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ABSTRACT

Attention learners, neural networks built on the attention mechanism, e.g., trans-
formers, excel at learning the implicit relationships that relate sequences to their
corresponding properties, e.g., mapping a given sequence of tokens to the probabil-
ity of the next token. However, the learning process tends to be costly. To address
this, we present a novel paradigm named Attention Neural Teaching (AtteNT)
that reinterprets the learning process through a nonparametric teaching perspective.
Specifically, the latter provides a theoretical framework for teaching mappings that
are implicitly defined (i.e., nonparametric) via example selection. Such an implicit
mapping is embodied through a dense set of sequence-property pairs, with the
AtteNT teacher selecting a subset to accelerate convergence in attention learner
training. By analytically investigating the role of attention on parameter-based
gradient descent during training, and recasting the evolution of attention learners,
shaped by parameter updates, through functional gradient descent in nonparametric
teaching, we show for the first time that teaching attention learners is consistent with
teaching importance-adaptive nonparametric learners. These new findings readily
commit AtteNT to enhancing learning efficiency of attention learners. Specifically,
we observe training time reductions of 13.01% for LLMs and 20.58% for ViTs,
spanning both fine-tuning and training-from-scratch regimes. Crucially, these gains
are achieved without compromising accuracy; in fact, performance is consistently
preserved and often enhanced across a diverse set of downstream tasks.

1 INTRODUCTION

The attention mechanism, inspired by human attention concepts (Ahmad, 1991; Soydaner, 2022),
is designed to assess the relative importance of each element in a sequence (Bahdanau et al., 2015;
Vaswani et al., 2017). By leveraging attention, neural networks can effectively learn the implicit
relationships that map sequences to their corresponding properties, e.g., mapping a sequence of tokens
to the probability of the next token. These Attention Neural Networks (ANNs), e.g., transformers
(Vaswani et al., 2017; Kong et al., 2019), have achieved significant success in a wide range of
downstream tasks across various fields, including natural language processing (Vaswani et al., 2017;
Devlin et al., 2019; Consens et al., 2025), computer vision (Dosovitskiy et al., 2020; Azad et al.,
2024; Chen et al., 2024), and multimodal systems (Nagrani et al., 2021; Yang et al., 2024).

However, the process of learning the implicit mappings—i.e., training—can be quite costly for ANNs,
especially when handling large-scale tasks (Liu et al., 2018b; Beltagy et al., 2019; Gu et al., 2021;
Yang et al., 2023). For instance, pretraining language models often requires training on corpora with
millions of sentences (Common Crawl, 2007; Li et al., 2024). In the case of video understanding, the
scale can become overwhelmingly large (Bain et al., 2021; Sharma et al., 2018; Shu et al., 2025). As
a result, reducing training costs and enhancing learning efficiency has become an urgent priority.

Recent research on nonparametric teaching (Zhang et al., 2023b;a; 2024a; 2025) presents a promising
solution to the issue outlined above. Specifically, nonparametric teaching provides a theoretical
framework for selecting examples efficiently when the target mapping (i.e., either a function or a
model) being taught is nonparametric, i.e., implicitly defined. It builds on the concept of machine
teaching (Zhu, 2015; Zhu et al., 2018), which involves designing a training set (dubbed the teaching
set) to help the learner quickly converge to the target functions, while relaxing the assumption that the
target functions are parametric (Liu et al., 2017; 2018a), thus enabling the teaching of nonparametric
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(non-closed-form) functions with a focus on function space. Unfortunately, these studies are limited
to multilayer perceptron-based learners and do not account for the attention mechanism, making their
direct application difficult when the learners are ANNs. Additionally, ANNs are typically updated
through gradient descent in parameter space, which contrasts with the functional gradient descent
used in nonparametric teaching within function space (Zhang et al., 2023b;a; 2024a; 2025). Hence, it
is not immediate to apply nonparametric teaching theory to attention learners.

To this end, we systematically investigate the role of attention on ANN gradient-based training in
both parameter and function spaces. Specifically, we analytically examine how attention adaptively
assigns different importance to each element in an input sequence during parameter-based gradient
descent in parameter space, and explicitly show that the parameter gradient retains the same form
as the input sequence size scales. This importance-adaptive update in parameter space drives the
evolution of the ANN, which can be expressed using the dynamic Attention Neural Tangent Kernel
(ANTK) (Yang, 2019; Hron et al., 2020), and then cast into function space. We prove that this
dynamic ANTK converges to the importance-adaptive canonical kernel used in functional gradient
descent, suggesting that the evolution of ANN under parameter gradient descent is consistent with
that under functional gradient descent. Therefore, it is natural to interpret the learning process of
attention learners through the theoretical framework of nonparametric teaching: the target mapping is
represented by a dense set of sequence-property pairs, where each sequence is associated with its
target output, and the teacher selects a subset of these pairs to provide to the ANN, ensuring rapid
convergence of this attention learner. Consequently, to improve the learning efficiency of ANNs,
we propose a novel paradigm called AtteNT, where the teacher applies a counterpart of the greedy
teaching algorithm from nonparametric teaching to train attention learner, specifically by selecting
the sequence with the greatest discrepancy between their true property values and the ANN outputs.
Lastly, we carry out comprehensive experiments to demonstrate the effectiveness of AtteNT across
various scenarios, including both natural language processing and computer vision tasks. Our key
contributions are as follows:

• We propose AtteNT, a novel paradigm that interprets attention learner training through the theoreti-
cal lens of nonparametric teaching. This facilitates the use of greedy algorithms from nonparametric
teaching to effectively improve the learning efficiency of attention learners.

• We analytically investigate the role of attention in parameter-based gradient descent within parame-
ter space, revealing the consistency between the evolution of ANN driven by parameter updates and
that under functional gradient descent in nonparametric teaching. We further show that the dynamic
ANTK, emerging from gradient descent on the parameters, converges to the importance-adaptive
canonical kernel of functional gradient descent. These findings bridge nonparametric teaching
theory with attention learner training, thereby broadening the application of nonparametric teaching
to contexts involving attention mechanisms.

• We demonstrate the effectiveness of AtteNT through extensive experiments across both natural
language processing (NLP) and computer vision (CV) tasks. Our approach reduces Large Language
Model (LLM) fine-tuning time by 13.01% and accelerates Vision Transformer (ViT) training from
scratch by 20.58%, thereby providing strong empirical support for our theoretical claims.

2 RELATED WORKS

Attention learners. The effectiveness of the attention mechanism in learning implicit mappings from
sequences to relevant properties has spurred a surge in research on attention learners (Bahdanau et al.,
2015; Vaswani et al., 2017; Kong et al., 2019). This growing interest is particularly evident in the
increasing efforts to apply attention learners across a wide variety of downstream tasks, including
natural language processing (Galassi et al., 2020; Jin et al., 2024), computer vision (Dosovitskiy et al.,
2020; Hassanin et al., 2024; Zhang et al., 2024b), medicine (Thirunavukarasu et al., 2023; Demszky
et al., 2023), and graph-related fields (Veličković et al., 2018; Wu et al., 2024). Various efforts have
been made in designing learners for improved mapping learning in vision tasks (Lin et al., 2022;
Dosovitskiy et al., 2020; Arnab et al., 2021), as well as for more efficient inference (Kitaev et al.,
2020; Katharopoulos et al., 2020; Lu et al., 2021). There have also been ongoing pursuits to enhance
learning efficiency, such as sparse training (Frankle & Carbin, 2018; You et al., 2020; Chen et al.,
2021c;b; Li et al., 2023), improved initialization (Huang et al., 2020; d’Ascoli et al., 2021), and data
curation (Tang et al., 2023; Zhong et al., 2023; Lin et al., 2024; Li et al., 2024). Differently, we frame
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attention learner training from a fresh perspective of nonparametric teaching (Zhang et al., 2023b;a),
and adopt a corresponding variant of the greedy algorithm to enhance the training efficiency of ANNs.

Nonparametric teaching. Machine teaching (Zhu, 2015; Zhu et al., 2018) focuses on designing a
teaching set that allows the learner to quickly converge to a target model function. It can be seen
as the reverse of machine learning: while machine learning aims to learn a mapping from a given
training set, machine teaching seeks to construct the set based on a desired mapping. Its effectiveness
has been demonstrated across various domains, including crowdsourcing (Singla et al., 2014; Zhou
et al., 2018), robustness (Alfeld et al., 2017; Ma et al., 2019; Rakhsha et al., 2020), and computer
vision (Wang et al., 2021a; Wang & Vasconcelos, 2021). Nonparametric teaching (Zhang et al.,
2023b;a) extends iterative machine teaching (Liu et al., 2017; 2018a) by broadening the parameterized
family of target mappings to encompass the more general nonparametric framework. This theoretical
framework has proven effective in enhancing the efficiency of multilayer perceptrons for learning
implicit functions from signal coordinates to corresponding values (Zhang et al., 2024a; Luo et al.,
2024), as well as improving the training efficiency of graph convolutional networks for learning
implicit mappings from graphs to their relevant properties (Zhang et al., 2025). Nevertheless, the
absence of the attention mechanism in these studies limits their direct applicability to general tasks
involving attention learners (Bahdanau et al., 2015; Vaswani et al., 2017). This work systematically
investigates the role of attention and highlights the alignment between the evolution of ANN driven by
parameter updates and that guided by functional gradient descent in nonparametric teaching. These
insights, for the first time, broaden the scope of nonparametric teaching in attention learner training,
positioning our AtteNT as a novel approach to improving ANN learning efficiency.

