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ABSTRACT

Inferring causal structures from interventional data remains a challenging task,
especially when the intervention targets are unknown. Supervised Causal Learning
(SCL) demonstrates strong empirical performance in predicting causal structures by
training on datasets with known causal relations and applying the learned models
to unseen test data. However, existing SCL methods often face inherent generaliza-
tion challenges and struggle with the diverse intervention settings encountered in
interventional causal discovery problem. In this work, we propose TICL (Test-
time Interventional Causal Learning), a novel approach that follows the Test-Time
Training (TTT) + Joint Causal Inference (JCI) paradigm to address these chal-
lenges of generalization and versatility, respectively. Specifically, TICL employs
a self-augmentation technique that generates training data at test time, tailored
to the characteristics of the test data, enabling the model to adapt to the inherent
biases in the test distribution. Additionally, by integrating the JCI framework
with SCL, TICL replaces the rule-based logic of the standard PC algorithm with
a learning-based approach, effectively leveraging self-augmented training data.
Extensive experiments on bnlearn benchmarks demonstrate TICL’s superiority in
multiple aspects of causal discovery and intervention target detection.

1 INTRODUCTION

Causal discovery asks to identify causal relations from data. Supervised Causal Learning (SCL) is
an emerging paradigm of causal discovery, and has demonstrated strong empirical performance (Ke
et al., 2023b; Lorch et al., 2022; Ma et al., 2022; Dai et al., 2023). The basic idea of SCL is to treat
causal discovery as a structured prediction task, where a prediction model takes a data sample as input
and outputs predictions about the causal structures behind the input data, such as the causal graph.
Such a model is trained using supervised learning techniques, where the training data comprises
various causal structures and their associated data samples.

However, existing SCL works have been primarily focusing on causal discovery from observational
data. On the other hand, experimentation remains the gold standard for discovering causal relations
in many application domains (Pearl, 2009; Fisher et al., 1966). Interventional data, in particular,
allows for the identification of more causal relations with fewer assumptions (Hauser & Bühlmann,
2012). Applying SCL under interventional settings is thus of considerable empirical importance.

Unfortunately, the SCL paradigm faces two main challenges when interventions are involved, particu-
larly if the specific intervention actions are unknown - a common scenario when the interventions are
performed by a third party (Eaton & Murphy, 2007a):

• Versatility: Different from the observational setting (where there is no intervention thus the
problem enjoys a simple and clean formulation), interventional settings may vary widely, including
factors such as known / unknown targets, hard / soft interventions, and single / multiple-variable
interventions. This diversity complicates learning versatile models, and existing SCL methods (Ke
et al., 2023b; Lorch et al., 2022) are typically limited to specific settings (e.g., hard + known).
Adapting these methods to more general interventional settings requires non-trivial effort.

• Generalizability: As a supervised learning approach, SCL methods fundamentally face the
challenge of generalization – models trained on data following a specific distribution (e.g., one
generated by a simulator) may perform poorly on real-world test data. The formulation diversity as
mentioned above may further exacerbate the generalization issue in the interventional setting.
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To address the generalization challenge, we conducted a systematic investigation on Test-Time
Training (TTT) technique, an emerging learning paradigm that gives up the attempt of obtaining
generalizable model at all, but instead, seeks to train models at test/inference time in an on-the-fly
manner such that the model trained is tailored to and responsible only for a specific problem instance.
To this end, we explore three key questions: (1) When should training data be acquired? (2) What kind
of training data is effective for SCL? (3) How can such data be acquired in our setting? Specifically,

When: We identify two stages within “test time”: “accessing test data” and “performing actual
testing”. Our approach operates between these stages—after accessing test data but before actual
testing—by generating free training data, training the model, and using it for final testing.

What: We observe that the posterior estimation of causal graphs, P (G|D), provides highly effective
training data. Specifically, we sample causal graphs (G1, . . . ,Gn) from P (G|D) and use forward
sampling to generate datasets (D1, . . . ,Dn) that are compatible to (G1, . . . ,Gn). These paired
instances ⟨Gi,Di⟩ serve as training data in a process called self-augmentation, as shown in Figure 1.

How: We introduce the IS-MCMC algorithm, which constructs a Markov chain over the augmented
graph structure space with intervention constraints. This approach efficiently samples from the
posterior distribution P (G|D), provided a well-chosen initial state.
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Figure 1: Self-augmentation strategy.

To address the formulation diversity issue, we advo-
cate to embrace the recently proposed Joint Causal
Inference (JCI) technique (Mooij et al., 2020), which
pools multiple datasets with unknown interventional
targets to create the corresponding augmented data
and augmented graphs. Standard causal discovery
algorithms can then be applied to this augmented data
as if it were purely observational. We observe that
the data preprocessing through JCI offers significant
convenience for SCL methods, enabling the design of a unified learning task that facilitates causal dis-
covery across diverse interventional settings. Although the JCI technique conveniently unifies various
interventional scenarios, enabling SCL, it does not address two critical questions: (1) What should be
the appropriate learning target? (2) How should the learning process be designed? Specifically,

What: We value the importance of identifiability in applying SCL to intervention causal discovery,
emphasizing that models should predict identifiable causal structures, i.e., I-CPDAG. Directed causal
edges are identifiable only when they consistently appear in every causal graph compatible with data.

How: We focus on identifying the identifiable components of the I-CPDAG, namely the skeleton and
v-structures. Inspired by the PC algorithm (Spirtes & Glymour, 1991), we adapt it into a two-phase
PC-like SCL algorithm for skeleton and orientation learning, ensuring asymptotic correctness while
promoting systematic feature characterization and improved classification mechanisms.

By incorporating the above ideas together, we propose a new solution framework, TICL, for the
problem of causal discovery from interventional data, focusing on discrete data to illustrate its
effectiveness. Specifically, TICL introduces a novel TTT + JCI paradigm, incorporating a self-
augmentation algorithm for training data acquisition and a PC-like supervised causal learning
algorithm for designing training targets. In summary, our contributions are as follows:

➠ We propose TICL, a novel TTT + JCI framework for SCL under interventions. Our TICL
implementation consistently outperforms existing state-of-the-art methods in experiments.

➠ We introduce a specific test-time training technique to the SCL domain, which (self-)augments the
training data by sampling causal graphs from the posterior distribution via an IS-MCMC process.

➠ Our systematic study indicates that JCI is a promising direction for interventional causal discovery.
It is especially helpful for learning-based methods (which reduce a causal discovery problem into a
machine learning problem), thanks to its flexibility in handling various intervention settings.

2 PRELIMINARIES

2.1 INTERVENTIONAL CAUSAL DISCOVERY

A Causal Graphical Model (CGM)M =< G, P > over d random variables X := {X1, . . . , Xd}
comprises: (i) a directed acyclic graph (DAG) G with nodes corresponding to the variables X and
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edges encoding direct causal relations between them, and (ii) a joint probability distribution PX that
is Markov compatible with G, i.e., PX =

∏d
i=1 P (Xi|pa(Xi)), where pa(Xi) are the parents of Xi.

Given an unknown causal model < G, P >, the Observational Causal Discovery problem asks to
infer about the causal graph G based on an i.i.d. sample of the joint distribution PX. It is however
well known that under the observational setting, in the general case, we can only identify a causal
graph up to its Markov Equivalent Class (MEC), even if with the faithfulness assumption (that
X⊥PY |Z ⇒ X⊥GY |Z) and with the Markov compatibility condition , where the MEC of the graph
G is the set of graphs with the same skeleton and v-structures with G (Verma & Pearl, 1990).

The identifiability limit in the observational setting can be effectively mitigated by conditioning the
observations upon interventions, i.e., actions that purposefully perturb the causal model. In general, an
intervention can apply to a subset of variables I ⊂ X, called the intervention targets, which can either
be a single variable or contain multiple variables. For each target variable Xi in I , the intervention
replaces the conditional distribution P (Xi|pa(Xi)) with a new one: P (I)(Xi|pa(Xi)). The joint dis-
tribution after the intervention thus becomes P (I)

X =
∏

i/∈I P (Xi|pa(Xi))
∏

j∈I P
(I)(Xj |pa(Xj)).

The intervention is called a hard (a.k.a. perfect, structural) intervention (Eaton & Murphy,
2007b) if it eliminates the intervention targets’ causal dependence on their parents entirely, i.e.,
if P (I)(Xi|pa(Xi)) = P (I)(Xi),∀Xi ∈ I; otherwise it is called a soft (a.k.a. imperfect, parametric)
intervention (Tian & Pearl, 2001) as it maintains at least part of the original causal dependence. It is
an unknown intervention if the target set I is unknown.

The Interventional Causal Discovery problem asks to infer about the causal graph G based on a
collection of data samples D = {D0, D1, . . . , DK}, each obtained under a different intervention. Let
I := {I0, I1, . . . , IK} be the intervention targets for each of the interventions here. I is called the
intervention family of the dataset D. It is often useful to obtain D0 as a sample of the observational
distribution PX without any actual intervention, and in this case we denote I0 = ∅. In this paper, we
consider the situation that the interventions are unknown, and we need to infer both about the causal
graph G and about the intervention family I from the given data collection D.

2.2 JOINT CAUSAL INFERENCE

Our method is based on the JCI framework, proposed by Mooij et al. (Mooij et al., 2020), which
reduces an interventional causal discovery problem into an observational causal discovery problem
over an augmented causal model. The basic idea is to treat a data sample under intervention as an
observation under an imposed condition. The data-sample collection D in the intervention setting can
then be seen as a single data sample under a variety of observation conditions. More specifically,

Augmented Data: Given data collectionD = {D0, D1, . . . , DK} obtained under intervention family
I := {I0, I1, . . . , IK}, an augmented data sample DI can be constructed by stacking the K +1 data
samples in D together by rows, then appending K columns, each corresponding to a newly added
environment variable (or intervention variable) XIk which takes binary value and XIk = 1 in and
only in data points (= rows) originally from Dk. See the data table in Figure 3 above for illustration.

Augmented Graph: Accordingly, an augmented causal graph GI can be constructed by adding
nodes XIk , and adding edges XIk → Xi for all Xi ∈ Ik if the intervention targets Ik are known. In
the augmented graph, nodes corresponding to the original variables Xi ∈ X are called system nodes,
and those corresponding to XIk are called environment nodes.

In the JCI framework, we first convert the data collection D into the augmented data sample DI ,
optionally incorporating edges from known interventions I, then infer the augmented graph GI ,
which encodes both the information of the original causal graph G over the system variables X, and
reveals unknown intervention targets as edges from environment nodes to system nodes are identified.

Moreover, the causal inference over the augmented graph in the JCI framework may be facilitated by
some a priori constraints when prior knowledge/assumptions about the interventions are available.
For example, under the exogeneity assumption, the interventions were selected and conducted without
conditioning on any system variable Xi ∈ X, corresponding to a constraint that there should be
no causal edges from system nodes to environment nodes. Under the complete randomized context
assumption, there should be no confounding relation between any system variable/node and any
intervention variable/node. Under the generic context assumption, there should be no causation
between intervention variables/nodes. For more details, please refer to the paper (Mooij et al., 2020).
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2.3 IDENTIFIABILITY WITH INTERVENTION DATA
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Figure 2: Identifiability Example.

Two causal DAGs G1 and G2 are indistinguish-
able under an intervention family I with I0 = ∅
if and only if their interventional graphs G1Ik
and G2Ik have the same skeleton and v-structures
for all Ik ∈ I (Yang et al., 2018). It is thus clear
that with interventional data, we may identify
the true causal graph up to a smaller equiva-
lence class – called the I-MEC. Figure 2 gives a simple example that illustrates how interventions
can help with causal identifiability: The three DAGs on the left belong to the same MEC. Considering
the intervention family I = {∅, {1}, {2, 3}}, G1

I is not in the same I-MEC as G2
I and G3

I due to
the absence of the v-structure X2 → X1 ← {1}. The schematic on the right further elucidates the
relationships among the true DAG G⋆, the I-MEC, the MEC, and the space of all possible DAGs.

3 TICL: TEST-TIME LEARNING OF CAUSAL STRCTURE

In this section, we present the details of TICL method (see Figure 3). We first formally summarize
the problem and outline its solution, then delve into the two essential components of our TICL —
the self-augmentation strategy and PC-like supervised causal learning.

Problem Summary. We are given a data collection D, which is obtained from an unknown causal
model (G, P ) under an intervention family I. The interventions may be multi-variable, soft, and
unknown. We assume i) P is Markovian and faithful w.r.t. the causal graph and causal sufficiency,
and ii) exogeneity, complete-randomized-context, and generic-context property for the intervention
family. These assumptions are standard and natural in the interventional causal discovery domain.
We aim to predict all causal relations entailed by the given data D (subject to the above assumptions),
which correspond to the invariant causal structures in the I-MEC set of the causal graph G behind
D, as explained in Section 2. Such invariant causal structures can be computationally encapsulated
as a partial DAG, called the Interventional-Complete Partial Directed Acyclic Graph (I-CPDAG),
in which each directed edge indicates an invariant causal relation in the I-MEC set. Besides the
I-CPDAG Discovery task thus discussed, we also want to identify the unknown intervention targets
in the intervention family I (Intervention Target Detection).

Solution Outline. (Step 1) Following the JCI protocol, our method first converts the given interven-
tional data collection into an augmented observational data sample DI . (Step 2) Then, we use the
proposed self-augmentation strategy to construct a Markov chain over the space of augmented graph
structures constrained by interventions, where each Gi fits the parameters in DI , and perform forward
sampling to get Di as the training instance. (Step 3) Lastly, we modify the rule-based logic of the
standard PC algorithm into a learning-based approach, enabling the learning of both the skeleton
model and the orientation model by utilizing the self-augmented training data. The former can further
identify intervention targets using JCI priors, i.e., prior knowledge of relationship between system
variable and environment variable.

3.1 TEST-TIME TRAINING DATA ACQUISITION VIA SELF-AUGMENTATION

We propose leveraging the posterior estimation of causal graphs, P (GI |DI) to generate training data.
Specifically, we sample causal graphs (G1, . . . ,Gn) from P (GI |DI) using a tailored Markov Chain
Monte Carlo (MCMC) designed for interventional data. For each Gi, the parameters governing the
conditional distributions of variables, given their parents in Gi, are re-estimated using the dataset D.
Forward sampling is then applied from Gi with the re-estimated parameters to produce a new dataset
Di, which is compatible with Gi. These paired instances ⟨Gi,Di⟩ are used as training data.

We argue that this augmented training data offers two key advantages: First, since the true causal
graph G∗ is unknown, the posterior estimation (G1, . . . ,Gn) provides a diverse range of plausible
causal structures, capturing epistemic uncertainty. Second, by re-estimating the parameters and
forward sampling fully compatible datasetsDi from each Gi, we generate accurately labeled instances
⟨Gi,Di⟩, where Gi is likely to maintain a certain ”similarity” with the original agumented graph GI ,
which entails the similarity properties of the data Di. Our experiments demonstrate that these steps
are crucial for generating high-quality training data. The key steps are summarized below:
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Figure 3: The overall workflow of TICL.

❶ Initialization: The initial graph G(0) is generated using either a proxy algorithm or random
initialization.

❷ Mutation: In each iteration, a candidate graph Gcand is generated from G(t−1) by mutating the
structure (adding, deleting, or reversing an edge).

❸ Parameters Re-Estimation: For each Gcand, the conditional probability table (CPT) is re-
estimated via maximum likelihood estimation (MLE), ensuring alignment with the augmented
data DI . If a node’s parents remain unchanged, the corresponding CPT is inherited from the
previous graph.

❹ Evaluation: The candidate graph Gcand is evaluated using a goodness-of-fit score, such as
log-likelihood, computed based on its alignment with the observed data.

