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Abstract

Interpretation is critical for disease diagnosis,001
but existing models struggle to balance predic-002
tive accuracy with human-understandable ratio-003
nales. While large language models (LLMs)004
offer strong reasoning abilities, their clinical005
use is limited by high computational costs and006
restricted multimodal reasoning ability. Small007
language models (SLMs) are efficient but lack008
advanced reasoning for integrating multimodal009
medical data. In addition, both LLMs and010
SLMs lack of domain knowledge for trustwor-011
thy reasoning. Therefore, we propose Clin-012
RaGen, enhancing SLMs by leveraging LLM-013
derived reasoning ability via rationale distilla-014
tion and domain knowledge injection for trust-015
worthy multimodal rationale generation. Key016
innovations include a sequential rationale distil-017
lation framework that equips SLMs with LLM-018
comparable mutlimodal reasoning abilities, and019
a knowledge-augmented attention mechanism020
that jointly unifies multimodal representation021
from time series and textual data in a same en-022
coding space, enabling it naturally interpreted023
by SLMs while incorporating domain knowl-024
edge for reliable rationale generation. Exper-025
iments on real-world medical datasets show026
that ClinRaGen achieves state-of-the-art perfor-027
mance in disease diagnosis and rationale gener-028
ation, demonstrating the effectiveness of com-029
bining LLM-driven reasoning with knowledge030
augmentation for improved interpretability.031

1 Introduction032

The widespread adoption of electronic health033

records (EHRs) has transformed deep learning034

applications in healthcare by providing diverse035

data modalities, including medical notes, labora-036

tory (lab) test results, and clinical events. These037

multimodal inputs are crucial for disease diagno-038

sis, mortality prediction, and drug discovery (Niu039

et al., 2024; Laghuvarapu et al., 2024). Large lan-040

guage models (LLMs) have recently demonstrated041

Figure 1: Existing SLM enhancement methods and chal-
lenges in multimodal rationale generation.

strong diagnostic performance and reasoning capa- 042

bilities through techniques such as prompt learn- 043

ing and Chain-of-Thought (CoT) reasoning (Wei 044

et al., 2022; Singhal et al., 2023; Chen et al., 2023). 045

However, despite these advancements, LLMs face 046

significant challenges in real-world clinical de- 047

ployment due to high computational costs, the 048

need for external domain-specific data integra- 049

tion, and difficulties in processing multimodal in- 050

puts—particularly numerical time-series lab test. 051

More critically, LLMs lack the ability to generate 052

clinically grounded multimodal rationales, limiting 053

their interpretability in medical decision-making. 054

Small language models (SLMs) have emerged as 055

a computationally efficient alternative, benefiting 056

from recent advancements in rationale distillation, 057

prompt learning, and retrieval-augmented genera- 058

tion (RAG) (Hsieh et al., 2023; Kang et al., 2024; 059

Kwon et al., 2024). As shown in Figure 1a, these 060

methods enable SLMs to inherit LLM-driven rea- 061

soning abilities, improve generalization through 062

instruction-based adaptation, or leverage RAG for 063
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more reliable outputs. However, as illustrated in064