3 BACKGROUND

Notation.1 Let (x1, . . . ,xS) represent a sequence of length S, where each xs ∈ Rd denotes a
d-dimensional feature vector associated with the s-th element, with s ∈ NS (NS := {1, . . . , S}).
Each xs is a row vector, expressed as [xs,j ]

⊤
d = [xs,1, . . . , xs,d]. The entire collection of feature

vectors forms an S × d feature matrix, denoted SS×d ∈ S ⊆ RS×d (or simply S). The s-th row and
the i-th column of this matrix, corresponding to the s-th element and the i-th feature, are denoted
by S(s,:) and S(:,i), respectively. Alternatively, these can be written as e⊤s S and Sei, where ei is
a standard basis vector with its i-th entry being 1 and all other entries equal to 0. The bold column
vector 1 represents a vector in which all elements are 1. The property of the sequence is represented
by y ∈ Y , where y is a scalar for sequence-level properties (Y ⊆ R) and a vector for element-level
properties (Y ⊆ Rn). A set with m items is denoted as {ai}m. If {ai}m ⊆ {ai}n, then {ai}m
represents a subset of {ai}n containing m items, where the indices are i ∈ Nn. A diagonal matrix
with diagonal entries a1, . . . , am is denoted as diag(a1, . . . , am), and if all m values are identical,
the matrix is simplified as diag(a;m).

Let K(S,S′) : S × S 7→ R denote a symmetric and positive definite sequence kernel (Can-
cedda et al., 2003; Király & Oberhauser, 2019). This kernel can also be expressed as K(S,S′) =
KS(S

′) = KS′(S), where for simplicity, KS(·) may be abbreviated as KS . The reproducing
kernel Hilbert space (RKHS) H associated with K(S,S′) is defined as the closure of the linear
span {f : f(·) =

∑r
i=1 aiK(Si, ·), ai ∈ R, r ∈ N,Si ∈ S}, with the inner product given by

⟨f, g⟩H =
∑

ij aibjK(Si,Sj), where g =
∑

j bjKSj
(Liu & Wang, 2016; Zhang et al., 2023b).

Rather than assuming the idealized case of a closed-form solution f∗, we focus on the more realistic
scenario where the realization of f∗ is given (Zhang et al., 2023b;a; 2024a; 2025). Given the target
mapping f∗ : S 7→ Y , it uniquely maps each sequence S† to its corresponding output y†, such that
y† = f∗(S†). According to the Riesz–Fréchet representation theorem (Lax, 2014; Schölkopf &
Smola, 2002; Zhang et al., 2023b), the evaluation functional is defined as follows:

Definition 1. Let H denote a reproducing kernel Hilbert space2 equipped with a positive definite
sequence kernel KS ∈ H, where S ∈ S . The evaluation functional ES(·) : H 7→ R is defined by the
reproducing property as

ES(f) = ⟨f,KS(·)⟩H = f(S), f ∈ H . (1)

1The notation table can be found in Appendix A.1.
2In nonparametric teaching, the extension from scalar-valued to vector-valued functions, relating to element-

level properties, is a well-established generalization in Zhang et al., 2023a.
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Furthermore, for a functional F : H 7→ R, the Fréchet derivative (Coleman, 2012; Liu, 2017; Zhang
et al., 2023b) of F is defined as:

Definition 2. (Fréchet derivative in RKHS) The Fréchet derivative of a functional F : H 7→ R at a
point f ∈ H, represented as∇fF (f), is defined implicitly by F (f+ϵg) = F (f)+⟨∇fF (f), ϵg⟩H+
o(ϵ) for any g ∈ H and ϵ ∈ R. This derivative itself is a function inH.

Attention learners, referring to neural networks that incorporate attention mechanisms, are designed
to learn the implicit mapping between input sequences and their associated properties (Vaswani et al.,
2017). Specifically, the attention consists of three components: the query matrixQ(S) := SWQ, the
key matrix K(S) := SWK , and the value matrix V(S) := SW V , where the query and key weight
matrices WQ and WK are of size d × p, and the value weight matrix W V is of size d × v. For
simplicity, this paper primarily focuses on a single-layer, single-head self-attention neural network3

(Mahankali et al., 2024; Makkuva et al., 2025), which can be expressed as

fθ(S) = softmax

(
Q(S)K(S)⊤√

d

)
V(S), (2)

where softmax(·) is applied row-wise.

Nonparametric teaching is formulated as a functional minimization over a teaching set, denoted
as D = {(x1, y1), . . . (xT , yT )}, where each input x ∈ Rd represents independent feature vectors,
without considering the sequence (Zhang et al., 2023b). The collection of all possible teaching sets is
represented by D:

D∗ = argmin
D∈D

M(f̂ , f∗) + λ · card(D) s.t. f̂ = A(D) . (3)

This formulation involves three key components:M which measures the discrepancy between f̂ and
f∗ (e.g., L2 distance in RKHSM(f̂∗, f∗) = ∥f̂∗ − f∗∥H); card(·), representing the cardinality (or
size) of the teaching set D, controlled by a regularization constant λ > 0; and A(D), which denotes
the learning algorithm employed by the learners, typically based on empirical risk minimization:

f̂ = argmin
f∈H

Ex∼P(x) (L(f(x), f∗(x))) (4)

with a convex loss L (w.r.t. f ), which is optimized using functional gradient descent:4

f t+1 ← f t − η Ex

(
∂L(f∗, f t)

∂f t

)
·Kx︸ ︷︷ ︸

:=G(L,f∗;ft,x), Functional Gradient

, (5)

where t = 0, 1, . . . , T is the iteration index, η > 0 is the learning rate, and Ex(f) = f(x) denotes
the evaluation functional.

4 ATTENT

We begin by investigating the role of attention in parameter-based gradient descent. Then, by
translating the evolution of an ANN—driven by importance-adaptive updates in parameter space—into
function space, we show that the evolution of the ANN under parameter gradient descent is consistent
with that under functional gradient descent. Lastly, we present the greedy AtteNT algorithm, which
effectively selects sequences with steeper gradients to enhance the learning efficiency of the ANN.

4.1 IMPORTANCE-ADAPTIVE UPDATE IN THE PARAMETER SPACE

3This can be directly extended to other attention learners, including those with multi-head attention or
different types of attention mechanisms (Dong et al., 2021; Kajitsuka & Sato, 2024).

4The functional gradient is obtained by applying the functional chain rule (Lemma 5) and the gradient of an
evaluation functional (Lemma 6), both of which are detailed in Appendix A.2.
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Figure 1: An illustration of the workflow for an attention
neural network with an input sequence S.

Let the column vector θ ∈ Rm denote all
trainable weights in a flattened format, with
m representing the total number of parameters
in the ANN. Figure 1 illustrates the workflow
of the ANN. Given a training set of size N ,
{(Si,yi)|Si ∈ S,yi ∈ Y}N , the parameters
are updated via gradient descent, as shown be-
low:5

θt+1 ← θt − η

NS

N∑
i=1

S∑
j=1

∇θL(fθt(Si)(j,:),yi(j,:)), (6)

where fθt(Si)(j,:) refers to the j-th row of the
output fθt(Si), corresponding to the j-th ele-
ment of the input sequence, and yi(j,:) denotes
its associated property value. Since the learning
rate η is small enough, the updates remain mini-
mal over multiple iterations, allowing them to be
treated as a time derivative and thus expressed as
a differential equation (Jacot et al., 2018; Yang,
2019; Hron et al., 2020):

∂θt

∂t
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[
∂fθt(Si)

∂θt

]
N

. (7)

The term ∂fθ(S)
∂θ (with the indexes i and t omitted for simplicity), which defines the direction for

parameter updates, can be more explicitly written as

∂fθ(S)

∂θ
=

[
∂fθ(S)

∂W V
(:,1)

, . . . ,
∂fθ(S)

∂W V
(:,v)︸ ︷︷ ︸

w.r.t. the value weight matrix

,
∂fθ(S)

∂WQ
(:,1)

, . . . ,
∂fθ(S)

∂WQ
(:,p)︸ ︷︷ ︸

w.r.t. the query weight matrix

,
∂fθ(S)

∂WK
(:,1)

, . . . ,
∂fθ(S)

∂WK
(:,p)︸ ︷︷ ︸

w.r.t. the key weight matrix

]
. (8)

Here, each term represents the derivative of the output fθ(S) w.r.t. the weight column vectors. Unlike
derivatives for multilayer perceptron-based learners, where the input is used only once, i.e., the
derivative depends on a single use of the input, the attention mechanism invokes the input three times
atQ,K, and V separately, as depicted in Figure 1. To clearly demonstrate, in an analytical and explicit
manner, how these three invocations allow attention to adaptively assign varying different importance
to each element in an input sequence within parameter space, we present an example involving the
derivative of an ANN with v = 1, meaning that each component of the output fθt(S)(j,:) is a scalar:

∂fθ(S)

∂θ
=

[
∂fθ(S)

∂W V
,
∂fθ(S)

∂WQ
(:,1)

, . . . ,
∂fθ(S)

∂WQ
(:,p)

,
∂fθ(S)

∂WK
(:,1)

, . . . ,
∂fθ(S)

∂WK
(:,p)

]
, (9)

where the term ∂fθ(S)
∂W V has a shape of S × d, and is given by

∂fθ(S)

∂W V
=

 exp
(
Q(i,:)K⊤/

√
d
)

