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ABSTRACT

For few-shot meta-learning, gradient descent optimization is challenging due to
the limited number of training samples per task. Inspired by the human ability to
recall past learning experiences from the brain’s memory, we propose an episodic
memory optimization for meta-learning, which we call EMO, that retains the
gradient history of past experienced tasks in external memory. It enables few-shot
learning in a memory-augmented way by leveraging the meta-learning setting and
learns to retain and recall the learning process of past training tasks for gradient
descent optimization. By doing so, EMO nudges the parameter updates in the right
direction, even when the gradients provided by a limited number of examples are
uninformative. Additionally, we prove theoretically that our algorithm converges
for smooth, strongly convex objectives. EMO is generic, flexible and model-
agnostic, making it a simple plug-and-play optimizer seamlessly embedded into
existing optimization-based meta-learning approaches. Empirically, EMO scales
well with most of the few-shot classification benchmarks, and our experiments show
that the optimization-based meta-learning method enjoys accelerated convergence
and improved performance with EMO.

1 INTRODUCTION

The vast majority of current few-shot learning methods fall within the general paradigm of meta-
learning (Bengio et al., 1991; Schmidhuber, 1987; Thrun & Pratt, 1998). It searches for the best
few-shot learning strategy as the learning experiences increase (Finn et al., 2017; Ravi & Larochelle,
2017; Andrychowicz et al., 2016). Optimization-based meta-learning (Finn et al., 2017; Ravi &
Larochelle, 2017; Li et al., 2017; Raghu et al., 2019) is one of the most popular approaches, owing to
its “model-agnostic” nature to incorporate different model architectures and its principled formulation
that allows the application to various problems. Optimization-based meta-learning comprises inner-
loop and outer-loop updates that operate on a batch of tasks per iteration. In the inner-loop, these
methods learn task-specific network parameters θ by performing traditional gradient descent on a
task-specific loss L(θ;S) with the support set S, where

θ
′
= θ − α∇θL(θ;S), (1)

and α is the learning rate which determines the step size per inner iteration. A major drawback of
optimization-based meta-learning is meta-overfitting (Mishra et al., 2018; Yin et al., 2019; Rajendran
et al., 2020). Gradient estimation with a small support set is inherently noisy, which causes the model
to diverge or converge to a non-optimal minimum per task. Due to the small number of samples,
traditional optimizers, e.g., (Allen-Zhu & Yuan, 2016; Kingma & Ba, 2015; Sutskever et al., 2013;
Ruder, 2016; Duchi et al., 2011), tend to get trapped in local minima. In this paper, we propose a new
inner-loop optimizer for few-shot meta-learning.

We are inspired by the human ability to quickly adapt to new tasks with limited training samples
by recalling past learning experiments from episodic memory (Tulving, 1972; 1983; 2002). As a
long-term memory, episodic memory has previously demonstrated its effectiveness in various machine
learning tasks. In reinforcement learning, for example, recent works (Zhu et al., 2020; Gershman
& Daw, 2017) use episodic memory to store past experiences to adapt to new environments and
improve generalization ability quickly. In continual learning, episodic memory alleviates catastrophic
forgetting (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019), while allowing beneficial knowledge
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transfer to previous tasks. We draw inspiration from the cognitive function of episodic memory and
introduce it into meta-learning to learn to collect long-term episodic (optimization) knowledge for
few-shot learning.

This paper proposes a new inner-loop optimization method for few-shot meta-learning, called Episodic
Memory Optimization (EMO). We exploit an external memory to accrue and store the gradient history
gained from past training tasks, which helps the model to update to optimal parameters more
accurately and quickly when faced with new tasks. Specifically, stored in the episodic memory are
the gradients of the parameters per network layer for previous tasks. When learning a new task, we
retrieve a set of similar learning processes in the memory, aggregating them with the gradient of the
current task in a linear or learnable way. By doing so, episodic memory could help us achieve more
optimal model parameters, despite having only limited training samples available for the new task.
To avoid overloading the memory storage space, we propose a memory controller which implements
three different replacement strategies to replace the task in the memory. We also prove that EMO
with fixed-size memory converges under strong convexity assumptions, regardless of which gradients
are selected or how they are aggregated to form the update step. EMO is a general gradient descent
optimization that is model-agnostic and serves as a plug-and-play module that can seamlessly be
embedded into existing optimization-based meta-learning approaches. We conduct our ablations
and experiments on the few-shot learning benchmarks and verify that the optimization-based meta-
learning methods with EMO easily outperform the original methods in terms of both performance
and convergence.

2 METHOD

2.1 PRELIMINARIES

Few-shot classification The goal of few-shot classification is to construct a model using a limited
number of labelled examples. In the conventional few-shot classification scenario, following (Vinyals
et al., 2016), we define the N -way K-shot classification problem, which has N classes, and each
class has K labelled support examples. In this scenario each task is a classification problem from
a predefined task distribution p(T ). We denote the labeled support set by S={(xi, yi)}N×K

i=1 ; each
(xi, yi) is a pair of an input and a label, where yi ∈ {1, 2, · · · , N}. Each task is also associated with
a query set Q={(xj , yj)}M×K

j=1 to evaluate the quality of the trained model. The query set Q for
each task is also composed of examples of the same N classes. Usually, optimizing and learning
parameters for each task with a few labelled training samples is difficult. Meta-learning offers a way
of learning to improve performance by leveraging knowledge from multiple tasks.

Optimization-based meta-learning In meta-learning, a sequence of tasks {T1, T2, · · · , Tn} are
sampled from a predefined task distribution p(T ), where each one is a few-shot learning task. The
core idea of meta-learning is to find a well-generalized meta-learner on the training tasks during the
meta-training phase. For each task Ti, the meta-learner M is applied on the base learner fθi , and the
parameter θi and meta-learner M are learned alternatively. During the meta-testing phase, the learned
meta-learner is applied to tackle the new tasks composed of examples from unseen classes. Given a
new few-shot learning task Tt, the optimal meta-learner M∗ is used to improve the effectiveness of
Tt by solving minθt L(M∗(fθt),Q). In this way, meta-learning effectively adapts to new tasks, even
when the training data for the new task is insufficient. Optimization-based meta-learning (Finn et al.,
2017; Li & Malik, 2017; Raghu et al., 2019) strives to learn an optimization that is shared across
tasks while being adaptable to new tasks. The most representative optimization-based meta-learning
is model-agnostic meta-learning (MAML) by (Finn et al., 2017). MAML is formulated as a bilevel
optimization problem with inner-loop and outer-loop optimization, where the inner-loop computes
the task-specific parameters θ

′
(starting from θ) via a few gradient updates:

θ
′
= θ − α∇θ

1

N ×K

∑
(x,y)∈S

LTi
(fθ(x), y) . (2)

For the outer-loop, the original model parameters θ are then updated with respect to the performance
after the inner-loop update, i.e.,

θ ← θ − β∇θ
1

NT

∑
T

1

M ×K

∑
(x,y)∈Q

LTi
(fθ′ (x), y) . (3)
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where α and β are the inner-loop and outer-loop learning rates, respectively. Training result is a
model initialisation θ that can be adapted to any new task with just a few gradient steps.

