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Abstract

It is now possible to conduct large scale per-
turbation screens with complex readout modal-
ities, such as different molecular profiles or
high content cell images. While these open the
way for systematic dissection of causal cell cir-
cuits, integrated such data across screens to max-
imize our ability to predict circuits poses sub-
stantial computational challenges, which have not
been addressed. Here, we extend two Gromov-
Wasserstein Optimal Transport methods to incor-
porate the perturbation label for cross-modality
alignment. The obtained alignment is then em-
ployed to train a predictive model that estimates
cellular responses to perturbations observed with
only one measurement modality. We validate our
method for the tasks of cross-modality alignment
and cross-modality prediction in a recent multi-
modal single-cell perturbation dataset. Our ap-
proach opens the way to unified causal models of
cell biology.

1. Introduction
High-throughput high-content perturbation screens are rev-
olutionizing our ability to interrogate gene function and
identify the targets of small molecules (Bock et al., 2022).
Advances over the past decade now allow us to efficiently
measure the responses of individual cells to tens of thou-
sands of perturbations in terms of different molecular pro-
files, such as RNA (Dixit et al., 2016), chromatin and/or
proteins (Frangieh et al., 2021) (Perturb-Seq) or high content
microscopy images (Feldman et al., 2019) (Optical Pooled
Screens (OPS)). Because these modalities provide comple-
mentary information about how cells respond to perturba-
tion, leveraging multi-modal data with adequate computa-
tional methods presents a remarkable opportunity to learn
of all aspects of cell biology. First, relating rich molecular
profile to cell biology morphological phenotypes helps un-

1Genentech, CA, USA 2Harvard University, MA, USA
3Stanford University, CA, USA. Correspondence to: Aviv Regev
<regeva@gene.com>, Romain Lopez <lopezr55@gene.com>.

derstand how different levels of organization relate to each
other in the cell, a fundamental question in biology. Sec-
ond, cross-modality translation methods could help reduce
experimental costs and speed up discovery. In particular,
molecular profiling (Perturb-Seq) screens are usually sub-
stantially more costly and less scalable than optical pooled
screens, but provide far more mechanistically interpretable
results. Predicting molecular profiles (e.g., RNA profiles)
from morphological profiling data would thus offer both
scalability and interpretability and accelerate discovery.

Cross-modality alignment and prediction are well-studied
tasks in (non-perturbational) single-cell genomics. Mul-
tiple approaches based on autoencoders (Ashuach et al.,
2023) and Gromov-Wasserstein Optimal Transport (GWOT)
(Demetci et al., 2022a;b) have successfully tackled these
problems for datasets where cell states are clearly demar-
cated (e.g., discrete cell types). However, data from single-
cell perturbation studies are significantly more challenging,
because screens are usually conducted in one, relatively ho-
mogeneous, cell type, and each perturbation typically only
induces a relatively modest change in the cell’s overall state.
In such cases, existing alignment methods may perform
poorly.

To tackle this, we propose to leverage the perturbation label
for each cell, readily available for such data, to infer a more
accurate cross-modality alignment. The naive approach
of aligning cells across modalities for each perturbation
separately is sub-optimal, because multiple different per-
turbation can cause similar phenotypic shifts (Dixit et al.,
2016; Frangieh et al., 2021; Geiger-Schuller et al., 2023),
such that samples from other perturbations should provide
information about the global topology of the phenotypic
space. Instead, we incorporate the label information when
learning a model across all the perturbations, and show this
substantially improves the performance. Specifically, we
adapt GWOT methods, including entropic GWOT (Peyré
et al., 2016) and Co-Optimal Transport (COOT, Redko et al.
(2020)) to exploit this information as a constraint on the
learned cross-modality cellular coupling matrix. We then
employ the learned coupling matrix to train a cross-modality
prediction model (Figure 1) and apply it to estimate the
response to perturbations observed only in one modality
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(out-of-sample). We validate our method by benchmarking
against baselines in recent data from a multi-modal small
molecule screen.

1. Labeled GW

2. Learn predictor

Figure 1. Schematic of the workflow

2. Related Work
Gromov-Wasserstein Optimal Transport Let us con-
sider two discrete measures µ =

∑n
i=1 piδxi , and ν =∑m

j=1 qjδyj with supports X and Y , respectively. For the
cost function c : X ×Y → R+, the Optimal Transport (OT)
problem consists of finding the transport plan (or coupling)
T ∗ ∈ Cp,q = {T ∈ Rn×m

+ | T1 = p, T⊤1 = q} that
minimizes the cost of transporting µ onto ν (Monge, 1781;
Kantorovich, 1960):

OT (µ, ν) = min
T∈Cp,q

∑
i,j

c(xi, yj)Tij . (OT)

The cost function is easily defined when both X and Y are
subsets of a normed vector space (e.g., c is the distance
induced by the norm). For multi-modal alignment, however,
X and Y belong to incomparable spaces. In this scenario, it
is more relevant to consider the Gromov-Wasserstein Opti-
mal Transport (GWOT) distance GW(µ, ν), which employs
as its cost function the distance between distances (Mémoli,
2011; Alvarez-Melis & Jaakkola, 2018):

min
T∈Cp,q

∑
i,j,k,l

d (cX (xi, xk), cY(yj , yl))TijTkl. (GWOT)

with within-domain cost functions cX : X × X → R, cY :
Y × Y → R and the cost between costs d : R× R→ R+.