❺ Acceptance: The acceptance probability of Gcand is computed as: α(Gcand|G(t−1)) =

min

(
1,

score(Gcand)

score(G(t−1))

)
, Gcand is accepted as G(t) with probability α, otherwise it retains G(t−1).

❻ Forward Sampling: Once Gcand is accepted, the corresponding dataset D(t) is generated by
forward sampling from the graph, and the pair ⟨G(t),D(t)⟩ is stored for future use.

Further Optimization Considerations

There are, however, two critical considerations that need to be addressed. First, since the IS-MCMC
process operates on augmented graphs rather than standard causal graph, additional constraints must
be taken to ensure the validity of the process. More importantly, managing the time complexity of
this process is crucial to maintaining efficient inference.

▷ Good Initial State: Using a proxy algorithm to generate an inital graph significantly reduces
convergence time compared to starting from a random graph.

▷ Efficient Parallel Chains: Running multiple parallel IS-MCMC chains allows for faster explo-
ration of the graph space, improving the efficiency.

▷ Intervention Constraints: The mutation process must respect system-environment (sys node –
env node) constraints that are specific to the interventional setup. Specifically, edges from system
to environment nodes (sys→ env) are not permitted, and interactions between environment nodes
are excluded. This ensures that the augmented graphs remain consistent under the JCI framework.

▷ Parameters Reuse: Only the nodes affected by structural changes need to have their CPTs
re-estimated. The rest of the graph can retain its parameters from the previous iteration.

By addressing these factors, we ensure that the process of generating training data at test time is both
effective and efficient, leading to improved performance in causal discovery under interventional
settings. This process is detailed in Algorithm 1, where the key optimization strategies are highlighted.
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Algorithm 1 IS-MCMC Algorithm Workflow
❶ Initialize Seed Graph with Proxy Algorithm: G(0) ← proxy(DI) ▷ Good Initial State

Estimating CPT parameters by maximum likelihood: Θ(0) = MLE(G(0),DI)

Parallel i ∈ 1, 2, . . . , N do: ▷ Efficient Parallel Chains
for iteration t = 1, 2, . . . , L do:

❷ Propose: Gcand ∼ q(G(t) | G(t−1)) with Intervention Constraint. ▷ Intervention Constraints

❸ Re-parameterize according to the previous graph ( B.1.1): Θcand = Estimation(Gcand,Θ(t−1)) ▷ Parameters
Reuse

❹ Calculate Acceptance Probability:α(Gcand | G(t−1)) = min

{
1,

q(G(t−1)|Gcand)P (Gcand|DI)

q(Gcand|G(t−1))P (G(t−1)|DI)

}
❺ Randomly Sample: u ∼ Uniform[0, 1]

Accept proposal: G(t) ← Gcand, Θ(t) ← Θcand if u < α else Reject proposal: G(t) ← Gt−1, Θ(t) ← Θ(t−1)

❻ Forward Sampling data: D(t) ← Sampling(G(t),Θ(t))

3.2 PC-LIKE SUPERVISED CAUSAL LEARNING

We first consider a two-phase, PC-like process for causal discovery, consisting of skeleton detection
and orientation. The first phase detects the skeleton and identifies interventional targets, while the
second phase orients a directed acyclic graph that is identifiable up to an I-MEC. Notably, we propose
that both phases can be transitioned from rule-based logic to a learning-based approach, allowing the
application of supervised learning methods. This shift implies that for each phase, we must define the
learning target, the feature set, and the classification mechanism.

Revisiting the PC Algorithm. The PC algorithm consists of two main phases: Phase 1 identifies
the skeleton and the separating sets SS, determining the existence of edges. Starting from an
undirected complete graph, edges are removed iteratively through conditional independence (CI) tests.
Specifically, an edge Xi −Xj is removed if Xi is conditionally independent of Xj given a subset S
of other variables in the current k-order graph. Phase 2 orients the unshielded triples in the skeleton
based on the separating sets, assigning edge directionality. For example, the triple ⟨Xa, Xc, Xb⟩ is
oriented into a v-structure Xa → Xc ← Xb if Xc is not in the separating set of Xa and Xb.

Connecting PC and Supervised Learning. We now establish a formal connection between PC and
SCL. Due to limited space, we focus on phase 2 as an example. Further details are provided in B.2.

Task: For all unshielded triples U , classify whether each triple ⟨Xa, Xc, Xb⟩ is a v-structure.

Featurization: Query all separating sets SS satisfying Xa ⊥ Xb|SS , and calculate existence feature:

F⟨Xa,Xc,Xb⟩ =

{
1 Xc ∈ SS
0 Xc /∈ SS

Classifier: Train a binary classifier using features:

Corientation(F⟨Xa,Xc,Xb⟩) :=

{
v-structure F⟨Xa,Xc,Xb⟩ ̸= 0

non-v-structure F⟨Xa,Xc,Xb⟩ = 0

In summary, detecting v-structures can be framed as a binary classification task, with the PC algorithm
viewed as a form of feature engineering combined with a static classifier. It’s clear that this approach
can be extended by enriching the feature set, such as considering all possible separating sets or
gathering more conditional dependency information. Crucially, it also enables us to replace heuristic
searches and potentially erroneous CI tests with robust classification mechanism trained on our data.

Prior Knowledge by Augmented Graph

Building on this framework, we introduce two classifiers: one to detect the existence of edges between
nodes, and the other to determine whether an unshielded triple is a v-structure. Details of the feature
set we propose can be found in appendix B.2.3. Additionally, the interventional setting—specifically,
the augmented graph—offers further advantages. During inference, prior knowledge from the
augmented graph allows us to pre-identify certain edges (e.g., (environment node→ system node)),
facilitating the application of Meek rules (Meek, 1995) to identify additional edges.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions:

RQ1: How does the TICL perform in intervention target detection and causal discovery from
interventional data? (Effectiveness).

RQ2: How does the quality and quantity of training data generated by IS-MCMC affect supervised
causal discovery? (Generalizability).

RQ3: How about the computational complexity of our method? (Efficiency).

RQ4: How does the JCI framework benefit the uniformity and performance of our supervised causal
approach TICL across different intervention settings? (Versatility).

Benchmarks & Baselines. We use 14 semi-real causal graph datasets collected from the bn-
learn (Scutari, 2010) repository as benchmarks. To address the research questions, we compare
our TICL with methods1 specifically designed for intervention data, including score-based meth-
ods such as GIES (Hauser & Bühlmann, 2012), IGSP (Wang et al., 2017; Yang et al., 2018),
UT-IGSP (Squires et al., 2020), and continuous optimization-based methods like ENCO (Lippe
et al., 2022), AVICI (Lorch et al., 2022). Additionally, considering the generality of the JCI frame-
work (Mooij et al., 2020), we further extend the existing causal discovery methods of purely observa-
tional data combined with the JCI framework to intervention settings, encompassing constraint-based
methods such as PC (Spirtes & Glymour, 1991), score-based methods like HC (Tsamardinos et al.,
2006), BLIP (Scanagatta et al., 2015), and gradient-based methods such as GOLEM (Ng et al., 2020).

Training Datasets & Metrics. For the training data, we use 400 synthetic causal graph instances
sampled via the IS-MCMCmethod, concurrently employing forward sampling of 10,000 samples from
re-parameterized conditional probability tables as training instances. We employ XGBoost (Chen &
Guestrin, 2016) as the classifier with default parameters to train the model. The F1-Score is used
to evaluate intervention target detection as well as the I-CPDAG discovery. Additionally, for the
latter, we employ two standard metrics for causal assessment: Structural Hamming Distance (SHD)
and Structural Intervention Distance (SID) (Peters & Bühlmann, 2015). More detailed settings are
provided in Appendix E.

4.1 CAUSAL STRUCTURE IDENTIFICATION AND INTERVENTION TARGET DETECTION (RQ1)

Following GIES (Hauser & Bühlmann, 2012) and DCDI (Brouillard et al., 2020), for each graph,
we conduct multiple intervention experiments, with the number of experiments equaling twenty
percent of the number of nodes. In each intervention experiment, to enhance the diversity of
the baseline, we employ single-node interventions (e.g. ENCO method limited to single-node
interventions). As hard interventions can be considered a special case of soft interventions, we opt for
soft intervention measures. Then, we forward-sample 10,000 samples for both observational cases
and each intervention experiment to obtain the test data.

As shown in Table 1 and Table 2, TICL achieves competitive results across all evaluation metrics
on 14 different causal graph datasets. We highlight its advantages in two key aspects: ❶ Multi-Scale
and Diverse Benchmarking: Unlike recent methods (Brouillard et al., 2020; Lorch et al., 2022;
Hägele et al., 2023; Ke et al., 2023b) that are tested only on synthetic datasets with 10-30 nodes,
we evaluate on the diverse bnlearn benchmark, which includes causal graphs inspired by real-world
applications with scales ranging from small to even over 100 nodes. Given that the number of DAGs
grows exponentially with the number of nodes, most methods fail or timeout, while our experiments
demonstrate superior scalability and consistent performance. ❷ Highly Competitive Results: In the
intervention target detection task, our performance significantly surpasses all other methods, with
the F1 score improving by an average of 50.21% over the second-best method across the 14 datasets.
Furthermore, the F1 score of I-CPDAG discovery shows an average improvement of 13.62% over

1Note that some methods cater only to specific intervention settings. We adjust them for the corresponding
experiments, marked with *. Additionally, DCDI (Brouillard et al., 2020) and BaCaDI (Hägele et al., 2023)
failed in experiments due to their focus on continuous data, and the inaccessible or uncompileable source code
of CSIvA (Ke et al., 2023b) and SDI (Ke et al., 2023a) lead us to omit reporting their results. We provide more
discussions and comparisons with related work in Appendix E.2.
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Table 1: Performance comparison of I-CPDAG (SHD ↓ / SID ↓ / F1-Score ↑). ♣: Crashes, ♠:
Timeout. JCI-Improved baseline. Modified adaptation baseline (Intervention targets that
can be known). Classical baselines. Blue means best, underline means second best.

Methods TICL JCI-PC JCI-BLIP JCI-HC JCI-GOLEM AVICI∗ ENCO∗ IGSP∗ UT-IGSP GIES

SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1 SHD SID F1
Earthquake 0 0 1.00 0 0 1.00 0 0 1.00 5 14 0.40 6 19 0.00 3 6 0.40 3 12 0.67 0 0 1.00 0 0 1.00 1 0 0.89

Survey 0 0 1.00 5 18 0.40 1 4 0.91 0 0 1.00 7 23 0.40 8 18 0.22 5 21 0.29 1 4 0.91 1 4 0.91 1 4 0.91
Asia 2 13 0.86 4 19 0.75 3 18 0.77 6 28 0.46 15 36 0.00 7 28 0.31 6 13 0.74 4 17 0.62 5 24 0.73 4 14 0.77

Sachs 3 6 0.90 19 56 0.52 7 41 0.67 5 29 0.74 18 61 0.11 37 46 0.22 41 42 0.26 10 16 0.70 13 21 0.61 15 38 0.48
Child 7 67 0.81 40 299 0.62 10 188 0.78 16 211 0.65 41 330 0.21 ♣ ♣ ♣ 110 251 0.06 29 124 0.63 33 214 0.45 46 197 0.29

Insurance 17 295 0.78 66 537 0.53 24 360 0.68 32 342 0.60 63 687 0.23 ♣ ♣ ♣ 172 505 0.14 80 455 0.34 82 442 0.31 87 261 0.52
Water 45 470 0.53 ♠ ♠ ♠ 46 538 0.49 48 503 0.46 81 564 0.22 ♣ ♣ ♣ 58 527 0.46 ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

Mildew 29 239 0.76 58 766 0.76 35 523 0.51 41 500 0.51 ♠ ♠ ♠ ♣ ♣ ♣ 262 820 0.10 130 482 0.22 123 430 0.25 116 81 0.41
Alarm 9 96 0.91 67 481 0.76 18 152 0.75 38 416 0.61 ♠ ♠ ♠ ♣ ♣ ♣ 236 612 0.11 65 247 0.43 70 274 0.37 88 219 0.39
Barley 55 948 0.63 127 1789 0.57 39 919 0.70 78 1328 0.39 ♠ ♠ ♠ ♣ ♣ ♣ 98 1059 0.55 ♣ ♣ ♣ ♣ ♣ ♣ ♠ ♠ ♠

Hailfinder 42 509 0.66 157 1152 0.33 43 558 0.70 81 935 0.38 ♠ ♠ ♠ ♣ ♣ ♣ 98 730 0.61 232 870 0.14 235 910 0.14 66 973 0.00
Hepar2 42 1216 0.79 ♠ ♠ ♠ 50 1228 0.72 43 855 0.81 ♠ ♠ ♠ ♣ ♣ ♣ 75 1693 0.57 70 1663 0.62 67 1606 0.64 81 1085 0.67

Win95pts 101 611 0.58 ♠ ♠ ♠ 109 900 0.53 ♠ ♠ ♠ ♠ ♠ ♠ ♣ ♣ ♣ 135 893 0.54 ♣ ♣ ♣ ♣ ♣ ♣ 112 992 0.00
Pathfinder 187 9473 0.27 ♠ ♠ ♠ 207 ♣ 0.30 ♠ ♠ ♠ ♠ ♠ ♠ ♣ ♣ ♣ 156 5528 0.47 1345 7261 0.10 1348 9226 0.08 ♠ ♠ ♠

Rank (SHD) 1.14 ± 0.12 5.36 ± 3.23 2.14 ± 0.41 3.86 ± 4.41 7.43 ± 3.67 8.07 ± 2.78 6.36 ± 5.80 4.64 ± 2.66 5.21 ± 2.74 5.50 ± 3.11
Rank (SID) 1.57 ± 0.82 6.43 ± 3.82 3.57 ± 2.53 4.64 ± 5.37 8.14 ± 3.69 7.64 ± 2.66 5.29 ± 7.92 3.93 ± 2.78 4.57 ± 2.67 3.43 ± 2.96
Rank (F1) 1.36 ± 0.37 4.43 ± 4.24 2.29 ± 0.78 3.93 ± 4.49 7.71 ± 3.35 8.00 ± 3.14 5.93 ± 7.49 4.86 ± 2.84 5.21 ± 2.45 5.36 ± 2.52

Table 2: Performance comparison of Intervention Targets Detection (F1-Score ↑).

Datasets Earthquake Survey Asia Sachs Child Insurance Water Mildew Alarm Barley Hailfinder Hepar2 Win95pts Pathfinder Rank (F1)

UT-IGSP 0.50 1.00 0.44 0.33 0.35 0.17 ♣ 0.22 0.15 ♣ 0.27 0.23 ♣ 0.04 5.14±3.27
CITE 1.00 1.00 0.67 0.36 0.67 0.32 ♣ 0.38 0.56 ♣ 0.67 0.61 ♣ 0.60 3.07±2.21

PreDITEr 1.00 1.00 0.67 0.50 ♠ ♠ ♣ ♠ ♠ ♣ ♠ ♠ ♣ ♣ 5.21±5.17

JCI-GOLEM 0.67 0.40 0.40 0.22 0.18 0.11 0.23 ♠ ♠ ♠ ♠ ♠ ♠ ♠ 6.29±2.20
JCI-HC 1.00 0.50 0.67 0.57 0.40 0.29 0.33 0.34 0.29 0.26 0.23 0.23 ♠ ♠ 4.14±1.98

JCI-BLIP 1.00 1.00 0.80 0.67 0.57 0.45 0.44 0.35 0.38 0.34 0.34 0.82 0.29 0.23 2.43±0.67
JCI-PC 1.00 1.00 0.80 0.57 0.28 0.50 ♠ 0.26 0.64 0.70 0.25 ♠ ♠ ♠ 3.43±3.10

TICL 1.00 1.00 1.00 1.00 1.00 0.83 0.86 0.58 0.82 0.83 0.76 0.90 0.50 0.74 1.00±0.00

the best baseline on these datasets. One exception is ENCO on the Pathfinder, where comparable
performance is due to the provision of prior knowledge of known intervention targets. Finally, we
also observe that methods based on the JCI framework achieve competitive performance in both tasks,
indicating that JCI is a promising direction for intervention causal discovery. Overall, TICL stands
out among all these competitors, with an average-F1 rank of 1.36 ± 0.37 for causal discovery and
1.00 ± 0.00 for intervention target detection.