2.2 MODEL

This paper focuses on inner-loop optimization for optimization-based meta-learning methods. We
propose a new inner-loop optimization method called Episodic Memory Optimization (EMO). Our
proposed EMO model is composed of four parts: an encoder that generates a representation for
the incoming query data and the available support data; an external memory store which contains
previously seen task representations and the gradients of each layer with writing managed by a
memory controller; and an episodic gradient memory stochastic gradient descent that ingests the
gradients from the new task and data from the memory store to generate the new gradients over the
current task.

The encoder first takes in support data S={(xi, yi)}N×K
i=1 and then converts these data to the rep-

resentation {ei}N×K
i=1 of lower dimension. In this paper, the input is an image, and we choose a

convolutional network architecture for the encoder function fθ.

Memory store Our external memory moduleM={Mt}Tt=1 contains the stored learning process of
experienced tasks, where t is the memory capacity. Each of the slots corresponds to each experienced
task. In our work, the memory stores a key-value pair in each row of the memory array as (Graves et al.,
2014). The keys are the task representations kt of each task, the value is the gradient representation as
value V l

t , Mt = [Kt,Vt], where Vt = {V 1
t , V

2
t , · · · , V l

t }, t indicates the task t and l indicates the
l-th convolutional layer. The memory module is queried by finding the k-nearest neighbors between
the test task representation and the task Kt in a given slot. The distance metric used to calculate
proximity between the points is an available choice, and here we always use Euclidean distance.

For the task representation Kt, to allow the flexibility of variable input sizes of task representations,
we use the generic Transformer architecture (Vaswani et al., 2017):

Kt = Transformer([clst, e1, e2, · · · , en])[0], (4)

where clst is the task representation token embedding, and ei = Encoder(xi) is the encoded i-th
support data pair S={(xi, yi)}N×K

i=1 . After the transformer, we take the position output cls as the
task embedding Kt.

For the memory value V l
t , we first compute the gradients of task t at layer l as:

gl
t =

N×K∑
i=1

∂L(ŷt
i , y

t
i)

∂θl
, (5)

where θl uses the parameters at layer l, we denote with L(·) a loss function (such as the cross entropy
loss on the labels). To avoid confusion, we omit the superscript l for the memory from now on.

Memory controller To avoid overloading the memory storage space, we propose a memory
controller that decides to replace the episodic memory slot at a certain moment. The input of the
memory controller consists of the gradient gt of the current task and the selected memory M̂c that
needs to be replaced. The controller is written as:

Mc = Controller(gt, M̂c). (6)

Inspired by the page replacement algorithm in operating systems, we propose three implementations
of the memory controller: First In First Out Episodic Memory (FIFO-EM), Least Recently Used
Episodic Memory (LRU-EM) and Clock Episodic Memory (CLOCK-EM). (1) FIFO-EM keeps track
of all the memory in a queue, with the oldest memory in the front of the queue. When a memory needs
to be replaced, the memory in the front of the queue is selected for removal. (2) LRU-EM is a content-
based memory writer that writes episodic memories to either the least used or the most recently used
memory location. New task information is written into rarely-used locations, preserving recently
encoded data, or written to the last used location, which can function as an update of the memory with
newer, possibly more relevant information. (3) In the CLOCK-EM, the candidate memory for removal
is considered in a round robin fashion and a memory that has been accessed between consecutive
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considerations will be spared, similar to the CLOCK page replacement algorithm in the operating
system (Janapsatya et al., 2010). When the memoryM is not complete, we directly store the gt to
be added intoM, while once the memory is complete, we use the Controller to achieve memory
replacement. The best-suited memory controller is specific to the underlying meta-learning method
and datasets. We provide the comparison of each Controller in the experiments.

Episodic gradient memory stochastic gradient descent Episodic gradient memory stochastic
gradient descent is the explicit integration of episodic memory gradients into SGD. To be specific,
the iteration comes in the form:

θt+1 = θt − α · Aggr(gt, Vt), (7)

where gt are the gradients of the support set from the current task, Vt is the collection of episodic
gradients selected from the memory based on the similarity of memory key and the current task
representation, and Aggr denotes an aggregation function which is used to combine the episodic
gradients with the current-iteration gradient. We consider three possible functions for Aggr including
Mean, the average of Vt and all selected episodic gradients; Sum, the addition of Vt to the average
of all selected episodic gradients; and Transformer, the learnable combination of Vt to all the
selected episodic gradients. Mathematically, these three Aggr functions are defined as:

Mean(gt, Vt) =
1

MVt
+ 1

(gt +
∑

Vt∈Vt

Vt), (8)

Sum(gt, Vt) = gt +
1

MVt

∑
Vt∈Vt

Vt, (9)

Transformer(gt, Vt) = Transformer([clsg,gt, V
1
t , V

2
t , · · · , V

MVt
t ])[0]. (10)

where clsg is the new gradients token embedding. The best-suited aggregation function is specific
to the meta-learning method into which the episodic gradients are integrated. We compare each
aggregation function with different optimization-based meta-learning methods in the experiments.

2.3 META-TRAINING AND META-TEST

Following (Ravi & Larochelle, 2017; Finn et al., 2017), we perform episodic training by exposing
the model to a variety of tasks from the training distribution p(T ). For a given training task Ti, the
model first computes its parameters by Eq. (7) in the inner-loop, then incurs a loss Li of this task,
and updates the model parameters by Eq. (3); we sum these losses and back-propagate through the
sum at the end of the task. We evaluate the model using a partition of the dataset that is class-wise
disjoint from the training partition. In the meta-test stage, the model first computes the gradients
gt and recalls the memory Vt based on the task representation k, which is computed by the support
set S. Then the model updates the task-specific parameters by Eq. (7) in the inner-loop. After the
inner-loop, we evaluate the model on the query set.

2.4 ANALYSIS OF CONVERGENCE

The core of EMO is to explicitly integrate the current gradient with the episodic memory
Aggr(gt,Vt). In practice, we observe that the proposed method has a higher convergence rate
than previous optimizers. Here, we theoretically analyze the proposed EMO optimization’s conver-
gence rate of gradient descent.