One important consideration in estimating OT-based dis-
tances is the computational burden. Cuturi (2013) showed
that adding the entropy of the coupling as a regularization
term to the objective function of the OT problem not only
yields accurate approximations of OT distances but also
significantly enhances computational efficiency. Indeed, the
entropic-regularized OT (EOT) problem can be solved with
a linear convergence rate algorithm, making it efficient for
large-scale problems. Follow-up work from Peyré et al.
(2016) showed that entropic-regularized GWOT (EGWOT)
reduces to the problem of solving a sequence of EOT prob-
lems, and lowered the time for calculating the GW cost
for a fixed coupling from O(n2m2) to O(n2m+m2n) for
certain cost functions, including the L2 distance.

COOT (Redko et al., 2020) is an alternative formulation of
the GWOT problem, jointly optimizing the transport of the
sample measure µ onto ν via coupling T s, and the transport
of the feature measures β =

∑d1

k=1 rkδvk , ω =
∑d2

l=1 tlδwl
,

via coupling T v . It is defined as:

min
T s∈Cp,q

Tv∈Cr,t

∑
i,j,k,l

c(xik, yjl)T
v
klT

s
ij , (COOT)

where xik and yjl denote the k-th and l-th feature of the
i-th sample xi and the j-th sample yj , respectively.

EOT, EGWOT, and entropic-regularized COOT (ECOOT)
have been applied to single-cell perturbation response pre-
diction (Bunne et al., 2023) and multiomic integration prob-
lems (Demetci et al., 2022a;b). However, none of these
methods as currently formulated can leverage additional
labels for inference of optimal couplings.

Optimal Transport with Additional Structure Several
works studied the OT problem with additional constraints
on the coupling. Structured OT (Alvarez-Melis et al., 2018)
considered the problem where labeled source samples are
transported to unlabeled target samples. Alvarez-Melis &
Fusi (2020) studied the OT problem where source and tar-
get samples are independently labeled, and calculated the
pairwise distances between the source labels and target la-
bels to improve the coupling between the samples. InfoOT
(Chuang et al., 2023) promotes the conservation of structure
between the source and target space by maximizing the mu-
tual information of the coupling matrix (treated as a joint
distribution). HHOT (Yeaton et al., 2022) tackles a hierar-
chical OT problem, where samples’ Wasserstein distances
are used as the cost to calculate the sample-group-level
Wasserstein distances. While these studies solved variants
of the OT problem that admit sample labels, they do not
apply to matching across different spaces.

Domain Adaptation via Representation Matching Do-
main adaptation techniques are crucial for overcoming dis-
crepancies between different data distributions. The frame-
work of domain-adversarial neural network (DANN) (Ganin
et al., 2016) included an adversarial domain classifier to
achieve better generalization to unseen data. DANNs have
been applied on latent spaces of auto-encoders for single-
cell modality integration tasks (Lopez et al., 2019), as well
as histology and RNA-seq data integration (Comiter et al.,
2023). Gossi et al. (2023) estimates OT couplings between
latent embeddings of two modalities of single-cell data, by
constraining OT for label-matched data. Although clos-
est to our problem, those methods require a ground truth
matching between samples for training. JDOT (Courty et al.,
2017) learns the domain-adaptated classifier f : X → Y by
minimizing OT between sample and label pairs of source
and target domains (Xs, Ys) and (Xt, f(Xt)). DeepJDOT
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(Damodaran et al., 2018) extends JDOT to learn a classifier
for the target domain given a label only available in the
source domain, where the training involves OT coupling of
latent target and source samples. While these methods are
designed for cross-modality prediction, they do not utilize
group-level source and target sample matching.

3. Method
In perturbation data, we observe labels lx = {lx1 , . . . , lxn}
and ly = {ly1 , . . . , lym} from modalities X and Y , respec-
tively. Each individual label lxi and lyj encodes a perturbation
in {1, . . . , L}, with L the total number of perturbations. As
noted above, GWOT and COOT are suitable computational
frameworks for aligning data across modalities but are not
designed to leverage labels from perturbation data. Appli-
cation GWOT / COOT as-is to our data would mean either
learning a global model but ignoring labels altogether, or
learning a separate model per label and losing information
about the global topology of the phenotypic space. We thus
aimed to generalize both the GWOT and COOT problem
formulations to incorporate label information.

3.1. Labeled Entropic-regularized GWOT
Let Bl be the label-identity matrix defined as Bl

ij :=
1{lxi = lyj }. We say a coupling T ∈ Cp,q is l-compatible
if for all indices i, j, we have that Tij > 0 =⇒ Bl

ij = 1,
and denote as Clp,q the subset of couplings in Cp,q which
are l-compatible. The Labeled EGWOT problem is defined
as the EGWOT problem with the additional constraint that
T ∈ Clp,q. We first characterize the structure of the solu-
tion of the (simpler) EOT problem with the additional label
constraint:

Lemma 3.1. For a label-identity matrix Bl, the l-
compatible entropic optimal transport plan

T l
ϵ (c, p, q) = argmin

T∈Cl
p,q

⟨c, T ⟩ − ϵH(T ), (1)

can be expressed as diag(u)(e−c/ϵ ⊙Bl)diag(v), where ⊙
denotes element-wise multiplication.