4.2 TRAINING DATA STUDY IN SCL: QUANTITY AND QUALITY (RQ2)

We maintain consistent intervention experimental setups and further assess the impact of pre-generated
synthetic training data quality and quantity on supervised causal learning across different graphs.

Data Quality. To evaluate the influence of training data quality, we consider three different training
data generation strategies: Purely Random, wherein random graphs (Erdős-Rényi model (Erdős et al.,
1960) and Scale-Free model (Albert & Barabási, 2002)) with a probability distribution sampled from
a Dirichlet distribution with parameter α ∼ U [0.1, 1.0] are generated as training data, with node sizes
ranging from 10 to 50; IS-MCMC w/ Random Seed, where random graphs with node sizes equal to
those of the augmented graphs are generated as the initial seed graph while IS-MCMC simulations are
performed; and IS-MCMC w/ Proxy Seed, which involves utilizing proxy algorithms (e.g., JCI-BLIP)
to generate the initial seed graph combined with IS-MCMC simulations as training data. As shown in
Figure 4, we first compare the performance of three strategies on different datasets. Second, we study
the convergence of IS-MCMC sampling for the two strategies, as shown in Figure 5. We observe that:
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Figure 4: Experimental results of different strategies for generating synthetic training data.
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Figure 5: Experimental results of convergence comparison of different IS-MCMC strategies.

Obs.❶ High-quality in-domain training data is crucial for supervised causal model. The three
aforementioned data generation strategies can be viewed as progressively approaching the testing data
domain. As depicted in Figure 4, the training data generated by the two strategies utilizing IS-MCMC
exhibit superior performance across various metrics of the different network compared to the purely
random strategy. Among them, employing the proxy seed method yields the best performance, which
illustrates the importance of the effective starting point we proposed.

Obs.❷ Under in-domain generation, posterior distribution induce training data is the key
of self-augmentation for IS-MCMC. While both IS-MCMC strategies aim for the same posterior
distribution, empirical studies show that initial seeds produced by proxy algorithms frequently exhibit
faster convergence and achieve better results in causal discovery and intervention target detection
than random seeds, as depicted in Figure 5. This also demonstrates the efficiency of our starting point
strategy on the TICL and the faster achievement of the goal.

Data Quantity. We evaluate the scaling law intuition between the performance of supervised causal
models TICL and the training data size from two aspects: the number of training data instances and
the sample size of each instance. Figure 6 provides an overview of the impact of varying scales of
training data instances on performance. Figure 7 outlines the training of TICL on training data of
different sample sizes: specifically, 2k, 5k, 10k, and 20k, and the performance of inference under
default intervention experiment settings. We offer the following observations:
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Figure 6: The impact of different scales of training data instances on performance.

1000 2000 5000 10000 20000
# Training Sample Size

0

1

2

D
is

ta
nc

e

SHD #
SID #

0.8

0.9

1.0

Sc
or

e

(a) Earthquake

F1@ I-CPDAG "
F1 @ Target "

1000 2000 5000 10000 20000
# Training Sample Size

0

7

14

D
is

ta
nc

e

SHD #
SID #

0.6

0.8

1.0

Sc
or

e

(b) Survey

F1@ I-CPDAG "
F1 @ Target "

1000 2000 5000 10000 20000
# Training Sample Size

0

15

30

D
is

ta
nc

e

SHD #
SID #

0.50

0.75

1.00

Sc
or

e

(c) Asia

F1@ I-CPDAG "
F1 @ Target "

1000 2000 5000 10000 20000
# Training Sample Size

0

15

30

D
is

ta
nc

e

SHD #
SID #

0.4

0.7

1.0

Sc
or

e

(d) Sachs

F1@ I-CPDAG "
F1 @ Target "

Figure 7: The impact of different training sample sizes on performance.

Obs.❶ Our TICL benefits from the size of training data instances. More specifically, as depicted
in Figure 6, with the continuous increase in the number of training data instances, the performance
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of TICL consistently improve across all datasets. In smaller networks, a small amount of data is
sufficient to yield reasonably good results. Conversely, in larger networks, the effectiveness of more
training data becomes more pronounced as graph space complexity grows exponentially.

Obs.❷ Our TICL benefits from the size of training data samples. As TICL relies on quantitatively
assessing conditional dependencies using conditional independence as features, as shown in Figure 7,
with the continuous increase in sample size, the independence tests become more stable. Thus, TICL
demonstrates improvement across various performance metrics in different graphs.

4.3 SAMPLING AND RUNNING EFFICIENCY (RQ3)

We maintain the basic setup and assess the efficiency of our method from two perspectives.

Sampling Time. Given that the starting point strategy already demonstrates efficient rapid con-
vergence, we evaluate the second multi-chain MCMC strategy by comparing it to the single-chain
approach. As shown in Figure 8 (a), compared to the single-chain method, the sampling time con-
sumed by multi-chain MCMC maintains a limited increase as the size of the graph grows, with a
significant improvement in acceleration efficiency. This is primarily due to the inherent parallel
adaptability of the our IS-MCMC, highlighting the efficiency of the multi-chain strategy.
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Running Time. We further compare
the execution and inference times of all
baseline methods. As shown in Fig-
ure 8 (b), we record the time intervals
consumed by different methods, leading
to two observations: ❶ Inefficiency of
other learning-based methods. These
methods typically require around 100-
500 seconds of runtime, whereas most
non-SCL methods complete tasks within
50 seconds. This discrepancy is mainly
due to the slow nature of gradient opti-
mization. ❷ Our method achieves efficiency similar to non-SCL methods. Moreover, although
our training time may include proxy algorithms, this is not mandatory, as the random seed is optional.
Therefore, it depends on the actual scenario; if dealing with causal discovery in high-risk areas, time
cost becomes a secondary consideration.

4.4 DIFFERENT INTERVENTION SETTINGS STUDY (RQ4)

We further conducted experiments and analyses on RQ4 regarding intervention types, intervention
ratios, and test sample sizes. Due to the complex diversity of different situations, this has been
rarely considered comprehensively before. Nevertheless, our results still demonstrate the consistent
superiority of TICL across various settings. Due to page limitation, more analysis see Appendix F.

5 CONCLUSION

In conclusion, TICL offers a novel solution to the problem of causal discovery from interventional
data, particularly in the face of distribution shifts between training and test data. TICL employs the
test-time training, namely, accessing test data and using self-augmentation through the IS-MCMC
process to obtain training data. By introducing this technique that generates training data at test time,
TICL adapts to the biases inherent in the test distribution, thereby bypassing domain generalization
issues. Our approach to training data acquisition highlights a novel application of posterior estimation:
leveraging epistemic uncertainty to generate high-quality test-time training data. This method
enhances model performance and underscores its potential in advancing SCL. Our integration of
the JCI framework with SCL, through a learning-based modification of the PC algorithm, enables
more effective causal inference from self-augmented training data. The extensive experimental
results demonstrate that TICL outperforms existing methods in both causal structure inference and
interventional target detection, underscoring its robustness and adaptability in real-world scenarios.
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A BACKGROUND KNOWLEDGE AND RELATED WORK

A.1 BACKGROUND KNOWLEDGE

In this section, we give basic concepts related to causal graphs and joint causal inference.

A.1.1 CAUSAL GRAPH-RELATED CONEPT

Definition A.1 (Directed Acyclic Graph). A directed acyclic graph (DAG) is a directed graph G that
has no cycles, i.e. no directed paths starting and ending at the same vertex.

Definition A.2 (Skeleton). A undirected graph K = (VK, EK) represents the skeleton of a causal
DAG G = (VG , EG) if (X → Y ) ∈ EG ∪ (Y → X) ∈ EG ⇐⇒ (X − Y ) ∈ EK.

Definition A.3 (UT and V-structures). A triple of variables ⟨X,T, Y ⟩ in a skeleton is an unshielded
triple, or short for UT, if X and Y are adjacent to T but are not adjacent to each other. ⟨X,T, Y ⟩
can be further oriented to become a v-structure X → T ← Y , in which T is called the collider.

Definition A.4 (PC). Denote the set of parents and children of X in a skeleton as PCX , in other
words, PCX are the neighbors of X in the skeleton. For convenience, if we discuss PCX in the
context of a UT ⟨X,T, Y ⟩, we intentionally mean the set of parents and children of X but exclude T .
Similarly, PCT excludes X,Y .

Definition A.5 (Vicinity). We define the vicinity of a UT ⟨X,T, Y ⟩ as V⟨X,T,Y ⟩ := {X,T, Y } ∪
PCX ∪ PCY ∪ PCT . Vicinity is a generalized version of PC, i.e., the neighbors of {X,T, Y } in the
skeleton.

Definition A.6 (Sepsets). Sepsets S can be define: {S : X⊥Y |S, S ⊂ PCX ∪ T, or S ⊂ PCY ∪ T}.
Under faithfulness assumption, sepsets S is an ensemble where each item is a subset of variables
within the vicinity that d-separates X and Y .

Definition A.7 (Causal Graph). A causal graph G is a graphical description of a system in terms
of cause-effect relationships, i.e. the causal mechanism. Specifically, for each edge (X,Y ) ∈ E , X
is the direct cause of Y , and Y is the direct effect of X , satisfying the causal edge assumption, i.e.,
the value assigned to each variable X is completely determined by the function F given its parent.
Formally, this can be expressed as: Xi := f(Pa(Xi)), ∀Xi ∈ V .

As natural consequence of such definitions, we can define models that entail both the structural
representation and the set of functions that regulate the underlying causal mechanism.

Definition A.8 (Structural Causal Model). A structural causal model (SCM) is defined by the tuple
M = (V,U ,F , P ), where:

• V is a set of endogenous variables, i.e. observable variables,
• U is a set of exogenous variables, i.e. unobservable variables, where U ∪ V = ∅
• F is a set of functions, where each function fi ∈ F is defined as fi := (V ∪ U)p → V , with
p the ariety of fi, so that fi determines completely the value of Vi,

• P is a joint probability distribution over the exogenous variables P (U) =
∏

i P (Ui).
Assumption 1 (Causally Sufficiency). The set of variables V is said to be causally sufficient if and
only if every cause of any subset of V is contained in V itself.

Note that, in our setup, due to the causality sufficiency, exogenous variables are ignored.

A.1.2 JCI ASSUMPTION-RELATED CONEPT

Assumption 0 (”Joint SCM”). The data-generating mechanism is described by a simple SCMM of
the form:

M :


Ck = fk(XPAH(k)∩I ,CPAH(k)∩K,EPAH(k)∩J ), k ∈ K,
Xi = fi(XPAH(i)∩I ,CPAH(i)∩K,EPAH(i)∩J ), i ∈ I,
P(E) =

∏
j∈J P(Ej),

(1)

that jointly models the system and the context. Its graph G(M) has nodes I ∪ K (corresponding to
system variables {Xi}i∈I and context variables {Ck}k∈K).
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It will always make this assumption in order to facilitate the formulation of JCI, the following
three assumptions that we discuss are optional, and their applicability has to be decided based on a
case-by-case basis. Typically, when a modeler decides to distinguish a system from its context, the
modeler possesses background knowledge that expresses that the context is exogenous to the system:

Assumption 1. (”Exogeneity”) No system variable causes any context variable, i.e.,

∀k ∈ K,∀i ∈ I : i→ k /∈ G(M).

Assumption 2. (”Complete randomized context”) No context variable is confounded with a system
variable, i.e.,

∀k ∈ K,∀i ∈ I : i↔ k /∈ G(M).

JCI Assumption 1 is often easily justifiable, but the applicability of JCI Assumption 2 may be less
obvious in practice. Then, Assumption 3 is further stated, which can be useful whenever both JCI
Assumptions 1 and 2 have been made as well.
Assumption 3. (”Generic context model”) The context graph2 G(M)K is of the following special
form:

∀k ̸= k′ ∈ K : k ↔ k′ ∈ G(M) ∧ k → k′ /∈ G(M).

The following key result essentially states that when one is only interested in modeling the causal
relations involving the system variables (under JCI Assumptions 1 and 2), one does not need to care
about the causal relations between the context variables, as long as one correctly models the context
distribution.
Theorem 1. Assume that JCI Assumptions 0, 1 and 2 hold for SCMM:

M :


Ck = fk(CPAH(k)∩K,EPAH(k)∩J ), k ∈ K,
Xi = fi(XPAH(i)∩I ,CPAH(i)∩K,EPAH(i)∩J ), i ∈ I,
P(E) =

∏
j∈J P(Ej),

For any other SCM M̃ satisfying JCI Assumptions 0, 1 and 2 that is the same asM except that it
models the context differently, i.e., of the form

M̃ :


Ck = f̃k(CPAH̃(k)∩K,EPAH̃(k)∩J̃ ), k ∈ K,
Xi = fi(XPAH(i)∩I ,CPAH(i)∩K,EPAH(i)∩J ), i ∈ I,
P(E) =

∏
j∈J̃ P(Ej),

with J ⊆ J̃ and PAH(i) = PAH̃(i) for all i ∈ I, we have that

1. the conditional system graphs coincide: G(M)(K) = G(M̃)(K);

2. if M̃ and M induce the same context distribution, i.e., PM(C) = PM̃(C), then for
any perfect intervention on the system variables (I, ξI) with I ⊆ I (including the non-
intervention I = ∅), M̃(I,ξI) is observationally equivalent toM(I,ξI).

3. if the context graphs G(M̃)K and G(M)K induce the same separations, then also G(M̃) and
G(M) induce the same separations (where “separations” can refer to either d-separations
or σ-separations).

The following corollary of Theorem 1 states that JCI Assumption 3 can be made without loss of
generality for the purposes of constraint-based causal discovery if the context distribution contains no
conditional independences:
Corollary 2. Assume that JCI Assumptions 0, 1 and 2 hold for SCMM. Then there exists an SCM
M̃ that satisfies JCI Assumptions 0, 1 and 2 and 3, such that

1. the conditional system graphs coincide: G(M)(K) = G(M̃)(K);

2Remember that G(M)K denotes the subgraph on the context variables K induced by the causal graph
G(M).
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2. for any perfect intervention on the system variables (I, ξI) with I ⊆ I (including the
non-intervention I = ∅), M̃(I,ξI) is observationally equivalent toM(I,ξI);

3. if the context distribution PM(C) contains no conditional or marginal independences, then
the same σ-separations hold in G(M̃) as in G(M); if in addition, the Directed Global
Markov Property holds forM, then also the same d-separations hold in G(M̃) as in G(M).

A.2 RELATED WORK

In this section, we present some of the most relevant work to the key points of this paper.