Figure 1b, these approaches still suffer from two065

fundamental challenges. The first challenge is that066

they struggle to effectively integrate multimodal067

inputs with structured domain knowledge, as most068

methods focus on single-modality data (e.g., text-069

based rationales) rather than jointly processing tex-070

tual and time series EHR data (Shi et al., 2024;071

Sohn et al., 2024). The second challenge is that072

they fail to provide coherent multimodal rationales073

that align with clinical decision-making, as ratio-074

nale generation often remains text-centric and lacks075

interpretability across different data modalities.076

To bring the best of both worlds, we propose Clin-077

RaGen, a knowledge-augmented framework for078

multimodal clinical rationale generation. Clin-079

RaGen enhances SLMs’ trustworthy mutlimodal080

reasoning capabilities from two aspects. First,081

it transfers LLM-derived reasoning to SLMs082

through a sequential rationale distillation paradigm.083

Second, unlike approaches that rely solely on084

LLM-generated rationales (Kwon et al., 2024) or085

resource-intensive RAG (Kang et al., 2024), we086

propose a knowledge-augmented attention mecha-087

nism that achieves dual functionality: Efficient in-088

tegration of external medical knowledge to enable089

multimodal rationale generation grounded in clin-090

ical validity, ensuring the production of clinically091

meaningful explanations; Unification of time-series092

and textual EHRs within a shared encoding space,093

thereby enhancing multimodal representation learn-094

ing and facilitates interpretable decision-making.095

The main contributions of this paper are:096

• We propose ClinRaGen, a multimodal frame-097

work that transfer LLM reasoning capabilities098

into SLMs for disease diagnosis and clinical099

rationale generation, achieving both accuracy100

and interpretability.101

• We introduce a knowledge-augmented atten-102

tion mechanism that jointly encodes time-103

series EHRs into clinical textual representa-104

tions while injecting domain knowledge, sig-105

nificantly improving mutlimodal rationale re-106

liability and accuracy.107

• State-of-the-art performance in disease di-108

agnosis and rationale generation, validated109

through extensive experiments on benchmark110

EHR datasets (Johnson et al., 2016, 2023).111

2 Related Work 112

Recent advancements in large-scale high-quality 113

datasets and computational resources have enabled 114

significant progress in Natural Language Process- 115

ing (NLP), with improved training methodologies 116

fueling the development of LLMs (Touvron et al., 117

2023; Achiam et al., 2023). In healthcare, LLMs 118

have been applied to clinical question answering 119

and diagnostic reasoning (Singhal et al., 2023; 120

Yang et al., 2022). While effective in text-based 121

tasks, these models struggle to generate clinically 122

grounded multimodal rationales. Medical-specific 123

LLMs (Chen et al., 2023; Zhang et al., 2023) miti- 124

gate this issue through domain adaptation, but their 125

high computational costs and reliance on large- 126

scale training data limit scalability. 127

To improve efficiency, rationale distillation trans- 128

fers LLM-derived reasoning ability to SLMs, reduc- 129

ing computational overhead while preserving inter- 130

pretability (Hsieh et al., 2023; Ho et al., 2023; Kang 131

et al., 2024). Chain-of-thought prompting further 132

enhances SLM reasoning capabilities (Wei et al., 133

2022). However, most distillation approaches re- 134

main text-centric and lack robust multimodal EHRs 135

integration (Kang et al., 2024; Ho et al., 2023). 136

RAG has been explored to improve rationale reli- 137

ability by incorporating external knowledge, yet 138

retrieval latency and adaptability remain key chal- 139

lenges (Jiang et al., 2025). Despite these advance- 140

ments, multimodal rationale generation remains an 141

open challenge. Current models struggle to fuse 142

textual, time-series, and structured medical knowl- 143

edge into coherent clinical rationales. 144

3 Methodology 145

We introduce ClinRaGen, a knowledge-augmented 146

framework designed to enhance disease diagnosis 147

and clinical rationale generation in SLMs by in- 148

tegrating LLM-derived reasoning and structured 149

domain knowledge. ClinRaGen bridges the gap be- 150

tween large-scale medical knowledge and efficient 151

multimodal reasoning, enabling the generation of 152

two types of rationales: 1). medical note-based 153

rationales (Rm) and 2). lab test-based rationales 154

(Rt) from medical notes (M ), time-series lab test 155

results (T ), and disease-specific knowledge (K). 156

ClinRaGen consists of two key components: 157

Knowledge Retrieval and LLM-Guided Rationale 158

Generation (Section 3.1), which collects domain 159

knowledge and generates LLM-derived rationales 160
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Figure 2: Knowledge augmentation in ClinRaGen. Given diagnosed diseases D, relevant descriptions Kdoc are
retrieved and processed by an LLM to extract key clinical terms K, enhancing multimodal rationale generation.

as distillation data for subsequent model training,161

and Knowledge-augmented Attention with Sequen-162

tial Multimodal Rationale Distillation (Section 3.2),163

which progressively integrates structured knowl-164

edge to enhance multimodal reasoning in SLMs.165

3.1 Knowledge Retrieval and LLM-Guided166

Rationale Generation167

This step focuses on gathering domain knowledge168

and leveraging LLMs to generate structured ratio-169

nales. The generated rationales serve as distillation170

targets for training SLMs in later stages. This en-171

sures that SLMs receive high-quality, structured172

reasoning data to develop robust multimodal rea-173

soning capabilities.174

3.1.1 Collecting Domain-Specific Medical175

Knowledge176

LLMs encode extensive medical knowledge but177

are computationally expensive and impractical for178

direct deployment. Meanwhile, SLMs such as Flan-179

T5 and Flan-PaLM (Chung et al., 2024) are com-180

putationally efficient but lack sufficient domain-181

specific expertise to perform complex medical rea-182

soning (Kang et al., 2024; Ho et al., 2023). To183

bridge this gap, ClinRaGen retrieves relevant medi-184

cal knowledge from external sources and structures185

it for integration into SLM training.186

As shown in Figure 2, ClinRaGen collects disease-187

related documents Kdoc from PubMed1 and188

Wikipedia2, extracting key medical terms using189

LLM-based processing to construct a structured190

knowledge base K:191

K = argmax
K′

PLLM (K ′ | D,Kdoc). (1)192

This structured knowledge base is not used directly193

by the SLM during inference but instead supports194

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.wikipedia.org/

rationale generation in the next step. The retrieval 195

and extraction process iterates until a stable set of 196

key medical terms is obtained. 197

3.1.2 Generating Rationales for Distillation 198

ClinRaGen employs LLMs to generate structured 199

rationales that serve as distillation targets for SLM 200

training. Unlike direct knowledge retrieval(Kang 201

et al., 2024; Jiang et al., 2025), this step synthe- 202

sizes structured explanations that explicitly link 203

medical knowledge with clinical decision-making, 204

enabling SLMs to internalize complex reasoning 205

patterns during later training stages. To construct 206

high-quality rationale data, we collaborated with 207

clinicians to curate representative EHR samples 208

and formulate corresponding gold-standard ratio- 209

nales O. These rationales guide the LLM in gen- 210

erating structured explanations, ensuring that the 211

distilled knowledge supports multimodal reasoning. 212

To improve LLM comprehension of numerical lab 213

test data, we applied anomaly detection (Vinutha 214

et al., 2018) and designed structured prompts that 215

convert numerical values into interpretable textual 216

explanations T ∗ (see Appendix A.1). 217

Figure 3 illustrates the multimodal rationale gener- 218

ation process. ClinRaGen first generates rationales 219

(Rm) based on medical notes: 220

Rm = argmax
R′

PLLM (R′ | M ,D,O). (2) 221

Then, lab test-based rationales (Rt) are generated 222

using insights from both medical notes, time series 223

anomalies, and the generate note-based rationales: 224

Rt = argmax
R′

PLLM (R′ | M ,T ∗,D,O,Rm).