To do so, we reformulate the aggregation process as a linear multi-step system (Polyak, 1964;
Assran & Rabbat, 2020), leading to Aggr(gt,Vt)=

∑S−1
s=0 wt,sgt−s. S is the number of steps. At

the t-th iteration, the multi-step system involves the gradients from the past S time steps. wt,s is
the aggregation scalar of the corresponding gradient gt−s in the linear multi-step system, which
is bounded by the interval [0, 1]. The system involves all gradients in the episodic memory, Vt ⊆
{gt−s}Ss=0. For the gradient that does not appear in the memory, ∃ s ∈ {1, 2, ..., S}, gt−s /∈ Vt,
the corresponding aggregation scalar wt,s is 0. In general, we define a model-agnostic objective as
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minθ f(θ). θt and θ∗ denote model parameters of the t-th iteration and the optimal. The difference
between both parameters is ∆θt = θt − θ∗. We assume f is continuously differentiable, µ-strongly
convex and L-Lipschitz (0 < µ ≤ L). These assumptions imply the Hessian matrix ∇2f(θ) exists
and is bounded by the interval [µ,L]. We consider the stochastic gradient gt as a random vector and
E[gt] = ∇f(θt). ϵt denotes the independent gradient noise at iteration t. The gradient noise has zero
mean, and its variance is bounded by a finite constant σ2. Thus, the gradient in each iteration can be
formulated as:

gt = ∆θt

∫ 1

0

∇2f(θ∗ + u∆θt)du+ ϵt, (11)

where
∫ 1

0
∇2f(θ∗ + u∆θt)du is the average rate of the gradient changes from the t-th iteration to

the optimal one with respect to the model parameters. Based on the assumptions of the objective, the
average rate is also bounded between µ and L. We incorporate Eq. (11) into Eq. (7) with the linear
multi-step system. In this case, the convergence of the system depends on the spectral properties of
the system matrix (McRae et al., 2022).

Theorem 1 (Convergence rate of EMO). We define a system matrix1 for each iteration as At, which
contains aggregation scalars and average rates of gradient changes of the past S gradients. λt is the
square root of the largest singular value of the corresponding system matrix, and thus the spectral
norm of the system matrix is not larger than λt. λmax is the upper bound for all λt corresponding to
all system matrices. Since α is chosen sufficiently small such that λmax < 1, we have that:

f(θt+1)− f(θ∗) ≤ L

2
(λ2t

max ∥∆θ1∥2 +
α2σ2S

1− λ2
max

). (12)

From this theorem, the learning rate mainly depends on λmax. The lower λmax, the faster the
convergence rate and the smaller the variance. When the number of step in the system is 1, Eq. (12)
degenerates to the conventional stochastic gradient decent as used in the previous meta-learning
methods (Finn et al., 2017; Li et al., 2017; Raghu et al., 2019). In practice, our model usually sets a
large number as the number of steps. In this case, it is possible to set the learning rate and aggregation
scalars to obtain a faster convergence rate than SGD. Proofs are presented in Appendix B.

3 RELATED WORK

Episodic memory Episodic memory has shown its effectiveness in a variety of machine learning
tasks. When episodic memory is used for reinforcement learning, explicit records of past events are
retained and used to make decisions about the current situation. The chosen action is associated with
the highest value based on the outcome of similar situations in the past. Recent works (Zhu et al.,
2020; Gershman & Daw, 2017; Botvinick et al., 2019; Hu et al., 2021; Lampinen et al., 2021) use
episodic memory to store past experiences to help the intelligence quickly adapt to new environments
and improve its generalization ability. In continual learning, episodic memory alleviates catastrophic
forgetting (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Derakhshani et al., 2021) while
allowing beneficial transfer of knowledge to previous tasks. We draw inspiration from the cognitive
function of episodic memory and introduce it into meta-learning to learn to collect long-term episodic
(optimization) knowledge for few-shot learning.

Meta-learning Meta-learning designs models to learn new tasks or adapt to new environments
quickly with only a few training examples. There are four common research lines of meta-learning:
(1) metric-based meta-learning (Snell et al., 2017; Vinyals et al., 2016; Sung et al., 2018; Oreshkin
et al., 2018; Yoon et al., 2019; Du et al., 2022) generally learn a shared/adaptive embedding space in
which query images can be accurately matched to support images for classification; (2) optimization-
based meta learning (Finn et al., 2017; 2018; Lee & Choi, 2018; Yoon et al., 2018; Grant et al.,
2018; Kalais & Chatzis, 2022; Abbas et al., 2022; Flennerhag et al., 2021; Zou et al., 2021) learns an
optimization algorithm that is shared across tasks, and can be adapted to new tasks, enabling learning
to be conducted efficiently and effectively; (3) model-based meta-learning (Mishra et al., 2018;
Gordon et al., 2019) explicitly learns a base-learner that incorporates knowledge acquired by the
meta-learner and effectively solves individual tasks; (4) memory-based meta-learning (Munkhdalai &

1For clarity, we provide the definition of At in Eq. (16) of Appendix B.
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Yu, 2017; Ramalho & Garnelo, 2019; Zhen et al., 2020; Santoro et al., 2016; Du et al., 2022) deploys
an external memory to rapidly assimilate new data of unseen tasks, which is used for quick adaptation
or to make decisions. Our method combines optimization-based meta-learning with memory-based
meta-learning. To the best of our knowledge, it is the first optimization-based meta-learning method
with episodic memory, intending to perform few-shot classification.

