easily find that

q̂0([K, . . . ,K]) =
1

(1 + e−T )d
.

By requiring T ≥ ln(4d/ϵ) and ϵ ≤ 1, we have

T ≥ ln(4d/ϵ) ⇒ t ≥ ln(d/ ln(1 + ϵ/2)) ⇔ d · e−T ≤ ln(1 + ϵ/2)

⇒ d ln(1 + e−T ) ≤ ln(1 + ϵ/2) ⇔ (1 + e−T )d − 1 ≤ ϵ/2.

That means
TV (q̂0, q0) = 1− 1

(1 + e−T )d
≤ 1− 1

1 + ϵ/2
≤ ϵ/2.

Plugging this inequality into Eq. 78, we have TV
(
q̂T−δ, qT−δ

)
≤ ϵ/2. Then combining it with

Theorem 3, i.e., TV (q∗, q̂T−δ,≤) 2ϵ, we have TV
(
q∗, qT−δ,≤

)
2.5ϵ. Hence, the proof is com-

pleted.

E TECHNICAL LEMMAS

Lemma 12 (Basic Kronecker product). Supppose the Kronecker product for n matrices defined on
Rd×d, i.e.,

A := A1 ⊗A2 ⊗ . . .⊗An,

then we have

A[a1,i,a2,i,...,an,i],[a1,j ,a2,j ,...,an,j ] := A∑n
k=1 ak,i·dn−k,

∑n
k=1 ak,j ·dn−k =

n∏
k=1

[Ak]ak,i,ak,j
.

Proof. This lemma can easily be proved by the definition of Kronecker product.

Lemma 13 (Mixed-product property of Kronecker product). Suppose the matrices A,B,C,D ∈
Rd×d, then, the products AC and BD are well-defined. We have

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Proof. We prove this by examining the product on the left-hand side, (A ⊗ B) (C ⊗ D), and
showing it coincides block-by-block with (AC)⊗ (BD).

We starts from the definition of Kronecker products in blocks. By definition, the Kronecker product
A⊗B can be seen as an (d× d) block matrix in which the (i, j)-th block is aij B. Hence,

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

Similarly,

C ⊗D =


c11D c12D · · · c1rD

c21D c22D · · · c2rD

...
...

. . .
...

cn1D cn2D · · · cnrD

 .
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Then, we form the Product (A⊗B)(C ⊗D). When multiplying two block matrices, we sum over
the matching inner block dimensions. Specifically, the (i, k)-block of (A ⊗ B) (C ⊗ D) is given
by

n∑
j=1

(
(aijB)

(
cjkD

))
.

Inside each term, we treat aij B and cjk D as scalar-matrix products. We can rewrite the expression
as:

n∑
j=1

aij cjk

(
BD

)
=
( n∑
j=1

aij cjk

)
BD.

Notice that the factor
∑n

j=1 aij cjk is precisely (AC)ik, the (i, k)-th entry of the matrix product
AC. Thus, each (i, k)-block of (A⊗B)(C ⊗D) simplifies to

(AC)ik (BD).

Now observe that the Kronecker product (AC) ⊗ (BD) can also be viewed as an (m × r) block
matrix whose (i, k)-th block is

(AC)ik (BD).

Hence, the (i, k)-th block of (AC)⊗ (BD) matches exactly with the (i, k)-th block we computed
for (A ⊗ B)(C ⊗ D). Since these two matrices agree in every block of a d2 × d2 partition, we
conclude

(A⊗B) (C ⊗D) = (AC)⊗ (BD),

as desired.

Lemma 14 (Kolmogorov backward theorem, adapted from Theorem 5.11 in Särkkä & Solin
(2019)). For a specific SDE, if we denote the transition density from x(s) to y(t) as p(y, t|x, s)
, then it solves the backward Kolmogorov equation

−∂p(y, t|x, s)
∂s

= Lp(y, t|x, s)

where L denotes the infinitesimal operator of the SDE.
Lemma 15 (The chain rule of KL divergence). Consider four random variables, x, z, x̃, z̃, whose
underlying distributions are denoted as px, pz, qx, qz . Suppose px,z and qx,z denotes the densities
of joint distributions of (x, z) and (x̃, z̃), which we write in terms of the conditionals and marginals
as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have