(3) 225

These LLM-generated rationales form the founda- 226

tion of the subsequent distillation process (detailed 227

in Section 3.2) and enable SLMs to learn struc- 228

tured, multimodal reasoning efficiently. For further 229
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Figure 3: LLM-based clinical rationale generation.
Medical notes (M ), lab test results (T and T ∗), di-
agnosis (D), and clinicians provide examples (O) are
used to produce medical note-based (Rm) and lab test-
based (Rt) rationales.

details on data processing and prompt engineering,230

refer to Appendix A.2.231

3.2 Multimodal Rationale Distillation232

Figure 4a presents the ClinRaGen framework,233

which comprises a Time Series Encoder for pro-234

cessing numerical lab test data, a Knowledge-235

Augmented Attention Module for integrating struc-236

tured domain knowledge, and a SLM for generat-237

ing disease diagnoses and structured clinical multi-238

modal rationales. The framework enables progres-239

sive multimodal reasoning by leveraging structured240

knowledge and sequential learning mechanisms.241

As illustrated in Figure 4b, ClinRaGen employs a242

three-phase rationale distillation paradigm that sys-243

tematically integrates textual, numerical, and struc-244

tured domain knowledge. The first phase distills245

medical note-based rationales, allowing the SLM246

to develop a foundational understanding of textual247

clinical information. The second phase introduces248

knowledge-augmented attention, aligning numeri-249

cal lab test with structured medical knowledge to250

for distilling lab test-based rationales. The final251

phase fully integrates textual and numerical inputs,252

enabling the SLM to generate clinically coherent253

multimodal rationales to support disease diagnosis.254

3.2.1 Phase 1: Rationale Distillation from255

Medical Notes256

In the first phase, the SLM is trained exclusively on257

medical notes M to establish a foundational under-258

standing of clinical reasoning. This stage enables259

the model to generate disease diagnoses D while260

also producing medical note-based rationales Rm261

and lab test-based rationales Rt. By learning to 262

extract meaningful insights from structured textual 263

data, the SLM develops its initial ability to infer 264

clinical relationships. The model is trained using a 265

language model generation objective: 266

Lnote(θ) = E[− logPSLMθ
(D,Rm,Rt | M)],

(4) 267

where θ represents the trainable parameters of the 268

SLM. This phase not only enables the model to 269

internalize explicit diagnostic reasoning from med- 270

ical notes but also allows it to implicitly capture 271

latent patterns associated with lab test results, lay- 272

ing the groundwork for multimodal integration in 273

subsequent phases. 274

3.2.2 Phase 2: Knowledge Injection and 275

Time-Series Rationale Distillation 276

To enable the SLM to effectively interpret numer- 277

ical lab test data and generate time-series-based 278

rationales (Rt) that support disease diagnosis (D), 279

we introduce a Knowledge-Augmented Attention 280

(KA) Module. This mechanism integrates domain- 281

specific medical knowledge into the reasoning pro- 282

cess, enhancing the model’s ability to produce clin- 283

ically coherent and robust multimodal rationales. 284

We first use a Time Series Encoder (TSE) to encode 285

raw lab test values T into structured hidden em- 286

beddings T e. To align domain knowledge with the 287

SLM, we construct a domain-specific vocabulary 288

V k by filtering standard language vocabulary V 289

based on structured medical knowledge K: 290

V k = {v1, . . . , vn | v1 ∈ K,K ⊆ V }. (5) 291

A cross-attention mechanism is then applied to in- 292

tegrate knowledge-driven representations into the 293

model. The lab test embeddings (T e) serve as the 294

Query, while domain knowledge tokens (V k) act 295

as the Key and Value: 296

H = fϕ(T ,V k),

= SoftMax
((T eW q)(V k⊤W k)√

d

)
(V kW v),

(6) 297

where d is the hidden dimension of the SLM, and 298

W q, W k, W v are learnable attention weight ma- 299

trices, f indicates the encoding function of the TSE 300

and attention, and ϕ represents the trainable pa- 301

rameters of f . The resulting knowledge-enhanced 302

embeddings H are then fed into the frozen dis- 303

tilled SLM to refine its reasoning and generate lab 304

test-based rationales (Rt) and diagnosis (D). 305
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Figure 4: Overview of ClinRaGen. (a) Model structure comprising a time series encoder, knowledge-augmented
attention module, and a SLM. (b) Three-phase rationale distillation: Medical Note-based Rationale Distillation,
Knowledge-Augmented Attention for Lab Test-based Rationale Distillation, and Multimodal Rationale Distillation.