1⊤ exp
(
Q(i,:)K⊤/

√
d
)

S

S, (10)

where exp(·) denotes the element-wise exponential operator. For simplicity, we omit the arguments
of Q,K,V . For i ∈ Np, the term ∂fθ(S)

∂WQ
(:,i)

and ∂fθ(S)

∂WK
(:,i)

are

∂fθ(S)

∂WQ
(:,i)

=

[
d−1/2 S(j,:)︸ ︷︷ ︸

1×d

·

( 1×S︷ ︸︸ ︷
K(:,i)

⊤

S×S︷ ︸︸ ︷
diag

(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
)) S×1︷︸︸︷
V −

1×S︷ ︸︸ ︷
K(:,i)

⊤

S×S︷ ︸︸ ︷(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(j,i)K(:,i)

⊤/
√
d
) S×1︷︸︸︷
V

)
︸ ︷︷ ︸

:=ωj ,1×1

]
S×d

, (11)

5Training sequences generally have the same length, corresponding to the maximum length, which is ensured
by padding or truncating (Yu et al., 2023b; Ding et al., 2024). Therefore, this paper focuses on sequences of the
same length unless noted otherwise. Results for varying lengths can be directly obtained.
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∂fθ(S)

∂WK
(:,i)

=

[
d−1/2 S(j,:)︸ ︷︷ ︸

1×d

·

( 1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷
diag

(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
)) S×1︷︸︸︷
V −

1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(j,i)K(:,i)

⊤/
√
d
) S×1︷︸︸︷
V

)
︸ ︷︷ ︸

1×1

]
S×d

. (12)

The derivation is provided in Appendix A.3. For the sake of brevity, we focus on the query gradient,
with similar results holding for the key and value gradients. As a result of invoking the input three
times, Equation 11 reveals that the ANN gradient depends not only on the features of the sequence
elements, i.e., S(j,:), but also on a scalar ωj that is specific to each element.

Specifically, Equation 11 explicitly shows that the gradient row order follows the order of elements
in the input sequence, meaning the gradient is equivariant w.r.t. reordering the elements. This is in
contrast to the gradient in recurrent neural networks (Elman, 1990; Jordan, 1997), where the order
of the elements determines the power of the recurrent weights. Moreover, this gradient property is
derived during the training stage, yet, interestingly, it aligns with the permutation invariance property
of self-attention during inference (Lee et al., 2019).

The scalar ωj in Equation 11 is computed from Q, K, and V , which reflects the three invocations
of input by the attention. It is clear that it is closely associated with the j-th element, meaning it is
element-specific. This scalar is the importance value that attention assigns to each element, leading
to an importance-adaptive update in the parameter space. When all importance values are set to 1, the
gradient of the ANN reduces to the derivative of a multilayer perceptron without nonlinear activations
and with batch input. Additionally, the explicit expressions in Equations 7, 11, and 12 show that the
ANN gradient does not depend on the input sequence length (i.e., the number of elements), as this is
averaged out. Instead, it depends on the feature dimension. In other words, the parameter gradient
remains unchanged even if the input sequence length S is scaled.

4.2 THE FUNCTIONAL EVOLUTION OF ANN

The importance-adaptive update in the parameter space drives the functional evolution of fθ ∈ H.
This variation in fθ, reflecting how fθ responds to updates in θ, can be derived using Taylor’s theorem
as follows:

f(θt+1)− f(θt) = ⟨∇θf(θ
t), θt+1 − θt⟩+ o(θt+1 − θt), (13)

where f(θ†) ≡ fθ† . In a manner analogous to the transformation of parameter updates into their
differential form, this can also be expressed in a differential form (Zhang et al., 2024a):

∂fθt

∂t
=

〈
∂f(θt)

∂θt
,
∂θt

∂t

〉
︸ ︷︷ ︸

(∗)

+o

(
∂θt

∂t

)
. (14)

By substituting the specific parameter updates, i.e., Equation 7, into the first-order approximation
term (∗) of this variation, we obtain

∂fθt

∂t
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
· [Kθt(Si, ·)]N + o

(
∂θt

∂t

)
, (15)

where the symmetric and positive definite Kθt(Si, ·) :=
〈

∂fθt (Si)
∂θt ,

∂fθt (·)
∂θt

〉
(for detailed derivations

and further discussion, see Appendix A.4). Due to the inclusion of nonlinear activation functions in
f(θ), the nonlinearity of f(θ) with respect to θ results in the remainder o(θt+1 − θt) being nonzero.
In a subtle difference, Jacot et al., 2018; Yang, 2019; Hron et al., 2020 apply the chain rule directly,
giving less focus to the convexity of L with respect to θ. As a result, the first-order approximation is
derived as the variation, with Kθ being referred to as the Attention Neural Tangent Kernel (ANTK).
It has been demonstrated that the ANTK remains constant during training when the ANN width, i.e.,
d, is assumed to be infinite (Hron et al., 2020). However, in practical applications, the ANN width
does not need to be infinitely large, prompting us to explore the dynamic ANTK (an example of how
the ANTK is computed can be found in Figure 3 in Appendix A.4).

Consider characterizing the variation of fθ ∈ H from a high-level, functional viewpoint (Zhang et al.,
2024a; 2025). Using functional gradient descent, it can be written as

∂fθt

∂t
= −ηG(L, f∗; fθt , {Si}N ), (16)
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where the functional gradient is expressed as

G(L, f∗; fθt , {Si}N ) =
1

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
[K(Si, ·)]N . (17)

The asymptotic relationship between ANTK and the importance-adaptive canonical kernel (Cancedda
et al., 2003; Király & Oberhauser, 2019; Zhang et al., 2024a) in the context of functional gradient is
presented in Theorem 3 below, with the proof provided in Appendix B.1.

Theorem 3. Given a convex loss L and a training set {(Si,yi)|Si ∈ S,yi ∈ Y}N , the dynamic
ANTK, which is derived from performing gradient descent on the parameters of an ANN, converges
pointwise to the importance-adaptive canonical kernel in the dual functional gradient with respect to
the input sequences. Specifically, it holds that

lim
t→∞

Kθt(Si, ·) = K(Si, ·), ∀i ∈ NN . (18)

This suggests that ANTK, which includes adaptive importance information, serves as a dynamic
substitute for the importance-adaptive canonical kernel in functional gradient descent with sequence
inputs, aligning the ANN evolution through parameter gradient descent with that in functional gradient
descent (Kuk, 1995; Hron et al., 2020; Geifman et al., 2020). This functional insight bridges the
teaching of attention learners (i.e., ANNs) with that of importance-adaptive nonparametric learners,
while also facilitating further analysis (e.g., a convex functional L retains its convexity with respect
to fθ from a functional perspective, but is typically nonconvex when considering θ). By utilizing the
functional insight and applying the canonical kernel (Dou & Liang, 2021) instead of ANTK (which
should be considered alongside the remainder), it facilitates deriving sufficient reduction concerning
L in Proposition 4, with the proof deferred to Appendix B.2.

Proposition 4. (Sufficient Loss Reduction) Let the convex loss L be Lipschitz smooth with a constant
τ > 0, and suppose the importance-adaptive canonical kernel is bounded above by a constant
γ > 0. If the learning rate η satisfies η ≤ 1/(2τγ), then a sufficient reduction in L is guaranteed, as
demonstrated by

∂L
∂t
≤ −ηγ

2

 1

NS

N∑
i=1

S∑
j=1

∂L
(
fθt(Si)(j,:),yi(j,:)

)
∂fθt(Si)(j,:)

2

. (19)

This indicates that the variation of L over time is capped by a negative value, meaning it decreases by
at least the magnitude of this upper bound as time progresses, ensuring convergence.

4.3 THE ATTENT ALGORITHM

Building on the understanding of how attention adaptively assigns varying importance in parameter-
based gradient descent, as well as the consistency between teaching an ANN and a nonparametric
learner, we introduce the AtteNT algorithm. This algorithm is designed to amplify the steepness of
the gradients, thereby improving the learning efficiency of the ANN. By considering the gradient as
the sum of projections of ∂L(fθ,f

∗)
∂fθ

onto the basis {K(Si, ·)}N , the gradient can be increased simply

by maximizing the projection ∂L(fθ(Si),yi)
∂fθ(Si)

, thus eliminating the need to compute the norm of the
basis ∥K(Si, ·)∥H (Wright, 2015; Zhang et al., 2024a). This suggests that selecting sequences that
either maximize

∥∥∥∂L(fθ(Si),yi)
∂fθ(Si)

∥∥∥
2

or correspond to the larger components of ∂L(fθ,f
∗)

∂fθ
can effectively

amplify the gradient, indicating that

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥∥∥∥[∂L(fθ(Si),yi)

∂fθ(Si)

]
m

∥∥∥∥
F
, (20)

with Frobenius norm ∥ · ∥F . From a functional viewpoint, for a convex loss functional L, the norm of
its partial derivative w.r.t. fθ, denoted as ∥∂L(fθ)

∂fθ
∥H, is positively correlated with ∥fθ − f∗∥H. As fθ

gets closer to f∗, the value of ∥∂L(fθ)
∂fθ
∥H decreases (Boyd & Vandenberghe, 2004; Coleman, 2012).

This relationship becomes especially prominent when L is strongly convex with a larger convexity

7
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constant (Kakade & Tewari, 2008; Arjevani et al., 2016). Building on these insights, the AtteNT
algorithm selects sequences by

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥[fθ(Si)− f∗(Si)]m∥F . (21)

The pseudocode is provided in Algorithm 1.