KL
(
px,z

∥∥qx,z) =KL
(
pz
∥∥qz)+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥qx|z(·|z))]
=KL

(
px
∥∥qx)+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x))]
where the latter equation implies

KL
(
px
∥∥qx) ≤ KL

(
px,z

∥∥qx,z) .
Lemma 16 (The chain rule of TV distance). Consider four random variables, x, z, x̃, z̃, whose
underlying distributions are denoted as px, pz, qx, qz . Suppose px,z and qx,z denotes the densities
of joint distributions of (x, z) and (x̃, z̃), which we write in terms of the conditionals and marginals
as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have

TV (px,z, qx,z) ≤ min
{
TV (pz, qz) + Ez∼pz

[
TV

(
px|z(·|z), qx|z(·|z)

)]
,

TV (px, qx) + Ex∼px

[
TV

(
pz|x(·|x), qz|x(·|x)

)]}
.

Besides, we have
TV (px, qx) ≤ TV (px,z, qx,z) .
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Algorithm 2 FIRST HITTING SAMPLING

1: Input: The sequence length d, the vocabulary V = {1, 2, . . . ,K} where K is the mask token,
the noise schedule αt and its inverse function α−1, , the pretrained masked diffusion model pθ

2: ỹ0 = [K,K, . . . ,K].
3: τ̃0 = 1.
4: for n = 0 to d− 1 do
5: Sample un ∼ Uniform(0, 1)
6: τ̃n+1 = α−1(1− ud−n

n (1− ατ̃n))

7: Randomly and uniformly select an index l from {i : ỹ(i)
n = K} (i.e., masked positions in ỹn)

8: pn = pθ,l(·|ỹn, τ̃n+1) ∈ RK
+

9: ỹn+1 = ỹn, ỹ(l)
n+1 ∼ Cat(pn(·, l))

10: end for
11: return ỹd.

F FHS CONVERGENCE UNDER TIME-INDEPENDENT SCORE
PARAMETERIZATION

In the following, we will prove that the distribution generated by first hitting sampling (Zheng et al.,
2024) approaches to the target data distribution p∗ in TV distance. The core step is to introduce our
MATU as the reference probability path.

We starts from some additional notations. Specifically, suppose following two elements y, ŷ ∈ Y =
{1, 2, . . . ,K}d satisfying

y = [y1, . . . ,yi, . . . ,yd] ŷ = [y1, . . . , ŷi, . . . ,yd],

which means the Hamming distance between y and ŷ is 1 and they are only different at i–th co-
ordinate. Suppose yi = K and ŷi ̸= K, then we can define the conditional distribution at specific
coordinate, e.g., i, given unmask tokens yKc(y)

q0,i(ŷi|yKc(y)) =

∑
ỹ∈Y+,ỹKc(ŷ)=ŷKc(ŷ)

q0(ỹ)∑
ỹ∈Y+,ỹKc(y)=yKc(y)

q0(ỹ)

For the completeness of the analysis, we first show the FHS in Alg. 2.

Bridge the discrete score estimation error and the pretrained masked diffusion models in FHS.
We need to note that the output of pretrained masked diffusion model satisfies

pθ,i(·|y, τ̃n+1) = pθ,i(·|y) ≈ q0,i(ŷi|yKc(y)),

where first equation comes from the time-independent parameterization, and the second approxima-
tion comes from the training objective, i.e.,

Ld
w(y0) =

d∑
i=1

wi · EPy[numK(y)=i|y0]

∑
yi=K

− log pθ,i(y0,i|y)

 . (79)

With proper settings on w and the change of summation order, the above training loss of FHS will
be equivalent to the λ–DCE loss shown in Ou et al. (2024), i.e.,

Lλ−DCE(y0) = Eλ∼Uniform(0,1)
1

λ
· Eyλ∼q→λ|0(·|y0)

 ∑
yλ,i=K

− log pθ(y0,i|y)

 .