The proof appears in Appendix A. This result is important,
as it entails that the Labeled EOT problem can be efficiently
solved with the celebrated Sinkhorn iterations. Next, we
note that the reduction of the EGWOT problem to an it-
erative EOT problem, as described in Peyré et al. (2016),
still holds with the additional constraint of l-compatible
couplings. Therefore, we have the following corollary:

Corollary 3.2. For a label-identity matrix Bl, the Labeled
EGWOT problem can be solved by the iterative update of T
with T k+1 ← T l

ϵ (c(cX , cY)⊙ T k, p, q).

Additionally, we show that if the cost function d satisfies
the condition of Proposition 1 from Peyré et al. (2016)

(e.g., d is the L2 distance), then the cost calculation for
any l-compatible coupling is accelerated by a factor of
L (Appendix B). This is advantageous, as a large screen
dataset may be comprised of thousands of perturbations. A
complete description of the algorithm appears in Appendix
C. We implemented it as an extension of Python library
‘ott-jax‘ (Cuturi et al., 2022).

3.2. Labeled COOT
We adapted Algorithm 1 of Redko et al. (2020) for Labeled
COOT and ECOOT by updating each of the L per-label
sample transports and a shared global feature transport per
iteration (see Appendix D).

4. Experiments
We tested whether we could (1) match samples across modal-
ities so that similar samples are matched with each other
and (2) predict the response to perturbations in one modal-
ity given the response to that perturbation measured in the
other modality. We further (3) learned feature matching by
plugging the learned sample matching Ts into ECOOT and
solving the OT problem. Full experimental details appear in
Appendix E.

Data The dataset records single-cell RNA (2000 genes)
and protein (123 proteins) profiles of T cells undergoing
TCR activation following perturbation with kinase inhibitors
for multimodal understanding of TCR activation. The
dataset includes 11 inhibitors, used at varying concentra-
tions (100 nM, 1 µM, and 10 µM), as well as negative con-
trols (vehicle and non-activation). We normalized and scaled
features following conventional single-cell data processing
pipelines (Wolf et al., 2018) and used the first 50 princi-
pal components of each modality as the input for OT-based
methods.

Methods We compared labeled ECOOT and EGWOT
against the baseline of EOT, ECOOT, and EGWOT with-
out sample labels (no label), and per label EOT and EG-
WOT. For the prediction task, we trained a multilayer per-
ceptron (MLP) to predict RNA levels from protein measure-
ments according to the learned coupling T . Specifically, for
training, a sample from the RNA modality yj is randomly
sampled for each sample from the protein modality xi as
j ∼ Multinomial(Ti·/

∑
Ti·), independently for each mini-

batch. For the matching and prediction task, we included
additional baselines of domain-adversarial VAE (DAVAE)
and its naive label adaptation described in Appendix F.

Evaluation We evaluated the matching for the observed
treatments and assessed the prediction for the held-out treat-
ments. Because the data were collected using a mult-modal
profiling method (where RNA and protein profiles are mea-
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Table 1. Evaluation metrics of OT and GW approaches for sample matching, prediction, and feature matching tasks.

Matching Prediction Feature

Method
Bary

FOSCTTM (↓)
Dosage

match (↑)
Mean
rank

Rv (↑) ρv (↑) Rs (↑) ρs (↑) MSE (↓)
Mean
rank

Enrich-
ment(↑)

Perfect 0 1 - 0.107 0.118 0.163 0.149 0.258 - 6.95
By dosage 0.239 1 - 0.0812 0.0448 0.0903 0.0863 0.264 - 5.16

Uniform per label 0.298 0.357 - 0.0794 0.0403 0.0761 0.0781 0.264 - 1.85

EOT no label 0.428 0.040 9 0.0482 0.007 0.0068 0.0063 0.287 7 1.10
per label 0.336 0.346 5 0.0544 0.0239 0.0345 0.0307 0.283 5.2 1.26

ECOOT no label 0.414 0.049 8 0.053 0.0207 0.0395 0.0408 0.282 5 1.07
labeled 0.270 0.456 2 0.0852 0.0523 0.0854 0.0778 0.265 1.6 5.31

EGWOT no label 0.373 0.068 7 0.0631 0.0227 0.0302 0.034 0.282 4.8 3.74
per label 0.332 0.381 4 0.0785 0.0449 0.0737 0.0737 0.265 2.6 1.26
labeled 0.283 0.452 3 0.0836 0.044 0.0854 0.0825 0.264 1.8 19.8

DAVAE no label 0.231 0.206 3 0.0342 -0.0069 0.0006 -0.0001 0.33 8 -
labeled 0.242 0.205 4 0.0182 -0.0079 -0.0016 -0.0014 0.332 9 -

sured jointly for each single cell), we have a ground-truth
cell-to-cell matching from the data. Thus, for the match-
ing, we calculated the barycentric FOSCTTM (Liu et al.,
2019), the fraction of the barycentric projections closer
than the true match (as in Demetci et al. (2022a)). We
further evaluated the matching in treated cells, using the
ground-truth RNA profiles ({dx1 , . . . , dxn}) and protein pro-
files ({dy1, . . . , dym}). Given the treated cell profiles, we
expect cells treated with the same dose to match. We thus
use the dose labels to evaluate the matching, by taking the
sum of the coupling weights