A.2.1 INTERVENTIONAL CAUSAL DISCOVERY

Recovering the underlying causal structure from observational and interventional data is a fundamen-
tal research problem (Spirtes et al., 2000; Pearl, 2009). When only observational data are available,
constraint-based methods identify a directed acyclic graph (DAG) consistent with conditional inde-
pendence constraints. Notable examples include the PC algorithm (Spirtes & Glymour, 1991) and
its variants, such as Conservative-PC Ramsey et al. (2012) and PC-stable (Colombo et al., 2014).
Score-based methods, including GES (Chickering, 2002a) and hill-climbing (Koller & Friedman,
2009), search for the optimal DAG under a predefined scoring function combined with constraints.
Gradient-based methods further extend score-based approaches by transforming discrete searches
into continuous equality constraints, such as NOTEARS (Zheng et al., 2018), GAE (Ng et al., 2019),
and GraN-DAG (Yu et al., 2019). However, without specific assumptions, the identifiability of struc-
tures solely derived from observational data is theoretically limited. Some works have extended
causal discovery algorithms to intervention settings (Hauser & Bühlmann, 2012; Wang et al., 2017;
Yang et al., 2018; Squires et al., 2020; Zhang et al., 2024; von Kügelgen et al., 2024). For exam-
ple, GIES (Hauser & Bühlmann, 2012) pioneered the case with known hard interventions, while
IGSP (Wang et al., 2017; Yang et al., 2018) introduced a greedy sparse ordering method to handle
known general interventions. Building on this, UT-IGSP (Squires et al., 2020) partially addresses the
scenario of unknown target interventions. However, given the diversity of intervention data types and
experimental strategies, these methods still fail to universally address various intervention scenarios,
limiting effective causal identification. In contrast, our approach offers a unified solution for causal
discovery from intervention data by leveraging a joint causal inference framework combined with
supervised causal learning methods, achieving practical empirical performance.

A.2.2 SUPERVISED CAUSAL LEARNING

Supervised Causal Learning (SCL) is an emerging paradigm of causal discovery, and has demonstrated
strong empirical performance. The strength of SCL lies in its ability to learn complex classification
mechanisms, contrasting with traditional rule-based logics for detecting causal relations. Early SCL
work focused on pairwise causal discovery, such as RCC (Lopez-Paz et al., 2015) and MRCL (Hill
et al., 2019). Further efforts have shifted toward multivariate causal discovery, with models like
DAG-EQ (Li et al., 2020) and SLdisco (Petersen et al., 2022), which apply to linear causal models.
ML4C (Dai et al., 2023) and ML4S (Ma et al., 2022) focus on v-structure detection and skeleton
learning, respectively. For interventional data, methods such as CSIvA (Ke et al., 2023b) and
AVICI (Lorch et al., 2022) extended SCL to handle known, hard interventions. However, these
models are limited in generalization. In contrast, our approach adopts a test-time training paradigm,
which introduces a process that acquires training data during test time. This allows the model to

’overfit’ to the specific biases of the test data, addressing the generalization issue and significantly
improving performance in real-world settings.

A.2.3 TEST-TIME TRAINING

A body of work (Sun et al., 2020; Wang et al., 2020; 2022; Liu et al., 2021) has explored test-time
training paradigm to address the challenge of distribution shift in test data. A common approach is to
identify an auxiliary task that aids the model in better adapting to the test data. For instance, TTT (Sun
et al., 2020) jointly trains a model for rotation prediction and image classification. TTT++ (Liu
et al., 2021) extends this by employing a contrastive learning approach as an auxiliary task for

19



Under review as a conference paper at ICLR 2025

adaptation. In the context of causal discovery, test-time training exhibits distinctive characteristics.
Unlike prior works, causal discovery benefits from the ability to generate test-time training data in
a self-supervised manner. We refer to this approach as self-augmentation. This self-augmentation
allows test-time training data to capture nuances and biases inherent to the test data, thereby making
it well-suited for supservised causal learning. Currently, there is limited work in this area, with the
most relevant being ML4S (Ma et al., 2022), which proposes a heuristic for generating vicinal graphs
at test time for skeleton learning. To the best of our knowledge, we are the first to present a systematic
approach to test-time adaptation in SCL, and we extend it to a broader context of causal discovery in
general interventional settings.

A.2.4 JOINT CAUSAL INFERENCE

Joint Causal Inference (JCI) (Mooij et al., 2020) presents a joint causal inference framework aiming
to integrate multiple observed outcomes collected during different experiments (i.e., contexts). In this
framework, the observed variable set is divided into two disjoint sets: system variables and context
variables. After that, S-FCI (Li et al., 2023) builds upon JCI by introducing a new constraint-based
algorithm, enabling learning from observational and intervention data across multiple domains.
(Mascaro & Castelletti, 2023) also provides a graphical representation theory of I-MEC under general
interventions and designs compatible priors for Bayesian inference to ensure score equivalence of
indistinguishable structures. Although JCI provides a novel framework for addressing intervention
problems and simplifies the unification of different intervention settings for supervised causal learning,
it does not directly address the critical questions of what the appropriate learning objectives are when
applying supervised learning, and how the learning process should be designed. To this end, we
highlight the overlooked connection between identifiability in ICD and SCL. Through the modified
PC-like SCL algorithm, a two-phase learning method is developed for predicting identifiable causal
structures (I-CPDAG) while ensuring theoretical identifiability.

B INPLEMENTATION DETAILS

B.1 TEST-TIME TRAINING DATA ACQUISITION VIA SELF-AUGMENTATION

B.1.1 PARAMETER RE-ESTIMATION FOR CPT

The joint distribution represented by a randomly generated conditional probability table (CPT)
may significantly differ from the true joint distribution corresponding to the augmented data, thus
undermining the forward-sampling process. Therefore, we propose approximating the joint posterior
not only on the structure of the causal graph but also on the parameters of its conditional probability
distributions. This approach ensures that the distribution of the augmented graph maintains in-domain
”similarity” with the true underlying distribution.

Specifically, we first use maximum likelihood estimation (Myung, 2003) to estimate the conditional
probability tables (CPTs) of the initial seed graph. Secondly, during the IS-MCMC iteration process,
we propose that the CPTs of the current step’s graph are determined by the CPTs from the previous
step. For each node in the current step’s graph, if its parent nodes remain the same as those in the
corresponding node from the previous step’s graph, its CPT is directly inherited from the previous
step. Otherwise, nodes may lose previous parent nodes due to edge deletion or gain new parent nodes
due to edge addition as a result of graph structure transformation operations.

For edge deletions that result in the loss of previous parent nodes, we can adjust the CPT by
marginalization. For instance, in step t− 1, if node X has parent nodes Y and Z, the corresponding
CPT encodes the distribution P (X|Y,Z). In step t, if the edge Y → X is deleted, the new conditional
distribution should encode P (X|Z). This can be naturally achieved by marginalizing out the node Y
using the law of total probability, i.e., P (X|Z) =

∑
y P (X|Z, Y = y).

For edge additions that result in new parent nodes, the situation becomes more complicated. For
instance, in step t, if a new edge U → X is added, introducing a new parent node U , the corresponding
conditional probability distribution should encode P (X|Y, Z, U). Considering we primarily deal with
discrete data, and the Dirichlet-multinomial distribution is a natural choice for modeling categorical
distributions, we use the Dirichlet distribution to sample different CPTs. Specifically, for each
conditional probability distribution P (X|Y = y, Z = z, U = u), we estimate its parameters αi by
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maximizing the log-likelihood function of the data, which is given by:

F (α) = log p(D|α) = log
∏
i

p(pi|α) = log
∏
i

Γ (
∑

k αk)∏
k Γ(αk)

∏
k

pαk−1
ik

= N

(
log Γ

(∑
k

αk

)
−
∑
k

log Γ (αk) +
∑
k

(αk − 1) log p̂k

),

where log p̂k = 1
N

∑
i log pik represents the observed sufficient statistics, Γ(x) denotes the Gamma

function and is defined to be:
∫∞
0

tx−1e−tdt. Since this function does not have a closed-form solution,
we employ a fixed-point iteration technique (Minka, 2000) to estimate the parameters. The core
idea is to find an initial guess for α and iteratively refine it to converge to the maximum likelihood
estimate. It seek a function F (·) that provides a lower bound for the log-likelihood function:

F (α) ≥ N

((∑
k

αk

)
Ψ

(∑
k

αold
k

)
−
∑
k

log Γ(αk) +
∑
k

αk log p̂k + C

)
,

where C is a constant dependent on α, ensuring that the function is optimized at α. By setting the
gradient to zero, a new iterative value for α is derived:

αi
k = Ψ−1

(
Ψ

(∑
k

αi−1
k

)
+ log p̂k

)
,

where inverse digamma function Ψ−1 can be efficiently solved using the Newton-Raphson
method (Ypma, 1995). Subsequently, for each possible value x of the variable X , we sample
from Dirichlet(βαi) to obtain P (X|Y = y, Z = z, U = u), thereby forming our target distribution
P (X|Y,Z, U). Here, β is a hyperparameter that adjusts the variance, set to 0.25.

B.1.2 INTERVENTIONAL STRUCTURAL-MARKOV CHAIN MONTE CARLO

Algorithm 2 Standard IS-MCMC Algorithm
Input:

Chain Length: T , Expected Training Sample Size: N
Output:

Synthetic training data set: {(G(1),D(1)), (G(2),D(2)), . . .}, (G(N),D(N))
Pipeline:

1. Initialize Seed Graph G(0) ∼ GI
2. Estimating CPT parameters by maximum likelihood Θ(0) = MLE(G(0),DI)

3. for iteration t = 1, 2, . . . do:

(a) Propose: Gcand ∼ q(G(t) | G(t−1)) with Intervention Constraint.
(b) Parameter estimate for current graph: Θcand = Estimation(Gcand,DI)

(c) Calculate Acceptance Probability:α(Gcand | G(t−1)) = min
{
1, q(G(t−1)|Gcand)P (Gcand|DI)

q(Gcand|G(t−1))P (G(t−1)|DI)

}
(d) Randomly Sample: u ∼ Uniform[0, 1]

(e) Accept the proposal: G(t) ← Gcand, if u < α then Reject the proposal: G(t) ← Gt−1,
Θ(t) ← Θ(t−1)

(f) Forward Sampling data: D(t) ← Sampling(G(t),Θ(t))

We first present the standard version of the IS-MCMC algorithm, as outlined in Algorithm 2. The first
step involves initializing the seed graph, which is typically sampled from the prior distribution of the
augmented graph. The second step estimates the parameters of the conditional probability tables using
maximum likelihood estimation based on the initial graph structure and the augmented data. The
main loop of the algorithm consists of three parts: (1) generating a proposed (or candidate) sample
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graph from the proposal distribution with intervention constraint; (2) calculating the acceptance
probability using the acceptance function α(·), based on the proposal distribution and the posterior
probability; (3) accepting the candidate sample with probability α (the acceptance probability), or
rejecting the candidate sample with probability 1− α.

Algorithm 3 Fast IS-MCMC Algorithm
Input:

Chain Length: L, Expected Training Sample Size: N
Output:

Synthetic training data set: {(G(1),D(1)), (G(2),D(2)), . . .}, (G(N),D(N))
Pipeline:

1. Initialize Seed Graph with Proxy Algorithm G(0) ← proxy(DI)

2. Estimating CPT parameters by maximum likelihood Θ(0) = MLE(G(0),DI)

3. Parallel i ∈ 1, 2, . . . , N do:

(a) G(0) ← G(t−1)

for iteration j = 1, 2, . . . , L do: Gj ← Mutation Operation with Constraint(G(j−1))

G(cand) ← G(L)

(b) Reparameterize according to Sec B.1.1: Θcand = Estimation(Gcand,Θ(t−1))

(c) Calculate Acceptance Probability:α(Gcand | G(t−1)) = min
{
1, q(G(t−1)|Gcand)P (Gcand|DI)

q(Gcand|G(t−1))P (G(t−1)|DI)

}
(d) Randomly Sample: u ∼ Uniform[0, 1]

(e) Accept the proposal: G(t) ← Gcand, if u < α then Reject the proposal: G(t) ← Gt−1,
Θ(t) ← Θ(t−1)

(f) Forward Sampling data: D(t) ← Sampling(G(t),Θ(t))

However, as the number of nodes increases, the computational efficiency of the standard IS-MCMC
algorithm becomes untenable. Therefore, for the IS-MCMC algorithm applied to large graphs, we
enhance it from two aspects. For the initial random seed graph in the first step, we recommend using
proxy algorithms such as JCI+BLIP, which can provide a good starting point that is closer to the target
graph structure, thereby accelerating the convergence rate. For the iterative MCMC process in the
second step, we suggest parallelizing the computation by simultaneously executing multiple chains.
Each chain performs consecutive edge perturbations, followed by sequential accept-reject sampling,
to conduct approximate computations. The fast IS-MCMC workflow is shown in Algorithm 3. If not
specified otherwise, we use the fast IS-MCMC method as the default setting.
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Figure 9: The detailed framework of TICL.
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B.2 TWO-PHASE PC-LIKE SUPERVISED CAUSAL LEARNING

The two-phase supervised learning approach of TICL is inspired by the PC algorithm (Spirtes &
Glymour, 1991). We first describe the PC algorithm in detail and then reinterpret it from a machine
learning perspective, providing a formalization. We also provide detailed feature engineering and
techniques. As shown in Figure 9, we further present a more detailed framework diagram, which
includes the specific process of two-phase learning.

B.2.1 REVISITING THE PC ALGORITHM

The PC algorithm consists of three main phases, as shown in Algorithm 4. Phase 1 identifies the
skeleton and the separating sets, determining the existence of edges. Phase 2 orients the unshielded
triples in the skeleton based on the separating sets, establishing edge directionality. Finally, phase 3
further refines the edge directionality using heuristic Meek Rules.

Algorithm 4 Pipeline of PC Algorithm Spirtes & Glymour (1991)

Require:
Conditional Independence Information CI among Variables.
Undirected Complete Graph C Obtained by Variables.

Output:
Separation Sets: SS (Temporary Product)
Skeleton: K (Intermediate Product)
Unshielded Triple Sets of Skeleton: U (Temporary Product)
Partially Directed Acyclic Graph, i.e., PDAG: P (Intermediate Product)
Completed Partially Directed Acyclic Graph, i.e., CPDAG: G

Pipeline:

1. Adjacency Determination: Find the skeleton K and separation sets SS based on undirected
complete graph C and conditional independence information CI using Algorithm 5.

2. Orientation Determination: Orient unshielded triples U in the skeleton K to derive partially
directed acyclic graph P based on the separation sets SS using Algorithm 6.

3. In P orient as many of the remaining undirected edges as possible by repeated application
of rules R1-R3 to derive completed partially directed acyclic graph G.

In phase 1, we start with a complete undirected graph C. This graph is then sparsified through
iterative conditional tests information CI, where an edge Xi −Xj is removed if Xi is conditionally
independent of Xj given some subset S of the remaining variables of the current k-order graph.
These conditional independence queries proceed in a cascading manner, making the algorithm
computationally efficient for high-dimensional sparse graphs since we only need to query conditional
independencies up to order d − 1, where d is the maximal in degree of the underlying DAG. We
summarize this process in Algorithm 5.

In phase 2, it aims to identify V-structures. Specifically, it considers all unshielded triples U in the
skeleton K and orients an unshielded triple (Xa, Xc, Xb) into a V-structure if and only if Xc is not in
the separating set of Xa and Xb. We also summarize this process in Algorithm 6.

In phase 3, heuristic meek rules (Meek, 1995) are further applied iteratively to orient as many of the
remaining undirected edges as possible. It contains the following three rules:

• R1: If Xa → Xb − Xc exists, change Xb − Xc to Xb ← Xc (to avoid creating a new
V-structure).

• R2: If Xa → Xb → Xc exists, change Xa −Xc to Xa → Xc (otherwise a directed cycle is
created).
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Algorithm 5 Pipeline of Adjacency Determination / Phrase 1 of the PCAlgorithm Kalisch & Bühlman
(2007)

Require:
Undirected Complete Graph C Induced by Variables.
Sequential Order k.