Then, following from Appendix C.1 and Appendix C.2 in Ou et al. (2024), by choosing λ(t) =
1− e−t, with change of variable, the λ–DCE loss will be equivalent to the denoising score entropy
loss, i.e.,

LDSE(y0) =

∫ T

0

Eyt∼q→t|0(·|y0)

 ∑
y′ ̸=yt

R→(yt,y
′) ·
(

e−t

1− e−t
· pθ(y′DiffIdx(y′,yt)

|yt)

− e−t

1− e−t
· δy0,DiffIdx(yt,y

′)
(y′DiffIdx(yt,y′)

) · log
(

e−t

1− e−t
· pθ(y′DiffIdx(y′,yt)

|yt)

))]
dt.
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Following from Theorem 3.4 in Lou et al. (2024), we note that DSE and SE share the same minimum,
i.e.,

argmin
θ

Ey0∼q∗ [LDSE(y0)]

= argmin
θ

∫ T

0

Eyt∼q→t

 ∑
y′ ̸=yt

R→(yt,y
′) ·
(

e−t

1− e−t
· pθ(y′DiffIdx(y′,yt)

|yt)

q→t (y′)

q→t (yt)
· log

(
e−t

1− e−t
· pθ(y′DiffIdx(y′,yt)

|yt)

))]
:= argmin

θ
LSE(θ)

(80)

By supposing

ṽt,yt
(y′) :=

e−t

1− e−t
·pθ(y′DiffIdx(y′,yt)

|yt) where Ham(y′,yt) = 1 and y′DiffIdx(y′,yt)
̸= K,

we know the Eq. 80 exactly matches Eq. 6.

Therefore, optimizing Eq. 79 in FHS is equivalent to parameterize the discrete score as

q→t (y′)

q→t (yt)
=

e−t

1− e−t
· q0,DiffIdx(y′,yt)(y

′
DiffIdx(y′,yt)

|yt,K(yt)) = vt,yt(y
′)

≈ ṽt,yt(y
′) :=

e−t

1− e−t
· pθ(y′DiffIdx(y′,yt)

|yt),

and optimize Eq. 6. Following the analysis paradigm in this paper, we assume Assumption [A1] is
also satisfies for this parametrization.

Bridge the trajectories between FHS and MATU. We have the following theorem.

Theorem 7 (The convergence of Alg. 1). Suppose Assumption [A1] and [A2] hold, if the discrete
scores are parameterized by time-independent neural network as Ou et al. (2024), the TV distance
between the target discrete distribution q∗ and the underlying distribution of the output particle q0
of Alg. 2 will satisfy TV (q∗, q̂T−δ) ≤ 2ϵ.

Proof. Under this time-independent parameterization, we suppose the trajectory of MATU as
{ŷt}Tt=0 whose underlying distribution is denoted as ŷt ∼ q̃t. For FHS, we consider a sequence
of random variables {yk}k∈{0,1,...,d} where yk denotes the random variables after (d− k)-step up-
date of FHS. We have numK(yk) = k. To investigate the TV distance between ŷT−δ and y0, we
have

TV (q̂T−δ, q0) =
1

2
·

∑
y,numK(y)=0

|q0(y)− q̂T−δ(y)|+
1

2
·

∑
y,numK(y)̸=0

q̂T−δ(y)

=
1

2
·

∑
y,numK(y)=0

|q0(y)− q̂T−δ(y)|+ q0(y)− q̂T−δ(y) ≤
∑

y,numK(y)=0

|q̂T−δ(y)− q0(y)|

(81)
Currently, we define a distribution sequence

{pk}k∈{0,1,...,d} where pk(t) = Pr [the k-th transition happens at time t] .

Besides, suppose that at the transition time t the particle is y′, MATU implies the transition from y′

to y follows

Pr[y|transition time = t and particle is y′] = R̂t(y,y
′)/R̂t(y

′)
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Under this setting, we have

q̂T−δ(y) =

∫ T−δ

0

pnumK(y)(t) ·
∑

y′,numK(y′)=numK(y)−1

q̂t(y
′) · Pr[y|transition time = t and particle is y′]dt

=

∫ T−δ

0

pnumK(y)(t) ·
∑

y′,numK(y′)=numK(y)−1

q̂t(y
′) · R̂t(y,y

′)

R̂t(y′)
dt

=

∫ T−δ

0

pnumK(y)(t) ·
∑

y′,numK(y′)=numK(y)−1

q̂t(y
′) · R̃t(y,y

′)

R̃t(y′)
dt

(82)
Due to the time-independent paramterization of the discrete score, we have

R̃t(y,y
′) = R→(y′,y) · ṽt,y′(y) = R→(y′,y) · e−t

1− e−t
· pθ(yDiffIdx(y,y′)|y′),

which implies it has

R̃t(y,y
′)

R̃t(y′)
=

pθ(yDiffIdx(y,y′)|y′)∑
y ̸=y′,Ham(y,y′)=1 pθ(yDiffIdx(y,y′)|y′)

= pθ(yDiffIdx(y,y′)|y′).