Memory-based few-shot learning (Andrychowicz et al., 2016) and (Ravi & Larochelle, 2017)
propose the update rule for neural network parameters by transforming gradients via an LSTM,
which outperforms fixed SGD update rules. The Meta-network (Munkhdalai & Yu, 2017) learns to
transform the gradients to fast weights as memory, which are stored and retrieved via attention during
testing. Conditionally shifted neurons (Munkhdalai & Trischler, 2018) modify the activation values
with task-specific shifts retrieved from an external memory module, which is populated rapidly based
on limited task experience. (Santoro et al., 2016) leverages the Neural Turning Machine (Graves
et al., 2014) for online few-shot learning by designing efficient read and write protocols. (Ramalho &
Garnelo, 2019) introduced adaptive posterior learning, which approximates probability distributions
by remembering the most surprising observations it has encountered in external memory. (Babu
et al., 2021) proposed a distributed memory architecture, which recast the problem of meta-learning
is simply learning with memory-augmented models. These methods (Andrychowicz et al., 2016;
Ravi & Larochelle, 2017) leverage an LSTM to design a new update rule for the network parameters,
which can be seen as implicit memory. The other memory-based methods (Munkhdalai & Yu, 2017;
Munkhdalai & Trischler, 2018; Santoro et al., 2016; Ramalho & Garnelo, 2019; Babu et al., 2021)
design an external memory to transform their neuron activations for fast adaptation. Our approach
differs from these methods since we propose an external memory to retain and recall past training
tasks’ learning process for updating network parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In our experiments we consider two datasets: (i) Meta-Dataset-BTAF (Yao et al., 2019), which
contains four fine-grained image classification datasets: (a) Bird (Wah et al., 2011), Texture (Cimpoi
et al., 2014), Aircraft (Maji et al., 2013), and Fungi (FUNGI, 2018). (ii) miniImageNet (Vinyals et al.,
2016) which consists of 100 randomly chosen classes from ILSVRC2012 (Russakovsky et al., 2015).
For the Meta-Dataset-BTAF, each meta-training and meta-test task samples classes from one of the
four datasets. This benchmark is more heterogeneous and closer to real-world image classification.
Following the conventional meta-learning settings (Vinyals et al., 2016; Finn et al., 2017), all datasets
are divided into meta-training, meta-validation and meta-testing classes. The N -way K-shot settings
are used to split the training and test sets for each task. We report the average few-shot classification
accuracy (%, top-1) along with the 95% confidence intervals across all test images and tasks. The
detailed implementation is provided in Appendix A. Our code will be released.

4.2 RESULTS

Benefit of episodic memory optimizer To show the benefit of our proposed episodic memory
optimizer, we compare MAML (Finn et al., 2017), Meta-SGD (Li & Malik, 2017), and ANIL (Raghu
et al., 2019) with their EMO variants. Each original meta-learning method uses SGD as the inner-loop
optimizer, while each EMO variant uses EMO as the inner-loop optimizer. Table 1 shows adding
EMO improves performance independent of the meta-learning method or dataset. On the challenging
Texture dataset, which has the largest domain gap, Meta-SGD with EMO delivers 36.26%, surpassing
Meta-SGD by 3.88%. In addition, Meta-SGD with EMO achieves the best performance compared
with other meta-learning methods. This is because Meta-SGD with EMO stores not only the gradients
of each layer, but also the gradients of the learning rate in the inner-loop, thus accelerating training.
ANIL only stores the gradients of the last layer, causing the number of parameters and the memory
size to be much smaller than in MAML and Meta-SGD. Despite the reduced accuracy, ANIL with
EMO is still beneficial for applications that require compute efficiency, as ANIL is about 4.8 times
faster than MAML and Meta-SGD. We attribute the improvements with EMO to our model’s ability
to leverage the episodic memory to adjust the model parameters, allowing the model to update the
test task model using the most similar training task-like update.
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Table 1: Benefit of episodic memory optimizer for few-shot fine-grained classification. All evaluated
optimization-based meta-learning methods consistently achieve better performance with EMO than
without. Meta-SGD with EMO achieves the best performance, especially for the 5-way 5-shot setting.

MAML ANIL Meta-SGD

Dataset w/o EMO w/ EMO w/o EMO w/ EMO w/o EMO w/ EMO

5-way 1-shot
Bird 53.94 ± 1.45 56.32 ± 1.33 52.57 ± 1.44 54.78 ± 1.43 55.58 ± 1.43 58.95 ± 1.41

Texture 31.66 ± 1.31 34.75 ± 1.41 31.45 ± 1.32 33.15 ± 1.31 32.38 ± 1.32 36.26 ± 1.33

Aircraft 51.37 ± 1.38 53.99 ± 1.33 50.45 ± 1.34 52.79 ± 1.33 52.99 ± 1.36 55.29 ± 1.35

Fungi 42.12 ± 1.36 43.15 ± 1.36 41.14 ± 1.34 43.75 ± 1.31 41.74 ± 1.34 45.24 ± 1.34

5-way 5-shot
Bird 68.52 ± 0.79 70.91 ± 0.71 67.17 ± 0.74 69.25 ± 0.73 67.87 ± 0.74 72.74 ± 1.40

Texture 44.56 ± 0.68 47.21 ± 0.64 43.41 ± 0.68 45.78 ± 0.68 45.49 ± 0.68 49.15 ± 0.68

Aircraft 66.18 ± 0.71 68.13 ± 0.61 65.34 ± 0.70 67.15 ± 0.71 66.84 ± 0.70 69.73 ± 0.70

Fungi 51.85 ± 0.85 56.17 ± 0.75 52.11 ± 0.83 54.35 ± 0.83 52.51 ± 0.81 58.21 ± 0.79
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Figure 1: Comparisons for MAML with EMO and other optimizers. EMO speeds up MAML training
and outperforms the other optimizers for few-shot learning.

Comparison with the other optimizers To show the benefit of our episodic memory optimizer, we
first compare EMO with other commonly used optimizers in the inner-loop stage of MAML. Learning
curves for MAML using different optimizers are displayed in Figure 1. We also report the final
specific results by comparing them with different optimizers in the Appendix C.1. In this experiment,
EMO outperforms other optimizers by a considerable margin. Momentum and Adam have somewhat
degraded performance compared to SGD, which means that these traditional optimizers cannot
exploit past inaccurate gradients for few-shot learning. However, EMO can speed up training and
improve performance since EMO acquires the ability to adaptively choose the most relevant task
update rules for the test task.

Effect of inner-loop steps We make further analysis on the effectiveness of our

Figure 2: Effect of inner-loop steps. MAML with
EMO both speeds up training and achieves better
performance compared to original MAML.

optimization in fast adaptation by varying the
number of update steps. Specifically, we com-
pare the performance of MAML with and with-
out EMO in Figure 2. We find that MAML
with EMO achieves about 51.34% accuracy at
step 0, which is more than 19.86% higher than
MAML, which means that EMO needs only
episodic memory to achieve competitive per-
formance. Also, MAML with EMO can reach
convergence very quickly (step 2 vs. step 5) and
with a much higher performance than MAML.
Although MAML without EMO already per-
forms fast adaptation with 5 steps, MAML with
EMO is even faster and better. This again
demonstrates the benefit of EMO.

Comparison with aggregation functions We also ablate the effect of EMO’s aggregation function
to generate the new gradients. We report the performance of MAML and Meta-SGD with EMO using
different Aggr in Table 2, and the experiments for ANIL with EMO are proposed in Appendix C.2.
The results show that the best-suited aggregation function is specific to the optimization-based meta-
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Table 2: Effect of different aggregation functions on Meta-Dataset-BTAF under the 5-way 1-shot
setting. The best-suited aggregation function for MAML is Mean, while the best-suited aggregation
function for Meta-SGD is Transformer.