Output:
Skeleton: K
Separation Sets: SS

Pipeline:
k = 1

repeat

for each adjacent pair (Xi, Xj) in C do
for each subset S ⊆ adj(C, Xi)\{Xj} or adj(C, Xj)\{Xi} with |S|= k do

if Xi and Xj are conditionally independent given S then
Delete edge Xi −Xj from C
Let separation set SS(Xi,Xj) = SS(Xj ,Xi) = S

end if
end for

end for ▷ This process can be supervised for learning

k = k + 1

until all adjacent pairs (Xi, Xj) in C satisfy |adj(C, Xi)\{Xj}|< k

Algorithm 6 Pipeline of Orientation Determination / Phrase 2 of the PC Algorithm Kalisch &
Bühlman (2007)

Require:
Skeleton: K
Separation Sets: SS
Unshielded Triple Sets of Skeleton: U

Output:
Partially Directed Acyclic Graph, i.e., PDAG: P

Pipeline:

for each non-adjacent pair (Xa, Xb) with common neighbour Xc in U do
if Xc /∈ SS(Xa,Xb) then

Replace Xa −Xc −Xb in K by Xa → Xc ← Xb

end if
end for ▷ This process can be supervised for learning

P = S
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• R3: If there are Xa −Xc1 → Xb, Xa −Xc2 → Xb, and Xc1, Xc2 are not adjacent, change
Xa −Xb to Xa → Xb (otherwise a new v-structure or a directed cycle is created).

B.2.2 CONNECTING PC AND SUPERVISED MACHINE LEARNING

In addition to phase 3, phase 1 and 2 can be considered as classification tasks regarding the determina-
tion of the presence of edges and the orientation of unshielded triples based on extracted conditionally
independent features. We continue below with a detailed explanation.

■ From a machine learning perspective, we formalize phase 1 as follows:

Task: For the current k-oreder graph, classify whether there is an edge between vertices Xi and Xj .

Featurization: Query a subset S of the current remaining variables of k-oreder graph, and calculate
the conditional dependence between Xi and Xj given S:

F
(k)
(Xi,Xj)

= min
S⊆X\{Xi,Xj}

{Xi ∼ Xj |S}

Classifier: Train a binary classifier for (k + 1)-order graph using current k-order features:

C
(k+1)
skeleton(F

(k)
(Xi,Xj)

) :=

{
adjacent F

(k)
(Xi,Xj)

̸= 0

non− adjacent F
(k)
(Xi,Xj)

= 0

■ From a machine learning perspective, we formalize phase 2 as follows:

Task: For all unshielded triples U , classify whether each triple < Xa, Xc, Xb > is a v-structure.

Featurization: Query all separating sets SS satisfying Xa ⊥ Xb|SS, and calculate the existence
Boolean feature:

F<Xa,Xc,Xb> =

{
1 Xc ∈ SS
0 Xc /∈ SS

Classifier: Train a binary classifier using features:

Corientation(F<Xa,Xc,Xb>) :=

{
v-structure F<Xa,Xc,Xb> ̸= 0

non− v-structure F<Xa,Xc,Xb> = 0

Theorem 3. (Spirtes and Glymour (Spirtes et al., 2000)) Let the distribution of X be faithful to a
DAG G, and assume that we are given perfect conditional independence information about all pairs
of variables (Xi, Xj) in X given subsets S ⊆ X \ {Xi, Xj}. The output of PC algorithm is the
CPDAG that represents G.

However, in practical applications, conditional independence tests relying on data estimates can
encounter issues like limited sample size, data quality issues, and intricate dependency struc-
tures (Günther et al., 2022). Thus, it is advisable to employ more systematic featurization procedures
to enhance classification performance in a more effective and robust manner.

B.2.3 SKELETON AND ORIENTATION FEATURE ENGINEERING

In the realm of skeleton learning, drawing upon the experience of (Cheng et al., 2002; Ding et al.,
2020; Xiang & Kim, 2013; Ma et al., 2022), we have extracted primary features of the two categories:
quantitative k-order conditional dependencies and local structural information. For orientation
learning, again relying on the experience of (Vijaymeena & Kavitha, 2016; Zanga et al., 2022; Dai
et al., 2023), we have extracted main features of the two categories: quantitative unshielded triplet
conditional dependencies and local structural information. The intuition behind it is detailed below.

In skeleton inference, we first look for useful features of the type of conditional test information.
Intuitively, for the numerical vectors resulting from the conditional tests performed on the current
node pairs, which indicate the conditional dependency between nodes, we consider them as primary
features. Additionally, when conducting higher-order conditional tests, if the dependency relationships
decrease significantly, it suggests that they may be blocked by new nodes, so this residual conditional
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Figure 10: Feature extraction example of edge X1 −X2 in 1-order skeleton graph.

Table 3: The features extracted for skeletal learning. As shown in Figure 10, k = 2, is used to
illustrate the design intuition and computational examples.

Skeleton Feature

Type Name Calculate Example Raw Results Dimension

CI Test
Information

k-order
Conditional
Dependence

{Xi ∼ Xj |S2} , |S2|= 2 [0.6, 0.3, 0.7, 0.4, 0.6, 0.1] Not Fixed→ 15

Residual
Conditional
Dependence

{Xi ∼ Xj |S1} −minXq {Xi ∼ Xj |S2 ∪ {Xq}},
|S1|= 1, |S2|= 2

[0.4, 0.2, 0.4 ,0.7] Not Fixed→ 15

Structural
Information

Competitiveness

|{Xq|Xq∈nbd(Xi),Ck−1(Xi,Xj)>Ck−1(Xi,Xq)}|
|nbdGk−1

(Xi)|−1
,

|{Xq|Xq∈nbd(Xj),Ck−1(Xj ,Xi)>Ck−1(Xj ,Xq)}|
|nbdGk−1

(Xj)|−1
,

Ck−1(Xi, Xj)

[0.5, 0.75, 0.8] 3

Degree deg(Xi), deg(Xj) [4, 4] 2

Density |nbd(Xi)∩nbd(Xj)|
min (|nbd(Xi)|,|nbd(Xj)|) [1] 1

dependency can be seen as another complementary feature. Considering the structural aspect,
conditional independence may be influenced by the information of the local graph structure in which
the current node pairs are located. Generally, the sparser the local graph is, the less likely it is
to be disconnected by conditional independence tests. Therefore, we select three main features
for measurement, including the relative competitiveness of adjacent edges between node pairs, the
degrees of node pairs, and the overlapping density of adjacent edges of node pairs. In Figure 10, we
provide an example of a 1-order skeleton graph, based on which we further summarize the types of
feature variables and calculation methods in Table 3.

In the unshielded triplet orientation, we also seek useful features of the condition test information type.
Unlike relying solely on specific triplet condition test information, we extend it to the neighborhood.
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Figure 11: Orientation feature extraction example of unshielded triple Xa −Xc −Xb.

Specifically, in addition to testing variables Xa and Xb themselves, we also extend the set variables
of their parents and children, PCXa

and PCXb
, as testing variable domains. For the condition

variables, in addition to the empty set ∅, SS, Xc, we further extend the set variables of the parents and
children of Xc to the condition domain, including their element-wise union SS ∨Xc, SS ∨ PCXc

.
Therefore, by selecting a pair of variables from the variable domain and a condition from the condition
domain, we obtain a total of 4× 6 = 24 neighborhood conditional dependency features. Furthermore,
considering structural information, we overlap numerical and scale numerical measures of the size
and overlap features of the sets of the variable domain and the condition domain to reflect the potential
sparsity of the local graph structure. As shown in Figure 11, we provide an example of directional
feature extraction, based on which we further summarize the types of feature variables and calculation
methods in Table 4.

Table 4: The features extracted for orientation learning, as shown in Figure 11, are used to illustrate
the design intuition and computational examples.

Orientation Feature

Type Name Calculate Example Raw Results Dimension

CI Test
Information

Vicinity
Conditional
Dependence

{Variable | Condition},
Variable: {Xa ∼ Xb, Xa ∼ PCXb

, PCXa ∼ Xb, PCXa ∼ PCXb
}

Condition: {∅, SS,Xc, Xc ∨ SS, PCXc , PCXc ∨ SS}

[0.9, 0.8, 0.8, 0.6, 0.8, 0.7,
0.7, 0.8, 0.8, 0.7, 0.5, 0.4,
0.8, 0.4, 0.4, 0.3, 0.6, 0.2,
0.9, 0.8, 0.9, 0.7, 0.6, 0.4]

24

Structural
Information

Overlap

|set1∩set1|
min (|set1|,|set2|) ,

set ∈ PCXa
, PCXb

, PCXc
,SS,

we also add set1 = Xc, set2 = SS

[0.5, 0, 0.5, 0.5, 0, 0.5 ,1] 7

Scaling
#PCXa ,#PCXb

,#PCXc ,
#SS, 1

#SS

∑
SS∈SS #SS [2, 3, 2, 3, 4

3 ] 5

It is noted that the conditional dependence features mentioned above may be dynamically changing,
which does not conform to the fixed-size features required by most traditional machine learning
models. However, this can be easily addressed through classical kernel mean embedding tech-
niques (Smola et al., 2007) to obtain fixed-length embedding features:

1

|D|
∑
z∈D

(cos(< wj , z > +bj))
m
j=1 ∈ Rm.

Here, m = 15, which signifies that each extended feature now possesses a fresh embedding dimension
of 15. Furthermore, we incorporate an extra set of five statistics comprising maximum, minimum,
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mean, standard deviation, and set size. Consequently, we merge all these derived features to construct
the input feature for the model.

Additionally, various methods exist for assessing conditional dependence, such as determining the
p-value through testing for conditional independence or using conditional mutual information (Cover,
1999). When dealing with categorical variables, the G2 test is a suitable option (Agresti, 2012). In
our approach, we employ an approximate version of the G2 statistic and rely on p-values to evaluate
conditional dependence.

It is worth noting that the p-value can become insignificant due to the double-precision bit limit
in computers. To overcome this issue, transforming p-values can be employed to mitigate such
limitations and offer a means to evaluate conditional dependency. To begin with, we define the
complementary error function as:

g(z) = 1− 2√
π

∫ z

0

e−t2 dt,

and utilize the quantity z as the inverse of g:

z = g−1(x).

By applying the non-linear transformation of g−1 to a given p-value x, we derive a re-scaled quantity
that enhances the assessment of conditional dependency. In essence, z can be interpreted as a measure
akin to z-scores in a standard normal distribution; for example, if the p-value is 0.01, then z = 3, as
a value of 3-sigma signifies that the probability of data falling within a 3-sigma range in a normal
distribution is 0.99.

C CONVERGENCE OF INTEVENTIONAL STRUCTURAL-MCMC

In this section, we first confirm the convergence of the posterior distribution in the IS-MCMC
algorithm based on the Structure MCMC framework. Furthermore, we provide a detailed discussion
of the key factors considered in optimizing the IS-MCMC process.

C.1 GUARANTEE OF POSTERIOR DISTRIBUTION CONVERGENCE

Our IS-MCMC algorithm follows a standardized Structure MCMC process (Madigan et al., 1995; Su
& Borsuk, 2016; Kuipers & Moffa, 2017) in the intervention-augmented graph space. Please refer
to Algorithm 1, which corresponds to Steps ❶ - ❻ in the main text as a general introduction to the
MCMC process.

By employing the Metropolis-Hastings sampler within the standardized Structure MCMC framework,
the Markov chain is guaranteed to have a stationary distribution equal to the posterior distribution
P (G | D) (Su & Borsuk, 2016).

It is important to note that, under the premise of this theoretical guarantee, the novelty of our work
lies in proposing the use of the posterior distribution as the target for acquiring training samples and
optimizing feasible solutions in intervention scenarios.

C.2 OPTIMIZATION CONSIDERATIONS FOR IS-MCMC

However, two critical factors need to be addressed. First, managing the time complexity of this
process is crucial for maintaining efficient inference. Second, ensuring the effectiveness of the
IS-MCMC process on the augmented graph.

• From the TTT-driven perspective on efficiency: Since we leverage the ”test-time” phase, the
convergence speed of MCMC is particularly important. We observed that a good initial state
enables the Markov chain to converge faster, as evidenced by Figure 5 in the experimental section
of our paper. Additionally, we modified the algorithm to use parallel multi-chain sampling, allow-
ing for more efficient exploration of the graph space, as shown in Figure 8 of our experimental
results.
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• From the JCI-driven perspective on adaptability: The MCMC process operates on augmented
graphs rather than standard causal graphs. Thus, additional constraints are required to ensure the
validity of the augmented graph. To address this, we introduced intervention constraints to ensure
consistency of the augmented graph within the JCI framework.

In summary, our IS-MCMC algorithm effectively addresses multiple challenges under the TTT + JCI
framework and demonstrates that using posterior estimates as training data is highly beneficial for
test-time SCL.

D IDENTIFIABILITY THEORY OF PC-LIKE SUPERVISED CAUSAL LEARNING

D.1 INTUITIVE ANALYSIS

D.1.1 OBSERVATION

We use the observations from phase 2 as an illustration. As mentioned in Section B.2, we formalize
the v-structure orientation of PC as a specific classification problem, that is, determining whether the
non-shielded triple ⟨Xa, Xc, Xb⟩ forms a v-structure by classifier CPC .

The logic of PC’s orientation is clearly asymptotically correct (i.e., the CI test becomes fully accurate
when the number of records goes to infinity). However, in practice, when the number of records is
finite, its empirical performance is not satisfactory. Thus, further enhancements, such as Majority-PC
(MPC) (Colombo et al., 2014), have been developed to address this limitation.

MPC is a sample-based enhancement of PC’s orientation, achieving better performance with finite
samples. Instead of identifying only one separating set SS, MPC finds all possible separating sets
SS and counts how many of them contain Xc. The logic can be recast as follows:

Featurization: Finds all separating sets SS of Xa, Xb, and defines a real-valued feature:

F<Xa,Xc,Xb> =
|{Si|Xc ∈ Si ∈ SS}|

|SS|

Classifier: Train a binary classifier using features:

CMPC(F<Xa,Xc,Xb>) :=

{
v-structure F<Xa,Xc,Xb> ≤ 0.5

non− v-structure F<Xa,Xc,Xb>>0.5

Theoretically, both PC and MPC, as ”hand-crafted” classifiers, are asymptotically correct. However, in
practice, MPC exhibits greater complexity in its classification mechanism compared to PC, resulting
in improved empirical performance. Nonetheless, from a machine learning perspective, both PC and
MPC remain ”simple” in terms of their feature representation and classification strategies.

D.1.2 MOTIVATION

The primary motivation for modifying PC into a PC-like SCL method is to leverage both theoretical
identifiability and enhanced empirical performance:

• Theoretical Guarantees. Our PC-like SCL approach retains the asymptotic properties of the
original PC algorithm. Specifically, the method detects the correct CPDAG (or I-CPDAG in
the interventional setting) when the sample size approaches infinity. This ensures theoretical
identifiability.

• Empirical Performance. In finite-sample scenarios, where PC’s reliance on conditional inde-
pendence (CI) tests can lead to errors, the SCL approach outperforms traditional methods. By
combining feature-rich representations with a robust classification mechanism, SCL achieves
superior empirical results, as demonstrated in our paper, by comparing TICL with PC-JCI or other
non-SCL methods. Similar empirical evidences are also presented in prior works (Li et al., 2020;
Ma et al., 2022; Dai et al., 2023).
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D.2 ADVANTAGE

Building on these observations and motivation analysis, our goal is to design a PC-like SCL algorithm
that maintains theoretical asymptotic correctness while encouraging a more systematic feature
representation and enabling the learning of more sophisticated classification mechanisms. This
approach aims to make our method more ”robust” than PC, achieving superior empirical performance.
Specifically, Our PC-Like SCL method generalizes these ideas:

• Featurization: SCL extracts a richer set of features that capture conditional dependencies and
structural patterns around ⟨Xa, Xc, Xb⟩.

• Classifier: Instead of relying on heuristic rules like CPC or CMPC , we train a classifier on
synthetic data. The model learns complex interactions among features, avoiding the limitations of
error-prone conditional independence (CI) tests.

In the asymptotic regime, the learned classifier converges to an equivalent, theoretically correct
solution like CPC or CMPC . However, in practical settings, SCL’s broader feature set and data-
driven optimization enable significantly better empirical performance. For example, Table 1 and 2
compare JCI+SCL with JCI-PC and other non-SCL methods, clearly showing SCL’s superiority.