∑
ij Tij for the samples with

matching doses (i, j) ∈ {i, j | lxi = lyj = k, dxi = dyj}
and denote it as dosage match. For the prediction task, we
calculated the mean Pearson (R) and Spearman (ρ) corre-
lation coefficients between gene expression fold changes
in real vs. predicted profiles, where the fold changes are
calculated over the mean expression level of genes in the
cells treated by vehicle. This was done for each cell (Rv,
ρv), and between cells for each feature (Rs, ρs). We also
report the mean squared error (MSE) between the predicted
and true gene expression profile. For the feature matching,
we calculated the enrichment of coupling weights in 23
ground truth protein and RNA matches over the uniform
feature coupling (Appendix E). Metrics are calculated for
the ground truth one-to-one matching (”Perfect”), uniform
matching of cells with the same dosage (”By dosage”, when
Tij = c for (i, j) ∈ {i, j | lxi = lyj , d

x
i = dyj} and otherwise

0 with some constant c), and uniform matching with the
same perturbation labels (”Uniform per label”, Tij = c for
(i, j) ∈ {i, j | lxi = lyj } and otherwise 0 with some constant
c).

Hyperparameter selection We conducted a nested 5-fold
cross-validation (CV) by splitting treatments into a train, val-
idation, and test sets. The best hyperparameters for match-

ing and prediction tasks were independently selected from
the inner CV. We performed a Hyperparameter search for the
entropic regularizer weight ϵ ∈ {10−2, 10−3, 10−4, 10−5}
where the maximum cost was normalized as 1 for entropic
OT and GW methods. COOT methods used the same ϵ for
all sample and feature OTs. The scale of the adversarial loss
λAdv was optimized across {1, 5, 10, 50, 100} for DAVAEs.
Hyperparameters with the least barycentric FOSCTTM for
the matching and the highest Rs for the prediction were
independently selected for each outer CV fold. We report
the mean evaluation metrics across the outer folds. For fea-
ture matching, we obtained the best sample matchings with
the highest dosage match among the ϵ in the same grid to
calculate feature matchings across the same ϵ’s and report
the best enrichment.

Results Overall, GWOT-based methods (EGWOT and
ECOOT variants) outperformed OT-based methods (Ta-
ble 1). This highlights the importance of optimizing dis-
tance between distances rather than naively assuming the
existence of shared cost metric even when the number of
the dimensions of the source and target modalities are the
same.

DAVAE methods showed poor prediction performance de-
spite decent matching (Table 1). Although we have not
investigated the cause, it may be due to the instability of
adversarial training (Kodali et al., 2017) and the small hyper-
parameter search space. A comprehensive hyperparameter
search and alternative domain adaptation methods may im-
prove the performance.

Within GWOT-based methods, not using the label informa-
tion led to poor performance, as they fail to harness the
strong matching information provided by the input sample
labels. Per-label GWOT-based methods performed better
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than methods without label input, but did not achieve as high
matching and prediction performance as the label-aware
GWOT-based methods.

The superior sample matching, prediction, and feature
matching performance of labeled GWOT-based methods
stems from information sharing across different labels,
while still constraining the sample matching by labels.
Specifically, when Labeled EGWOT calculates the cost be-
tween samples with the same label, it will consider the
distance of each sample to the samples with other labels
(Appendix B). For Labeled ECOOT, the sample couplings
for all labels explicitly share the global coupling between
features. We present further results and visualizations in
Appendix G.

5. Discussion
We provide a mathematical and algorithmic adaptation of
GWOT methods for the case when sample labels are avail-
able. These methods outperform OT, GWOT, and DAVAE
baselines both in cross-modality matching and prediction
tasks. Labeled GWOT-based methods had improved match-
ing between raw features from the sample matching, suggest-
ing their potential to improve the interpretability of features.
We note that learning sample matching from the latent rep-
resentation provides substantial computational acceleration
over the learning in the raw feature space.

We expect our framework to combine the modality-specific
strengths of different high content perturbation screens, such
as the high scalability of optical pooled screens (Feldman
et al., 2019) and the high resolution and interpretability of
Perturb-seq (Dixit et al., 2016). As GWOT-based methods
rely on the sample-to-sample cost within each modality,
more sophisticated latent representation may be needed to
remove any large modality-specific variations.

Code Availability Statement
We implement our new model and benchmarks using
the Python ‘scvi-tools‘ (Gayoso et al., 2022) and
‘ott-jax‘ (Cuturi et al., 2022) libraries, and release it
as open-source software whose link will be disclosed upon
acceptance.

Data Availability Statement
Input data used for the experiments in this manuscript are
currently undergoing publication as a separate manuscript.
They will become publicly available upon acceptance.
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Appendices
Appendix A details the proof of Lemma 3.1. Appendix B describes the acceleration of the cost calculation for both unlabeled
and labeled GWOT, following the assumptions of Peyré et al. (2016) regarding the decomposition for the cost function.
Appendix C describes the algorithm for solving labeled EGWOT problems. Appendix D describes the labeled COOT
problem and the algorithm we propose for numerical resolution. In Appendix E, we provide details about data pre-processing,
model architecture, as well as training procedures used for the experiments. In F, we describe the naive adaptation of
DAVAE to the labeled setting. In Appendix G, we show extended experimental results.

