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ABSTRACT

While post-training quantization is widely adopted for efficient deployment
of large language models, the mechanisms underlying quantization robustness
remain unclear. We conduct a comprehensive analysis of quantization degradation
across open-source language model training trajectories up to 32B parameters
and 15T training tokens to accurately assess the relationship between training dy-
namics and quantization performance. Our key finding is that quantization errors
in large-scale training runs are driven by a complex interplay between learning
rate and other training hyperparameters. Specifically, once learning rates decay,
validation loss and quantization error diverge, largely independent of training
data scale. To investigate interventions on the training dynamics and identify
specific configurations that can modulate quantization robustness favorably, we
train our own models in controlled experiments up to 100B tokens, and analyze
how the loss curvature evolves and interacts with the learning rate during training.
Our results challenge the assumption that increasing dataset scale inherently
compromises quantization effectiveness, demonstrating instead that strategic
training hyperparameter interventions can improve quantization quality at scale.

1 INTRODUCTION

Deep learning has already entered the low-bit era (NVIDIA, 2025). This transition has been enabled
by specialized hardware support and algorithmic innovations, with quantization serving as the core
technology driving these low-precision workloads. Modern neural networks are surprisingly quan-
tizable, and even modern large language models (LLMs) trained over trillions of tokens in mixed
formats of 16 and 32 bits of precision can be quantized after training into a zoo of low-bit formats,
leading to a widespread adoption throughout the entire model deployment workflow, and large inter-
est from both hobbyists and model service providers. In the following we will denote this workflow
as post-training quantization (PTQ).

Generally, quantization maps models trained with high-precision formats to lower-precision repre-
sentations, with different algorithms looking to minimize errors introduced by the loss in precision.
Common strategies to preserve performance involve scaling (Xiao et al., 2024), rotating (Ashkboos
et al., 2024), grouping (Lin et al., 2024), or indexing in codebooks (Tseng et al., 2024), and
commonly used formulas for this conversion process are GPTQ and AWQ (Frantar et al., 2023; Lin
et al., 2024; Tseng et al., 2024), unlocking low-bit primitive throughput and memory gains during
inference not only through strong quantization strategies, but also through specialized kernels that
support fast inference on quantized models. However, despite the widespread use of post-training
quantization (PTQ) in all layers of the model community from model providers to practitioners,
there is still a limited understanding of the principles that govern the brittleness of quantization, i.e.
the ease with which different models can be quantized and what error rates to expect. Recent efforts
to study quantization in Kumar et al. (2024) and Ouyang et al. (2024) suggest that PTQ becomes
less effective for LLMs as training progresses, arguing that the number of training tokens relative to
model size is a central factor in quantization sensitivity. Consequently, as datasets inevitably grow
larger (Brown et al., 2020), they expect degradation to become more severe, ultimately questioning
whether post-training quantization remains viable for future models. However, we find these results
overlook a key piece of the puzzle: the influence of training dynamics on the ease of quantization.
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(a) 4-bit quantization error vs training tokens.
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(b) Validation loss vs training tokens.

Figure 1: Evolution of quantization error and validation loss during training of SmolLM3 (Bakouch
et al., 2025). We report quantization error and validation loss throughout training under both the constant
(η = 2e−4, up to 10T tokens) and annealing phases of the learning rate schedule (whose evolution is shown
as dotted lines). As the learning rate decays, validation loss consistently decreases, whereas quantization error
rises sharply and to a much greater extent than at any earlier point in training.

While Ahmadian et al. (2023) showed that large activation outliers can be controlled with weight de-
cay to improve PTQ performance, the effect of training hyperparameters on quantization quality has
been difficult to study, since open-weights releases typically provided only a single checkpoint (Tou-
vron et al., 2023), offering no insight into training details or into the trajectory of quantization error
during training. However, with the recent surge of open-source large language models (LLMs)
(Biderman et al., 2023; Groeneveld et al., 2024; OLMo et al., 2025; Bakouch et al., 2025), which
vary substantially in training design and learning rate configurations, we now have access to much
richer data to study this question in detail. Open-source model training runs document a number of
hyperparameter choices, but how these choices affect quantization is rarely discussed.

In this work we provide a systematic study of the post-training quantization error across training
stages for six modern, open-source LLM training efforts. While previous work has studied
quantization degradation in controlled settings or for short training runs below 300B tokens, we
include trajectories of open-source LLMs of up to 32 billion parameters trained on up to 15 trillion
tokens. Through this investigation, we find that the actual hyperparameter choices taken by model
trainers play a larger role in quantization error than previously expected. Training our own models,
we verify the effect of learning rate scheduling and weight averaging on PTQ error in controlled
studies, and provide actionable suggestions to intervene on quantization. In summary,

• We measure quantization error across hundreds of intermediate training checkpoints from major
open-source LLM families and correlate quantization error trajectories with training stages and
learning rate schedules in Section 3.

• In controlled experiments in Section 4, we verify that quantization error is modulated by learning
rate schedule. Maintaining larger learning rates, all else being equal, reduces quantization error.

• Informed by these findings, we show in Section 5, that, for our own training runs, lower quantiza-
tion error can be achieved by optimized learning rate schedules, and how weight averaging along
training trajectories can be used to improve quantization performance.

• Finally, in Section 6, we analyze the geometric properties of the loss suggesting that the proposed
interventions interact with quantization performance via the promotion of flatter minima.

Through a systematic investigation and concrete examples, we highlight that training hyperpa-
rameters, and the resulting training dynamics significantly change how easy it is to quantize
modern LLMs. We argue that studying PTQ continuously during pretraining, and especially during
hyperparameter selections before large-scale runs, should be an essential step, as we identify several
cases, in which, for example two learning rate choices seemed equally promising, but choosing the
smaller one, did lead to an increased quantization error down the line.