Plugging this equation into Eq. 82, we have

q̂T−δ(y) =
∑

y′,numK(y′)=numK(y)−1

pθ(yDiffIdx(y,y′)|y′)
∫ T−δ

0

pnumK(y)(t) · q̂t(y′)dt

=
∑

y′,numK(y′)=numK(y)−1

pθ(yDiffIdx(y,y′)|y′) ·
∑

y′′,numK(y′′)=numK(y′)−1

pθ(y
′
DiffIdx(y′,y′′)|y

′′)

· . . . ·
∫
tnumK(y),tnumK(y)−1,...,t1

pnumK(y),numK(y),...,1(tnumK(y)−1, . . . , t1) · q̂τ ([K, . . . ,K])d

≤
∑

y′,numK(y′)=numK(y)−1

pθ(yDiffIdx(y,y′)|y′) ·
∑

y′′,numK(y′′)=numK(y′)−1

pθ(y
′
DiffIdx(y′,y′′)|y

′′)

· . . . ·
∑

y(1),numK(y(1))=1

pθ(y
(1)

DiffIdx(y(1),[K,...,K])
|[K, . . . ,K])q̂0([K, . . . ,K]),

where the last ineqaulity follows from the fact

q̂τ ([K, . . . ,K]) ≤ q̂0([K, . . . ,K]) ∀ τ > 0.

According to the update of FHS, we can easily find that

q0(y) =
∑

y′,numK(y′)=numK(y)−1

pθ(yDiffIdx(y,y′)|y′) ·
∑

y′′,numK(y′′)=numK(y′)−1

pθ(y
′
DiffIdx(y′,y′′)|y

′′)

· . . . ·
∑

y(1),numK(y(1))=1

pθ(y
(1)

DiffIdx(y(1),[K,...,K])
|[K, . . . ,K]) qd([K, . . . ,K])︸ ︷︷ ︸

=1

.

Suppose the conditional distribution as

pθ(y|[K, . . . ,K]) =
∑

y′,numK(y′)=numK(y)−1

pθ(yDiffIdx(y,y′)|y′) ·
∑

y′′,numK(y′′)=numK(y′)−1

pθ(y
′
DiffIdx(y′,y′′)|y

′′)

· . . . ·
∑

y(1),numK(y(1))=1

pθ(y
(1)

DiffIdx(y(1),[K,...,K])
|[K, . . . ,K]),

then we have

q0(y)− q̂T−δ(y) ≤ pθ(y|[K, . . . ,K]) · (qd([K, . . . ,K])− q̂0([K, . . . ,K]))

= pθ(y|[K, . . . ,K]) · (1− q̂0([K, . . . ,K]))
(83)
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Figure 1: Synthetic experiment results on sampling efficiency. We compare our proposed Masked
Discrete Diffusion (MASK) against the Uniform baseline with vocabulary size K = 3 and sequence
length d = 4. Left: The Total Variation (TV) distance between the empirical and ground truth
distributions as a function of the Number of (Score) Function Evaluations (NFE). The solid lines
represent the mean over 5 seeds, and shaded regions indicate the standard deviations. Our method
achieves faster convergence to the target distribution. Right: Violin plots illustrating the distribution
of Stopping NFE. The MASK method requires significantly fewer evaluations to terminate compared
to the Uniform baseline.

According to the proof of Lemma 2, we know that

q̂0([K, . . . ,K]) = (1 + e−T )−d and (1 + e−T )d − 1 ≤ ϵ/2

⇒ 0 ≤ 1− (1 + e−T )−d = 1− q̂0([K, . . . ,K]) ≤ 1− 1/(1 + ϵ/2) ≤ ϵ/2.
(84)

Combining Eq. 81, Eq. 83 and Eq. 84, we have

TV (q̂T−δ, q0) ≤ ϵ/2 and TV (q∗, q0) ≤ TV (q̂T−δ, q0) + TV (q∗, q̂T−δ) ≤ ϵ

where last inequality follows from Theorem 3. Hence, the proof is completed.