A. Proof of Lemma 3.1
We remind the reader that the label-identity matrix Bl is defined as Bl

ij = 1{lxi = lyj }, where lx = {lx1 , . . . , lxn} and
ly = {ly1 , . . . , lym} denotes the perturbation labels from modalities X and Y , respectively.

Lemma 3.1. For a label-identity matrix Bl, the l-compatible entropic optimal transport plan

T l
ϵ (c, p, q) = argmin

T∈Cl
p,q

⟨c, T ⟩ − ϵH(T ), (1)

can be expressed as diag(u)(e−c/ϵ ⊙Bl)diag(v), where ⊙ denotes element-wise multiplication.

We note that comparing Lemma 3.1 with Lemma 2 in Cuturi (2013), the solution of l-compatible OT is equivalent to the
regular EOT with c(xi, yj) = +∞ for i, j ∈ {(i, j)|lxi ̸= lyj}. The proof below makes this argument more precise.

Proof. The l-compatible EOT (Labeled EOT) problem is defined as the following optimization problem:

OT l
ϵ(p, q) = min

T∈Cl
p,q

⟨c, T ⟩ − ϵH(T ) (2)

We may equivalently reformulate the optimization problem using Lagrange multipliers:

OT l
ϵ(p, q) = min

T
max

λp,λq,ΛB
⟨c, T ⟩ − ϵH(T ) + ⟨λp, p− T1m⟩+ ⟨λq, q − T⊤1n⟩+ ⟨T ⊙ (1n1

⊤
m −Bl)),ΛB⟩, (3)

and then use the dual formulation:

OT l
ϵ(p, q) = max

λp,λq,ΛB
min
T
⟨c, T ⟩ − ϵH(T ) + ⟨λp, p− T1m⟩+ ⟨λq, q − T⊤1n⟩+ ⟨T ⊙ (1n1

⊤
m −Bl),ΛB⟩, (4)

where strong duality is guaranteed since the objective function is convex in T and the constraints are affine. The solution to
the inner minimization problem, for fixed Λ = {λp, λq,ΛB} is obtained by finding the critical point:

T̄ij(Λ) = exp

(
1

ϵ

(
−(1−Bl

ij)Λ
B
ij + λp

i + λq
j − cij

))
. (5)

Now, we notice that for variable T̄ij(Λ), we have that the regularized cost is derived as:

⟨c, T̄ ⟩ − ϵH(T̄ ) =
∑
ij

cij T̄ij + ϵT̄ij(log T̄ij − 1), (6)

which, by injecting the value of T̄ij(Λ) into this expression, we obtain:

⟨c, T̄ ⟩ − ϵH(T̄ ) =
∑
ij

cij T̄ij + T̄ij

(
−(1−Bl

ij)Λ
B
ij + λp

i + λq
j − cij − ϵ

)
, (7)

from which, after developing the products and identifying dot products, we finally obtain the simplified expression:

⟨c, T̄ ⟩ − ϵH(T̄ ) = −⟨T̄ ⊙ (1n1
⊤
m −Bl),ΛB⟩+ ⟨λp, T̄1m⟩+ ⟨λq, T̄⊤1n⟩ − ϵ⟨1n, T̄1m⟩. (8)
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Finally, we may inject this result into the dual formulation from (4) to obtain

OT l
ϵ(p, q) = max

λp,λq,ΛB
⟨λp, p⟩+ ⟨λq, q⟩ − ϵ⟨1n, T̄ij(Λ)1m⟩. (9)

To solve this optimization problem, we first define the objective of (9) as Lλ.

Lλ(Λ) := ⟨λp, p⟩+ ⟨λq, q⟩ − ϵ
∑
ij

T̄ij(Λ) (10)

We now seek to find a critical point for variable ΛB for fixed values of λp and λq:

∂Lλ

∂ΛB
ij

= exp

(
1

ϵ

(
−(1−Bl

ij)Λ
B
ij + λp

i + λq
j − cij

))
(1−Bl

ij) (11)

We now notice that for any pairs of indices (i, j) such that Bl
ij = 0, the partial derivative expressed in (11) is positive for all

values of Λ, but vanishes for ΛB
ij → +∞ for any fixed values of λp and λq. Then, we notice that for any pairs of indices

(i, j) such that Bl
ij = 1, (9) is constant with respect to ΛB

ij , therefore, in that case we may pick ΛB
ij = 0.

Plugging the optimal values for ΛB
ij in (9), we obtain

OT l
ϵ(p, q) = max

λp,λq
⟨λp, p⟩+ ⟨λq, q⟩+ ⟨Rϵ(λp, λq, c), Bl⟩, (12)

where [Rϵ(λp, λq, c)]ij = exp( 1ϵ (λ
p
i + λq

j − cij)). Defining (λp∗, λq∗) as the optimal solution for (12), we now get the
optimal transport plan T ∗ for (4):

T ∗
ij(λ

p∗, λq∗) =

{
exp( 1ϵ (λ

p
i
∗
+ λq

j
∗ − cij)), if Bij = 1

0, otherwise

= diag(a)(K ⊙Bl)diag(b)

where

ai = exp

(
λp
i
∗

ϵ

)
, bj = exp

(
λq
j
∗

ϵ

)
, Kij = exp

(
−cij

ϵ

)
, (13)

which completes the proof.