2 BACKGROUND AND RELATED WORK

2.1 POST-TRAINING QUANTIZATION

Post-training quantization methods reduce the memory required to run large neural networks by
reducing their numerical precision. However, as LLM inference is dominated by auto-regressive
decoding, which is in turn limited by memory bandwidth (the rate at which model weights can be

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

transferred to an accelerator’s compute units, e.g. streaming multiprocessors on GPUs), quantization
can often improves the speed of the model.
The most naive quantization method is to simply cast all floating-point parameters of the model
to the desired precision. More advanced algorithms, such as BNB, AWQ, or GPTQ (Frantar et al.,
2023), optimize which parts of the model to quantize and by what approach to minimize errors, when
quantizing weights, activations and KV-cache. In particular, for a linear layer with weights W , let
X denote the input and WQ the quantized low-precision weights derived from W by some method.
During inference, WQ is loaded onto the GPU and the matrix multiplication (GEMMs) is performed
with the dequantized weights Ŵ such as XŴT . For weight and activation quantization, the input X
is also quantized. Modern mixed-precision kernels fuse the dequantization and multiplication steps
for efficiency. Initially, quantization methods would aim to minimize the weight error ||W − Ŵ ||
(Courbariaux et al., 2016); however, more recent approaches minimize the reconstruction error
||XWT − XŴT ||. The latter methods require a calibration dataset to compute X at quantization
time, several other variants exist (Frantar et al., 2023; Lin et al., 2024; Tseng et al., 2025)

Most quantization approaches build upon variations of these core concepts (Vanhoucke & Senior;
Jacob et al., 2017; Tseng et al., 2024; Dettmers et al., 2022; Ashkboos et al., 2024): high-precision
auxiliary states, such as scaling factors, to map between the dynamic range of original tensors
and that representable in low-precision; dividing the quantization problem into smaller groups of
typically 128 weights; processing outliers that would affect the dynamic range of the group with
different strategies. While numerous quantization techniques exist in the literature, we focus our
analysis on GPTQ (Frantar et al., 2023) quantization at 3- and 4-bit precision levels. However,
our supplementary experiments demonstrate that AWQ (Lin et al., 2024) and BitsAndBytes (BNB)
Dettmers et al. (2022) quantization methods exhibit analogous trends, as detailed in Appendix A.

2.2 LLM TRAINING HYPERPARAMETERS

Large-scale pretraining of neural networks, such as language models, is dependent on a large number
of hyperparameter choices. We review here some fundamental elements of the pretraining pipeline,
as we later show they are linked to quantization error and can be exploited to modulate it.

A key aspect of optimization is the choice of a learning rate schedule. Whereas earlier language
model training largely relied on cosine decay schedules (Loshchilov & Hutter, 2017), more recently
model builders have shown increasing interest in the trapezoidal schedule (Zhai et al., 2022; Hu
et al., 2024), also known as Warmup–Stable–Decay (WSD). This scheme splits training into a
constant learning rate phase followed by a linear-decay stage, enabling training across different
compute budgets with significantly fewer resources (Haegele et al., 2024) and has hence seen
growing adoption (Bakouch et al., 2025; Nezhurina et al., 2025; Apertus Team, 2025). Alongside
the scheduler shape, the peak learning rate (LR) itself is arguably one of the most important
parameters for final model performance (Tissue et al., 2024) and training stability (Wortsman
et al., 2023). Together with the peak LR value, the value after annealing can also impact perfor-
mance (Bergsma et al., 2025), scaling law derivation (Li et al., 2025) and adaptability to supervised
finetuning (Singh et al., 2025). Overall, many design choices remain somewhat arbitrary, frequently
guided by heuristics (OLMo et al., 2025) and often yielding equivalent results when sufficiently
tuned (Haegele et al., 2024). In this work, we argue that one additional line of analysis should be
robustness to quantization, as the interplay between these variables and PTQ degradation reveals
underexplored design decisions and a path for guiding future choices.

2.3 MODEL BRITTLENESS TO POST-TRAINING QUANTIZATION

How well will a certain quantization algorithm work for a given, already trained, LLM, and does
this depend on the size of the model, or the amount of training data? Recently Kumar et al. (2024)
and Ouyang et al. (2024) developed scaling laws for quantization error, in which they relate the scale
of training dataset with the degradation induced by quantization. In summary, they reach a similar
conclusion, as models are trained on more data, they exhibit higher quantization induced
degradation. However, scaling up the training dataset is one of the primary levers to improve model
performance, and small overtrained models are becoming increasingly popular (Gadre et al., 2024).
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Figure 2: 3-bit quantization error along the training trajectories of OLMo2 models. Error grows gradually
during cosine decay but spikes under the steep linear decay phase. Model souping (⋆) reduces degradation,
achieving lower PTQ error than any individual run.

Yet, these studies overlook the role of the training dynamics in model robustness to post-training
quantization. In fact, we find that on open sourced LLMs, quantization degradation abruptly
increases as learning rates decays, regardless of training data size. In Section 4 we investigate these
contradicting results and we find that their characterization of the effect of training dataset scale and
quantization performance is mostly confounded by the learning rate hyperparameters used in their
experiments. Overall, we identify this gap in the literature and address this crucial question: what
is the relationship between the training dynamics and quantization performance?

3 POST-TRAINING QUANTIZATION OF MODELS IN THE WILD

In this section, we analyze training trajectories of the following models: OLMo model family (1B,
7B parameters; trained on 2.5T-3T tokens) (Groeneveld et al., 2024); OLMo2 family suite (1B, 7B,
13B, 32B; 4TT–6TT) (OLMo et al., 2025); SmolLM3 (3B, 11TT) (Bakouch et al., 2025); Apertus
(8B, 15TT) (Apertus Team, 2025); Open-science (1.3B, 1TT) (Nezhurina et al., 2025), for which we
consider the Nemotron-cc release (Su et al., 2025); and Amber (7B, 1.3TT) (Liu et al., 2023). We
use GPTQ (Frantar et al., 2023) to post-train quantize them to 3 and 4 bits. We detail the quantization
process in Appendix A, and share the complete set of results for all model families in Appendix B.

We evaluate PTQ robustness by first examining quantization error in validation loss and later by
assessing its impact on downstream tasks.