MAML with EMO Meta-SGD with EMO

Dataset Sum Mean Transformer Sum Mean Transformer

Bird 54.35 ± 1.34 56.32 ± 1.33 55.91 ± 1.35 57.15 ± 1.31 57.03 ± 1.40 58.95 ± 1.41

Texture 33.13 ± 1.45 34.75 ± 1.41 34.23 ± 1.40 34.93 ± 1.42 35.97 ± 1.41 36.26 ± 1.33

Aircraft 52.53 ± 1.30 53.99 ± 1.33 53.15 ± 1.30 53.12 ± 1.27 54.01 ± 1.25 55.29 ± 1.35

Fungi 44.07 ± 1.33 43.15 ± 1.36 45.27 ± 1.35 43.49 ± 1.32 44.13 ± 1.31 45.24 ± 1.34

learning method into which episodic gradients are integrated. The best-suited aggregation function
for MAML with EMO is the Mean, while the best-suited aggregation function for Meta-SGD with
EMO is the Transformer. To ensure consistency of implementation on each dataset and for each
model, we choose the Mean aggregation function for MAML with EMO and the Transformer
aggregation function for Meta-SGD with EMO in the remaining experiments.

Comparison with memory controller To assess the effect of the memory controller, we compare
three memory controllers: FIFO-EM, CLOCK-EM, LRU-EM on the Meta-Dataset-BTAF under the
5-way 1-shot setting. The experimental results for MAML with EMO are reported in Table 3, and
results for Meta-SGD and ANIL with EMO are in the Appendix C.3. FIFO-EM achieves the worst
performance compared to the other memory controllers since FIFO-EM may replace some crucial
or commonly used memory, causing the test task to fail to find the precise memory to learn quickly.
With LRU-EM, MAML with EMO leads to a small but consistent gain under all the datasets, as
it replaces the memory that is not commonly used, and these memories can usually be seen as
outliers. In Table 8, with CLOCK-EM, Meta-SGD with EMO achieves the better performance on the

Table 3: Effect of memory controller. LRU-EM
achieves better performance than alternatives.

MAML with EMO

Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 51.91 ± 1.35 54.01 ± 1.33 56.32 ± 1.33

Texture 30.11 ± 1.40 32.14 ± 1.41 34.75 ± 1.41

Aircraft 48.16 ± 1.40 50.91 ± 1.38 53.99 ± 1.33

Fungi 41.17 ± 1.35 43.97 ± 1.35 43.15 ± 1.36

all datasets. CLOCK-EM is a more balanced al-
gorithm in terms of performance and overhead,
which is more suitable for methods that require
large memory, such as Meta-SGD with EMO,
which also requires additional storage of the gra-
dient of the inner-loop learning rate. To ensure
consistency of implementation on each dataset,
we choose the LRU-EM function for MAML
with EMO and ANIL with EMO, CLOCK-EM
is used for Meta-SGD with EMO.

Effect of task-memory size Task-memory size cannot be increased indefinitely. To study the effect
of task-memory size on EMO, we conduct this ablation on miniImageNet using MAML with EMO

Figure 3: Effect of task-memory size.

under the 5-way 1-shot and 5-way 5-shot set-
tings. From Figure 3, we observe the perfor-
mance increases along with the increase in task-
memory size. This is expected since more sig-
nificant memory provides more context informa-
tion for building better memory. Naturally, the
memory size has a greater impact in the 1-shot
setting. In this case, the model updated from
only one example might be insufficiently repre-
sentative of the object class. Leveraging context
information provided by the memory compen-
sates for the limited number of samples. We
adopt memory sizes 100 for 1-shot and 200 for
5-shot on each dataset.

Analysis of episodic memory In this experiment, we meta-train MAML and MAML with EMO on
the Bird dataset and meta-test on Meta-Dataset-BTAF. Therefore the episodes saved in the memory

8
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Table 4: Comparative results of different algorithms on Meta-Dataset-BTAF and miniImageNet using
a Conv-4 backbone under the 5-way 1-shot setting. Results under the 5-way 5-shot are provided in
the Appendix C.5. The results of the Meta-Dataset-BTAF of other methods are provided by (Yao
et al., 2019; Jiang et al., 2022). Equipping ARML with EMO results in top-performance.

Method Bird Texture Aircraft Fungi miniImageNet

ANIL (Raghu et al., 2019) 53.36 ± 1.42 31.91 ± 1.25 52.87 ± 1.34 42.30 ± 1.28 46.70 ± 0.40

MAML (Finn et al., 2017) 53.94 ± 1.45 31.66 ± 1.31 51.37 ± 1.38 42.12 ± 1.36 48.70 ± 1.84

BMG (Flennerhag et al., 2021) 54.12 ± 1.46 32.19 ± 1.21 52.09 ± 1.35 43.00 ± 1.37 52.97 ± 0.85

Meta-SGD (Li et al., 2017) 55.58 ± 1.43 32.38 ± 1.32 52.99 ± 1.36 41.74 ± 1.34 50.47 ± 1.87

MUSML (Jiang et al., 2022) 60.52 ± 0.33 41.33 ± 1.30 54.69 ± 0.69 45.60 ± 0.43 -
HSML (Yao et al., 2019) 60.98 ± 1.50 35.01 ± 1.36 57.38 ± 1.40 44.02 ± 1.39 50.38 ± 1.85

TSA-MAML (Zhou et al., 2021) 61.37 ± 1.42 35.41 ± 1.39 58.78 ± 1.37 44.17 ± 1.25 48.44 ± 0.91

ARML (Yao et al., 2020) 62.33 ± 1.47 35.65 ± 1.40 58.56 ± 1.41 44.82 ± 1.38 50.42 ± 1.73

ARML with EMO 64.31 ± 1.35 37.25 ± 1.43 59.99 ± 1.35 46.15 ± 1.38 57.84 ± 0.93

Figure 4: EMO is trained only on the Bird to
show that EMO also holds semantic information.
MAML with EMO achieves better performance
on the same dataset (Bird) and the similar shapes
dataset (Aircraft), while it is harmful on the test
tasks that have significant distribution shifts (Tex-
ture and Fungi) from the training tasks.

are only from the Bird dataset. The experiments
that meta-train on the other three datasets are
provided in Appendix C.4. From Figure 4, there
is no doubt that MAML with EMO achieves a
better performance than MAML on Bird. Sur-
prisingly, MAML with EMO also outperforms
MAML on Aircraft. It might be that the two
datasets have more similar shapes (wings), Bird
memory can still help accelerate the Aircraft
tasks’ training. However, when the test task has
significant distribution shifts with the training
task, e.g., Texture, Fungi, the memory will not
be helpful or harmful. We will explore in future
work how to use episodic memory to address
cross-domain few-shot challenges.