Additionally, we note that K ⊙ Bl can be the input for the Bregman projections described in Remark 4.8 from Peyré &
Cuturi (2018). In such case, the Sinkhorn iterations will converge to the solution of the optimization problem.

B. Cost calculation of labeled GWOT
We present how to speed up the calculation of the cost in the case of labeled GWOT when the cost functions d can be written
as

d(a, b) = f1(a) + f2(b)− h1(a)h2(b). (14)

This includes a wide array of cost functions, including the L2 distance d(a, b) = ∥a∥2+∥b∥2−2∥a∥∥b∥. For such functions,
Peyré et al. (2016) proposed an algorithm to speed up the cost calculations of GWOT. We first present this development, and
then show how it can be adapted to the labeled GWOT problem to further improve the speed up.

Recall the cost of GWOT is written as

min
T∈Cp,q

∑
i,j,k,l

DijklTijTkl, (15)
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where Dijkl = c(cX (xi, xk), cY(yj , yl)), and T ∈ Rn×m. With tensor-matrix multiplication D ⊗ T ∈ Rn×m defined on
4-dimensional tensor D ∈ Rn×m×n′×m′

defined as [D ⊗ T ]ij :=
∑

k,lDijklTkl, the objective function of (15) can be
written as ⟨D ⊗ T, T ⟩.

Peyré et al. (2016) showed that for the cost function d in the form (14), D ⊗ T can be simplified as follows. Let
Mij = cX (xi, xj) and M̄ij = cY(yi, yj) denote the cost matrices on each modality. Let us define cM,M̄ = f1(M)p1⊤

m +

1nq
⊤f2(M̄)⊤, and notice that

⟨D ⊗ T, T ⟩ = ⟨cM,M̄ − h1(M)Th2(M̄)⊤, T ⟩. (16)

Using this formulation, the cost D ⊗ T may be calculated in time O(n2m+ nm2), instead of O(n2m2).

We now show that the calculation of D ⊗ T in (16) can be further accelerated when T ∈ Clp,q. Let us adopt the notation
for the indices of the source and target samples of a given label k as l-1x (k) = {i | lxi = k} and l-1y (k) = {j | lyj = k},
respectively. In particular, for each label k we denote as nk = |l-1x (k)| and mk = |l-1y (k)| the number of samples with that
particular label in modality X and Y , respectively.

For a matrix A, we denote as [A]{i1,...,in},{j1,...,jm} the submatrix of A with i1, . . . , in-th rows and j1, . . . , jm-th columns.
Several submatrices are now introduced to calculate the optimal transport cost at the resolution of the labels. We denote as
Tk ∈ Rnk×mk

, the submatrix corresponding to the label-specific coupling:

Tk :=[T ]l-1x (k),l-1y (k). (17)

Then, for a pair of labels (k1, k2), we define the submatrices Mk1k2 ∈ Rnk
1×nk2 , M̄k1k2 ∈ Rmk

1×mk2 as:

Mk1k2 :=[M ]l-1x (k1),l
-1
x (k2)

(18)

M̄k1k2 :=[M̄ ]l-1y (k1),l
-1
y (k2)

. (19)

With the definition, consider calculating (16) for T ∈ Clp,q. We only need the (i, j)-th entries of D ⊗ T for indices (i, j)
such that lxi = lyj , because any other entry would not contribute to the final cost. We calculate the [D ⊗ T ]l-1x (k),l-1y (k) for
each label k by calculating each terms of (16) for the label.

[cM,M̄ ]ij =

n∑
i′=1

f1(Mii′)pi′ +

m∑
j′=1

f2(M̄jj′)qj′

=

L∑
k′=1

 ∑
i′∈l-1x (k′)

f1(Mii′)pi′ +
∑

j′∈l-1y (k′)

f2(M̄jj′)qj′

 (20)

Writing this in a matrix form gives

[cM,M̄ ]l-1x (k),l-1y (k) =

L∑
k′=1

f1(M
kk′

)pk′ +

L∑
k′=1

f2(M̄
kk′

)qk′ (21)

The second term in (16) can be written as

[h1(M)Th2(M̄)⊤]ij =

n∑
i′=1

m∑
j′=1

h1(Mii′)Ti′j′h2(M̄jj′). (22)

As Ti′j′ = 0 when lxi ̸= lyj ,

[h1(M)Th2(M̄)⊤]ij =

L∑
k=1

∑
i′∈l-1x (k)

∑
j′∈l-1y (k)

h1(Mii′)Ti′j′h2(M̄jj′). (23)
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Writing this in a matrix form gives

[h1(M)Th2(M̄)⊤]l-1x (k),l-1y (k) =

L∑
k′=1

h1(M
kk′

)T kk′
h2(M̄

kk′
)⊤ (24)

which shows that the cost calculation of each label k involves the cost between the samples of label k and the samples of all
other labels. Combining two terms gives

[D ⊗ T ]l-1x (k),l-1y (k) =

L∑
k′=1

f1(M
kk′

)pk′ +

L∑
k′=1

f1(M̄
kk′

)qk′ −
L∑

k′=1

h1(M
kk′

)T kk′
h2(M̄

kk′
)⊤ (25)

With balanced number of samples nk = n
L , mk = m

L , calculating (25) takes n2

L + m2

L + n2m
L2 + nm2

L2 operations which
reduces to O((n2m+nm2)/L2). Calculating this for all labels givesD⊗T with O((n2m+nm2)/L) operations, providing
L times acceleration compared to the original result from Peyré et al. (2016).