D.3 THEORETICAL ANALYSIS

D.3.1 RESTATING THE PC-LIKE SCL PROCESS

The PC-like SCL approach proposed in our paper consists of two phases:

• Phase 1: Skeleton Learning. A binary classifier C1 takes the feature set (as detailed in Table 3
and Figure 10) as input and predicts the existence of edges between all pairs of nodes.

• Phase 2: Orientation Learning. A binary classifier C2 takes the feature set (as detailed in Table 4
and Figure 11) as input and predicts the v-structure for each unshielded triple (UT), using the
skeleton learned from Phase 1.

Finally, Meek’s rules are applied to orient as many causal directions as possible.

We aim to prove that both C1 and C2 are asymptotically correct (i.e., they output results equivalent to
those of the PC algorithm when the sample size approaches infinity). For simplicity, we demonstrate
the proof for C2, as the proof for C1 follows the same principle.

D.3.2 ASYMPTOTIC CORRECTNESS OF THE PC-LIKE SCL APPROACH

Definition D.1 (Overlap Coefficient). OLP (A,B) := |A∩B|/min (|A|, |B|), where A and B are
two sets of variables.
Definition D.2 (Discriminative Predicate). A discriminative predicate is a binary predicate function
defined over the domain of C2’s feature vector. It can be regarded as a special classifier with a
predefined mechanism.
Definition D.3 (Strong Predicate). A strong discriminative predicate satisfies the following two
criteria when applied to a UT’s feature vector: (a) It evaluates to ’true’ if the UT forms a v-structure.
(b) It evaluates to ’false’ if the UT does not form a v-structure.

A strong predicate is asymptotically correct because its output aligns with that of the PC algorithm
when the sample size approaches infinity. The key statement here is that there exists at least one
strong predicate, meaning we can construct a static classifier using the proposed feature set to achieve
asymptotic correctness.

Lemma 4 (Existence of a Strong Predicate). For a canonical dataset with infinite samples, the
predicate OLP (Xc,S) = 0 is a strong discriminative predicate. It corresponds precisely to the
v-structure detection logic of the PC algorithm.

Proof. According to the PC algorithm’s asymptotic correctness theorem:

For a canonical dataset with infinite samples (assuming faithfulness and perfect conditional indepen-
dence information):
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• If an unshielded triple ⟨Xa, Xc, Xb⟩ forms a v-structure, then Xc does not belong to any
separation set of (Xa, Xb).

• If ⟨Xa, Xc, Xb⟩ does not form a v-structure, then Xc belongs to all separation sets of
(Xa, Xb).

In this setting (infinite samples), there is no ambiguity: Xc is either in all separation sets or in none
of them.

Now consider the predicate OLP (Xc,S) = 0, which evaluates to true if and only if Xc /∈ S for all
S ∈ SS .

• This implies that ⟨Xa, Xc, Xb⟩ is a v-structure.

• Therefore, OLP (Xc,S) = 0 is a strong predicate because it perfectly discriminates v-
structures from non-v-structures.

Theorem 5 (Asymptotic Correctness of C2). By employing a learning model with the universal
approximation property, the classifier C2 is asymptotically correct when classifying a canonical
dataset with infinite samples.

Proof. From Lemma 4, there exists a strong discriminative predicate P that achieves zero loss on a
canonical dataset with infinite samples.

• Given P as the ground truth for v-structure detection, a machine learning model with
universal approximation capability can approximate P to arbitrary precision, achieving
performance no worse than P .

• Additionally, there may exist multiple strong predicates that satisfy the criteria of Defini-
tion D.3. Therefore, C2 can converge to any one of these strong predicates in the asymptotic
regime.

Summary: The theoretical guarantees demonstrate that the PC-like SCL approach, by leveraging the
universal approximation capabilities of learning-based classifiers, retains the asymptotic correctness
of the original PC algorithm while enabling superior empirical performance on finite data.

E EXPERIMENTAL DETAILS

E.1 BENCHMARK

Our experiments are carried out on 14 different causal graph datasets inspired by real-world applica-
tions from bayesian network repository 3. All discrete networks undergo thorough quality checks and
necessary repairs, ensuring that the sum of all conditional probability distributions is 1, there are no
single-level virtual nodes, and there are no dependencies. The statistics of these bayesian networks
are shown in Table 5. We also provide visualizations of some causal graphs, as shown in Figure 12.

E.2 BASELINES

The development history of causal discovery from interventional data has been a gradual and
incremental process. Here is a detailed introduction to some key works in this field:

• GIES (Hauser & Bühlmann, 2012): This paper first extends the concept of Markov equivalence
of Directed Acyclic Graphs for the first time to the case of interventional distributions arising from
multiple interventional experiments. It further demonstrates that under reasonable assumptions
of interventional experiments, the intervened Markov equivalence defines a more refined DAG
partition than the observed Markov equivalence, thereby enhancing the identifiability of causal
models. Moreover, they generalize the greedy equivalence search algorithm, proposing a greedy
interventional equivalence search algorithm for regularized maximum likelihood estimation under
such intervened conditions.

3https://www.bnlearn.com/bnrepository/
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Table 5: Statistics and description of bayesian networks we used.

Network #Nodes #Edges #Parameters Max in-degree Avg. degree
Earthquake 5 4 10 2 1.60

Survey 6 6 21 2 2.00
Asia 8 8 18 2 2.00

Sachs 11 17 178 3 3.09
Child 20 25 230 2 2.50

Insurance 27 52 1,008 3 3.85
Water 32 66 10,083 5 4.12

Mildew 35 46 540,150 3 2.63
Alarm 37 46 509 4 2.49
Barley 48 84 114,005 4 3.50

Hailfinder 56 66 2,656 4 2.36
Hepar2 70 123 1,453 6 3.51

Win95pts 76 112 574 7 2.95
Pathfinder 109 195 72,079 5 3.58
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Figure 12: Graph Visualizations.

• IGSP (Wang et al., 2017; Yang et al., 2018): In this paper, the authors propose two algorithms
that utilize both observational and interventional data with consistency guarantees, and prove their
consistency under the faithfulness assumption. These algorithms are intervention-adapted versions
of the Greedy SP algorithm, and they are non-parametric, which makes them applicable to the
analysis of non-Gaussian data as well. Subsequently, they first extend these identifiability results to
general interventions that can modify the dependencies between the target variable and its causes
without eliminating them, and propose the first consistent algorithm for learning a DAG in such an
environment.

• UT-IGSP (Squires et al., 2020): In this paper, the authors further extend interventions to unknown
scenarios, that is, the problem of estimating causal Directed Acyclic Graph models from a mixture
of observational and interventional data when the intervention targets are partially or completely
unknown. They describe the intervened Markov equivalence classes of DAGs that can be identified
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from interventional data with unknown intervention targets. Additionally, they propose a provably
consistent algorithm for learning the intervened Markov equivalence class from such data. The
algorithm greedily searches the permutation space to minimize a novel scoring function. This
algorithm is also non-parametric.

• DCDI (Brouillard et al., 2020): In this paper, the authors first introduce a theoretically grounded
method for learning causal structures based on neural networks that can utilize interventional data.
They present two instances of this approach: one that relies on normalizing flows as a universal
density approximator. They also demonstrate that the precise maximization of the proposed score
will identify the I-Markov equivalence classes of causal graphs for both known and unknown
target settings.

• ENCO (Lippe et al., 2022): In this paper, the authors explore score-based methods for causal
discovery from observational and interventional data. They argue that such methods often require
constrained optimization to enforce acyclicity or lack convergence guarantees. Consequently,
they formulate graph search as an optimization of the likelihood of independent edges, where the
direction of edges is modeled as separate parameters. Thus, they provide convergence guarantees
when interventions on all variables are available, without the need to constrain the acyclicity of the
scoring function.

• BaCaDI (Hägele et al., 2023): In this paper, the authors aim to discuss the issue of causal
discovery in the realistic scenario where interventional data is scarce. To address this shortcoming,
they provide a principled Bayesian approach that operates within the continuous space of causal
Bayesian networks (CBNs) and the latent probability representations of interventions. This enables
them to approximate complex joint posteriors through efficient, gradient-based particle variational
inference techniques, making it applicable to causal systems with many variables.

Recently, Supervised Causal Discovery, which aims to compress data and map between causal
relations using pre-synthesized causal graph datasets, has shown impressive performance in test data.
We introduce some key works on supervised causal discovery from intervention data:

• CSIvA (Ke et al., 2023b): In this paper, the authors believe that meta-learning enables models to
generalize well to data from natural causal Bayesian networks, even with relatively few assumptions
made during training on synthetic data. Therefore, they introduce for the first time a supervised
approach to tackle the problem of causal structure induction. This method maps datasets composed
of both observational and interventional samples to a structure. By introducing a novel transformer
architecture, they aim to discover relations between variables across samples.

• SDI (Ke et al., 2019; 2023a): In this paper, the authors introduce a novel neural network-based
method for causal discovery from interventional data, capable of handling unknown interventions.
By utilizing two sets of distinct parameters to model the causal mechanisms and the structure
of the causal graph, experimental evidence indicates that this method can generalize to unseen
interventions and can effectively perform partial graph discovery.

• AVICI (Lorch et al., 2022): In this work, the authors posit that designing appropriate scores or
tests that capture prior knowledge is challenging. Therefore, they propose amortizing the learning
of causal structures, which involves training a variational inference model to directly predict
causal structures from observational or interventional data. This approach leverages permutation
invariance to exhibit robust generalization capabilities, particularly in the challenging field of
genomics.

Due to the limitations inherent in the type of methods and the constraints of the assumptions made,
they are generally unable to effectively process interventional data across various experimental
scenarios. Here, we further summarize, based on the experiments of their paper, the basic setup of
their causal discovery from interventional data, as depicted in Table 6:

Most existing intervention dataset learning methods have typically required a known set of interven-
tion targets, which is often a strong assumption. Therefore, when intervention targets are unknown,
this naturally poses a challenge: how to identify intervention nodes individually becomes a key
issue in structural learning. This task is of practical significance. For instance, in the realm of gene
editing, techniques can cleave off-target genomic sites. Evaluating and detecting off-target effects
accurately and devising corresponding strategies constitute significant research directions in current
gene editing studies (Manghwar et al., 2020). Limited attention has been given to exploring methods
for identifying intervention targets. We provide an introduction as follows:
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Table 6: Summary of basic settings for various methods of causal discovery from intervention data

Methods
Groun-Truth DAG Testing Data Intervention Experiment

Type #Variable Type #Obs. #Int. / per exp. Type #Int. Family #Int. Target

GIES Random Graph Kalisch & Bühlman (2007)
(Linear Gaussian SEM) 10 ∼ 50 Continue 50 ∼ 10k 50 ∼ 10k

Single / Multiple
Know
Hard

#Var. * {.0 / .2 / .4 / .6 / .8 / 1.0} 1 ∼ 4

IGSP ER
(Linear Gaussian SEM) 10 ∼ 20 Continue 1k ∼ 100k 1k ∼ 100k

Single / Multiple
Know

Hard / Soft
1 ∼ 2 #Var. * {0.4 / 0.5}

UT-IGSP ER
(Linear Gaussian SEM) 20 Continue 1k ∼ 5k 1 ∼ 5k

Single / Multiple
Know / Unknow

Hard / Soft

Know: (5)
+ Unknow: (5)

Know: (1)
+ Unknow: (0 ∼ 3)

DCDI ER
(LGM / ANM / NN) 10-20 Continue 10k 10k

Single / Multiple
Know / Unknow

Hard / Soft
#Variable #Var. * 0.1

SDI Random Graph (NN)
bnlearn 3 ∼ 13 Discrete 2560

(from code)
1111

(from code)

Single
Know
Soft

#Variable 1

CSIvA
ER

(LGM / ANM / NN)
(MLP / Dirichlet)

30 ∼ 80 Continue 100 ∼ 1.5k 100 ∼ 1.5k
Single

Know / Unknow
Hard / Soft

#Variable 1

ENCO Random Graph (NN)
bnlearn 25 Discrete 1k ∼ 100k 20 ∼ 200

Single
Know
Soft

#Variable 1

AVICI ER / SF / WS / SBM / GRG
(Linear / Random Fourier) 30 Continue 200

(from code)
20

(from code)

Single
Know

Hard / Soft
#Var. * .5 1

BaCaDI ER / SF / SERGIO Dibaeinia & Sinha (2020)
(Linear / Nolinear Gaussian) 20 Continue 100 10

Single
Know / Unknow

Hard / Soft
#Variable 1

TICL bnlearn 5-109 Discrete 2k ∼ 10k 1k ∼ 10k
Single / Multiple
Know / Unknow

Hard / Soft
#Var. * {.0 / .2 / .4 / .8 } 1∼ 3

• UT-IGSP (Squires et al., 2020): As mentioned before, the UT-IGSP algorithm learns the inter-
vention targets while learning the causal structure. Although the intervention refines the search
space, greedy search of the sparsest permutations is very slow in the case of high-dimensional data,
especially when using non-Gaussian conditional independence test.

• CITE (Varici et al., 2021): In this paper, the authors primarily address the problem of estimating
unknown intervention targets in causal directed acyclic graphs based on observational and interven-
tional data. The focus lies on soft interventions within the framework of linear structural equation
models. They propose a scalable and efficient algorithm capable of consistently identifying all
intervention targets. The key idea is to estimate the intervention sites based on the difference
between precision matrices associated with the observed data set and the intervened data set.

• PreDITEr (Varici et al., 2022): After that, the authors of this paper further extend the previous
method by eliminating the need to learn the entire causal model, focusing solely on learning
intervention targets. The key point is to leverage the sparse changes imposed on the precision
matrix of the linear model by intervention measures, composed of a series of precision difference
estimation steps. Additionally, they infer the knowledge required to refine observational Markov
equivalence classes into interventional MECs.

• LIT (Yang et al., 2024): In this paper, the authors tackle for the first time the problem of identifying
unknown intervention targets in a multi-environment setting. They further consider cases within
the intervention target set that allow for potential confounding factors. They propose a two-stage
algorithm to recover exogenous noise and match it with the corresponding endogenous variables.
Under the assumption of causal sufficiency, intervention targets can be uniquely identified. In cases
where potential confounding factors exist, a candidate intervention target set is provided, offering
more information compared to previous works.

As shown in Table 7, we provide a comparison to briefly illustrate the types of unknown intervention
experiments supported by the above intervention target detection algorithms.

To ensure fair experimentation, algorithms and hyperparameter tuning are involved in each of our
experiments. For all baseline algorithms, we explore critical hyperparameters that govern their
interactions, and report the best results. Moreover, we use open source code for all algorithms for
evaluation, including code from the authors as well as various popular toolkits. The public code for
the baseline is also included at the URL below.
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Table 7: Comparison of situations (more suitable) supported by intervention target detection methods.