The model is trained using the following objective306

function:307

Llab(ϕ) = E[− logPSLMθ
(D,Rt | H)]. (7)308

This phase ensures that the SLM can naturally in-309

terpret lab test while effectively leveraging medical310

knowledge to enhance its reasoning capabilities.311

3.2.3 Phase 3: Full Multimodal Rationale312

Distillation313

In the final phase, ClinRaGen is trained to gener-314

ate full multimodal clinical rationales by integrat-315

ing medical notes, lab test, and structured domain316

knowledge. To ensure effective multimodal reason-317

ing, lab test T is formatted as prefix prompts (Niu318

et al., 2024), allowing the SLM seamlessly incor-319

porates it with textual EHRs.320

During this stage, the model is optimized to gener-321

ate both medical note-based rationales (Rm) and322

lab test-based rationales (Rt), ensuring that all323

available information contributes to clinically co-324

herent and interpretable decision-making. The mul-325

timodal rationale distillation objective is formu-326

lated as follows:327

Lmm(θ, ϕ) =E[− logPSLMθ
(D,Rm,Rt |

M , fϕ(T ,V k))].
(8)328

The fine-tuning of all ClinRaGen components, en- 329

suring that multimodal EHRs are effectively inte- 330

grated, enhances diagnostic accuracy and produces 331

modality-consistent rationales. 332

4 Experiments 333

4.1 Experimental Settings 334

Dataset: We evaluate ClinRaGen on two public 335

EHR datasets: MIMIC-III (Johnson et al., 2016) 336

(28,456 EHRs include medical notes and time se- 337

ries lab tests) and MIMIC-IV (Johnson et al., 2023) 338

(28,900 EHRs). Both datasets use benchmark tools 339

(Harutyunyan et al., 2019) for time series process- 340

ing, with missing values filled by nearest available 341

data. We target 25 disease phenotypes and follow 342

a 4:1 training-to-testing split (Harutyunyan et al., 343

2019). Our model is available at github3. 344

Baseline Methods: To evaluate the effectiveness 345

of ClinRaGen for disease diagnosis generation, we 346

compared it with following baselines: Flan-T5 347

(Chung et al., 2024), PROMPTEHR (Wang and 348

Sun, 2022), FROZEN (Tsimpoukelli et al., 2021), 349

EHR-KnowGen (Niu et al., 2024), Clinical CoT 350

3https://anonymous.4open.science/r/ClinRaGen-6C9D/
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Models Size Modality Micro Macro

Lab Note Precision Recall F1 Precision Recall F1
MIMIC-III

Flan-T5 60M ✓ 0.5812(0.11) 0.6623(0.07) 0.6203(0.05) 0.5656(0.10) 0.6247(0.08) 0.5887(0.07)

PROMPTEHR 75.2M ✓ 0.5929(0.11) 0.6553(0.07) 0.6224(0.02) 0.5744(0.10) 0.6287(0.06) 0.5910(0.03)

LLaMA-ft 7B ✓ ✓ 0.6142(0.21) 0.6598(0.15) 0.6364(0.04) 0.6108(0.15) 0.6164(0.13) 0.6055(0.04)

FROZEN 265M ✓ ✓ 0.6102(0.18) 0.6401(0.16) 0.6231(0.03) 0.5976(0.16) 0.6001(0.17) 0.5915(0.03)

EHR-KnowGen 77M ✓ ✓ 0.6001(0.03) 0.6551(0.02) 0.6262(0.01) 0.5834(0.04 0.6181(0.03) 0.5944(0.01)

Clinical CoT
-w/o TSE 60M ✓ 0.6115(0.03) 0.6402(0.04) 0.6311(0.03) 0.6024(0.04) 0.5989(0.06) 0.5969(0.03)

-w/ TSE 85M ✓ ✓ 0.5967(0.05) 0.6607(0.06) 0.6328(0.03) 0.5924(0.06) 0.6092(0.07) 0.5975(0.05)

LLM Zero-shot
-LLaMA 7B ✓ ✓ 0.1227(0.08) 0.0421(0.06) 0.0627(0.06) 0.0392(0.06) 0.0622(0.06) 0.0438(0.05)

-ChatGPT 175B ✓ ✓ 0.4474(0.07) 0.1405(0.05) 0.2139(0.05) 0.4883(0.08) 0.1872(0.05) 0.2188(0.04)

ClinRaGen 87M ✓ ✓ 0.6104(0.02) 0.6751(0.02) 0.6410(0.01) 0.5991(0.03) 0.6311(0.04) 0.6113(0.02)

ClinRaGen* 793M ✓ ✓ 0.6047(0.03) 0.6875(0.03) 0.6501(0.02) 0.5943(0.04) 0.6531(0.03) 0.6196(0.03)

MIMIC-IV
Flan-T5 60M ✓ 0.6624(0.05) 0.6953(0.02) 0.6792(0.04) 0.6428(0.06) 0.6601(0.05) 0.6479(0.04)

PROMPTEHR 75.2M ✓ 0.6524(0.07) 0.7031(0.06) 0.6802(0.02) 0.6353(0.05) 0.6702(0.07) 0.6501(0.03)

LLaMA-ft 7B ✓ ✓ 0.6854(0.11) 0.6954(0.07) 0.6929(0.03) 0.6753(0.09) 0.6624(0.11) 0.6621(0.06)

FROZEN 265M ✓ ✓ 0.6781(0.08) 0.6908(0.09) 0.6842(0.01) 0.6627(0.10) 0.6521(0.10) 0.6530(0.02)

EHR-KnowGen 77M ✓ ✓ 0.6580(0.06) 0.7085(0.05) 0.6816(0.02) 0.6382(0.05) 0.6724(0.06) 0.6511(0.02)

Clinical CoT
-w/o TSE 60M ✓ 0.6751(0.05) 0.7069(0.03) 0.6905(0.03) 0.6607(0.04) 0.6796(0.06) 0.6612(0.02)