C. Algorithm for solving labeled EGWOT
Given the cost matrices defined in Appendix B, corollary 3.2 provides the following algorithm for labeled EGWOT.

Algorithm 1 Computation of l-compatible EGWOT
1: Input: M,M̄, ϵ, Bl, p, q
2: Initialize T .
3: repeat
4: // compute cs = D ⊗ T as in (25).
5: cs ← D ⊗ T .
6: // Sinkhorn iterations to compute T l

ϵ (cs, p, q)
7: Initialize a← 1, set K ← e−cs/ϵ ⊙Bl.
8: repeat
9: b← q

K⊤a
, a← p

Kb
10: until convergence
11: Update T ← diag(a)(e−cs/ϵ ⊙Bl)diag(b)
12: until convergence

Assuming samples are sorted by their labels, block matrix K ⊙Bl can further accelerate the calculation of Sinkhorn updates
in line 9. As Kij = 0 when lxi ̸= lyj , we can write the Sinkhorn update as

ai ←
pi∑m

j=1 Kijbj
=

pi∑
j∈{j|lxi =lyj }

Kijbj

bj ←
qj∑n

i=1 Kjiai
=

qj∑
i∈{i|lxi =lyj }

Kjiai

Let [v]{i1,i2,...,in} denote the smaller vector (vi1 , . . . , vin) consisted of the i1, . . . , in-th entries of a vector v. The updates
can be written in the matrix form for the entries corresponding to a label k, where � denotes the element-wise division.

[a]l-1x (k) ← [p]l-1x (k) � [K]l-1x (k),l-1y (k)[b]l-1y (k)

[b]l-1y (k) ← [q]l-1y (k) � ([K]l-1x (k),l-1y (k))
⊤[a]l-1x (k)

With the balanced number of samples per label nk = n/L and mk = m/L, updating for the entries corresponding to a
single label is O(nm/L2) and the overall update for all labels is O(nm/L), providing L times speedup compared to the
Sinkhorn update for T that is not l-compatible.
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D. Labeled COOT
We adapt COOT to learn a global feature transport plan T v and per-label sample transport plans T s(a) for each label a. Here
we define T s(a) as [T s]l-1x (a),l-1y (a) for l-compatible T s. We note that T s(a) ∈ Cpaqa , where pa = [p]l-1x (a), q

a = [q]l-1y (a).

Recall that COOT is defined as (COOT) and its entropic-regularized version is written as

min
T s∈Cp,q

Tv∈Cr,t

∑
i,j,k,l

c(xik, yjl)T
v
klT

s
ij − ϵsH(Ts)− ϵvH(Tv). (ECOOT)

We define the labeled entropy-regularized COOT problem as follows.

min
Tv∈Cr,t

L∑
k=1

min
T s(a)∈Cpa,qa

 ∑
(i,j)∈{i,j|lxi =lyj=a}

k,l

c(xik, yjl)T
v
klT

s(a)
ij − ϵs(a)H(T s(a))

− ϵvH(T v)

(Labeled entropic COOT)

The block coordinate descent (BCD) algorithm in Algorithm 1 of Redko et al. (2020) is still valid for the optimization as
independent updates of T s(1), . . . , T s(L) together are equivalent to a single step of the sample transport update. We adapted
the BCD algorithm for labeled COOT as Algorithm 2.

We first define the notations for the algorithm. Xa and Y a denote column submatrices Xa = [X]·,l-1x (a) and Y a = [Y ]·,l-1y (a)),
K is a 4-way tensor with elements Kijkl = c(xik, yjl), K′ is K with permuted dimensions with elements K′

klij = c(xik, yjl)

, K′a is a subtensor of K′ for samples with label a, with elements K′a
klij for (i, j) with the same label lxi = lyj = a, and Tϵ is

the entropic OT solution

Tϵ(p, q, c) = argmin
T∈Cp,q

⟨c, T ⟩ − ϵH(T ).

which is obtained by the Sinkhorn algorithm.

Algorithm 2 BCD algorithm for labeled entropic COOT

1: Input: X,Y, l, p, q, ϵv, ϵs(1), . . . , ϵs(L)

2: Initialize T s(1), . . . , T s(L), T v .
3: repeat
4: T v ← Tϵv (r, t,

∑L
a=1K′a ⊗ T s(a)).

5: for a = 1 to L do
6: T s(a) ← Tϵs(a)(pa, qa,K ⊗ T v).
7: end for
8: until convergence

Line 4 of Algorithm 2 can be obtained from the T v update (26) in Algorithm 1 of Redko et al. (2020).

T v ← Tϵv (r, t,K′ ⊗ T s) (26)

As T s ∈ Clp,q and T s
ij = 0 for (i, j) /∈ {i, j|lxi = lyj },

[K′ ⊗ T s]kl =
∑
i,j

K′
klijT

s
ij =

L∑
a=1

∑
i∈l-1x (a)

∑
j∈l-1y (a)

K′
klijTij =

L∑
a=1

K′a ⊗ T s(a).