Methods Causal
Insufficiency

Interv. Frequency Interv. Mechanism Data Type Domain

Single Multiple Hard Soft Continue Discrete Single Multiple

UT-IGSP ✗ ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓

CITE ✗ ✓ ✓ ∼ ✓ ✓ ∼ ✓ ✗

PreDITEr ✗ ✓ ✓ ∼ ✓ ✓ ∼ ✓ ✗

LIT ✓ ✓ ✓ ∼ ✓ ✓ ∼ ✓ ✓

Firstly, we introduce a method specifically designed for causal discovery from observational and
interventional data:

• GIES: - Score Function: Gaussian BIC, https://github.com/juangamella/gies
• IGSP: - Significance α ∈ {1e3, 1e4}, CI test ∈ {Gaussian, kci, hsic}, https://github.com/
uhlerlab/graphical_model_learning

• UT-IGSP: - Significance α ∈ {1e3, 1e4}, CI test∈ {Gaussian, kci, hsic}, https://uhlerlab.
github.io/causaldag/utigsp.html

• ENCO: - Sparsity Regularizer λsparse ∈ {0.002, 0.02}, Epochs ∈ {50, 100}, https://
github.com/phlippe/ENCO

• AVICI: - Model ∈ {scm-v0, linear, rff, grn}, https://github.com/larslorch/avici
As mentioned in the main text, joint causal inference offers a robust theoretical framework that
effectively combines interventional and observational data, simplifying causal discovery algorithms
to operate solely on observational setting. We select four distinct algorithmic combinations, with
parameter settings as follows:

• PC - variant ∈ {original, stable}, Significance α ∈ {0.05, 0.01}, CI test ∈ {fisherz, g2, chi2},
https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle

• HC - Score Function: Bdeu Score, https://github.com/pgmpy/pgmpy
• BLIP - Time ∈ {60, 300, #Variable}, https://cran.r-project.org/web/packages/
r.blip/

• GOLEM - λ1 ∈ {2e-2, 2e-3}, ω ∈ {0.2, 0.3}, https://github.com/ignavierng/
golem

Finally, for the specific task of intervention target detection, the configuration parameters for the
comparative methods are as follows:

• CITE - λl1 ∈ {1e-1, 5e-1}, Parentl1 ∈ {5e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 8e-2, 9e-2, 1e-1},
https://github.com/bvarici/intervention-estimation

• PreDITEr - λl1 ∈ {1e-1, 3e-1}, λpasp ∈ {1e-1, 2e-1}, https://github.com/bvarici/
uai2022-intervention-estimation-latents

In addition to our selected baselines, we also enumerate other classic baselines relevant to causal
discovery from intervention and explain why they were not chosen for our study:

• DCDI: This method is a well-known and widely used approach for causal discovery using neural
networks, relying on normalizing flows as a generic density estimator. Therefore, it is primarily
applicable to continuous data types. We found in experimental testing that it almost never converges
and operates at an unbearably slow pace in the case of discrete data. Hence, we disregard its results.

• SDI: This method is the first to use neural networks and adapt to discrete data types for intervention
causal discovery. However, due to its high complexity, it is often challenging to scale to large-
scale node graphs. Additionally, according to the original repository code, its hybrid C-language
requirement for compiler adaptation leads to abnormal errors. Hence, we disregard its results.

• CSIvA: The lack of accessible code and complex parameter settings make it impossible to replicate
the findings of the paper.

• BaCaDI: Similar reasons to DCDI.
• LIT: Similar reasons to CSIvA.
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E.3 METRICS

We design different reasonable metrics for two different tasks, i.e., I-CPDAG discovery and interven-
tion target detection. The detailed introduction is as follows:

I-CPDAG discovery. We first calculate Structural Hamming Distance (SHD) at I-CPDAG level.
Specifically, SHD is computed between the learned I-CPDAG(Ĝ) and ground truth I-CPDAG(G),
i.e., the smallest number of edge additions, deletions, direction reversals and type changes (directed
vs. undirected) to convert the output I-CPDAG to ground truth I-CPDAG. As is shown in Table 8,
SHD is equal to the sum of the number of ✗s in the table.

Table 8: SHD calculation details.

in Predict→
in Ground-Truth↓

identifiable (directed)
unidentifiable (undirected) missing in skeleton

right wrong

identifiable ➀ ✓ ➁ ✗ ➂ ✗ ➃ ✗

unidentifiable ➄ ✗ ➅ ✓ ➆ ✗

nonexist ➇ ✗ ➈ ✗ ➉ ✓

Different graphs may lead to different causal inference statements and different intervention distribu-
tions. To quantify this discrepancy, we use the (pre-) distance between I-CPDAG(Ĝ)s, known as
Structural Intervention Distance (SID). The SID is solely based on graphical criteria and quantifies
the closeness between two causal graphs according to their corresponding causal inference statements.
Thus, it is highly suitable for assessing graphs used for the computation of interventions. Formally:

SID : (Ĝ,G) 7→ #{(i, j), i ̸= j| the intervention distribution from i to j

is falsely estimated by Ĝ with respect to G}

For more detailed calculation algorithms, we recommend readers to refer to (Peters & Bühlmann,
2015) carefully.

F1-score is then calculated based on the identifiable edges of I-CPDAG(Ĝ) and I-CPDAG(G),
where the accuracy (precision) is equal to True Positive Rate (TPR) and the recall (recall) is equal to
1 - False Discovery Rate (FDR). Details about the specific calculation can also refer to Table 8:

Precision = TPR =
➀

➀ + ➁ + ➂ + ➃
,

Recall = 1− FDR =
➀

➀ + ➁ + ➄ + ➇
,

F1-Score =
2× Precision× Recall

Precision + Recall
,

Intervention Target Detection. We then use the F1-Score metric to measure the detection of
intervention targets. Let the set of all intervention family edges be denoted as Î, and all predicted
intervention target edges be denoted as I. Then we can formally define:

Precision =
#(I ∩ Î)

#I
,

Recall =
#(I ∩ Î)

#Î
,

F1-Score =
2× Precision× Recall

Precision + Recall
.
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E.4 EXPERIMENTS SETTING

Computational Resources. For conducting experiments in this work, we employed the IS-MCMC
algorithm to pre-generate training data for each test dataset. Subsequently, we trained two types
of models, namely the skeleton model and the orientation model, based on the data. The skeleton
model comprises multiple cascaded models, with a default maximum of 4 order. Our benchmark
environment consists of a Linux server equipped with a 1× AMD EPYC 7763 128-Core Processor
CPU (512GB memory) and 4×NVIDIA RTX A6000 (48GB memory) GPUs. To carry out benchmark
testing experiments, all baselines are set to run for a duration of 12 hours by default, with specific
timings contingent upon the method. It is noteworthy that our method does not necessitate GPU
computation, although optimization may further expedite processes. Other methods, depending on
their implementation choices, may opt for GPU acceleration.

Table 9: Basic configuration of our experiments and methods

Category Detail Hyperparameters or Settings

Training Data
#Training Instances 400 (default)

100 ∼ 1600 (others, see 4.2)

#Simples / per Instance 10k (default)
1k ∼ 20k (others, see 4.2)

Testing Data
#Observation Sample 10k (default)

2k ∼ 10k (others, see F.2.2)

#Intervention Sample 10k (default)
1k ∼ 10k (others, see F.2.1)

Intervention

Experiment

Intervention Type
Single + Soft + Unknow (default)

Single + Hard + Unknow (others, see F.1.1)
Multiple + Soft + Unknow (others, see F.1.2)

#Intervention Exp. #Var. × 0.2 (default)
#Var. × {0.0, 0.4, 0.8} (others, see F.3)

Initial Graph Seed Proxy Algorithm JCI-BLIP (default)
Random Graph (others, see 4.2)

Model threshold Skeleton Threshold 0.5 ∼ 0.75
Orientation Threshold 0.1

Basic Configurations. As shown in Table 9, we provide the basic parameter configurations for our
TICL, along with the fundamental details of the synthetic data and test data used in various types of
experiments in this paper. Furthermore, we provide some basic conceptual explanations. The training
data refers to the pre-sampled synthetic data, which includes pairs of instances used for training.
These pairs consist of re-parameterized synthetic graphs and sample data tables obtained through
forward sampling based on conditional probability tables. As for the test data, we directly retrieve the
causal graph structure and parameterized conditional probability tables from bnlearn. Then, the data
obtained directly through forward sampling is referred to as observed samples. Otherwise, we can
conduct various types of intervention experiments, including single-node intervention or multi-node
intervention (i.e., intervening on one or multiple nodes at a time), soft intervention or hard intervention
(i.e., whether to eliminate dependencies of parent nodes; for soft intervention, we replace probability
distributions sampled from the Dirichlet distribution with parameters α ∼ U [0.2, 1.0]), and known
intervention or unknown intervention targets (i.e., whether we have prior knowledge of intervention
target nodes). For the starting point of IS-MCMC sampling, we default to selecting JCI+BLIP as
the proxy algorithm to obtain the initial graph seed. We use the xgb.XGBClassifier() API
provided by Scikit-learn4 as the classifier for both skeleton and orientation models. Different
threshold parameters are set for skeleton identification and orientation identification, while all
other hyper-parameters are set to default values. The source code of our method is available at
https://anonymous.4open.science/r/iSCL-081D

4https://scikit-learn.org/stable/
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F ADDITIONAL EXPERIMENTS (RQ4)

F.1 EFFECT OF INTERVENTION TYPE

F.1.1 PREFECT INTERVENTIONS

We follow the default parameter settings, replacing soft interventions with hard interventions, i.e.,
perfect interventions, to eliminate the dependency of the parent node. The results of I-CPDAG
structure discovery are shown in Table 10, and the results of intervention target identification are
shown in Table 11. The results indicate that our method consistently outperforms on almost all
datasets and metrics.

Table 10: Performance comparison of I-CPDAG under perfect intervention (F1 Score ↑ / SHD ↓ /
SID ↓). ♣: Crashes, ♠: Timeout.

Datasets
#nodes / #edges Metric TICL JCI-GOLEM JCI-PC JCI-BLIP JCI-HC AVICI∗ ENCO∗ IGSP∗ GIES UT-IGSP

Earthquake
5 / 4

F1 Score 1.00 0.00 1.00 1.00 0.00 0.29 0.67 1.00 1.00 1.00
SHD 0 6 0 0 4 4 2 0 0 0
SID 0 13 0 0 20 10 2 0 0 0

Survey
6 / 6

F1 Score 1.00 0.40 0.40 0.73 0.73 0.00 0.44 0.91 0.91 0.91
SHD 0 7 4 2 2 6 4 1 1 1
SID 0 23 18 9 9 17 16 4 4 4

Asia
8 / 8

F1 Score 0.86 0.00 0.40 0.86 0.12 0.00 0.22 0.77 0.71 0.43
SHD 2 14 8 2 13 8 10 3 4 6
SID 12 36 34 12 47 34 28 10 18 24

Sachs
11 / 17

F1 Score 0.79 0.00 0.44 0.79 0.71 ♣ 0.25 0.56 0.51 0.56
SHD 6 20 17 6 8 ♣ 36 13 18 13
SID 27 61 30 27 29 ♣ 35 28 34 32

Child
20 / 25

F1 Score 0.76 0.24 0.25 0.75 0.65 ♣ 0.07 0.49 0.38 0.53
SHD 10 34 45 11 16 ♣ 105 29 53 29
SID 160 301 233 188 226 ♣ 210 125 140 112

Insurance
27 / 52

F1 Score 0.72 0.15 0.47 0.71 0.47 ♣ 0.11 0.37 0.39 0.37
SHD 22 73 64 24 43 ♣ 171 77 96 78
SID 325 671 414 390 421 ♣ 536 442 316 452

Water
32 / 66

F1 Score 0.58 0.14 ♠ 0.50 0.30 ♣ 0.24 ♣ ♣ ♣
SHD 42 77 ♠ 44 71 ♣ 80 ♣ ♣ ♣
SID 419 566 ♠ 457 642 ♣ 508 ♣ ♣ ♣

Table 11: Performance comparison of Intervention Targets Detection under perfect intervention (F1
Score ↑). ♣: Crashes, ♠: Timeout.

Datasets
Earthquake Survey Asia Sachs Child Insurance Water

1 1 2 2 4 5 6

UT-IGSP 0.40 0.50 0.44 0.40 0.36 0.22 ♣

CITE 1.00 1.00 1.00 0.57 0.40 0.55 ♣

PreDITEr 0.67 ♣ 1.00 0.67 ♠ ♠ ♣

JCI-GOLEM 0.67 1.00 0.00 0.18 0.22 0.28 0.21

JCI-HC 0.50 1.00 0.36 0.67 0.47 0.34 0.32

JCI-BLIP 1.00 1.00 0.80 0.80 0.53 0.44 0.42

JCI-PC 1.00 0.67 0.67 0.47 0.47 0.45 ♠

TICL 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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F.1.2 MULTIPLE INTERVENTIONS

Next, we consider conducting multi-node interventions, where for each intervention experiment, we
randomly select 1 to 3 nodes for intervention, with the selection of nodes being without replacement,
while the rest follow the default parameter settings. The results of I-CPDAG structure discovery are
shown in Table 12, and the results of intervention target identification are shown in Table 13. The
results indicate that our method still maintains a consistent lead in almost all datasets and metrics.
Additionally, it is worth noting that in the case of interventions on multiple nodes simultaneously, we
observed that the performance does not necessarily improve compared to single-node interventions,
which may be due to the complexity introduced by intervening on multiple nodes at the same time.

Table 12: Performance comparison of I-CPDAG under multiple interventions (F1 Score ↑ / SHD ↓ /
SID ↓). ♣: Crashes, ♠: Timeout.

Datasets
#nodes / #edges Metric TICL JCI-GOLEM JCI-PC JCI-BLIP JCI-HC IGSP∗ GIES UT-IGSP

Earthquake
5 / 4

F1 Score 0.60 0.00 0.55 1.00 0.25 1.00 0.40 1.00

SHD 4 5 4 0 6 0 7 0

SID 9 18 3 0 15 0 6 0

Survey
6 / 6

F1 Score 0.83 0.00 0.40 0.91 0.83 0.91 0.00 0.91

SHD 2 9 4 1 1 1 6 1

SID 10 30 18 4 6 4 30 4

Asia
8 / 8

F1 Score 0.86 0.08 0.56 0.95 0.56 0.46 0.44 0.77

SHD 2 9 7 1 7 5 7 3

SID 8 33 17 5 21 20 25 10

Sachs
11 / 17

F1 Score 0.94 0.16 0.56 0.90 0.54 0.51 0.32 0.72

SHD 2 18 12 3 12 14 19 10

SID 8 61 38 21 48 35 43 15

Child
20 / 25

F1 Score 0.61 0.18 0.26 0.60 0.44 0.60 0.33 0.51

SHD 14 44 45 15 24 25 47 29

SID 243 308 229 251 304 72 170 117

Insurance
27 / 52

F1 Score 0.73 0.16 0.36 0.69 0.52 0.34 0.45 0.33

SHD 22 63 72 27 38 81 85 81

SID 369 624 472 398 425 470 276 453

Water
32 / 66

F1 Score 0.62 0.20 ♠ 0.60 0.24 ♣ ♣ ♣

SHD 39 81 ♠ 42 71 ♣ ♣ ♣

SID 436 605 ♠ 478 655 ♣ ♣ ♣

Table 13: Performance comparison of Intervention Targets Detection under multiple interventions (F1
Score ↑). ♣: Crashes, ♠: Timeout.

Datasets
Earthquake Survey Asia Sachs Child Insurance Water

3 3 6 6 4 5 12

UT-IGSP 0.86 0.86 0.67 0.57 0.80 0.24 ♣

CITE 0.80 1.00 0.67 0.43 0.33 0.71 ♣

PreDITEr 0.80 0.50 ♣ 0.29 ♠ ♠ ♣

JCI-GOLEM 0.33 0.80 0.62 0.47 0.21 0.14 0.23

JCI-HC 0.57 1.00 0.67 0.67 0.50 0.33 0.38

JCI-BLIP 1.00 1.00 0.86 0.86 0.44 0.42 0.57

JCI-PC 0.80 1.00 0.92 0.75 0.50 0.33 ♠

TICL 0.80 1.00 1.00 0.86 1.00 0.86 1.00

39



Under review as a conference paper at ICLR 2025

F.2 EFFECT OF SAMPLE SIZE

F.2.1 LIMITED INTERVENTIONAL DATA SAMPLE SIZES

Intervention experiments in the real world are often unrealistic or costly, such as gene knockout
experiments, where only a small amount of experimental data may be available. Therefore, we
further consider the case of limited intervention data sample size. Specifically, we reduce the sample
size of each intervention experiment from 10,000 to 1,000 to simulate this scenario, while keeping
other parameters at their default settings. The results of I-CPDAG structure discovery are shown
in Table 14, and the results of intervention target identification are shown in Table 17. The results
indicate that most methods show a certain degree of performance decline. Nevertheless, our method
still maintains a significant lead on almost all datasets and metrics, demonstrating the robustness and
superiority of our TICL approach.