5 EXPERIMENTS AND RESULTS

To demonstrate the broad effectiveness of the AtteNT Algorithm, we conducted extensive experiments
across diverse domains. Our evaluation covered large language models and computer vision models.
In addition, we validated performance under multiple training paradigms, including training from
scratch, and fine-tuning, consistently achieving strong results.

LLM Scenario. We evaluate AtteNT algorithms across a diverse set of natural language gen-
eration (NLG) tasks. Specifically, we fine-tune LLaMA 2-7B (Touvron et al., 2023), Mistral-
7B (Jiang et al., 2023), and Gemma-7B (Team et al., 2024) on the MetaMathQA dataset (Yu et al.,
2023a) to benchmark their mathematical reasoning capabilities on GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). To assess coding proficiency, we further fine-tune these mod-
els on CodeFeedback (Zheng et al., 2024b) and evaluate on HumanEval (Chen et al., 2021a) and
MBPP (Austin et al., 2021). For conversational ability, we train on WizardLM-Evol-Instruct (Xu
et al., 2023) and evaluate on MT-Bench (Zheng et al., 2024a). All experiments are conducted on
standardized subsets to ensure comparable training efficiency and are trained for five epochs.

As shown in Table 1, AtteNT consistently outperforms standard fine-tuning across all evaluated
models and tasks while reducing computational overhead. Specifically, fine-tuning LLaMA, Mistral,
and Gemma with AtteNT yields accuracy gains of 1.39, 2.14, and 2.42 on GSM8K, and 1.59, 2.89,
and 0.76 on MATH. On coding benchmarks, AtteNT improves performance by 3.66%, 3.25%, and
0.29% on HumanEval, and by 2.08%, 3.25%, and 3.31% on MBPP. We further report average
fine-tuning time per model under identical data volumes and epoch settings. Since runtime variation
arises primarily from AtteNT’s adaptive data selection, the observed results highlight its efficiency:
on average, AtteNT reduces training time by 12.78%, underscoring its advantage in both performance
and resource savings.

CV Scenario. The Multi-Modal MAE (Bachmann et al., 2022) is designed to address a diverse range
of downstream tasks by employing three specialized encoders, each dedicated to processing a distinct
image modality. During pre-training, we explore various selection strategies, including different
ratios and intervals, to optimize model configuration. The pretraining process is conducted over 800
epochs.

For unsupervised pre-training, we utilize ImageNetS50 (Gao et al., 2021) to evaluate the effective-
ness of the AttneNT method in enhancing the performance of downstream tasks under suboptimal
conditions. Classification performance is assessed using the validation subset of the original dataset,
while semantic segmentation and depth estimation tasks are fine-tuned and evaluated on the NYUv2
dataset (Silberman et al., 2012). Given the absence of a large multi-task dataset with aligned task-
specific images (Doersch & Zisserman, 2017; Bachmann et al., 2022; Wang et al., 2023), we generate
pseudo-labels for ImageNetS50 using Mask2Former (Cheng et al., 2022).

Table 1: AtteNT on NLG tasks. The results are averaged over three runs, with standard deviations
included. The GSM8K and MATH datasets share a math fine-tuned model, while HumanEval and
MBPP use a code fine-tuned model. MT-Bench utilizes a conversation fine-tuned model. The "Avg.
time" represents the average fine-tuning time for the three models.

Model AtteNT Avg. Time(↓) GSM8K(↑) MATH(↑) HumanEval(↑) MBPP(↑) MT-Bench(↑)

LLaMA 2-7B w/o 246±1m 42.96±0.12 5.06±0.16 18.35±0.31 35.65±0.25 4.58±0.01
w 213±2m 43.45±0.55 6.48±0.24 21.80±0.38 37.61±0.42 4.49±0.02

Mistral-7B w/o 204±2m 69.13±0.22 20.06±0.20 43.42±0.14 58.52±0.13 5.03±0.05
w 180±2m 71.26±0.23 23.12±0.44 46.55±0.25 61.74±0.54 5.32±0.04

Gemma-7B w/o 228±2m 75.23±0.45 30.52±0.48 53.83±0.27 65.69±0.29 5.42±0.04
w 201±2m 77.74±0.32 31.40±0.36 54.26±0.28 66.28±0.46 5.44±0.08
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Table 2: AtteNT across various CV downstream tasks. ImageNetS50 uses 50 categories from ImageNet
for classification, evaluated by accuracy. NYUv2(S) is a semantic segmentation task with mIoU as
the metric. NYUv2(D) involves depth estimation, evaluated using the δ1 metric, which measures the
percentage of pixels with an error ratio below 1.25 (Doersch & Zisserman, 2017).

Model AtteNT Pretraining Time(↓) ImageNetS50(↑) NYUv2(S)(↑) NYUv2(D)(↑)

Multi-Modal MAE w/o 1234m 92.2 51.9 52.1
w 980m(-20.58%) 92.3 52.6 57.2

Table 3: Ablation study of AtteNT pre-training configurations. Ratio controls how the fraction of
selected samples increases over epochs. Interval denotes how often the subset is re-sampled. Selection
specifies the sampling strategy: Random (no difficulty prior), Hard (selects only difficult samples),
and Soft (Gumbel-Top-k difficulty-aware sampling). The configuration (Incremental, Incremental,
Soft) in the red color row is adopted as our final AtteNT setting, as it simultaneously reduces
pre-training time and improves performance on all downstream tasks.

Pre-training Downstream
Ratio Interval Selection Training time(↓) ImageNetS50(↑) NYUv2(S)(↑) NYUv2(D)(↑)

- - - 1234m 92.2 51.9 52.1
Cosine Incremental Random 966m 88.6 45.3 49.6
Cosine Incremental Soft 995m 92.1 52.2 58.8
Cosine Fixed Soft 1301m 93.2 53.6 61.4
Incremental Incremental Soft 980m 92.3 52.6 57.2
Incremental Fixed Soft 1319m 92.4 53.7 62.1
Cosine Incremental Hard 972m 91.8 49.5 57.3
Cosine Fixed Hard 1285m 92.1 53.0 60.8
Incremental Incremental Hard 963m 91.4 48.4 57.2
Incremental Fixed Hard 1302m 92.5 52.7 59.5

As shown in Table 2, the AtteNT strategy results in a significant reduction in training time, saving
20.58% during long-duration training from scratch. Additionally, it consistently improves perfor-
mance across a wide range of downstream tasks. Notably, the depth estimation task exhibits the
largest gain, achieving a 5.1% improvement. We attribute this improvement to the nature of the
depth estimation task, which is independent of image type, thus preventing any disruption in data
distribution during the selection process. Our experiments demonstrate the efficacy of AtteNT within
the ViT architecture.

The practical performance gains stem directly from the curriculum effect induced by nonparametric
teaching (Bengio et al., 2009; Wang et al., 2021b; Zhang et al., 2023b; 2025), which greedily selects
the examples that most advance the learner. This naturally creates a curriculum that focuses training
on informative, high-gradient examples and avoids gradient dilution from already-mastered ones.

We further present the ablation study results for AttneNT, focusing on the effects of varying data
selection strategies and their impact on downstream tasks. Specifically, we investigate the influence
of dynamic changes in data selection ratios and step sizes, following the strategy proposed in (Zhang
et al., 2023b). Additionally, we examine how different selection strategies affect the performance
of downstream tasks. The Random strategy involves selecting data without any predefined criteria,
while the Hard strategy entails deterministic data selection. The Soft strategy, on the other hand,
uses probability-based data selection, derived from loss scores. To implement this, we apply the
Gumbel-Top-k selection algorithm (Kool et al., 2019) for sampling without replacement. Our results
show that the Soft selection strategy achieves the best performance in downstream tasks, significantly
improving the model’s robustness during training. A more detailed study of the sample ratio can be
found in Appendix D.1, and additional comparison results are provided in Appendix D.2.

6 CONCLUDING REMARKS AND FUTURE WORK

This paper introduces AtteNT, a novel paradigm that enhances the learning efficiency of attention
learners (i.e., ANNs) through nonparametric teaching theory. Specifically, AtteNT reduces the
wallclock time required to learn the implicit mapping from sequences to relevant properties by
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13.01% to 20.58% while consistently preserving and often enhancing the performance across a
diverse set of downstream tasks. Moreover, AtteNT establishes a theoretical connection between the
evolution of an ANN via parameter-based gradient descent and that of a function using functional
gradient descent in nonparametric teaching. This connection between nonparametric teaching theory
and ANN training expands the potential applications of nonparametric teaching in contexts that
involve attention mechanisms.

In future work, it would be interesting to explore other variations of AtteNT for different attention
learners, such as graph attention networks (Veličković et al., 2018). Additionally, investigating its
robustness under real-world label noise, building upon recent noise-robust advancements (Wei et al.,
2024; Hu et al., 2024), could yield crucial improvements. Another promising direction is to examine
the practical applications of AtteNT in improving the efficiency of data-driven methods (Henaff,
2020; Touvron et al., 2021; Müller et al., 2022) for attention-related tasks, especially in areas like
world models.

REPRODUCIBILITY STATEMENT

We have taken substantial steps to promote the reproducibility of our research. Appendix A offers
a comprehensive overview of the notation, theoretical background, and key algorithm. All proofs
for theorems and propositions can be found in Appendix B. Meanwhile, Appendix C provides a
comprehensive description of the experimental setup, including training configurations, hyperparam-
eter choices, algorithmic details, and dataset preprocessing procedures. Codes are available at the
following anonymous link: LINK.
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A ADDITIONAL DISCUSSIONS

A.1 NOTATION OVERVIEW

Table 4: Summary of Key Notations.