-w/ TSE 85M ✓ ✓ 0.7011(0.04) 0.6808(0.06) 0.6917(0.04) 0.6971(0.05) 0.6354(0.03) 0.6577(0.03)

LLM Zero-shot
-LLaMA 7B ✓ ✓ 0.1357(0.11) 0.0997(0.07) 0.1150(0.06) 0.0435(0.09) 0.1466(0.07) 0.0619(0.05)

-ChatGPT 175B ✓ ✓ 0.4536(0.07) 0.1458(0.05) 0.2207(0.04) 0.4532(0.06) 0.1831(0.06) 0.2147(0.05)

ClinRaGen 87M ✓ ✓ 0.7009(0.01) 0.6963(0.02) 0.6989(0.01) 0.6868(0.03) 0.6603(0.01) 0.6685(0.02)

ClinRaGen* 793M ✓ ✓ 0.6848(0.04) 0.7429(0.02) 0.7127(0.02) 0.6779(0.02) 0.7087(0.01) 0.6893(0.01)

Table 1: The performance of comparative methods in the disease diagnosis tasks on MIMIC-III and MIMIC-IV. The
best results are highlighted in bold, and the second-best results are marked with an underline.

(with/without TSE) (Kwon et al., 2024), and LLM-351

based models LLaMA-7B (Touvron et al., 2023)352

(zero-shot and fine-tuning) and ChatGPT (Open,353

2023) (zero-shot). Baseline and implementation de-354

tails are provided in Appendices A.3 and A.4. For355

a fair comparison, all baselines (except LLaMA)356

use Flan-T5-Small as the backbone; our model357

employs Flan-T5-Small (ClinRaGen) and Flan-T5-358

Large (ClinRaGen*) for evaluate effect of varying359

scales. ChatGPT (GPT-3.5-turbo) serves as our360

teacher LLM. Results are averaged over five runs361

with statistical significance determined at p < 0.05362

by t-test.363

4.2 Disease Diagnosis Performance364

Comparison with Baselines: We evaluate disease365

diagnosis using micro and macro precision, recall,366

and F1 scores. Table 1 shows that multimodal mod-367

els outperform single-modality models, confirming368

the value of lab test results. Clinical CoT surpasses369

other baseline models, highlighting rationale distil-370

lation’s effectiveness. ClinRaGen (80M) achieves371

the best performance, with an average F1 score im-372

provement of over 1.1% across all baselines, even373

outperforming LLaMA-7B-ft. Furthermore, Clin- 374

RaGen* (793M) improves by over 1.5%, signifi- 375

cantly exceeding other baselines. The weak perfor- 376

mance of zero-shot LLMs confirms the absence of 377

data leakage. These results demonstrate ClinRa- 378

Gen’s ability to match or surpass LLMs in clinical 379

tasks through multimodal rationale distillation and 380

the knowledge-augmented attention mechanism. 381

Ablation Study: We assess the impact of key 382

components in ClinRaGen: (1) w/o LAB&KNOW 383

removes lab tests and knowledge input, (2) w/o 384

KNOW replaces the knowledge-based vocabulary 385

with a standard one, and (3) w/o REASONING 386

excludes rationale distillation while maintaining 387

model structure. Table 2 shows that w/o REASON- 388

ING performs worst, highlighting the importance 389

of rationale distillation. The drop in F1 scores 390

for w/o LAB&KNOW confirms the value of mul- 391

timodal integration, while w/o KNOW shows the 392

KA module’s contribution to diagnostic accuracy. 393

Model Efficiency: We evaluate ClinRaGen’s ef- 394

ficiency by comparing model parameters, micro 395

F1 scores (Figure 5), and training times (Table 3). 396
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Figure 5: Model Parameter Counts and Micro F1 Scores

Models Micro F1 Macro F1
MIMIC-III

ClinRaGen 0.6410 0.6113
w/o LAB&KNOW 0.6323 0.6021
w/o KNOW 0.6349 0.6042
w/o REASONING 0.6255 0.5915

MIMIC-IV
ClinRaGen 0.6989 0.6685
w/o LAB&KNOW 0.6925 0.6643
w/o KNOW 0.6936 0.6644
w/o REASONING 0.6828 0.6541

Table 2: Ablation studies on disease diagnosis.

ClinRaGen-Small achieves superior diagnostic per-397

formance with 80× fewer parameters and less than398

half the training time of LLaMA. These results399

highlight the effectiveness of our sequential multi-400

modal distillation paradigm and KA mechanism in401

enabling efficient and accurate clinical reasoning.402

4.3 Rationale Generation Performance403

Evaluation Methods: To assess the quality of gen-404

erated multimodal rationales and maximize the po-405

tential of SLMs, we evaluate ClinRaGen (80M)406

using five evaluation criteria—Correctness, Read-407

ability, Soundness, Consistency, and Persuasive-408

ness—based on clinicians and prior research (Lin409

et al., 2024; Kwon et al., 2024). Scores range from410

1 to 5 on a Likert scale (details of criteria defined411

in Appendix A.5). We conduct both LLM-based412

and human evaluations. For LLM comparisons,413

we use Mistral-7B, LLaMA2-7B, and LLaMA3-414

8B with five-shot prompting. Distilled rationales415

from ChatGPT serve as ground truth (GT). Com-416

parative LLMs receive time series anomalies and417

medical notes, while ClinRaGen directly processes 418

numerical lab test and medical notes. Following 419

Lin et al. (2024); Chiang and Lee (2023), we use 420

GPT-4 to evaluate 1000 randomly selected sam- 421

ples. For human assessment, 15 professional post- 422

graduates rate 100 samples, achieving moderate 423

intra-class (0.637) and inter-class (0.608) agree- 424

ment, indicating reasonable consistency despite the 425

task’s subjectivity. 426

Models Time Cost (Seconds)
Knowledge Retrieval 12,636
LLM-Guided Rationale Generation 604,715
LlaMA – 7B Tuning 259,113
ClinRaGen – 84M Tuning 94,623

Table 3: Time Cost Evaluation.