Table 14: Performance comparison of I-CPDAG under limited interventional data sample sizes (F1
Score ↑ / SHD ↓ / SID ↓). ♣: Crashes, ♠: Timeout.

Datasets
#nodes / #edges Metric TICL JCI-GOLEM JCI-PC JCI-BLIP JCI-HC AVICI∗ ENCO∗ IGSP∗ GIES UT-IGSP

Earthquake
5 / 4

F1 Score 1.00 0.00 0.89 1.00 1.00 0.00 0.67 1.00 1.00 1.00
SHD 0 7 1 0 1 4 2 0 0 0
SID 0 12 0 0 0 10 2 0 0 0

Survey
6 / 6

F1 Score 0.73 0.00 0.33 0.73 0.00 0.00 0.60 0.91 0.91 0.91
SHD 2 11 6 2 7 5 3 1 1 1
SID 9 30 22 9 30 17 14 4 4 4

Asia
8 / 8

F1 Score 0.80 0.20 0.33 0.80 0.33 0.00 0.70 0.77 0.71 0.77
SHD 3 11 7 3 11 8 6 3 4 3
SID 8 38 38 19 34 37 9 10 18 10

Sachs
11 / 17

F1 Score 0.74 0.00 0.44 0.21 0.38 0.08 0.17 0.67 0.32 0.62
SHD 7 23 17 15 13 17 41 11 21 12
SID 31 62 42 55 48 60 47 24 40 30

Child
20 / 25

F1 Score 0.80 0.16 0.25 0.75 0.54 0.56 0.14 0.51 0.47 0.49
SHD 10 41 39 10 20 16 96 28 36 28
SID 168 315 277 185 249 188 192 128 125 135

Insurance
27 / 52

F1 Score 0.64 0.06 0.37 0.60 0.57 0.17 0.12 0.30 0.53 0.38
SHD 25 65 66 25 37 51 162 82 58 75
SID 395 677 544 404 423 625 539 451 246 438

Water
32 / 66

F1 Score 0.47 0.19 ♠ 0.40 0.45 ♣ 0.47 ♣ ♣ ♣
SHD 47 71 ♠ 51 52 ♣ 53 ♣ ♣ ♣
SID 496 545 ♠ 540 398 ♣ 473 ♣ ♣ ♣

Table 15: Performance comparison of Intervention Targets Detection under limited interventional
data sample sizes (F1 Score ↑). ♣: Crashes, ♠: Timeout.

Datasets
Earthquake Survey Asia Sachs Child Insurance Water

1 1 2 2 4 5 6

UT-IGSP 0.33 1.00 0.57 1.00 0.36 0.27 ♣

CITE 1.00 0.67 0.67 1.00 0.40 0.22 ♣

PreDITEr 0.67 1.00 ♣ 0.40 0.33 ♠ ♣

JCI-GOLEM 0.00 1.00 0.00 0.27 0.15 0.11 0.00

JCI-HC 1.00 0.67 0.50 0.80 0.40 0.37 0.36

JCI-BLIP 1.00 1.00 0.67 0.67 0.40 0.44 0.40

JCI-PC 1.00 1.00 0.67 0.80 0.44 0.32 ♠

TICL 1.00 1.00 1.00 1.00 1.00 0.91 1.00

40



Under review as a conference paper at ICLR 2025

F.2.2 LIMITED OBSERVATIONAL DATA SAMPLE SIZES

Similarly, we also consider the case of limited sample size of observational data. Specifically, we
reduce the sample size of the observational data from 10,000 to 2,000 to simulate this scenario,
while keeping the rest of the parameters at their default settings. The results of I-CPDAG structure
discovery are shown in Table 16, and the results of intervention target identification are shown in
Table 17. The results are similar, indicating the importance of observational data for causal structure
identification. We also see that our method is still in a good leading position.

Table 16: Performance comparison of I-CPDAG under limited observational data sample sizes (F1
Score ↑ / SHD ↓ / SID ↓). ♣: Crashes, ♠: Timeout.

Datasets
#nodes / #edges Metric TICL JCI-GOLEM JCI-PC JCI-BLIP JCI-HC AVICI∗ ENCO∗ IGSP∗ GIES UT-IGSP

Earthquake
5 / 4

F1 Score 0.86 0.00 0.86 1.00 1.00 0.17 0.57 1.00 0.00 1.00
SHD 1 6 1 0 0 8 3 0 4 0
SID 1 16 1 0 0 13 2 0 16 0

Survey
6 / 6

F1 Score 0.73 0.00 0.40 0.73 0.29 0.00 0.25 0.50 0.36 0.50

SHD 2 12 4 2 6 7 5 4 4 4

SID 11 30 18 9 29 22 18 11 20 11

Asia
8 / 8

F1 Score 0.77 0.00 0.29 0.67 0.53 0.38 0.71 0.77 0.40 0.77
SHD 4 10 7 4 5 8 4 3 6 3
SID 18 46 39 18 31 34 14 10 42 10

Sachs
11 / 17

F1 Score 0.45 0.09 0.63 0.21 0.36 0.27 0.25 0.65 0.35 0.47

SHD 12 17 13 15 14 14 29 9 22 12

SID 49 54 24 55 53 57 45 18 37 39

Child
20 / 25

F1 Score 0.75 0.20 0.17 0.62 0.75 ♣ 0.11 0.69 0.38 0.65

SHD 10 44 50 17 11 ♣ 110 16 53 17

SID 181 290 258 266 186 ♣ 220 62 139 99

Insurance
27 / 52

F1 Score 0.61 0.20 0.38 0.62 0.52 ♣ 0.15 0.54 0.41 0.56

SHD 29 69 64 30 38 ♣ 127 40 89 39

SID 424 630 538 451 453 ♣ 540 364 347 428

Water
32 / 66

F1 Score 0.50 0.21 ♠ 0.49 0.35 ♣ 0.40 ♣ ♣ ♣
SHD 44 81 ♠ 46 61 ♣ 57 ♣ ♣ ♣
SID 507 620 ♠ 510 532 ♣ 527 ♣ ♣ ♣

Table 17: Performance comparison of Intervention Targets Detection under limited observational
data sample sizes (F1 Score ↑). ♣: Crashes, ♠: Timeout.

Datasets
Earthquake Survey Asia Sachs Child Insurance Water

1 1 2 2 4 5 6

UT-IGSP 0.33 0.67 0.40 0.67 0.81 0.24 ♣

CITE ♣ 1.00 ♣ 1.00 0.33 0.38 ♣

PreDITEr ♣ 1.00 ♣ ♣ 0.40 ♠ ♣

JCI-GOLEM 0.00 0.00 0.00 0.27 0.15 0.27 0.20

JCI-HC 1.00 0.67 0.44 0.50 0.57 0.37 0.30

JCI-BLIP 1.00 1.00 0.67 0.67 0.44 0.44 0.37

JCI-PC 1.00 0.67 0.40 0.57 0.29 0.30 ♠

TICL 1.00 0.67 1.00 1.00 0.86 0.59 1.00
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F.3 EFFECT OF INTERVENTION EXPERIMENT SIZE

Finally, we investigated the impact of different intervention trial frequencies on causal structure
discovery. Specifically, we set intervention frequencies at 0%, 20%, 40%, and 80% of the target graph
nodes, where 0% means inferring causal structure solely from observational data. We conducted
experiments on the Child dataset (20 nodes) using seven methods, including ours, and the results
of I-CPDAG structure discovery at different intervention frequencies are shown in Figure 13. The
experiments align with intuition, showing that with an increasing number of experiments, all methods
exhibit improvements in various metrics, with our method standing out more prominently.
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Figure 13: Exploration of the impact of different size of intervention experiments on performance

G MORE RELATED WORK

Causal Discovery From Observational Data. Traditional causal discovery algorithms infer causal
structures from static observational data and fall into four types: constraint-based, score-based,
gradient-based, and function causal model methods. Constraint-based algorithms, such as PC (Spirtes
& Glymour, 1991), FCI (Spirtes et al., 2000), and PC-Stable (Colombo et al., 2014), utilize con-
ditional independence relations inferred from the faithfulness assumption to establish graphical
separations. Coupled with reliable conditional independence testing, these methods handle diverse
data distributions and causal relations but are limited to identifying partial DAG. Score-based algo-
rithms search for the optimal DAG under combination constraints using predefined scoring functions.
Examples include GES (Chickering, 2002b), hill climbing (Koller & Friedman, 2009), and integer
programming (Cussens, 2012). Gradient-based methods extend score-based approaches by trans-
forming discrete search into continuous equality constraints. For example, NOTEARS (Zheng et al.,
2018) utilizes algebraic features of DAGs for a smooth global search, but assumes linear relations.
GAE (Ng et al., 2019), GraN-DAG (Yu et al., 2019) and SG-MCMC (Annadani et al., 2023) extend
this to non-linear functions. Other models relax constraints (Ng et al., 2020) and use reinforcement
learning (Wang et al., 2021) as a complement. Function causal model methods like LiNGAM (Comon,
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1994) and ANM (Hoyer et al., 2008) describe causal relations in specific functional forms, differ-
entiating between DAGs within the same equivalence class with additional assumptions on data
distribution or function classes. Nevertheless, the identifiability of structures obtained solely from
observational data without specific assumptions is theoretically limited.

Causal Discovery From Interventional Data. Despite the potential identifiability of Directed
Acyclic Graphs (DAGs) under sufficient i.i.d. interventions and certain assumptions, limited literature
explores this problems due to the diversity in types and strategies of intervention data. GIES (Hauser
& Bühlmann, 2012) extends the GES algorithm to intervention settings by leveraging the similarity
between observed causal graphs and their corresponding intervened graphs. It follows the same
two-step approach as the original process, utilizing forward and backward stage traversal through the
search space until achieving local maximum scores. Focusing on perfect interventions, IGSP (Wang
et al., 2017; Yang et al., 2018) introduces a greedy sparse permutation method, offering an ex-
tension to general interventions. This involves optimizing the scoring function through a greedy
approach and guiding permutation-based strategies for traversing the I-MEC space. Subsequently,
UT-IGSP (Squires et al., 2020) partially addresses unknown target intervention scenarios. Recently,
ENCO (Lippe et al., 2022), based on the concept of invariance, proposes a continuous optimization
method to learn causal structures from intervention data, modeling the existence of edges and edge
direction as separate parameters. Nonetheless, all of these methods typically focus on a limited set of
intervention scenarios and fail to provide a unified approach for effectively addressing the problem of
causal discovery from interventions.

Supervised Causal Discovery. Supervised causal discovery aims to pre-access synthetic datasets
of causal relations and learn causal directions in a supervised manner. Early research focused on
pairwise relations, including RCC (Lopez-Paz et al., 2015) and MRCL (Hill et al., 2019). For
multivariate causal learning, DAG-EQ (Li et al., 2020), based on permutation-equivariant edge
models, investigated supervised causal discovery using synthetic data from linear causal models,
showing promising results. Subsequently, SLdisco (Petersen et al., 2022) address shortcomings
in sample size and graph density settings. It trained on synthetic linear Gaussian data to learn
equivalence classes of causal graphs from observational datasets. Recently, CSIvA (Ke et al., 2023b)
devised a transformer architecture with permutation invariance, extending the supervised learning
paradigm to incorporate intervention data for increased flexibility. Concurrently, AVICI (Lorch
et al., 2022), leveraging amortized variational inference optimization, circumvented the challenges
of structural search to predict causal structures directly from the provided dataset. Considering
that the aforementioned methods only evaluate a limited set of real causal model data and may
not effectively capture fundamental causal information, such as persistent dependencies (Yu et al.,
2016) and directional asymmetry. ML4S (Ma et al., 2022) and ML4C (Dai et al., 2023), operating
under the supervised paradigm for skeleton and direction learning, achieved progressively significant
identifiability. However, causal discovery for various types of intervention data scenarios remains
inadequately addressed in the supervised paradigm. Our approach represents the first unified solution
for supervised intervention causal discovery.

H MORE DISCUSSION

H.1 SUPERVISED CAUSAL DISCOVERY

We advocate for causal discovery from intervention data in supervised paradigm. Identifiable causal
relationships between causal graphs can be treated as ground truth labels, and corresponding data
can be obtained through forward sampling. Importantly, this sampling strategy is cost-free, allowing
us to obtain an infinite number of samples for training a model to compress the mapping between
data and causal relationships. As the main study on data quantity, typically, the more data, the better
performance. Furthermore, although we can freely generate parameterized causal graphs, for specific
systems of interest, such as the aforementioned study on data quality, we consider training data
derived using posterior distributions to be useful for causal discovery of the data of interest.

H.2 SELF-AUGMENTATION vs. PRE-TRAINING

We noticed that all the SCL methods in the literature, during the training phase, integrate or generate
datasets containing various causal mechanisms and their related data samples through simulators (if
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available), however, such generation mechanisms are entirely dependent on manual specification.
Ideally, it is preferable to predefine rich synthetic graph structures (possible examples include ER / SF
/ Low Rank / Random graphs, etc.) and synthetic function types (including linear, quadratic, nonlinear,
etc.) as much as possible. We refer to the process of synthesizing data during the training phase
and then training them together as ”pre-training”, similar to today’s language model pre-training,
using massive training data to achieve generalization in different domains. However, causal structure
learning is a high-risk field, where people often pay more attention to performance. The potential
danger of this pre-training method is that if the causal mechanisms of the system of interest have
never been seen before, there may be out-of-distribution generalization issues. Therefore, in this
paper, we advocate acquiring training data more relevant to the test data after accessing the test data,
providing high-quality training data by observing the posterior estimates of causal graphs to avoid
the ”domain shift” problem. We call this self-augmentation method, similar to in-context learning,
adjusting on specific testing instance of interest in order to achieve high performance that is usable.

H.3 DISCRETE vs. CONTINUOUS DATA

In this paper, we mainly focus on causal structure identification from discrete data. The Markov
completeness theorem states that for discrete or linear Gaussian data, we can only identify causal
graphs up to their CPDAG. For continuous data satisfying linear non-Gaussian mechanisms or ad-
ditive noise assumptions, we can identify more causal directions. However, our goal is to properly
handle intervention data by using a supervised learning paradigm to learn identifiable causal struc-
tures. Therefore, more considerations may be needed to design corresponding learning tasks for
continuous data. Nevertheless, in practice, our method can be naturally extended to continuous data
by utilizing standard algorithms from existing literature, such as the Hilbert-Schmidt Independence
Criterion (Gretton et al., 2007) to compute conditional dependencies of numerical variables. Despite
this, more attention may need to be paid, which we consider as future work.

I BROADER IMPACTS

We propose TICL, a new method for causal discovery from data with unknown intervention targets.
Specifically, we introduce the concept of self-augmentation, using test data to obtain high-quality
usable synthetic training data and identifying causal structures under the paradigm of supervised
learning. Additionally, we advocate for joint causal inference as a fundamental framework for
handling different intervention settings. Our numerical experiments demonstrate that our method
outperforms existing intervention causal discovery methods on a wide range of datasets and metrics.
However, despite the existence of supervisory identifiability, due to our adoption of traditional manual
feature engineering, certain features may incur negative returns in specific situations for the final
causal identifiability judgment. Therefore, future work will explore extending it to fully end-to-end
neural network models, which may be more suitable by automatically capturing features instead of
manual operations. Finally, as a potential benefit of the design of joint causal reasoning, we can
naturally identify unknown intervention targets while discovering causality, enabling scientists to
apply these methods to automated experiment design and scientific discovery.
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