3.1 QUANTIZATION-INDUCED DEGRADATION ON VALIDATION LOSS

To more accurately represent the intuition that increases in cross-entropy loss are more expensive
the lower the cross-entropy is (as loss decrease is roughly logarithmic in compute), we show relative
cross-entropy loss, defined as (CE(Ŵ )

CE(W ) )− 1.

We decouple the effect of learning rate decay from the amount of training data consumed, we
first focus on models trained with a Warm up–Stable–Decay schedule. We begin by examining
Figure 1a, which shows quantization error alongside the learning rate during the training trajectory
of SmolLM3. We observe that, while quantization error increases rapidly in the beginning of
training, it stays relatively constant during the 11 trillion tokens of stable phase, and only as the
learning rate decays does quantization error spike. Figure 1b shows how the validation loss follows a
similar—albeit inverse—curve than that of the quantization error. Similarly, OpenSci training runs
from Nezhurina et al. (2025) in Figure 11 display an analogous pattern: quantization error surges
sharply as the learning rate decreases, for the different models on vastly different token budgets.

Next, we consider the OLMo2 model family, which includes four language models with 1, 7, 13,
and 32 billion parameters, all developed using a consistent training methodology. Training occurs
in two phases: an initial general pretraining phase using 4-6 trillion tokens with cosine learning
rate decay, followed by a second phase that applies a short and sheer linear decay schedule across
different orders of high-quality data configurations, also referred to as ”ingredients”. The final
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(a) 3-bit validation loss degradation.
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(b) 3-bit accuracy degradation.

Figure 3: 3-bit quantization effects across SmolLM3 post-training stages. Degradation in validation loss
(left) and downstream accuracy (right) show that PTQ effects differ across stages and appear sensitive to post-
training interventions. The final model, a weighted average of mid-training and APO, shows better robustness
than both individual components.

model weights are obtained through model souping (Wortsman et al., 2022), averaging models
trained with different ingredients, except for the 1B parameter model, which retains weights from
a single decay trajectory. Figure 2 presents quantization error and learning rate trajectories for
the four models. The quantization error shows a different trend across the two phases, increasing
gradually during slow cosine decay, but rising sharply under steep linear annealing. Although the
learning rate itself may not directly cause this degradation, this observation once again suggests
a deeper connection between optimization dynamics and quantization performance. Finally, we
report the quantization error for the model soup, and find that averaging substantially reduces
degradation, with the model soup achieving lower PTQ error than any of the individual ingredients.
We will return to this observation later in Section 4 and 5.

3.2 QUANTIZATION-INDUCED DEGRADATION ON DOWNSTREAM TASKS

While cross-entropy loss serves as a convenient proxy for model performance, downstream eval-
uation better reflects the practical utility of a model. Following OLMo et al. (2025), we evaluate
performance across 12 established benchmarks and report the average 5-shot accuracy across all
tasks (see Appendix D for additional details on the evaluation pipeline).

In Figure 3 we show the performance degradation induced by 3-bit quantization on SmolLM3.
Alongside the validation loss (Figure 3a), we present the relative accuracy drop, defined as
Acc(W )−Acc(Ŵ )

1−Acc(W ) (Figure 3b). Despite fluctuations, a similar pattern can be identified in both curves:
performance degradation increases as the learning rate decays. We observe similar results across
individual tasks and report them in Appendix D (Figure 17, Figure 18).

Modern LLMs are optimized beyond general pretraining stages to promote alignment, extend con-
text, incorporate supervised fine-tuning, and perform instruction tuning (Tie et al., 2025). Here,
we study the effect of quantization across post-pretraining stages. In SmolLM3, these include
long context training, a mid-training phase to incorporate general reasoning capabilities, super-
vised fine-tuning (SFT) for domain-specific skills, and anchored preference optimization (APO)
(D’Oosterlinck et al., 2024) to promote alignment. Finally, the released (main) model is a linear
merge with weights of 0.9 and 0.1 of the APO model and a mid-training checkpoint. Figure 3 reports
the performance degradation under 3-bit quantization after each stage in SmolLM3. Interestingly,
context extension sensibly reduces quantization degradation, while mid-training largely amplifies it.
PTQ degradation then decreases through SFT and APO. Remarkably, although the main model is
obtained by averaging the mid-training and APO weights, it exhibits lower quantization degradation
than either of them individually. We recall similar results from the previous analysis on OLMo-2
(Figure 2), where model soups across data mixtures exhibited lower quantization degradation than
any of the individual components. These results suggest that averaging benefits quantization, a novel
finding we investigate further in Section 5.
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(a) 4-bit quantization error vs training tokens.
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(b) Validation loss vs training tokens.

Figure 4: 4-bit quantization error at different training durations. We use WSD, training a 160M-parameter
transformer up to 100B tokens and performing additional cooldowns at 12B, 28B, 46B, 64B, 82B tokens. Fig-
ure 4a shows quantization error during training with different token budgets, and Figure 5b the corresponding
validation loss. Despite varying the amount of training data, all runs show comparable quantization error after
cooldown, highlighting that error spikes are associated with training dynamics rather than token budget.

4 CONTROLLED EXPERIMENTS

4.1 REPLICATING THE OBSERVED PHENOMENA

To understand the insights from Section 3, we conduct pretraining experiments with transformer
models on a smaller scale, varying token budget, learning rate, LR schedule, and weight decay one
at a time. We follow Biderman et al. (2023) for model specifications, and FineWebEdu (Penedo
et al., 2024) as pretraining corpus (see Appendix C for details on the training procedure and hyper-
parameters). We use GPTQ, and discuss results for additional quantization methods in Appendix A.

In Figure 4 we show quantization error and validation loss across a range of token budgets, which we
obtain by decaying the learning rate at different steps during training. We observe that the constant
learning rate stage is not immune to PTQ degradation, showing a slight increase in quantization
error. At the same time, despite training durations ranging from 10B to 100B tokens, models achieve
comparable quantization error after decay, which spikes as learning rate decays and validation loss
drops, regardless of than token count. In Figure 21 we replicate the experiment using a cosine decay
schedule, where model performance (Figure 21b) and quantization robustness (Figure 21a) vary
with the training horizon. However, changes in the peak learning rate, and thus the scheduler shape,
have a larger impact, in some cases yielding improved quantization error at lower validation loss.