Evaluation Results: Figures 6(a) and (b) show 427

GPT-4 and human evaluations across five crite- 428

ria, with closely aligned results. LLaMA3 per- 429

forms best, benefiting from its large scale and 430

pre-training. ClinRaGen ranks second, matching 431

LLaMA3 in readability and correctness while sur- 432

passing LLaMA2 and Mistral, which often gener- 433

ate incoherent rationales. Unlike other LLMs rely- 434

ing on anomaly captions, ClinRaGen achieves the 435

second-highest consistency score, demonstrating 436

the KA mechanism’s effectiveness in consist mul- 437

timodal reasoning. ClinRaGen also outperforms 438

LLaMA2 and Mistral in soundness and persua- 439

siveness, further underscoring our method’s effec- 440

tiveness. Appendix A.6 further validates rationale 441

quality using BLEU (Papineni et al., 2002) and 442

BERTScore (Zhang et al., 2019). 443
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Figure 6: Clinical rationale generation evaluation

Case Studies: As illustrated in Figure 7, our444

model ClinRaGen can produce both medical note-445

based rationales (e.g., “Based on the medical446

notes...") and lab test-based rationales (e.g., “Lab447

test shows..."), akin to the outputs of teacher LLM.448

For medical note-based rationale generation, Clin-449

RaGen effectively extracts key medical terms es-450

sential for disease diagnosis (highlighted in green).451

Additionally, for lab test-based rationales, our452

model accurately identifies abnormal lab test fea-453

tures (highlighted in blue), demonstrating its capa-454

bility to understand numerical time series lab test455

data effectively. These results indicate that Clin-456

RaGen competently produces clinically relevant457

multimodal rationales to support disease diagnosis.458

Further Discussions: LLMs may introduce bias459

into distilled clinical rationales. To evaluate Clin-460

RaGen’s correctness, we assess the relevance of461

key medical terms to diagnosed diseases. In one462

case, our model identifies weakness, lethargy, and463

basal ganglia hemorrhage as evidence for acute464

cerebrovascular, while teacher LLM captures only465

basal ganglia hemorrhage, missing relevant symp-466

toms (Unnithan et al., 2023). In another case,467

while the teacher LLM reports no disease, ClinRa-468

Figure 7: Case studies on disease diagnosis and clinical
rationale generation compared with teacher LLM.

Gen correctly identifies conditions like disorders of 469

lipid metabolism and essential hypertension. These 470

results highlight ClinRaGen’s ability to mitigate 471

LLM biases by capturing time-series variations and 472

integrating structured knowledge. 473

5 Conclusion and Future Work 474

We present ClinRaGen, a knowledge-augmented 475

framework that enhances SLMs with LLM-derived 476

reasoning and structured medical knowledge for 477

disease diagnosis and multimodal rationale gen- 478

eration. It introduces a knowledge-augmented at- 479

tention module that jointly unifies time-series and 480

textual EHRs in the same encoding space while 481

injecting domain knowledge for reliable rationale 482

generation and a sequential multimodal distillation 483

paradigm for transferring LLMs’ reasoning capa- 484

bilities to SLMs. Extensive evaluations on real 485

world datasets, including quantitative and qualita- 486

tive analyses, show that ClinRaGen enables SLMs 487

to achieve LLM-comparable performance in dis- 488

ease diagnosis and multimodal rationale generation. 489

This work bridges the performance gap between 490

LLMs and SLMs in clinical tasks. Future research 491

will extend ClinRaGen to a broader range of SLM 492

architectures, datasets, and medical applications. 493
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Limitations494

While ClinRaGen effectively enhances multimodal495

clinical reasoning, certain limitations remain:496

• First, although rationale distillation transfers497

reasoning capabilities from LLMs to SLMs,498

potential biases in LLM-generated rationales499

may persist.500

• Second, the effectiveness of the knowledge-501

augmented attention module depends on the502

quality and coverage of external knowledge503

sources.504

• Lastly, ClinRaGen is evaluated on structured505

EHR datasets, and its applicability to unstruc-506

tured clinical text or other medical modalities507

requires further exploration.508

Future work will refine knowledge integration, en-509

hance bias mitigation strategies, and extend evalua-510

tions to diverse clinical settings.511

Ethics Statement512

Data Privacy: The datasets utilized in our re-513

search are publicly accessible and feature de-514

identified patient data, accessing these datasets still515

requires passing the CITI Exam4 and download516

from Physionet5. In addition, this study used the517

Azure OpenAI service and completed the “opting518

out of the review process” agreement.519
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A Appendix 677