We note that the unregularized labeled COOT can also be solved simply by updating with unregularized OT solution T . We
have adopted the original implementation and implemented the Sinkhorn iterations in OTT (Cuturi et al., 2022).
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E. Experimental details
Multi-omics single-cell data processing Gene expression (RNA) levels from the kinase inhibitor screening data were
library size normalized and log transformed as defaults, and the top 2000 highest variable genes were retained using the
‘scanpy‘ Python library(Wolf et al., 2018). Protein features were manually selected by visual inspection of changes across
control perturbations, retaining 123 of 277 measured proteins. Protein modality counts were transformed using centered
log ratios (CLRs), as explained in Chung et al. (2021). The first 50 PCs were obtained at this step with the ‘sc.tl.pca‘
command from Wolf et al. (2018). 11 kinase inhibitors with large effects on the PCA space across dosages were selected
(Figure 2), along with vehicle treatment and non-stimulated T cells as the negative controls.
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Figure 2. UMAPs of each modality for the cells treated with the selected 13 kinase inhibitors.

Dosage match scores for DAVAEs Dosage match scores for DAVAEs (see Appendix F) were calculated
post-hoc by obtaining coupling from the latent representations. Coupling matrices were obtained by the
‘sc.neighbors._connectivity.gauss‘ command from Wolf et al. (2018) with k across {1, 5, 10, 20, 30} and the
highest dosage match score was reported.
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Model structure and training All OT-based methods were cost-normalized so that the maximum cost is 1 and allowed
for a maximum 2000 iterations both for inner and outer iterations, if applicable. MLPs had 2 hidden layers with 123
dimensions with a batch normalization and ReLU activation layer, followed by a dense linear output layer. Mean squared
error is minimized with an Adam optimizer with a learning rate of 10−3 and early stopping when the validation loss does
not decrease for 45 epochs with max 2000 epochs.

Feature matching We obtained the feature coupling by plugging T s in (ECOOT), resulting in the following EOT problem
between features:

min
Tv∈Cr,t

∑
i,j,k,l

c(xik, yjl)T
v
klT

s
ij − ϵvH(Tv).

We used the 23 proteins/RNAs that were measured in both modalities: CD70, CD52, CD7, TIGIT, CD69, CTLA4, LAG3,
CD27, Fas, BTLA, ITGB7, CD83, CXCR4, CD55, CD38, CD9, CD109, CD84, FOXP3, CTLA4, IRF4, GATA3, FOXP3.

F. Labeled domain-adversarial VAE
We have modified MultiVI (Ashuach et al., 2023) to account for labels when calculating adversarial loss. Here, the
adversarial classifier accepts the label to promote matching modality per label with the following loss.

min
θ,ϕ

max
ζ
L = min

θ,ϕ
max

ζ
LELBO
θ,ϕ (X,Y ) + λLAdv

ζ,ϕ (X,Y, l) (27)

Loss terms of (27) are as follows.

LELBO
θ,ϕ (X,Y ) = −(ELBOθX ,ϕX

(X) + ELBOθY ,ϕY
(Y ))

LAdv
ζ,ϕ (X,Y, l) =

∑
xi∈X

1

|X|
CELoss(fζ(qϕ(xi), l

x
i ), ⟨0, 1⟩) +

∑
yj∈Y

1

|Y |
CELoss(fζ(qϕ(yj), l

y
j ), ⟨1, 0⟩)

CELoss(x⃗, t⃗) = −
∑

i={0,1}

ti log

(
exi∑

k={0,1} e
xk

)

For the DAVAE without label adaptation, fζ does not admit label l of samples, and the rest of the structure is the same.

Experimental details DAVAE and labeled DAVAE used normal likelihood for X and Y :

xi|zi ∼ N (µi, σ
2) (28)

where xi, zi, µi, σ2 are length d vectors with d number of features. The log-transformed standard deviations (log(σj) for
feature j ∈ {1, · · · , d}) were learned as parameters. VAEs for both modalities had 2 hidden layers for both the encoder
and decoder and 50 latent dimensions. Hidden layers of the VAEs for the protein and RNA modalities had 128 and 256
dimensions, respectively. The adversarial classifier had 3 hidden layers with 32 dimensions. The model was trained with
early stopping when validation loss did not decrease for 50 epochs and a maximum 2000 epochs. The Adam optimizer for
θ, ϕ used a learning rate of 10−4 and the Adam optimizer for ζ used a learning rate 10−3. The remaining parameters were
the same as the original MultiVI defaults.

G. Extended results
UMAPs of predicted cells We show the UMAP embeddings of the true and predicted cell profiles for the best-performing
methods in Figure 3.

Match matrices We show the mean couplings of ECOOTL and EGWL for 5 cross-validation folds in Figure 4. Whereas
the negative controls (Vehicle, No stim) showed no clear separation of samples by the treatment dosages, we see the
clustering of cells with the same dosages of the drugs.
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Figure 3. UMAPs of predicted cells
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Figure 4. Mean couplings of ECOOTL and EGWL for 5 cross-validation folds. Rows are hierarchically clustered and columns are
reordered by the same row order. Rows and columns are labeled by the dosage.
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