Notation Description
SS×d Matrix containing all feature vectors from the ordered sequence

(x1, . . . ,xS), with shape S × d
[xs,j ]

⊤
d d-dimensional feature vector for the s-th element, with components xs,j

x Short form for [xj ]d
S(s,:) The s-th row of S, representing the feature vector for the s-th element
S(:,i) The i-th column of S, which represents the i-th feature across all ele-

ments)
ei The i-th basis vector, having a value of 1 at the i-th position and 0

elsewhere
S Collection of all sequences
y Property associated with the sequences, which can be scalar or vector
Y Space of sequential properties, represented as R or Rn

{ai}m A set containing m items
diag(a1, . . . , am) Diagonal matrix with diagonal entries a1, . . . , am
diag(a;m) Diagonal matrix with m repeated entries of a
NS := {1, . . . , S} Set of natural numbers from 1 to S
K(S,S′) A symmetric and positive definite sequence kernel
H Reproducing kernel Hilbert space (RKHS) defined by K
f∗ Target mapping from S to Y
y† Property f∗(S†) corresponding to the sequence S†

A.2 FUNCTIONAL GRADIENT

Zhang et al., 2023b;a present the chain rule for functional gradients, which is detailed in
Lemma 5 (Gelfand & Silverman, 2000), and utilize the Fréchet derivative to calculate the derivative
of the evaluation functional in RKHS, as shown in Lemma 6 (Coleman, 2012).
Lemma 5. (Chain rule for functional gradients) For differentiable functions G(F ) : R 7→ R that
depend on functionals F (f) : H 7→ R, the chain rule is given by

∇fG(F (f)) =
∂G(F (f))

∂F (f)
· ∇fF (f) . (22)

Lemma 6. The gradient of the evaluation functional at the feature x, denoted as
Ex(f) = f(x) : H → R , is given by ∇fEx(f) = K(x, ·), where K(x,x′) : Rd × Rd → R
represents a feature-based kernel.

A.3 THE DERIVATION OF IMPORTANCE-ADAPTIVE UPDATES IN THE PARAMETER SPACE.

Before providing the detailed derivation, we begin by showing visualizations of general single-head
attention learners. Figure 2a depicts a multi-output self-attention learner, Figure 2b presents a
multi-output masked self-attention learner, and Figure 2c illustrates a multi-output cross-attention
learner. The formulations for the masked self-attention and cross-attention learners are presented in
Equation 23.

Masked Self-Attention: fθ(S) = softmax
(

Q(S)K(S)⊤√
d

+M
)
V(S)

Cross-Attention: fθ(S,S
′) = softmax

(
Q(S)K(S′)⊤√

d

)
V(S′), (23)

where M ∈ RS×S is a is a strictly upper triangular matrix, with zeros on and below the diagonal and
−∞ in every element above the diagonal.
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(c) Cross-attention.

Figure 2: An illustration of the workflow for different multi-output attention learners, with input sequence S and
S′ (in the case of cross-attention).

Consider the derivative of an ANN with v = 1, meaning that each component of the output fθt(S)(j,:)
is a scalar:

∂fθ(S)

∂θ
=

[
∂fθ(S)

∂W V
,
∂fθ(S)

∂WQ
(:,1)

, . . . ,
∂fθ(S)

∂WQ
(:,p)

,
∂fθ(S)

∂WK
(:,1)

, . . . ,
∂fθ(S)

∂WK
(:,p)

]
. (24)

By applying the chain rule, we can compute the derivative of fθ(S) with respect to the weight W V

in the value matrix V(S).

∂fθ(S)

∂W V
=

∂ softmax
(

Q(S)K(S)⊤√
d

)
V(S)

∂W V

=
∂ softmax

(
SWQWK⊤

S⊤
√
d

)
SW V

∂W V

= softmax

(
SWQWK⊤

S⊤
√
d

)
S

= softmax

(
QK⊤
√
d

)
S

=

 exp
(
Q(i,:)K⊤/

√
d
)

1⊤ exp
(
Q(i,:)K⊤/

√
d
)

S

S, (25)

where exp(·) denotes the row-wise exponential operator. The case of v ≥ 2 represents a multi-
dimensional extension, which involves more complex notation but can be derived in a similar manner.
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The derivative of fθ(S) with respect to the query weight matrix is more intricate. For i ∈ Np,

∂fθ(S)

∂WQ
(:,i)

=
∂ softmax

(
Q(S)K(S)⊤√

d

)
V(S)

∂WQ
(:,i)

=
∂ softmax

(
SWQWK⊤

S⊤
√
d

)
SW V

∂WQ
(:,i)

=

∂ softmax

(
SWQeie

⊤
i WK⊤

S⊤
√
d

)
SW V

∂WQ
(:,i)

=



∂ softmax

(
S(1,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

)
SW V

∂WQ
(:,i)

. . .

∂ softmax

(
S(S,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

)
SW V

∂WQ
(:,i)



=



∂
S(1,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

∂WQ
(:,i)

∂ softmax

(
S(1,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

)

∂
S(1,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

SW V

. . .

∂
S(S,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

∂WQ
(:,i)

∂ softmax

(
S(S,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

)

∂
S(S,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

SW V


. (26)

Let’s examine this row by row. For the j-th row (j ∈ NS) of Equation 26, it expressed as:

∂
S(j,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

∂WQ
(:,i)

∂ softmax

(
S(j,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

)
∂

S(j,:)W
Q
(:,i)

WK
(:,i)

⊤S⊤
√
d

SW V

= S(j,:) ·
1√
d
WK

(:,i)

⊤
S⊤

∂ softmax

(
S(j,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤

√
d

)
∂

S(j,:)W
Q
(:,i)

WK
(:,i)

⊤S⊤
√
d

SW V

= S(j,:) ·
1√
d
WK

(:,i)

⊤
S⊤

∂

(
exp
(
d−1/2S(j,:)W

Q
(:,i)

WK
(:,i)

⊤
S⊤
)

1⊤ exp
(
d−1/2S(j,:)W

Q
(:,i)

WK
(:,i)

⊤S⊤
))

∂ d−1/2S(j,:)W
Q
(:,i)W

K
(:,i)

⊤
S⊤

SW V

= S(j,:) ·

(
1√
d
WK

(:,i)

⊤
S⊤diag

(
softmax

(
S(j,:)W

Q
(:,i)W

K
(:,i)

⊤
S⊤/
√
d
))

SW V

− 1√
d
WK

(:,i)

⊤
S⊤
(
softmax

(
S(j,:)W

Q
(:,i)W

K
(:,i)

⊤
S⊤/
√
d
))⊤

softmax
(
S(j,:)W

Q
(:,i)W

K
(:,i)

⊤
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√
d
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SW V

)
.

(27)
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The right-hand side of Equation 27 can be rewritten as

S(j,:)︸ ︷︷ ︸
size: 1×d

·

(
d−1/2︸ ︷︷ ︸
1×1

WK
(:,i)

⊤︸ ︷︷ ︸
1×d

d×S︷︸︸︷
S⊤ diag

(
softmax

( 1×d︷ ︸︸ ︷
S(j,:)

d×1︷ ︸︸ ︷
WQ

(:,i)

1×d︷ ︸︸ ︷
WK

(:,i)

⊤
d×S︷︸︸︷
S⊤ /

√
d
))

︸ ︷︷ ︸
S×S

S︸︷︷︸
S×d

W V︸︷︷︸
d×1

− d−1/2︸ ︷︷ ︸
1×1

WK
(:,i)

⊤︸ ︷︷ ︸
1×d

d×S︷︸︸︷
S⊤

(
softmax

( 1×d︷ ︸︸ ︷
S(j,:)

d×1︷ ︸︸ ︷
WQ

(:,i)

1×d︷ ︸︸ ︷
WK

(:,i)

⊤
d×S︷︸︸︷
S⊤ /

√
d
))⊤

︸ ︷︷ ︸
S×1

softmax
( 1×d︷ ︸︸ ︷
S(j,:)

d×1︷ ︸︸ ︷
WQ

(:,i)

1×d︷ ︸︸ ︷
WK

(:,i)

⊤
d×S︷︸︸︷
S⊤ /

√
d
)︸ ︷︷ ︸

1×S

S︸︷︷︸
S×d

W V︸︷︷︸
d×1

)

= S(j,:)︸ ︷︷ ︸
1×d

·

(
d−1/2︸ ︷︷ ︸
1×1

K(:,i)
⊤︸ ︷︷ ︸

1×S

diag
(
softmax

( 1×1︷ ︸︸ ︷
Q(j,i)

1×S︷ ︸︸ ︷
K(:,i)

⊤ /
√
d
))

︸ ︷︷ ︸
S×S

V︸︷︷︸
S×1

− d−1/2︸ ︷︷ ︸
1×1

K(:,i)
⊤︸ ︷︷ ︸

1×S

(
softmax

( 1×1︷ ︸︸ ︷
Q(j,i)

1×S︷ ︸︸ ︷
K(:,i)
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√
d
))⊤
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√
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1×S
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√
d
)) S×1︷︸︸︷
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⊤
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(
Q(j,i)K(:,i)

⊤/
√
d
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(
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√
d
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V

)
︸ ︷︷ ︸

1×1

.