In conclusion, this evidence suggests that the phenomena observed in Section 3 are not merely
serendipitous outcomes of complex model interactions, but are strongly shaped by training
dynamics, with factors such as learning rate decay playing a key role in quantization performance.

4.2 SCALING TRENDS IN PRIOR WORK ARE DOMINATED BY LEARNING RATE SCHEDULES

In an effort to explain the rise of quantization error during training, previous studies attributed this
phenomenon to dataset size or training duration, concluding that PTQ degradation increases as
models are trained on more data (Kumar et al., 2024), and hence that quantized undertrained models
scale more favorably (Ouyang et al., 2024). We argue that these works did not sufficiently control for
a key confounder, namely the optimization dynamics induced by the learning rate schedule, which
we find to be the primary driver of their observed degradation.

Specifically, we replicate analyses from Kumar et al. (2024) in Figure 5, training models at dif-
ferent token budgets under both original cosine schedule and WSD schedule. While cosine results
(blue) suggest that δPTQ increases noticeably with token budget, we show that a comparable WSD
schedule (brown) can yield lower validation loss, with degradation growing more slowly (70M) or
remaining stable (160M), indicating that the effect cannot be ascribed to data alone (see also Fig-
ure 21 for a similar conclusion).

Finally, we argue for additional caution when collecting checkpoints at different token counts, as
done in Ouyang et al. (2024). We recall that similar considerations have been discussed in the scaling
law literature: Hoffmann et al. (2022) suggested that their power law discrepancy with Kaplan et al.
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Figure 5: Learning rate affects quantization scaling trends. Following Kumar et al. (2024), we train 70M
and 160M transformer models with cosine decay across different token budgets, and a WSD schedule under
the same model configurations. Cosine decay replicates prior results, with δPTQ increasing at larger token
budgets, while WSD shows slower growth at 70M and no increase at 160M, hinting that other factors beyond
data volume influence quantization scaling.

(2020) arose from differences in learning rate schedules, and further works validate the importance
of collecting checkpoints only after learning rate annealing (Haegele et al., 2024). We suggest that
the same discretion is necessary when deriving scaling laws for quantized models, as optimization
dynamics influence observed robustness (Figure 4).

5 INTERVENTIONS ON THE TRAINING DYNAMICS

Having explored the connection between training dynamics and quantization degradation we inves-
tigate how simple interventions can modulate PTQ robustness and achieve better quantized models.

5.1 LEARNING RATE

In Figure 6, we demonstrate how different peak learning rates impact quantization. Figure 6a shows
that higher learning rates consistently lead to smaller errors, with curves inversely ordered by rate
magnitude. Figures 6b and 6c report full-precision versus 4-bit and 3-bit quantized validation
losses. These parametric curves capture quantization error relative to total validation loss: perfect
quantization would lie on the x = y bisector, with deviations measuring the error. Comparing curves
with LR 1e−3 and 3e−3 shows that, at similar validation loss, the larger rate achieves better low-bit
quantization, at no apparent cost. This suggests that, for comparable full-precision performance, em-
ploying a larger learning rate might be preferable, as it enhances low-bit quantization performance.
We replicate this experiment on a 300B token pretraining run of OLMo2-7B in Figure 23.

Learning rate schedules designate the magnitude of the learning rate throughout training, repre-
sented as dotted lines in Figure 22a. On one hand, while the cosine schedule (green) has a much
higher peak learning rate, its profile is dominated by the one of WSD decay phase (yellow and
blue). Despite this rapid decay, the cosine schedule still achieves lower quantization error and
better validation loss than the WSD schedule. This indicates that quantization performance depends
on training dynamics beyond just the learning rate magnitude at any single point. On the other
hand, examining 3-bit quantization in Figure 22c reveals that cosine schedules experience sharp
upward curvature near the end of training, likely due to very small learning rates in the final steps.
This suggests that cosine schedules’ inability to control end-of-training learning rates, where the
rate becomes small regardless of the initial peak, may hurt quantization performance compared to
schedules like WSD that maintain better control throughout training.
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Figure 6: Larger learning rates lead to lower quantization error. Figure 6a displays the quantization
error achieved by fixing the training recipe and varying the learning rate. We observe that quantization error
decreases when employing higher learning rates. Furthermore, Figure 6b and 6c show that, at similar validation
loss, larger learning rates achieve better low-bit quantization, at no apparent cost.
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Figure 7: Weight averaging as an alternative to LR decay for PTQ. Validation performance and quantization
error for a 160M model trained on 100B tokens at constant learning rate. We compare intermediate learning
rate cooldowns with weight averaging of checkpoints collected from the stable phase. We report the validation
performance of the full-precision model (Figure 7a), the 3-bit quantized model (Figure 7b), and their difference
(Figure 7c). Whereas LAWA falls short of learning-rate decay in the full-precision setting, its 3-bit PTQ
performance yields lower validation loss than all cooldowns, demonstrating a successful setting for LAWA.

5.2 WEIGHT AVERAGING

Given the encouraging results on quantizing model soups in Section 3.1, and the detrimental effect
of learning rate decay on quantization performance, a natural question is whether weight averaging
could serve as an alternative and mitigate its negative impact1. Intuitively, averaging parameters
along the training trajectory reduces noise and can approximate the effect of learning rate decay.
Prior work derived equivalent averaging schemes for common LR schedules under SGD (Sandler
et al., 2023), and later studies showed that averaging improves performance over constant learning
rate training (Haegele et al., 2024), though still falling short of LR decay. Nevertheless, its effect on
PTQ robustness remains unexplored, despite its simplicity, and compatibility with existing pipelines.