Comparison with the state-of-the-art meth-
ods We first compare our method on Meta-
Dataset-BTAF using a Conv-4 backbone under the 5-way 1-shot setting in Table 4. Both the results
of the 5-way 5-shot and using ResNet-12 can be found in Appendix C.5. In this comparison, we
apply ARML (Yao et al., 2020) with EMO to experiment since ARML is the current state-of-the-art
algorithm based on optimization-based meta-learning. Our method achieves state-of-the-art perfor-
mance on each dataset under the 5-way 1-shot setting. On Texture, our model surpasses the second
best method, i.e., ARML (Yao et al., 2020), by 1.6%. The better performance confirms that EMO
can find the most similar task to the test task and update the parameters so that it can converge faster
and perform better. We also evaluate our method on traditional few-shot classification, in which the
training and test datasets are from the same dataset. In this experiment, we also apply ARML (Li
et al., 2017) with EMO experiment. Our EMO performs consistently better than the previous methods
on the miniImageNet. The results demonstrate that optimization-based meta-learning benefits from
EMO for traditional few-shot learning.

5 CONCLUSIONS

In this paper, we propose episodic memory optimization (EMO) that retains the gradient history of
past experienced tasks in external memory. EMO accumulates long-term, general learning processes
knowledge of past tasks, allowing it to learn a new task quickly based on task similarity. EMO
integrated with several optimization-based meta-learning methods accelerates the learning in all
settings and datasets tested and improves their performance. We also prove that EMO with fixed-
size memory converges under assumptions of strong convexity, regardless of which gradients are
selected or how they are aggregated to form the update step. We conduct thorough ablation studies to
demonstrate the effectiveness of the memory-augmented optimizer. Experiments on several few-shot
learning datasets further substantiate the benefit of the episodic memory optimizer.
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Andhi Janapsatya, Aleksandar Ignjatović, Jorgen Peddersen, and Sri Parameswaran. Dueling clock:
Adaptive cache replacement policy based on the clock algorithm. In Design, Automation & Test in
Europe Conference & Exhibition, pp. 920–925, 2010.

Weisen Jiang, James Kwok, and Yu Zhang. Subspace learning for effective meta-learning. In ICML,
pp. 10177–10194. PMLR, 2022.

Konstantinos Kalais and Sotirios Chatzis. Stochastic deep networks with linear competing units for
model-agnostic meta-learning. In ICML, pp. 10586–10597. PMLR, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Andrew Lampinen, Stephanie Chan, Andrea Banino, and Felix Hill. Towards mental time travel: a
hierarchical memory for reinforcement learning agents. NeurIPS, 34:28182–28195, 2021.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In CVPR, pp. 10657–10665, 2019.

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. In ICML, pp. 2927–2936, 2018.

Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang. Finding task-
relevant features for few-shot learning by category traversal. In CVPR, pp. 1–10, 2019.

Ke Li and Jitendra Malik. Learning to optimize. In ICLR, 2017.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
NeurIPS, 30, 2017.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Paul-Aymeric McRae, Prasanna Parthasarathi, Mahmoud Assran, and Sarath Chandar. Memory
augmented optimizers for deep learning. In ICLR, 2022.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In ICLR, 2018.

Tsendsuren Munkhdalai and Aadam Trischler. Metalearning with hebbian fast weights. arXiv preprint
arXiv:1807.05076, 2018.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, pp. 2554–2563, 2017.

Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In NeurIPS, pp. 721–731, 2018.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

Janarthanan Rajendran, Alexander Irpan, and Eric Jang. Meta-learning requires meta-augmentation.
NeurIPS, 33:5705–5715, 2020.

11



Under review as a conference paper at ICLR 2023

Tiago Ramalho and Marta Garnelo. Adaptive posterior learning: few-shot learning with a surprise-
based memory module. In ICLR, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In ICML, pp. 1842–1850, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. In
NeurIPS, pp. 4077–4087, 2017.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In CVPR, pp. 403–412, 2019.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In CVPR, pp. 1199–1208, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In ICML, 2013.

Sebastian Thrun and Lorien Pratt (eds.). Learning to Learn. Kluwer Academic Publishers, USA,
1998.

Endel Tulving. Episodic and semantic memory. Neuropsychologia, 1972.

Endel Tulving. Elements of episodic memory. Neuropsychologia, 1983.

Endel Tulving. Episodic memory: From mind to brain. Annual Review of Psychology, 53(1):1–25,
2002.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998–6008, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. NeurIPS, 29:3630–3638, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical report, California Institute of Technology, 2011.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning. In
ICML, pp. 7045–7054. PMLR, 2019.

Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and Zhenhui Li. Automated
relational meta-learning. arXiv preprint arXiv:2001.00745, 2020.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization. arXiv preprint arXiv:1912.03820, 2019.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In NeurIPS, pp. 7343–7353, 2018.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet: Neural network augmented with task-adaptive
projection for few-shot learning. In ICML, pp. 7115–7123, 2019.

Jian Zhang, Chenglong Zhao, Bingbing Ni, Minghao Xu, and Xiaokang Yang. Variational few-shot
learning. In ICCV, pp. 1685–1694, 2019.

12



Under review as a conference paper at ICLR 2023

Xiantong Zhen, Yingjun Du, Huan Xiong, Qiang Qiu, Cees GM Snoek, and Ling Shao. Learning to
learn variational semantic memory. In NeurIPS, 2020.

Pan Zhou, Yingtian Zou, Xiao-Tong Yuan, Jiashi Feng, Caiming Xiong, and Steven Hoi. Task
similarity aware meta learning: Theory-inspired improvement on maml. In UAI, pp. 23–33. PMLR,
2021.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. In ICLR, 2020.

Yingtian Zou, Fusheng Liu, and Qianxiao Li. Unraveling model-agnostic meta-learning via the
adaptation learning rate. In ICLR, 2021.

13



Under review as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

We follow (Finn et al., 2017; Yao et al., 2019) by adopting the standard four-block convolutional
layers as the feature extractor for our episodic memory optimizer and all baselines. We also conduct
our experiments by ANIL (Raghu et al., 2019), which removes the inner-loop updates for the feature
extractor network, and applies inner-loop adaptation only to the classifier during training and testing.
For all experiments, we keep the outer-loop optimizer consistent with the traditional optimization-
based meta-learning approaches, e.g., Adam (Kingma & Ba, 2015). Our code will be publicly
released.