(28)

By combining Equation 26, 27 and 28, we derive

∂fθ(S)

∂WQ
(:,i)

=


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(29)
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The derivative of fθ(S) with respect to the key weight matrix is derived in a manner similar to that of
the query weight matrix. For i ∈ Np,
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. (30)

Similarly, let’s examine it row by row. For the j-th row (j ∈ NS) of Equation 30, it is
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(31)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The right-hand side of Equation 31 can be simplified to:

S(j,:)︸ ︷︷ ︸
size: 1×d

·

(
d−1/2︸ ︷︷ ︸
1×1

WQ
(:,i)

⊤︸ ︷︷ ︸
1×d

d×S︷︸︸︷
S⊤ diag

(
softmax

( 1×d︷ ︸︸ ︷
S(j,:)

d×1︷ ︸︸ ︷
WQ

(:,i)

1×d︷ ︸︸ ︷
WK

(:,i)

⊤
d×S︷︸︸︷
S⊤ /

√
d
))

︸ ︷︷ ︸
S×S

S︸︷︷︸
S×d

W V︸︷︷︸
d×1

− d−1/2︸ ︷︷ ︸
1×1

WQ
(:,i)

⊤︸ ︷︷ ︸
1×d

d×S︷︸︸︷
S⊤

(
softmax

( 1×d︷ ︸︸ ︷
S(j,:)

d×1︷ ︸︸ ︷
WQ

(:,i)

1×d︷ ︸︸ ︷
WK

(:,i)

⊤
d×S︷︸︸︷
S⊤ /

√
d
))⊤

︸ ︷︷ ︸
S×1

softmax
( 1×d︷ ︸︸ ︷
S(j,:)

d×1︷ ︸︸ ︷
WQ

(:,i)

1×d︷ ︸︸ ︷
WK

(:,i)

⊤
d×S︷︸︸︷
S⊤ /

√
d
)︸ ︷︷ ︸

1×S

S︸︷︷︸
S×d

W V︸︷︷︸
d×1

)

= S(j,:)︸ ︷︷ ︸
1×d

·

(
d−1/2︸ ︷︷ ︸
1×1

Q(:,i)
⊤︸ ︷︷ ︸

1×S

diag
(
softmax

( 1×1︷ ︸︸ ︷
Q(j,i)

1×S︷ ︸︸ ︷
K(:,i)

⊤ /
√
d
))

︸ ︷︷ ︸
S×S

V︸︷︷︸
S×1

− d−1/2︸ ︷︷ ︸
1×1

Q(:,i)
⊤︸ ︷︷ ︸

1×S

(
softmax

( 1×1︷ ︸︸ ︷
Q(j,i)

1×S︷ ︸︸ ︷
K(:,i)

⊤ /
√
d
))⊤

︸ ︷︷ ︸
S×1

softmax
( 1×1︷ ︸︸ ︷
Q(j,i)

1×S︷ ︸︸ ︷
K(:,i)

⊤ /
√
d
)︸ ︷︷ ︸

1×S

V︸︷︷︸
S×1

)

= d−1/2 S(j,:)︸ ︷︷ ︸
1×d

·

( 1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷
diag

(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
)) S×1︷︸︸︷
V −

1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(j,i)K(:,i)

⊤/
√
d
) S×1︷︸︸︷
V

)
︸ ︷︷ ︸

1×1

.

(32)
By merging Equation 30, 31 and 32, we get:

∂fθ(S)

∂WK
(:,i)

=



d−1/2 S(1,:)︸ ︷︷ ︸
1×d

·

( 1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷
diag

(
softmax

(
Q(1,i)K(:,i)

⊤/
√
d
)) S×1︷︸︸︷
V −

1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷(
softmax

(
Q(1,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(1,i)K(:,i)

⊤/
√
d
) S×1︷︸︸︷
V

)
︸ ︷︷ ︸

1×1

. . .

d−1/2 S(S,:)︸ ︷︷ ︸
1×d

·

( 1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷
diag

(
softmax

(
Q(S,i)K(:,i)

⊤/
√
d
)) S×1︷︸︸︷
V −

1×S︷ ︸︸ ︷
Q(:,i)

⊤

S×S︷ ︸︸ ︷(
softmax

(
Q(S,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(S,i)K(:,i)

⊤/
√
d
) S×1︷︸︸︷
V

)
︸ ︷︷ ︸

1×1


S×d

=
[
d−1/2S(j,:) ·

(
Q(:,i)

⊤diag
(
softmax

(
Q(j,i)K(:,i)

⊤/
√
d
))
V −Q(:,i)

⊤(softmax
(
Q(j,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(j,i)K(:,i)

⊤/
√
d
)
V

)]
S×d

= diag

(
Q(:,i)

⊤diag
(
softmax

(
Q(1,i)K(:,i)

⊤/
√
d
))
V −Q(:,i)

⊤(softmax
(
Q(1,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(1,i)K(:,i)

⊤/
√
d
)
V,

. . . ,Q(:,i)
⊤diag

(
softmax

(
Q(S,i)K(:,i)

⊤/
√
d
))
V −Q(:,i)

⊤(softmax
(
Q(S,i)K(:,i)

⊤/
√
d
))⊤

softmax
(
Q(S,i)K(:,i)

⊤/
√
d
)
V

)
S/
√
d .

(33)

From Equations 25, 29, and 33, it can be observed that the ANN gradient for a single sequence
resembles that for a batch of feature vector inputs, as the gradient can be decomposed for each
element. This demonstrates the parallelization-friendly nature of the attention mechanism from a
gradient perspective.

These results can be directly extended to the case where each component of the output fθt(S)(j,:) is a
vector, by considering a multi-dimensional setting (Zhang et al., 2023a). The extension to multi-head
cases can be done by broadcasting, which involves repeating the derivation in parallel as many times
as there are heads.

A.4 ATTENTION NEURAL TANGENT KERNEL (ANTK)

By incorporating the parameter evolution (i.e., Equation 7)
∂θt

∂t
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[
∂fθt(Si)

∂θt

]
N

. (34)
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Figure 3: Graphical depiction of the ANTK computation process: Kθ(SS ,S
′
S′) =

〈
∂fθ(S)

∂θ
, ∂fθ(S

′)
∂θ

〉
=[

∂fθ(S)(i,:)

∂WV
(1)

∂fθ(S
′)(j,:)

∂WV
(1)

+ · · ·+ ∂fθ(S)(i,:)

∂WV
(d)

∂fθ(S
′)(j,:)

∂WV
(d)

+
∂fθ(S)(i,:)

∂W
Q
(1,1)

∂fθ(S
′)(j,:)

∂W
Q
(1,1)

+ · · ·+ ∂fθ(S)(i,:)

∂W
Q
(d,p)

∂fθ(S
′)(j,:)

∂W
Q
(d,p)

+

∂fθ(S)(i,:)

∂WK
(1,1)

∂fθ(S
′)(j,:)

∂WK
(1,1)

+ · · ·+ ∂fθ(S)(i,:)

∂WK
(d,p)

∂fθ(S
′)(j,:)

∂WK
(d,p)

]
S×S′;i∈NS ,j∈NS′

.

into the first-order approximation term (∗) of Equation 14, we derive

(∗) =

〈
∂fθt(·)
∂θt

,− η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[
∂fθt(Si)

∂θt

]
N

〉
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
〈
∂fθt(·)
∂θt

,

[
∂fθt(Si)

∂θt

]
N

〉
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[〈

∂fθt(·)
∂θt

,
∂fθt(Si)

∂θt

〉]
N

= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
· [Kθt(Si, ·)]N , (35)

which leads to Equation 15 expressed as

∂fθt

∂t
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
· [Kθt(Si, ·)]N + o

(
∂θt

∂t

)
, (36)

where the symmetric and positive definite Kθt(Si, ·) :=
〈

∂fθt (Si)
∂θt ,

∂fθt (·)
∂θt

〉
is called the attention

neural tangent kernel (ANTK) (Jacot et al., 2018; Yang, 2019; Hron et al., 2020). Specifically, ANTK

for S(i,:) and S′
(j,:) is a scalar K(S(i,:),S

′
(j,:)) =

〈
∂fθt (S)

(i,:)

∂θt ,
∂fθt (S

′)
(j,:)

∂θt

〉
. Figure 3 illustrates

the ANTK computation process, where typically, the length of all training sequences is standardized
to the maximum length. In simple terms, examining a model’s behavior by focusing on the model
itself, rather than its parameters, often involves the use of kernel functions.

The quantity ∂fθt (·)
∂θt , which represents the partial derivative of the ANN with respect to its parameters

and appears in Kθt(Si, ·) =
〈

∂fθt (Si)
∂θt ,

∂fθt (·)
∂θt

〉
, is determined by both the network architecture

and the specific parameters θt, but it is independent of the input sequences. In contrast, the term
∂fθt (Si)

∂θt depends not only on the ANN structure and specific θt, but also on the input sequence
S. When the input for ∂fθt (Si)

∂θt is unspecified, the ANTK simplifies to a general form Kθt(·, ·).
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However, when a specific sequence Sj is provided as the input to ∂fθt (·)
∂θt , the ANTK becomes a

matrix defined as Kθt(Si,Sj) =
〈

∂fθt (Si)
∂θt ,

∂fθt (Sj)
∂θt

〉
. This formulation aligns with the vector-

valued kernel used in functional gradient descent (Zhang et al., 2023a). When the input sequence
Si is specified, one argument of Kθt is fixed, leading the ANN to update along Kθt(Si, ·), with
the magnitude of the update determined by ∂fθt (Si)

∂θt . This process reflects the core mechanism of
functional gradient descent. In summary, the ANTK and the canonical vector-valued kernel share
a consistent mathematical framework and exhibit similar effects on the evolution of the associated
ANN. Additionally, Theorem 3 establishes the asymptotic relationship between the ANTK and the
canonical kernel used in functional gradient descent.