Therefore, we pretrain a 160M-parameter transformer on 100B tokens with a constant learning
rate and compare LAtest Weight Averaging (LAWA) (Kaddour, 2022) against several intermediate
learning rate cooldowns, with averaging configuration described in Appendix C. As observed in
prior work (Ajroldi et al., 2025), in the full-precision setting (Figure 7a), LAWA yields better check-
points than constant learning rate but does not reach the performance of intermediate cooldowns. In
contrast, for 3-bit quantized models (Figure 7b), we find that checkpoints obtained through weight
averaging can match or even surpass the performance of those trained with learning rate decay.

Finally, we apply the same technique to training trajectories of open-source models. Specifically,
we consider OLMo-1B (Groeneveld et al., 2024), averaging checkpoints during training and using
LAWA as aggregation scheme (Figure 24). Despite the lack of control over checkpoint saving fre-
quency, the averaged model still improves upon the final one, performing better both in full-precision
and after quantization, confirming averaging as a promising direction to improve PTQ robustness.

5.3 WEIGHT DECAY

Learning rate and weight decay are coupled in popular AdamW implementations (Paszke et al.,
2019). We analyze the impact of changing the weight decay λ on the quantization error for a
fixed training recipe, with an implementation where learning rate and weight decay λ are decoupled
(Schaipp, 2024). In Figures 19b and 19c we observe that among models that achieve a comparable
performance (seen in the x-axis) in full-precision quantized validation loss, those with larger weight
decay λ exhibit lower 4- and 3-bit quantization error. This shows that, for λ configurations that
achieve comparable loss, higher values are preferable to reduce PTQ errors, which confirms Ah-
madian et al. (2023) observations. Moreover, compared to Figure 6 we see that changes in λ have
smaller effect on quantization error than learning rate.

6 GEOMETRIC PROPERTIES OF THE LOSS

The findings presented in Section 5 reveal several important relationships between interventions
and downstream performance, but is there an underlying, unifying mechanism? To investigate, we

1We distinguish between model soups (Wortsman et al., 2022), which average models from different training
runs, and weight averaging (Izmailov et al., 2018), which aggregates checkpoints along a single trajectory.
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analyze the geometric properties of the loss landscape to illustrate the interaction between these
seemingly disconnected phenomena.

6.1 LOSS LANDSCAPE

We visualize a 2D slice of the loss landscape (Goodfellow et al., 2015; Li et al., 2018) defined by
three checkpoints of interest, ΘK the model at the end of training, ΘK−1 the model at a previous
step of training, and 2 Θ̂K , the model at the end of training quantized. We refer to Section F for
additional details.

Our goal is to analyze how hyperparameter decisions during pretraining result in different local
neighborhoods around ΘK and Θ̂K in the landscape of the loss via the 2D slice they span. In Fig-
ure 8 we present four different landscapes, corresponding to pretraining our usual 160M parameter
model with different learning rates, as shown in Figure 6. In Figure 8, Θ̂K is the result of 4-bit
GPTQ quantization, we refer to Figure 25 for analogous results on 3-bit GPTQ quantization. We
begin by observing that, as expected, the smaller the learning rate, the closer ΘK−1 and ΘK are.
Perhaps more interestingly, the distance between ΘK and Θ̂K follows the same trend, it is larger for
larger learning rates. All the slices depict a local minimum around ΘK .

What is interesting is that we see that in all examples, the landscape is structured similarly in the
y-axis, the quantization direction, to the x-axis, the direction to the previous optimization step. In
this sense, the geometry of the quantized model seems closely related to the geometry induced by
training. Furthermore, the learning rate magnitude is proportional to the flatness of the basin of the
loss, where, even though ΘK and Θ̂K are closer for smaller learning rates, the sharpness of the basin
is such that Θ̂K falls in a higher loss level, a phenomenon which is exacerbated further for larger
weight perturbations e.g. for even lower bit quantization Figure 25.

6.2 CURVATURE

To better understand the topology of the loss landscape and the dramatic effect of learning rate
decay on quantization robustness, we further examine the second order information of the loss. We
estimate the trace of the Hessian via Hutchinson estimator (Hutchinson, 1989), and the sharpness
(maximum eigenvalue) via power iterations, using PyHessian (Yao et al., 2019). We refer to
Appendix G for details on the estimation procedure and additional results.

In Figure 9 we report the sharpness and trace evolution during the stable and decay phases when
training a 160M transformer on 100BT. The maximum eigenvalue shows a consistent rapid surge
whenever the learning rate decays. Although we also observe an initial increase in sharpness under
a constant step size, a more detailed analysis shows a clear distinction between the two regimes: in
the stable phase, only the top eigenvalue initially rises while the others remain small, whereas in
the decay phase all eigenvalues increase, underscoring a notable difference between these training
dynamics. The trace presents a similar pattern, remaining stable under a constant learning rate, and
rising abruptly as it decays, remarkably mirroring the evolution of quantization error in Figure 4.

2We visualize checkpoints that are trained for 100 billion tokens during K = 190000 steps. We save the
checkpoints every 2000 tokens, therefore K − 1 = 188000.
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Figure 8: Landscape of the loss. We visualize the landscape of the loss in the plane spanned by the weights
{ΘK ,ΘK−1, Θ̂K} for learning rates corresponding to the experiment in Figure 6. We observe that flatness of
the loss basin is proportional to learning rate magnitude.
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Figure 9: Sharpness (top left), Hessian trace (top right) and first 25 eigenvalues (bottom) estimated on the
training trajectory of a 160M transformer model (training runs in Figure 4). Sharpness consistently increases
when the learning rate decays. Under a constant learning rate, only the top eigenvalue briefly increases while
the rest of the spectrum remains low; the second row shows the distribution during this early increase. The
trace shows a clearer trend, although it is confounded by being the sum of all eigenvalues.

Although learning rate dynamics are known to affect the Hessian spectrum in simpler settings (Co-
hen et al., 2025), there is limited understanding of any causal structure in more complex training
setups. Based on the observed phenomena, we hypothesize that, as the learning rate decays, the
model traverses a sharper region of the loss landscape, making it more sensitive to perturbations
such as quantization.