G EXPERIMENTS

G.1 SYNTHETIC EXPERIMENTS.

We conduct synthetic experiments to validate our theoretical findings and compare the sampling
efficiency of our Masked Discrete Diffusion model against the uniform baseline.

Experiment Setup. We utilize a state space defined by vocabulary size K = 3 and sequence
length d = 4. The ground truth distribution, p∗, is constructed by assigning a random mass sampled
uniformly from (0, 1) to each of the Kd possible sequences and normalizing the distribution. We re-
port results averaged over 5 independent random seeds. For each seed, we generate 1000 trajectories
using our method (Algorithm 1, MATU) and the truncated uniformization baseline with a uniform
stationary distribution (adapted from Huang et al. (2025)). Performance is evaluated via the Total
Variation (TV) distance between the empirical marginal distribution and p∗, plotted as a function of
the Number of (Score) Function Evaluations (NFE). Quantitative results are shown in Figure 1, and
illustrative sampling trajectories are visualized in Figure 2.

G.2 REAL WORLD EXPERIMENTS

We consider to introduce our Alg. 1 (MATU) into the text generation task.
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Figure 2: Visualization of individual sampling trajectories. The plots show single sampling paths,
with labels indicating the intermediate discrete states. The MASK method (top) navigates the state
space efficiently with few steps. In contrast, the Uniform baseline (bottom) exhibits diffusive be-
havior with many small steps—often reverting previous changes—resulting in a high NFE cost.

Experimental Settings In this paragraph, we follow the problem setting as SEDD shown in Lou
et al. (2024), and consider the unconditional text generation task with the small pretrained SEDD
Absorbing model. The sequence length of generated sample is constrains as d = 1024, and the
the vocabulary size will be K = 50258, including the mask token. We choose the typical Euler
and Tweedie’s τ -leaping (analytic samples in Lou et al. (2024)’s implementation) as our baselines.
For the step number choice, we only consider {1024, 2048}. Because MATU does not consider the
conditional independent assumption for the reverse process. Under this condition, it requires at least
d steps to generate one no-mask sample.

The inexact adaptation from MATU. In SEDD experiments, The exact implementation of Alg. 1
will require the inference complexity to be K×d = 50258×1024, which is far beyond an acceptable
inference complexity. Since the choice of K can be used to control the inference complexity, in the
following experiment we will choose

K = required steps/generated sequence length,

which is an inexact implementation of Alg. 1 (MATU), while makes it to be possible to be tuned
via the choice of the step number. Moreover, the implementation of Euler and Tweedie’s τ -leaping
is based on log-linear noise schedule, which means the transition rate matrix of the forward process
satisfies

R→t (y,y′) = σ(t)R→(y,y′) where σ(t) =
1− ϵ

1− (1− ϵ) · t
and R→ follows from Eq. 7. Under this condition, the reverse transition rate matrix will become

R←t (y,y′) := σ(1− t) ·R→(y′,y)
q←t (y)

q←t (y′)

= σ(1− t) ·R→(y′,y) · sθ,1−t,y′(y).

Empirical Results. We use PPL and entropy as two criteria to measure the generation quality for
different samplers. The results are summarized as the following tables. We will release the detailed
code and implementation after the acceptance of this paper.
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Table 3: Comparison of the inference generation performance, we calculate the average perplexity and entropy
for 32 samples generated by Euler, Analytic and MATU. The experiments show even with an inexact imple-
mentation, MATU still outperform then other samplers consistently.

Samplers Steps Avg Perplexity Std Perplexity Avg Entropy Std Entropy Wall-clock time

Euler 1024 41.42 11.68 7.588 0.301 27.35s/sample
Analytic 1024 41.81 11.57 7.597 0.286 24.15s/sample
MATU 1024 40.54 11.20 7.554 0.230 32.23s/sample

Euler 2048 33.32 7.141 7.492 0.258 53.43s/sample
Analytic 2048 32.50 6.952 7.489 0.250 46.88s/sample
MATU 2048 31.82 6.717 7.394 0.332 60.05s/sample
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