A.1 Lab Test Anomaly Caption 678

To caption lab test results into textual descriptions, 679

we initially employ the Inter Quartile Range (IQR) 680

anomaly detection method (Vinutha et al., 2018) to 681

identify anomalous lab test features. Subsequently, 682

we craft multiple text templates to caption these 683

anomalies. These templates are delineated in Ta- 684

ble 4. 685

A.2 Prompts for Multimodal Rationale 686

Generation Via ChatGPT 687

The overall procedure for ChatGPT generating clin- 688

ical rationale is illustrated in Figure 3. The spe- 689

cific medical note-based rationale prompt and lab 690

test-based rationale prompt are detailed as follows. 691

Medical note-based rationale prompt for Chat- 692

GPT, 693

“Below is an instruction that describes examples 694

of generating the rationale of disease diagnosis; 695

please refer to the examples style to generate the 696

Output from the Input: 697

### Instruction: 698

There are some examples please to refer: 699

10



Condition: If the lab test value is not an abnormal value:
Prompt: {Lab features} is normal all the time.
Condition: If the lab test value is an abnormal value higher than the standard:
Prompt: {Lab features} is higher than normal {number of times} times.
Condition: If the lab test value is an abnormal value lower than the standard:
Prompt: {Lab features} is lower than normal {number of times} times.
Condition: If the lab test value is abnormal, it includes both higher and lower than the standard value:
Prompt: {Lab features} is higher than normal {number of times} times and lower than normal
{number of times} times.

Table 4: Lab test anomaly caption template.

Example 1, Example 2, Example ...700

### Input:701

### Medical note: [M]702

### Diagnosed diseases: [D]703

Please review the patient’s medical records. Ad-704

here to the provided format to craft a succinct705

100-word rationale for diagnosing these condi-706

tions (Start with "Based on the medical notes...").707

If the diagnosis indicates "no disease was diag-708

nosed," the rationale must state "no disease was709

diagnosed." Otherwise, provide a comprehensive710

rationale for the diagnosis.711

### Response:712

### Output:713

### Medical note-based Rationale: [Rn]714

Lab test-based rationale prompt for ChatGPT,715

we denote the lab test anomalies as T ∗:716

“Below is an instruction that describes examples717

of generating the rationale of disease diagnosis,718

please refer to the examples style to generate the719

Output from the Input:720

### Instruction:721

There are some examples please to refer:722

Example 1, Example 2, Example ...723

### Input:724

### Medical note: [M]725

### Descriptions of lab test abnormalities: [T ∗]726

### Diagnosed diseases: [D]727

### Medical note-based rationale: [Rn]728

Please review the patient’s medical notes, labora- 729

tory test anomaly results, and existing rationales 730

in the medical record. Construct a concise, one- 731

sentence rationale, limited to max 50 words, that 732

accurately describes a diagnosed condition based 733

on descriptions of laboratory test abnormalities 734

(Start with "Lab test shows..."). Pay close attention 735

to potential inaccuracies in the lab descriptions. 736

### Response: 737

### Output: 738

### Lab test-based rationale: [Rt] 739

A.3 Baseline Details 740

• Flan-T5: Flan-T5 is introduced in the scaling 741

instruction-fine-tuning method for language 742

models (Chung et al., 2024). It is trained on 743

comprehensive datasets designed for tasks like 744

summarization, question answering, and rea- 745

soning, enhancing its chain-of-thought capa- 746

bilities. 747

• PROMPTEHR: PROMPTEHR (Wang and 748

Sun, 2022) innovates generative modelling for 749

EHRs through conditional prompt learning; 750

in this experiment, we focus on applying it, 751

particularly on disease diagnosis. 752

• LLaMA: The LLaMA-7B model (Touvron 753

et al., 2023), a prominent large language 754

model, employs Reinforcement Learning with 755

Human Feedback (RLHF) and instructional 756

tuning, showcasing its adaptability across di- 757

verse NLP tasks. This study applied both zero- 758

shot and fine tuning for disease diagnosis. 759

• FROZEN: The FROZEN framework (Tsim- 760

poukelli et al., 2021) stands out in multimodal 761

vision-language modeling for few-shot learn- 762

ing. Here, it’s tailored to disease diagnosis, 763
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analyzing both lab test results and medical764