Our analysis also indicates that averaging weights during training leads to wider minima, in
line with Izmailov et al. (2019). Such improved conditioning of the Hessian might explain the
superior quantization robustness of LAWA in Figure 7, but also offers a new perspective on weight
averaging: whereas prior work linked it theoretically and empirically to learning rate decay (Sandler
et al., 2023), we show that the two methods produce solutions with substantially different curvature
properties. We believe that the improved quantization robustness of model soups in Figure 2 may
be explained by similar curvature properties induced by souping.

Finally, the benefit of larger learning rates on stochastic gradient descent is well documented (Barrett
& Dherin, 2020; Lewkowycz et al., 2020; Gilmer et al., 2022), and it has been suggested that the
additional noise leads to flatter minima, which should generalize better (Hochreiter & Schmidhuber,
1997; Chaudhari et al., 2017), and require fewer bits to be specified (Hochreiter & Schmidhuber,
1994). When considering training trajectories under different maximum LR (Figure 6), we indeed
find that larger ones produce lower sharpness (Figure 26a) and smaller trace estimates (Figure 26b),
suggesting the presence of flatter minima, yet interestingly also leading to lower quantization error.

7 DISCUSSION

We conduct a systematic investigation of how training interventions affect quantization degradation
in language models under controlled experimental configurations. First, we observe that the magni-
tude of the learning rate determines quantization robustness when all other hyperparameters remain
fixed. Second, we identify that averaging checkpoints, either across different data configurations
via model souping or along the training trajectory, promotes robustness to quantization. These
concrete examples, where quantization degradation noticeably shifts with training dynamics, lead
us to advocate studying quantization robustness during routine hyperparameter tuning. We then
study geometric properties of the loss to investigate how learning rate and weight averaging affect
quantization performance, finding that these interventions coincide with convergence to flatter
minima, which we argue might benefit quantization robustness.

Overall, we end on an optimistic note. Our findings indicate that quantization degradation stems
from an intricate relationship between training dynamics alluding to general model robustness. As
a result, we find that, rather than being an unavoidable consequence of training data scale, it can be
acted upon with existing tools, which are especially beneficial for low-bit quantization.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves ac-
curacy without increasing inference time, 2022. URL https://arxiv.org/abs/2203.
05482.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities, 2023. URL https://arxiv.org/abs/2309.14322.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Pyhessian: Neural net-
works through the lens of the hessian. 2020 IEEE International Conference on Big Data (Big
Data), pp. 581–590, 2019. URL https://api.semanticscholar.org/CorpusID:
209376531.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019. URL https://arxiv.org/abs/1905.07830.

16

https://arxiv.org/abs/2503.06072
https://arxiv.org/abs/2408.11029
http://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2505.22988
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://aclanthology.org/W17-4413/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2309.14322
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://api.semanticscholar.org/CorpusID:209376531
https://api.semanticscholar.org/CorpusID:209376531
https://arxiv.org/abs/1905.07830


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers,
2022. URL https://arxiv.org/abs/2106.04560.

17

https://arxiv.org/abs/2106.04560


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A QUANTIZATION PROTOCOL

Alternative quantization methods. Our results are centered around GPTQ Frantar et al. (2023) a
popular and accessible quantization method that works off-the-shelf for new models with minimal
engineering overhead. To assess whether the phenomena we observe are specific to GPTQ or reflect
broader trends in PTQ, we replicate Figure 4 with LLM.int8() Dettmers et al. (2022) and AWQ Lin
et al. (2024). As shown in Figure 10, we observe a consistent association between learning rate
driven training dynamics and quantization error.
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Figure 10: Quantization error on different 4-bit quantization backends. We replicate results from Sec-
tion 4.1, training a 160M-parameter transformer with different quantization backends, and recover similar
trends in quantization error during both the constant and cooldown phases of the learning rate schedule.

Quantization details. For each model, we quantize the linear layers following the default set-
tings of GPTQModel (ModelCloud.ai & qubitium@modelcloud.ai, 2024) and HuggingFace’s inter-
nal quantization backend. For GPTQ, we follow common practice (Wolf et al., 2020) and use C4
(Raffel et al., 2023) as the calibration dataset, with a group size of 128. For AWQ (Lin et al., 2024),
we use Kwon et al. (2023).Finally, for LLM.int8() Dettmers et al. (2022) we follow HuggingFace
Wolf et al. (2020) implementation.

B PTQ ROBUSTNESS ON ADDITIONAL MODELS IN THE WILD

In this section we report the quantization degradation for additional model families. Although most
models follow a regular pattern, some exhibit unpredictable behaviors. Amber (Liu et al., 2023)
in Figure 12 displays a brief spike in full-precision validation loss, while the full-precision model
recovers, 4-bit PTQ degradation rises sharply, hinting at a change in the training dynamics whose
cause we cannot identify. Additionally, Apertus (Apertus Team, 2025) in Figure 15 exhibits very
large, fluctuating quantization errors from the beginning, which may indicate numerical issues either
in the quantization process or in the weights. However, we note that, even for these models, quanti-
zation degradation increases as the learning rates decays, consistent with our previous findings.
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(a) 4-bit PTQ error vs training tokens.
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(b) Validation loss vs training tokens.

Figure 11: Evolution of quantization error and validation loss on OpenSci-1.3B model (Nezhurina et al.,
2025) trained on 1T tokens from Nemotron-cc (Su et al., 2025).
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Figure 12: Quantization degradation for Amber-7B. 3 and 4-bit quantization with GPTQ.
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Figure 13: Quantization degradation for Apertus-8B. 3 and 4-bit quantization with GPTQ.
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Figure 14: Quantization degradation for OLMo-1 1B. 3 and 4-bit quantization with GPTQ.
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Figure 15: Quantization degradation for OLMo-1 7B. 3 and 4-bit quantization with GPTQ.
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C PRETRAINING HYPERPARAMETERS AND SETUP

Hyperparameter details. We use the open source codebase from Ajroldi (2024) to pretrain
Pythia-160M parameter transformer models (Vaswani et al., 2023; Biderman et al., 2023) on causal
language modeling, training up to 100 billion tokens of FineWebEdu (Penedo et al., 2024) on up
to 8xA100-80GB GPUs. We employ a sequence length of 2048 and batch size of 0.5M tokens.
We use cross-entropy loss and employ Adam (Kingma & Ba, 2014) with decoupled weight decay
(Loshchilov & Hutter, 2019) of 0.1 and gradient clipping of 1, and β1 = 0.9, β2 = 0.95. For the ex-
periments in Figure 4 we use a WSD learning rate schedule with peak learning rate of 3e-3, warmup
of 1900 steps (1%), and a cooldown duration of 1900 steps (10% of total duration), decaying the
learning rate to zero (Bergsma et al., 2025).