B PROOF OF CONVERGENCE

To analyze the convergence rate of the model, we first derive the upper bound for the expectation
E ∥∆θt+1∥2 with respect to the independent random noises for all previous gradients {ϵj}tj=1, where
∥·∥ is the spectral norm. We reformulate the aggregation process of our method as a linear multi-step
system. Thus the gradient for the t-th iteration is aggr(gt,Vt)=

∑S−1
s=0 wt,sgt−s, where S is the

number of step in the system. By incorporating the aggregation process into the update rule Eq. (7)
and subtracting θ∗ from both sides, we obtain the recursive formulation about the difference ∆θt as:

∆θt+1 = ∆θt − α

S−1∑
s=0

wt,sgt−s. (13)

In the paper, the gradient of each iteration is reformulated by adding its mean and the corresponding
noise in Eq. (11). For clarity in the proof below, we define the average rate of the gradient changes
from the t-th iteration of model parameters to the optimal as:

Rt =
∇f(θt)−∇f(θ∗)

∆θt
=

∫ 1

0

∇2f(θ∗ + u∆θt)du. (14)

With the assumptions about the objective function f , the average rate of gradient changes is also
bounded between µ and L. By incorporating Eq. (14) into Eq. (11), we simplify the recursive
formulation about the difference ∆θt as:

∆θt+1 = ∆θt − α

S−1∑
s=0

wt,sRt−s∆θt−s − α

S−1∑
s=0

wt,sϵt−s. (15)

We take recursive formulations about {∆θt+1−s}S−1
s=0 together and get the matrix version of the the

recursion below:


∆θt+1

∆θt
...

∆θt−S

 = At


∆θt

∆θt−1

...
∆θt−S+1

+


−α

∑S−1
s=0 wt,sϵt−s

0
...
0

 ,

where At =


I − αwt,0Rt −αwt,1Rt−1 · · · −αwt,S−2Rt−S+2 −αwt,S−1Rt−S+1

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 .

(16)
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Note that At is the system matrix at the t-th iteration. By unrolling the recursion below, the upper
bound of the expectation E ∥∆θt+1∥2 can be derived :

E ∥∆θt+1∥2 ≤ Eϵt,··· ,ϵ1

∥∥∥∥∥∥∥∥


∆θt+1

∆θt
...

∆θt−S


∥∥∥∥∥∥∥∥
2

= Eϵt,··· ,ϵ1

∥∥∥∥∥∥∥∥∥At


∆θt

∆θt−1

...
∆θt−S+1

+


−α

∑S−1
s=0 wt,sϵt−s

0
...
0


∥∥∥∥∥∥∥∥∥
2

= ∥At∥2 Eϵt−1,··· ,ϵ1

∥∥∥∥∥∥∥∥


∆θt
∆θt−1

...
∆θt−S+1


∥∥∥∥∥∥∥∥
2

+ α2
S∑

s=0

w2
t,sEϵt−s ∥ϵt−s∥2

≤ ∥At∥2 Eϵt−1,··· ,ϵ1

∥∥∥∥∥∥∥∥


∆θt
∆θt−1

...
∆θt−S+1


∥∥∥∥∥∥∥∥
2

+ α2Sσ2

· · ·

≤
t∏

j=1

∥Aj∥2 ∥∆θ1∥2 + α2Sσ2
S∑

j=1

(∥At∥2 · · · ∥Aj+1∥2).

(17)

According to the definition of the spectral norm and the properties of block matrix (Polyak, 1964;
Assran & Rabbat, 2020; McRae et al., 2022), we get the upper bound of the spectral norm below:

∥At∥ ≤ λt(Â
⊤
t Ât),

where Ât =


1− αwt,0τt −αwt,1τt−1 · · · −αwt,S−2τt−S+2 −αwt,S−1τt−S+1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

(18)

Note that λt(Â
⊤
t Ât) is the square root of the largest eigenvalue of the matrix Â⊤

t Ât. The matrix
Ât ∈ RS×S has bounded hyperparameters: τt ∈ [µ,L] and wt ∈ [0, 1]. We introduce λmax as
the upper bound for all λt corresponding to all system matrices. Since the learning rate is chosen
sufficiently small such that λmax < 1, we further simplify Eq. (17) below:

E ∥∆θt+1∥2 ≤ λ2t
max ∥∆θ1∥2 +

α2σ2S

1− λ2
max

. (19)

Recall that f(·) is assumed to be L-smooth, we get the convergence rate of our model as

f(θt+1)− f(θ∗) ≤ L

2
(λ2t

max ∥∆θ1∥2 +
α2σ2S

1− λ2
max

). (20)

C MORE RESULTS

C.1 COMPARISON WITH OTHER OPTIMIZERS

To show the benefit of the episodic memory optimizer, we compare MAML (Finn et al., 2017),
Meta-SGD (Li et al., 2017), and ANIL (Raghu et al., 2019) with their EMO variants, where each
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Table 5: Comparison with other optimizers on Meta-Dataset-BTAF under the 5-way 1-shot setting.
EMO achieves better performance compared to other optimizers on all datasets.

MAML

Dataset w/ SGD w/ Momentum w/ Adam w/ EMO

Bird 53.94 ± 1.45 52.98 ± 1.42 52.55 ± 1.41 56.32 ± 1.33

Texture 31.66 ± 1.31 31.38 ± 1.31 30.95 ± 1.34 34.75 ± 1.41

Aircraft 51.37 ± 1.38 51.09 ± 1.35 50.15 ± 1.33 53.99 ± 1.33

Fungi 42.12 ± 1.36 41.54 ± 1.35 41.04 ± 1.31 43.15 ± 1.36

variant uses EMO as the inner-loop optimizer. Table 5 shows each method with EMO achieves better
performance by a large margin than the original methods on four different datasets. More importantly,
the most challenging, which has the largest domain gap Texture, delivers 34.75%, surpassing the
Meta-SGD by 2.09%. We attribute the improvements to our model’s ability to leverage the episodic
memory to adjust the model parameters, allowing the model to update the test task model using the
most training task-like update, and thus leading to improvements over original models.

C.2 EFFECT OF DIFFERENT AGGREGATION FUNCTIONS

We also give the ANIL with EMO for ablating the effect of EMO’s aggregation function used
to compute the new gradients. We report the performance of ANIL with EMO using different
aggregation functions in Table 6. The best-suited aggregation function for ANIL with EMO is
the Transformer. To ensure consistency of implementation on each dataset, we choose the
Transformer aggregation function for ANIL with EMO.

Table 6: Effect of ANIL with different aggregation functions. Mean achieves better performance
than alternatives.