notes.765

• EHR-KnowGen: As a leading model in EHR766

multimodal learning, EHR-KnowGen (Niu767

et al., 2024) specializes in generating dis-768

ease diagnoses. This study excludes external769

knowledge to maintain a balanced evaluation.770

• Clinical CoT: Clinical CoT (Kwon et al.,771

2024) integrates clinical reasoning into a di-772

agnostic framework for EHRs using prompt-773

based learning methods distilled from GPT.774

To ensure a fair comparison, we incorporate775

the same time series encoder (TSE) as used in776

our model for multimodal processing.777

• ChatGPT: ChatGPT (Open, 2023) is a state-778

of-the-art LLM optimized for conversational779

applications, such as dialogue, summarization,780

and text completion.781

A.4 Implementation Details782

For our experiments, we utilized version 2.0.1 of783

the PyTorch framework, running on a CUDA 11.7784

setup. The training processes were conducted us-785

ing the DeepSpeed6 framework. We opted for the786

AdamW optimizer, starting with a learning rate of787

1e−5 and incorporating a weight decay of 0.05. We788

implemented a warm-up phase that spanned 10%789

of the training period. The experimental setup in-790

cluded two NVIDIA A100 GPUs, each with 80 GB791

of memory. To process time series data consistently,792

we padded all lab test results to a standard length of793

1,000 time steps, dividing the data into 125 patches,794

where each patch included 8-time steps.795

A.5 Rationale Evaluation Metrics796

We defined the rationale evaluation metrics for the797

LLM and human evaluation as follows: 1). Correct-798

ness: how medically accurate the rationale supports799

the diagnosis results. 2). Readability: the extent to800

which a clinical rationale adheres to proper gram-801

mar and structural rules. 3). Soundness: the logical802

coherence and insight provided by the clinical ra-803

tionale. 4). Consistency: the degree of alignment804

between the clinical rationale derived from medical805

notes and lab test results. 5). Persuasiveness: the806

effectiveness of the clinical rationale in convincing807

the reader of its validity.808

Evaluation scores based on Likert scale:809

6https://github.com/microsoft/DeepSpeed

1. Strongly disagree 810

2. Disagree 811

3. Neither agree nor disagree 812

4. Agree 813

5. Strongly agree 814

A.6 Rationale Evaluation with BLUE and 815

BERTScore. 816

In addition to the criteria defined for evaluating 817

rationale performance, Table 5 presents the perfor- 818

mance of our model, ClinRaGen, alongside vari- 819

ous baselines, using both BLEU (Papineni et al., 820

2002) and BERTScore (Zhang et al., 2019) on the 821

MIMIC-III and MIMIC-IV datasets. The results 822

show that ClinRaGen outperformed all other mod- 823

els in both metrics across the datasets. The latest 824

open-source LLM, LLaMA3, ranked second, while 825

Mistral exhibited the poorest performance. These 826

results are consistent with those from LLM and 827

human evaluations. 828

Models MIMIC-III MIMIC-IV
BLEU BERTScore BLEU BERTScore

Mistral 0.0163 0.7348 0.0532 0.7625
LLaMA2 0.1441 0.8714 0.2357 0.8808
LLaMA3 0.1641 0.8804 0.2568 0.8919
ClinRaGen 0.2689 0.8972 0.2963 0.9044

Table 5: Rationale evaluation with BLEU and
BERTScore.

A.7 Discussion on SLMs Selection 829

In this section, we discuss our choice of Flan-T5 830

as the base SLM for our research, focusing on 831

the following aspects: 1). Required CoT ability: 832

Flan-T5 (Chung et al., 2024) has been extensively 833

instruction-tuned on numerous datasets and hun- 834

dreds of tasks, endowing it with strong zero-shot, 835

few-shot, and Chain-of-Thought (CoT) abilities 836

that outperform the original T5 (Raffel et al., 2020). 837

In contrast, other SLMs, such as OPT (Zhang et al., 838

2022) and GPT-2 (Radford et al., 2019), lack these 839

robust CoT capabilities, which is crucial as a ini- 840

tialization ability for further clinical reasoning dis- 841

tillation. 2). Maximizing SLM potential for prac- 842

tical usage: Although other instruction-finetuned 843

SLMs (e.g., Flan-PaLM) exist, they have substan- 844

tially larger parameter counts (ranging from 8B to 845

540B), which is not practical in real world clinical 846

applications and not our target SLMs to investigate. 847
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We selected Flan-T5-Small (80M) and Flan-T5-848

Large (780M) as our base models to maximize the849

potential of SLMs for accurate disease diagnosis850

and LLM-comparable multimodal reasoning, while851

maintaining cost-effectiveness in practical applica-852

tions. Although we currently use Flan-T5, future853

work will explore a broader range of SLM architec-854

tures to further enhance accuracy.855

A.8 Discussion on Teacher LLMs Selection856

In this section, we discuss our choice of ChatGPT857

(GPT-3.5-turbo) as the teacher LLM for our re-858

search, focusing on the following aspects: 1). High859

quality clinical rationales : Although ChatGPT860

is known for its strong language modeling capa-861

bilities, its generated rationales may still contain862

noise and bias—issues that are critical in precision863

medicine. To address this, we incorporate external864

medical domain knowledge and introduce a novel865

knowledge-augmented attention mechanism during866

multimodal clinical rationale generation. Our ex-867

tensive experiments (Section 4.3) show that ClinRa-868

Gen effectively mitigates incomplete or incorrect869

diagnoses and rationales distilled from the teacher870

LLM, thereby reducing the impact of bias in LLM-871

generated outputs for SLMs distillation. 2) Test872

set leakage : The PhysioNet Credentialed Data873

Use Agreement prohibits the use of MIMIC-series874

data in public LLMs’ training and applications7,875

ensuring that test set leakage is not an issue with876

ChatGPT. Furthermore, the poor performance of877

ChatGPT under zero-shot prompting (as shown878

in Table 1) indicates that MIMIC-III and MIMIC-879

IV data were not used in its training. 3) More880

powerful LLM for evaluation: While we did not881

choose the most powerful LLM as our teacher, our882

current teacher LLM sufficiently enhances SLM883

capabilities in disease diagnosis and clinical ratio-884

nale generation. Our evaluations (Sections 4.2 and885

4.3), supported by quantitative metrics, compar-886

isons with a superior LLM, and human assessments,887

confirm the effectiveness of using ChatGPT as the888

teacher LLM through our multimodal rationale dis-889

tillation paradigm and knowledge-augmented at-890

tention mechanism to improve SLMs’ accuracy in891

disease diagnosis and modality-consistent rationale892

generation. In future work, more powerful LLMs893

can be seamlessly integrated with our method to894

further enhance evaluation accuracy and robust-895

ness.896

7https://physionet.org/news/post/gpt-responsible-use
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