Weight Averaging. For the analysis in Section 5.2 and Figure 7 we use LAtest Weight Averaging
(Kaddour, 2022), collecting checkpoints every 500 optimization steps, and maintaining a rolling
window of length 5 over which weights are uniformly averaged. For the analysis in Figure 24 where
checkpoints are only available at fixed release intervals, we instead average the consecutive released
checkpoints, reporting results for different window lengths.

D EVALUATION

Evaluating model performance is influenced by many factors, and quantization methods add an-
other: the calibration dataset. For example, a model quantized using web data for calibration, may
perform better on web-based tasks. In general, interactions between training data, calibration sets,
and validation sets may create complex effects that affect the reliability of results.

To address this problem, we evaluate using two approaches:

• A held-out split of RefinedWeb (Penedo et al., 2024), to gather validation loss performance.
• Downstream performance on the following tasks:

– ARC-Challenge (ARC C) (Clark et al., 2018)
– ARC-Easy (ARC E) (Clark et al., 2018)
– OpenbookQA (OBQA) (Mihaylov et al., 2018)
– PIQA (Bisk et al., 2020)
– HellaSwag (HSwag) (Zellers et al., 2019)
– WinoGrande (WinoG) (Sakaguchi et al., 2019)
– MathQA (Amini et al., 2019)
– PubMedQA (Jin et al., 2019)
– SciQ (Welbl et al., 2017)
– Social IQa (SIQA) (Sap et al., 2019)
– CommonsenseQA (CSQA) (Talmor et al., 2019)
– MMLU (Hendrycks et al., 2021)

We evaluate models using LM-eval-harness (Gao et al., 2021) and vLLM (Kwon et al., 2023).
We report per-task accuracy of SmolLM3 in Figures 16, 17, ?? for the full-precision, 3-bit GPTQ
quantzied and 4-bit GPTQ quantized weights respectively.
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Figure 16: SmolLM3 per-task full-precision accuracy, measured throughout training.
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Figure 17: SmolLM3 per-task relative accuracy degradation under 3-bit GPTQ, measured throughout training.
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Figure 18: SmolLM3 per-task accuracy degradation under 4-bit GPTQ, measured throughout training.
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Figure 19: Weight decay promotes PTQ robustness. With fixed learning rate 3e−3 and WSD we train several
models changing the weight decay parameter λ only. We observe that larger λ parameters lead to models with
higher PTQ robustness. The dashed line represents the λ parameter chosen for all prior experiments.

E ADDITIONAL RESULTS

In this section we provide additional figures for Section 5.

E.1 WEIGHT DECAY

We show Figure 19.

E.2 GRADIENT OF THE LOSS

Recent work has shown that the gradient of the loss increases during the end of training (Defazio,
2025). We have observed that this phenomenon coincides with the decay phase of WSD, to this
end, we analyze whether this change in the training dynamics is driving quantization degradation in
Figure 20. Fixing all other hyperparameters (more details in Appendix C) we train with AdamW
(Loshchilov & Hutter, 2019) (in cyan), and AdamC (Defazio, 2025) (in orange) which aims to
correct this behavior. We observe that AdamC reduces the spike of the norm of the loss gradient in
Figure 20b while simultaneously changing the norm of the weights in Figure 20c. However, despite
modulating different actors of the training dynamics, both optimizers demonstrate almost identical
quantization degradation in Figure 20b, suggesting that the norm of the gradient of the loss does not
impact quantization performance as a standalone factor, indicating a more complex relationship.
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(a) 4-bit quantization error.
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(b) L2 norm of the loss gradient.
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(c) L2 norm of the weights.

Figure 20: Loss gradient norm does not directly modulate quantization error. Quantization error, L2

norm of the loss gradient, and L2 norm of the weights for a 160M model trained with AdamW (Loshchilov &
Hutter, 2019) (in cyan) and AdamC (Defazio, 2025) . In Figure 20b we observe that the gradient of the loss
spikes during the later iterations when using AdamW, whereas AdamC reduces the spike at the end of training.
Furthermore, in Figure 20c we observe that AdamC affects the norm of the weights.

E.3 COSINE DECAY VS WSD

In Figure 21 we present the quantization error and validation loss for 160M parameter models trained
on different token budgets with the same learning rate with cosine decay and with WSD learning
rate schedules. We observe that even though quantization error appears to be related to training data
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budget for cosine decay learning rate schedule, on WSD quantization error and training data budget
appear to be less entangled.
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(a) Quantization error vs training tokens.
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(b) Validation loss vs training tokens.

Figure 21: PTQ error at different training durations with cosine decay. We repeat the experiment in 4.1
and Figure 4 with a cosine learning rate schedule. PTQ error (left) varies with training horizon, but peak
learning rate and scheduler shape have a larger impact.

E.4 LEARNING RATE

We repeat the experiment in Section 5.1 on a larger scale, using OLMo2-7B evaluating quantization
error during a learning rate annealing run of 50B tokens after the model was pretrained for 250B
tokens on 4 different learning rate values. In Figure 23 we observe that, even though the quantization
degradation is lower, the same patter arises, where larger learning rates lead to lower quantization
degradation, even at the same validation loss.