A.5 ATTENT ALGORITHM

Algorithm 1 AtteNT Algorithm
Input: Target mapping f∗ realized by a dense set of sequence-property pairs, initial ANN fθ0 , the
size of selected training set m ≤ N , small constant ϵ > 0 and maximal iteration number T

Set fθt ← fθ0 , t = 0

while t ≤ T and ∥[fθt(Si)− f∗(Si)]N∥F ≥ ϵ do
The teacher selects m teaching sequences:

/* Sequences associated with the m largest ∥fθt(Si)− f∗(Si)∥2 */

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥[fθt(Si)− f∗(Si)]m∥F

Provide {Si}m∗ to the attention learner

The learner updates fθt based on received {Si}m∗:

// Parameter-based gradient descent

θt ← θt − η
mS

∑
Si∈{Si}m

∗
∑S

j=1∇θL(fθt(Si)(j,:), f
∗(Si)(j,:))

Set t← t+ 1
end
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B DETAILED PROOFS

B.1 PROOF OF THEOREM 3

By examining the evolution of an ANN through changes in its parameters and from a high-level
perspective within the function space, we obtain.

− η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
[K(Si, ·)]N

= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[〈

∂fθt(Si)

∂θt
,
∂fθt(·)
∂θt

〉]
N

+ o

(
∂θt

∂t

)
.

(37)

Upon reorganizing, we derive

− η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
· [K(Si, ·)−Kθt(Si, ·)]N = o

(
∂θt

∂t

)
. (38)

By integrating the parameter evolution

∂θt

∂t
= −η ∂L

∂θt
= − η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[
∂fθt(Si)

∂θt

]
N

(39)

into the remainder, we get

− η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
· [K(Si, ·)−Kθt(Si, ·)]N

= o

(
− η

NS

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]
·
[
∂fθt(Si)

∂θt

]
N

)
. (40)

When training an ANN with a convex loss L, which is convex in terms of fθ but not necessarily in
terms of θ, the following limit holds for the vector: limt→∞

[
∂L(fθt (S1),y1)

∂fθt (S1)
, . . . ,

∂L(fθt (SN ),yN )
∂fθt (SN )

]
=

0. Since the right-hand side of this equation is a higher-order infinitesimal relative to the left,
maintaining this equality results in the conclusion that

lim
t→∞

[K(Si, ·)−Kθt(Si, ·)]N = 0 . (41)

This suggests that for each training point, i.e., input sequence S ∈ {Si}N , ANTK converges
pointwise to the canonical kernel.

■

B.2 PROOF OF PROPOSITION 4

Referring to the definition of the Fréchet derivative in Definition 2, the convexity of L implies that

∂L
∂t
≤
〈

∂L
∂fθt+1

,
fθt

∂t

〉
H︸ ︷︷ ︸

Υ

. (42)
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By computing the Fréchet derivative of ∂L
∂fθt+1

and the evolution of fθt , the term on the right-hand
side, Υ, can be expressed as
Υ =

〈
Gt+1,−ηGt

〉
H

= − η

N2S2

〈[
∂L(fθt+1(S1),y1)

∂fθt+1(S1)
, . . . ,

∂L(fθt+1(SN ),yN )

∂fθt+1(SN )

]
· [KSi

]N ,

[KSi ]
⊤
N ·
[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]⊤〉
H

= − η

N2S2

[
∂L(fθt+1(S1),y1)

∂fθt+1(S1)
, . . . ,

∂L(fθt+1(SN ),yN )

∂fθt+1(SN )

]
·
〈
[KSi

]N , [KSi
]⊤N
〉
H

·
[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]⊤
= − η

NS

[
∂L(fθt+1(S1),y1)

∂fθt+1(S1)
, . . . ,

∂L(fθt+1(SN ),yN )

∂fθt+1(SN )

]
K̄

[
∂L(fθt(S1),y1)

∂fθt(S1)
, . . . ,

∂L(fθt(SN ),yN )

∂fθt(SN )

]⊤
,

(43)
where K̄ = K/(NS), and K is an NS×NS symmetric, positive definite block matrix with elements
K(Si,Sj) positioned in the i-th row and j-th column block. For convenience, we use a simplified

column vector notation
[
∂f

θ□
L(fθ□ ;Si)

]
N

:=
[
∂f

θ□
L(fθ□ ;S1), . . . , ∂f

θ□
L(fθ□ ;SN )

]⊤
with

∂f
θ□
L(fθ□ ;Si) :=

∂L(f
θ□

(Si),yi)

∂f
θ□

(Si)
. The last term in Equation 43 can then be rewritten as

− η

NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)

]
N

= − η

NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
+
[
∂fθtL(fθt ;Si)

]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
= − η

NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N

− η

NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
= − η

NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N

+
η

NS

([
∂fθt+1L(fθt+1 ;Si)

]⊤
N
−
[
∂fθtL(fθt ;Si)

]⊤
N
−
[
∂fθt+1L(fθt+1 ;Si)

]⊤
N

)
·K̄ ·

([
∂fθt+1L(fθt+1 ;Si)

]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
. (44)

The last term in Equation 44 above can be expanded to
η

NS

([
∂fθt+1L(fθt+1 ;Si)

]⊤
N
−
[
∂fθtL(fθt ;Si)

]⊤
N
−
[
∂fθt+1L(fθt+1 ;Si)

]⊤
N

)
·K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
=

η

NS

([
∂fθt+1L(fθt+1 ;Si)

]
N
−
[
∂fθtL(fθt ;Si)

]
N

)⊤
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
− η

NS

[
∂fθt+1L(fθt+1 ;Si)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
=

η

NS

[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]
N

− η

NS

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)⊤

K̄

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)
+

η

4NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N

. (45)

Given that K̄ is positive definite, it follows that

η

NS

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)⊤

K̄

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)
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is a non-negative term. Therefore, by merging Equations 43, 44, and 45, we derive

Υ ≤ − 3η

4NS

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N︸ ︷︷ ︸

Φ

+
η

NS

[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]
N︸ ︷︷ ︸

Ψ

.

(46)

Based on the definition of the evaluation functional and the assumption that L is Lipschitz smooth
with a constant τ > 0, the term Ψ in the final part of Equation 46 is bounded above as follows:

Ψ =
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]
N

=

[
ESi

(
∂L(fθt+1)

∂fθt+1

− ∂L(fθt)

∂fθt

)]⊤
N

K̄

[
ESi

(
∂L(fθt+1)

∂fθt+1

− ∂L(fθt)

∂fθt

)]
N

≤ τ2 [ESi
(fθt+1 − fθt)]

⊤
N K̄ [ESi

(fθt+1 − fθt)]N

= τ2
〈
(fθt+1 − fθt) , [KSi

]
⊤
N

〉
H
· K̄ · ⟨[KSi

]N , (fθt+1 − fθt)⟩H

= η2τ2 ·
[
∂fθtL(fθt ;Si)

]⊤
N

〈
[KSi

]N , [KSi
]⊤N
〉
H

NS
· K̄ ·

〈
[KSi

]N , [KSi
]⊤N
〉
H

NS
·
[
∂fθtL(fθt ;Si)

]
N

.

(47)

Given that the canonical kernel is bounded above by a constant γ > 0, we have〈
[KSi ]N , [KSi ]

⊤
N

〉
H ≤ γ

〈
1NS ,1

⊤
NS

〉
,

and

K̄ ≤ γ

NS

〈
1NS ,1

⊤
NS

〉
.

Therefore, Φ is bounded above by

Φ ≤ γ

NS

〈[
∂fθtL(fθt ;Si)

]⊤
N
,1NS

〉 〈
1⊤
NS ,

[
∂fθtL(fθt ;Si)

]
N

〉
=

γ

NS

 N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

2

. (48)

Moreover, the last term in Equation 47 is also bounded above:

η2τ2 ·
[
∂fθtL(fθt ;Si)

]⊤
N

〈
[KSi ]N , [KSi ]

⊤
N

〉
H

NS
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〈
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⊤
N

〉
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NS
·
[
∂fθtL(fθt ;Si)

]
N

≤ η2τ2

 γ

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

⊤

· K̄ ·

 γ

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))


N

≤ η2τ2γ3

NS

〈 1

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

⊤

N

,1NS

〉〈
1⊤
NS ,

 1

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))


N

〉

=
η2τ2γ3

NS

 N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

2

. (49)

Thus, by combining Equations 46, 47, 48, and 49, we get

Υ ≤ −ηγ
(
3

4
− η2τ2γ2

) 1

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

2

, (50)
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which means

∂L
∂t
≤ Υ ≤ −ηγ

(
3

4
− η2τ2γ2

) 1

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

2

. (51)

Hence, if η ≤ 1
2τγ , it follows that

∂L
∂t
≤ −ηγ

2

 1

NS

N∑
i=1

S∑
j=1

∂fθtL(fθt ;Si(j,:))

2

= −ηγ

2

 1

NS

N∑
i=1

S∑
j=1

∂L
(
fθt(Si)(j,:),yi(j,:)

)
∂fθt(Si)(j,:)

2

. (52)

■

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 LLMS TRAINING SETTING

All experiments were conducted on 4 NVIDIA A100 (80GB) GPUs. We employ LoRA fine-tuning
following the Alpaca (Taori et al., 2023) and Pizza (Meng et al., 2024) implementation strategy.
Specifically, we optimize with AdamW using a batch size of 128, a learning rate of 2e−5, cosine
annealing scheduling (Loshchilov & Hutter, 2017), and a warmup ratio of 0.03, without weight decay.
The training objective computes loss only over responses from the selected datasets. We configure
LoRA with lora_alpha=lora_r, set lora_dropout, and insert adapters into all linear layers of the base
model. Both the backbone and adapters are trained in Float32 precision.