ANIL with EMO

Dataset sum Mean Transformer

Bird 54.91 ± 1.33 55.18 ± 1.34 54.78 ± 1.33

Texture 32.71 ± 1.30 33.14 ± 1.40 33.15 ± 1.41

Aircraft 53.16 ± 1.40 52.11 ± 1.38 52.79 ± 1.33

Fungi 43.17 ± 1.34 43.07 ± 1.31 43.75 ± 1.36

C.3 EFFECT OF MEMORY CONTROLLER

We further assess the effect of the memory controller with ANIL with EMO and Meta-SGD with
EMO in Table 7. With CLOCK-EM, Meta-SGD with EMO achieves better performance on all datasets,
while ANIL with EMO leads to a small but consistent gain under all the datasets with LRU-EM. To
ensure consistency of implementation on each dataset, we choose the LRU-EM function for ANIL
with EMO, and CLOCK-EM is used for Meta-SGD with EMO.

C.4 ANALYSIS OF EPISODIC MEMORY

In this section, we further analysis of our proposed episodic memory with the other three datasets.
In this experiment, we meta-train MAML and MAML with EMO on the Texture, Aircraft, and
Fungi datasets, respectively, and meta-test on Meta-Dataset-BTAF. Therefore the episodes saved
in the memory are from the Texture, Aircraft, and Fungi, respectively. The results are shown in
Figure 5. Consistent with the results in the Figure 4, MAML with EMO has a significant performance
improvement when the meta-training dataset is the same as the meta-test dataset. Interestingly, the
memory of Aircraft can also help Bird to achieve better performance in Figure 5 (b). Similarly, when
the test task has large distribution shifts with the training task, the memory will not be useful or even
harmful.
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Table 7: Effect of ANIL with different memory controllers. LRU-EM achieves better performance
than alternatives.

ANIL with EMO

Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 50.11 ± 1.31 53.91 ± 1.34 54.78 ± 1.43

Texture 29.11 ± 1.41 32.94 ± 1.40 33.15 ± 1.31

Aircraft 47.96 ± 1.40 53.91 ± 1.35 52.79 ± 1.33

Fungi 40.97 ± 1.35 43.17 ± 1.35 43.75 ± 1.31

Table 8: Effect of Meta-SGD with different memory controllers. LRU-EM achieves better perfor-
mance than alternatives.

Meta-SGD with EMO

Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 53.05 ± 1.34 58.95 ± 1.41 57.31 ± 1.34

Texture 32.13 ± 1.41 36.26 ± 1.33 35.95 ± 1.41

Aircraft 49.16 ± 1.41 55.21 ± 1.35 56.19 ± 1.34

Fungi 41.61 ± 1.34 45.24 ± 1.35 44.75 ± 1.36

C.5 COMPARISON WITH THE STATE-OF-THE-ART ON FEW-SHOT LEARNING DATASETS

We further conduct experiments on the Meta-Dataset-BTAF and miniImageNet under the 5-way
5-shot setting in Table 9. We also give the comparative results for few-shot learning on miniImageNet
and tiredImageNet using a ResNet-12 back in the Table 10. In these comparison, we apply ARML Yao
et al. (2020) with EMO to do the experiment. Our method achieves state-of-the-art performance on
all benchmarks under the 5-way 5-shot setting.
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(a) Trained only Texture (b) Trained only Aircraft (c) Trained only Fungi

Figure 5: Analysis of episodic memory.

Table 9: Comparative results of different algorithms on the Meta-Dataset-BTAF using a Conv-4
backbone under the 5-way 5-shot setting. The results of other methods are provided by (Yao et al.,
2019; Jiang et al., 2022). Equipping ARML with EMO makes it a consistent top-performer.

Method Bird Texture Aircraft Fungi miniImageNet

MAML (Finn et al., 2017) 68.52 ± 0.79 44.56 ± 0.68 66.18 ± 0.71 51.85 ± 0.85 63.11 ± 0.92

Meta-SGD (Li et al., 2017) 67.87 ± 0.74 45.49 ± 0.68 66.84 ± 0.70 52.51 ± 0.81 64.03 ± 0.94

HSML (Yao et al., 2019) 71.68 ± 0.73 48.08 ± 0.69 73.49 ± 0.68 56.32 ± 0.80 65.91 ± 0.95

ARML (Yao et al., 2020) 73.34 ± 0.70 49.67 ± 0.67 74.88 ± 0.64 57.55 ± 0.82 66.87 ± 0.93

TSA-MAML (Zhou et al., 2021) 72.31 ± 0.71 49.50 ± 0.68 74.01 ± 0.70 56.95 ± 0.80 65.52 ± 0.92

ANIL (Raghu et al., 2019) 70.67± 0.72 44.67 ± 0.95 66.05 ± 1.07 52.89 ± 0.30 61.50 ± 0.92

BMG (Flennerhag et al., 2021) 71.56 ± 0.76 49.44 ± 0.73 66.83 ± 0.79 52.56 ± 0.89 66.73 ± 0.91

MUSML (Jiang et al., 2022) 76.69 ± 0.72 52.41 ± 0.75 77.76 ± 0.82 57.74 ± 0.81 65.12 ± 1.48

ARML with EMO 77.17 ± 0.65 53.25 ± 0.68 77.83 ± 0.63 59.15 ± 0.79 71.05 ± 0.91

Table 10: Comparative results for few-shot learning on miniImagenet and tieredImagenet using a
ResNet-12 backbone. ARML with EMO can also improve performance for traditional few-shot
learning.

miniImagenet 5-way tieredImagenet 5-way
Method 1-shot 5-shot 1-shot 5-shot
SNAIL (Mishra et al., 2018) 55.71 ± 0.99 68.88 ± 0.92 - -
Dynamic FS (Gidaris & Komodakis, 2018) 55.45 ± 0.89 70.13 ± 0.68 - -
TADAM (Oreshkin et al., 2018) 58.50 ± 0.30 76.70 ± 0.30 - -
MTL (Sun et al., 2019) 61.20 ± 1.80 75.50 ± 0.80 - -
VariationalFSL (Zhang et al., 2019) 61.23 ± 0.26 77.69 ± 0.17 - -
TapNet (Yoon et al., 2019) 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12

MetaOptNet (Lee et al., 2019) 62.64 ± 0.61 78.63 ± 0.46 65.81 ± 0.74 81.75 ± 0.53

CTM (Li et al., 2019) 62.05 ± 0.55 78.63 ± 0.06 64.78 ± 0.11 81.05 ± 0.52

CAN (Hou et al., 2020) 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37

HVM (Du et al., 2022) 67.83 ± 0.57 83.88 ± 0.51 73.67 ± 0.71 88.05 ± 0.44

ARML with EMO 69.15 ± 0.34 84.13 ± 0.25 75.17 ± 0.35 89.05 ± 0.25
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