F ADDITIONAL DETAILS AND RESULTS FOR LOSS LANDSCAPES

Given a parametric model Θ ∈ Rn3, a set D := {(xi, yi)}mi=1 of feature vectors with corresponding
labels pairs, and a loss function L(Θ) = 1

m

∑m
i=1 ℓ(xi, yi; Θ), we adapt Goodfellow et al. (2015);

Li et al. (2018) to visualize a 2D slice of the loss. Our aim is to interpolate the loss between three
checkpoints of particular interest, ΘK the model at the end of training, ΘK−1 the model at a previous
step of training4, and Θ̂K , the model at the end of training quantized. Setting v and u as the direction
vectors from ΘK to ΘK−1 and ΘK to Θ̂K respectively, and the validation set D, we care about

f(α, β) = L(D; ΘK + αv + βu) (1)

To populate the contour plots we simply sample 1000 points on a regular grid contained by largest
bound from the set that we are comparing, and then reconstruct a model from the vectorized defini-
tion that we sampled.

To vectorize a quantizaed model, we first ”dequantize” by explicitly multiplying the scales and low-
bit primitives, and we retrieve a high-precision approximation of the quantized model that we can
use.

3-bit GPTQ Loss Landscape Analogous to Figure 8, we show the loss landscape for 3-bit GPTQ
quantization on Figure 25. We observe that the same pattern occurs, with larger weight perturbations,
where the flatness of the basin of the loss is more relevant.

G SECOND ORDER STATISTICS

Trace. In order to approximate the Hessian trace, we can exploit the following result. Let
A ∈ Rn×n be a symmetric matrix, let z be a multivariate random variable in Rn with mean µ

3We visualize 160M parameter models where n = 1.6e8.
4We visualize checkpoints that are trained for 100 billion tokens during K = 190000 steps. We save the

checkpoints every 2000 tokens, therefore K − 1 = 188000.
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(a) 4-bit quantization error.
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Figure 22: Warm up-Stable-Decay and Cosine decay. Figure 22a shows the quantization degradation that
results from changing the learning rate magnitude and schedule. We observe that learning rate modulates
quantization error regardless of the schedule. Finally, in Figure 22c we observe that cosine schedules have a
sharper trade-off in the validation loss of the full precision to the quantized weights.
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Figure 23: Larger learning rates lead to lower quantization error. Figure 23a displays the quantization error
achieved by fixing the training recipe and varying the learning rate of OLMo2-7B. We observe that quantization
error decreases when employing higher learning rates. Furthermore, Figure 23b and 23c show that, at similar
validation loss, larger learning rates achieve better low-bit quantization at no apparent cost.

and covariance Σ, then:
E[zTAz] = tr(AΣ) + µTΣµ,

where E indicates the expectation and tr the trace operator. Therefore, for a random vector z with
zero-mean and identity covariance matrix, zTAz is an unbiased estimator of tr(A). Hutchinson
(1989) showed that when z is distributed accordingly to a multivariate Rademacher distribution, the
estimator achieves lower variance than choosing z to be a multivariate Gaussian random vector.

We can leverage this property to estimate the Hessian trace of the loss function by drawing samples
from a Rademacher distribution and computing Hessian vector products, which can be easily com-
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Figure 24: Weight Averaging improves OLMo performance before and after quantization. We use LAWA,
averaging weights along the OLMo-1B training trajectory. We measure and report validation loss in full pre-
cision and after 4-bit quantization. Compared to individual checkpoints on the full trajectory, LAWA yields
lower validation loss both before and after quantization, with larger averaging windows performing best.
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Figure 25: Landscape of the loss. We visualize the landscape of the loss in the plane spanned by the weights
{ΘK ,ΘK−1, Θ̂K} for learning rates corresponding to the experiment in Figure 6. We observe that flatness of
the loss basin is proportional to learning rate magnitude.
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Figure 26: Second order statistics across learning rates. We train using WSD, varying the maximum learn-
ing rate, but always decaying it to zero. Higher learning rates lead to lower sharpness and smaller trace esti-
mates, suggesting that the model may have converged to a wider minima. Interestingly, larger learning rate also
lead to lower quantization error (Figure 6).

puted with an extra pass over the computational graph. We use PyHessian (Yao et al., 2019) for
such Monte Carlo estimation in PyTorch.

Sharpness and spectrum. Furthermore, we measure the largest eigenvalue λmax of the Hessian,
also referred to as sharpness. In order to estimate λmax we use power iterations, once again lever-
aging Hessian vector products computation in PyHessian. In some cases we further compute the
first 25 hessian eigenvalues.

We measure both summary statistics on in house trained Pythia-160M models. We compute the
trace and sharpness of the validation loss, computed on an held-out set of 100 text sequences from
FineWedEdu, each of length 2048.

H LIMITATIONS

Our analysis focuses primarily on the effect of learning rate, schedules, and weight decay leaving
other parts of the optimization pipeline unexplored. Factors such as optimizer choice may also
affect quantization performance, and we leave the exploration of schedule-free methods (Defazio
et al., 2024) to follow-up work. Moreover, although we limit our analysis to dense quadratic model,
we expect similar conclusions for sparse (Shazeer et al., 2017) and sub-quadratic architectures (Gu
& Dao, 2024).
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DISCLAIMER FOR USE OF LLMS

We primarily used LLMs in coding auto-completion applications to facilitate experimentation.
LLMs were also used as writing tools to assist in refining the paper. However, the final version
was carefully reviewed and finalized by the authors. No LLMs were used in ideation and experi-
mental design.

26


	Introduction
	Background and Related work
	Post-training quantization
	LLM Training Hyperparameters
	Model brittleness to post-training quantization

	Post-training quantization of models in the wild
	Quantization-Induced Degradation on Validation Loss
	Quantization-Induced Degradation on Downstream Tasks

	Controlled experiments
	Replicating the observed phenomena
	Scaling Trends in prior work are dominated by learning rate schedules

	Interventions on the training dynamics
	Learning rate
	Weight Averaging
	Weight Decay

	Geometric Properties of the Loss
	Loss Landscape
	Curvature

	Discussion
	Quantization Protocol
	PTQ robustness on additional models in the wild
	Pretraining hyperparameters and setup
	Evaluation
	Additional Results
	Weight Decay
	Gradient of the Loss
	Cosine decay vs WSD
	Learning rate

	Additional Details and Results for Loss Landscapes
	Second Order Statistics
	Limitations