AtteNT Setting In this experiment, we adopt a straightforward variant of AtteNT: the model is
trained on the full dataset during the first epoch, after which only the AtteNT selected subset is used
in subsequent epochs. Selection is guided by the per-sample loss scores within each epoch, effectively
directing the model’s attention toward harder examples. Since pretrained models already perform
well on most instances, emphasizing more challenging data in later epochs is expected to yield greater
fine-tuning benefits. Following prior findings in Rho-1 (Lin et al., 2024), we set the selection ratio to
70%.

Dataset Building The ImageNetS50 dataset is derived from the ImageNet-1k benchmark, and
its construction requires access to a local copy of ImageNet-1k. Following the official repos-
itory (Gao et al., 2021), we generate ImageNetS50 by running data_preparation.sh
with the option -mode=50. Semantic segmentation annotations are obtained using
datapreparation_anno.sh. For depth annotations, we employ the Mask2Former (Cheng
et al., 2022) framework, utilizing its released code and pretrained models to generate pseudo-labels.
In addition, we directly download the full NYUv2 dataset, where the official semantic segmentation
and depth test sets are used for evaluation.

C.2 VITS TRAINING SETTING

We adopt ViT-B (Dosovitskiy et al., 2020) with a 16× 16 patch size as the backbone for our MAE
experiments and evaluate performance on ImageNet-S50. Training is performed using AdamW with
a base learning rate of 1e−4 and weight decay of 0.05. The learning rate is linearly warmed up for 40
epochs, followed by cosine decay scheduling (Loshchilov & Hutter, 2017). We train with a batch size
of 2048 on 4 A100 GPUs, leveraging automatic mixed precision for efficiency. Data augmentation is
limited to standard transformations: random cropping with scale sampled from [0.2, 1.0] and aspect
ratio from [0.75, 1.33], resizing to 224× 224, and random horizontal flipping with probability 0.5. A
full specification of hyperparameters for pretraining and fine-tuning is provided in Tables 5 and 6.

Table 5: Hyperparameters for pre-training Multi-Modal MAE.

Hyperparam Baseline AtteNT
Batch Size 2048 2048
Learning Rate 1e-4 1e-4
Min Learning Rate 1e-6 1e-6
Weight Decay 0.05 0.05
Adamw ϵ 1e-8 1e-8
Adamw β1 0.9 0.9
Adamw β2 0.95 0.95
Epoch 800 800
Warm up Epoch 40 40
Learning Rate Schedule cosine decay cosine decay
Non-masked tokens 98 98
Input resolution 224×224 224×224
Augmentation RandomResizeCrop RandomResizeCrop
Dropout 0.0 0.0
Patch Size 16 16
Selection {None} {Random, Hard, Soft}
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Table 6: Hyperparameters for fine-tuning Multi-Modal MAE on various downtasks. The augmentation
strategy LSJ is large scale jittering (Ghiasi et al., 2021). We use drop path (Huang et al., 2016) in
classification and semantic segmentation tasks.

Hyperparam ImageNetS50 NYUv2(S) NYUv2(D)
Epoch 100 100 2000
Warm up Epoch 5 20 100
Batch Size 1024 1024 2048
Learning Rate 4e-3 1e-4 1e-4
Min Learning Rate 1e-6 1e-6 0
Weight Decay 0.05 0.05 1e-4
Adamw β1 0.9 0.9 0.9
Adamw β2 0.999 0.999 0.999
Layer Decay 0.65 0.75 0.75
Patch Size 16 16 16
Drop path 0.1 0.1 /
LR Schedule cosine decay cosine decay cosine decay
Input resolution 224×224 224×224 256×256
Augmentation Rand(9, 0.5) LSJ LSJ

AtteNT Setting We employ an enhanced AtteNT strategy that dynamically selects training data
based on per-sample loss scores. Specifically, data selection in the first epoch is guided by each
sample’s initial loss, and the selection is periodically updated by recomputing loss scores after fixed
intervals. This updated subset is then used to initiate the next training stage. Moreover, we incorporate
a dynamic selection ratio from 20% to 80%, following the adaptive scheme proposed by (Zhang
et al., 2023b). As demonstrated in Section 5, this approach achieves a favorable trade-off between
efficiency and performance.

Dataset Building All datasets used in our experiments are available on HuggingFace:

• Mathematical Reasoning: Training on meta-math/MetaMathQA; evaluation on
openai/gsm8k and hendrycks/MATH.

• Code Generation: Training on m-a-p/CodeFeedback (restricted to Python samples);
evaluation on openai/humaneval and google/mbpp.

• Multi-Turn Dialogue: Training on WizardLM/evol_instruct_196k; evaluation on
lmsys/mt-bench.
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D ADDITIONAL EXPERIMENTS

D.1 ABLATION OF SAMPLE RATIO

Table 7: Sample Ratio Study of ViT models.

Tasks
Ratio 100 90 80 70 60 50 40

ImageNetS50 92.2 91.8 91.4 85.6 78.8 64.5 58.2
NYUv2(S) 51.9 51.1 50.2 46.8 38.2 29.1 21.9
NYUv2(D) 52.1 52.2 51.6 48.3 42.4 36.3 30.5
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Figure 4: Downstream Task Performance vs Sample Ratio.

In this section, we investigate the impact of the AtteNT algorithm’s sample ratio on downstream
tasks. In Table 7, we compare the results based on the ViT model using different fixed sample ratios.

As we can see from Fig 4, there is a noticeable drop in performance around the 80% selection
ratio. This suggests that, during training, a portion of the data remains relatively unchanged and
contributes less to performance when its selection ratio falls below a certain threshold (Lin et al.,
2024; Katharopoulos & Fleuret, 2018). When the ratio of unselected samples during training is lower
than this threshold, the model can maintain its performance. Interestingly, a small data drop can even
act as a form of noise reduction.

D.2 COMPARISON TO ESTABLISHED METHODS

Table 8: Performance Comparison of Different Methods.

Methods Time(↓) ImageNetS50(↑) NYUv2(S)(↑) NYUv2(D)(↑)
AtteNT(Ours) 980m 92.3 52.6 57.2
Class Weight Sampling 1108m 90.4 48.2 52.0
Fixed Weight Sampling 1065m 89.6 49.7 54.6
GradNorm Sampling (Chen et al., 2018) 1112m 91.9 52.4 55.8
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As shown in Table 8, we also performed experiments comparing AtteNT with three simple yet
representative sample-selection baselines to compare with traditional greedy algorithm: The first
method, Class-Weight Sampling, assigns sampling weights inversely proportional to the number of
samples per class, aiming to encourage the model to treat all classes more equally (sampling weight
= 1 / class frequency). The second, Fixed-Weight Sampling, assigns fixed sampling ratios based
on prior beliefs about task difficulty. In our setting, we consider the classification task easier than
semantic segmentation and depth estimation, so we reduce the sampling rate for the RGB modality
and set fixed sampling weights to 1 : 2 : 2 (RGB : SemSeg : Depth). The third method, GradNorm
Sampling (Chen et al., 2018), dynamically adjusts the sampling weights for data groups (RGB,
SemSeg, Depth) based on their gradient contributions during training. All methods were trained for
800 epochs, with the total sampling budget fixed at 70% for each baseline.

Across all comparisons, AtteNT consistently achieves higher efficiency and stronger predictive
performance. These results indicate that AtteNT’s gains do not arise from generic greedy sam-
pling heuristics, but from its principled nonparametric teaching mechanism, which adapts to model
uncertainty and task interactions more effectively than existing selection strategies.

D.3 VISUALIZING NTK ANALYSIS

To empirically confirm that the neural tangent kernel quickly stabilizes in real vision transformer
training, we track the NTK on 10 fixed training points during an 800-epoch run of the Multi-Modal
MAE backbone:

• Figure 5: Frobenius norm of the difference between the empirical NTK at epoch and the
canonical kernel. The difference falls sharply within the first 50 epochs and stays near zero
thereafter.

• Figure 6: Heatmaps of the 10× 10 NTK at selected checkpoints. A clear pattern is already
visible at epoch 139, and from epoch 219 onward the heatmaps are virtually identical and
remain unchanged through epoch 799.

These quantitative and qualitative results jointly show that the empirical NTK converges extremely
rapidly (within 50–200 epochs) and remains close to the canonical kernel for the rest of training.
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Figure 5: Frobenius norm of the difference between the empirical NTK at different training steps and
the canonical kernel.
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Figure 6: Evolution of the empirical 10 × 10 NTK matrix during training. Color represents value
Kθt(Si,Sj). The matrix stabilizes visually after 200 epochs and shows negligible changes thereafter.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models for language polishing, such as grammar and phrasing. And we also
use AI to assist with code completion. All research ideas, methods, analyses, figures, tables, and
conclusions were solely developed by the authors. The authors take full responsibility for all content.
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